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Abstract Recent work has formally linked the traditional axiomatisation of incom-
plete preferences a la Anscombe-Aumann with the theory of desirability developed in
the context of imprecise probability, by showing in particular that they are the very
same theory. The equivalence has been established under the constraint that the set of
possible prizes is finite. In this paper, we relax such a constraint, thus de facto creating
one of the most general theories of rationality and decision making available today.
We provide the theory with a sound interpretation and with basic notions, and results,
for the separation of beliefs and values, and for the case of complete preferences.
Moreover, we discuss the role of conglomerability for the presented theory, arguing
that it should be a rationality requirement under very broad conditions.

1 Introduction
Background

Preferences play two important roles in artificial intelligence (AI). On the one side,
the axiomatisation of preferences has been a major achievement of the past century,
with the pioneering work of Von Neumann and Morgestern (1947); Savage (1954);
Anscombe and Aumann (1963). These authors have justified rational decision making
through the maximisation of expected utility and at the same time have provided
foundations for the Bayesian theory of probability, which is at the heart of so much
work in Al On the other side, in the recent years we have witnessed a steady increase
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of research in preference modelling as a ductile and practical way to assess a sub-
ject’s beliefs, to learn trends from data, etc. (see, e.g., Domshlak et al 2011; Pigozzi
et al 2016). So preferences are very flexible objects that allow us both to work out
foundations for our uncertainty models and to develop useful tools for inference.

One aspect of preferences that seems particularly promising for modern artificial
intelligence is their possibility to model incompleteness: the fact that we are not
always capable to compare alternatives. In fact, modelling the incompleteness in our
knowledge is key to develop reliable (or robust) applications of Al, which is a central
theme now that Al is becoming so widespread. This has eminently been pointed out
by Dietterich (2017), the former President of AAAL

Research on the axiomatisation of incomplete preferences has primarily been
done in communities other than Al, with the work of Bewley (2002); Seidenfeld
et al (1995); Nau (2006); Ok et al (2012); Galaabaatar and Karni (2013) (but see the
work by Dubois et al 2003). In fact, the theme of incompleteness or robustness is
not mainstream in Al yet, even though we can find well-developed algorithms and
methods, like those by Corani and Zaffalon 2008; Kikuti et al 2011; de Bock and
de Cooman 2014, just to mention a few.

What these latter proposals have in common is their reference to Walley’s 1991
theory of imprecise probability as their founding paradigm (see Augustin et al 2014
for a collection of introductory papers on imprecise probability and some main ap-
plications to artificial intelligence). Such a theory is a re-elaboration of Williams’
1975 theory, which, in turn, is an extension of de Finetti’s 1937 Bayesian theory (see
also de Finetti 1974) made to deal with imprecision in probabilities, as originated by
incompleteness or other reasons.

In short, Williams-Walley’s theory models a subject’s uncertainty by focusing
on the gambles that the subject is willing to take and that for this reason are called
desirable. The rationality of the assessments is then formalised through some axioms,
which we can regard as a way to axiomatise the theory of desirability. The resulting
uncertainty theory is very powerful: above all, it maintains the characteristic of logical
self-consistency already present in de Finetti’s theory, which it encompasses as a spe-
cial case (the property of self-consistency is called coherence in the jargon of imprecise
probability). But it is capable of modelling incompleteness in great generality too; in
fact it encompasses also robust Bayesianism, and more in general the approaches that
model uncertainty with sets of probabilities. And moreover it goes well beyond that,
since desirability smoothly deals also with non-Archimedean problems, those that
probabilities cannot capture. And it has all this done without incurring measurement
problems.

Desirability and preference have essentially lived two separate lives until recently,
when we have proved that they are actually the same theory (Zaffalon and Miranda
2017; an earlier report dates back to 2015). This may be surprising as preferences deal
with beliefs (probabilities) and values (utilities) at the same time, while desirability
was born as a theory of uncertainty alone. In fact, the equivalence has been achieved
by enriching desirability models through a set of possible prizes, in addition to the
usual set of states of nature.

The equivalence of the two theories thus established has proved fruitful in many
respects. From the viewpoint of preference, it has allowed to show for example
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that the traditional notion of ‘state independence’, i.e., the fact that we can actually
have separate models for beliefs and values, corresponds to the notion of ‘strong
independence’ in probability (Cozman, 2012): this is based on the idea of using a
set of stochastically independent models. It has permitted to rework the notions of
Archimedeanity in preference in a new way, and to streamline the notions of precise
beliefs and values, and more in general of complete preferences.

Conversely, the equivalence has allowed us to generalise desirability so as to deal
with imprecise non-linear utility. This has made of desirability one the most powerful,
and well founded, theories of uncertainty and decision making available today. As
such, it appears to be a natural foundation for robust methods in modern Al

Outline and contributions

With this in mind, in this paper we revisit our work from 2017, aiming to widen its
scope and to discuss more broadly some important issues that we left open. After an
introduction to desirability and preferences in Section 2, we then give the following
contributions:

Section 3. In our 2017 formulation, we considered an unconstrained space of possibil-
ities {2 and a finite space of prizes X. This is particularly restrictive when we want
to consider for instance continuous rewards. It is a case that has received quite
some attention in the literature (see the work by del Amo and Rios Insua 2002;
Dubra et al 2004; Ghirardato and Siniscalchi 2012; Ok et al 2012, just to name a
few) but it does not seem to have found a fully general formulation yet. In fact we
also discussed this possibility pointing to some inherent difficulty.

The main problem in this case is that the core modelling unit in preferences, that of
‘horse lottery’ does not easily lend itself to work with continuous sets of prizes—on
top of which, by definition, we should place a probability. We address this problem
by defining the new notion of conditional horse lottery and reformulating the
axiomatisation of preferences on that basis. Then we prove the equivalence with
desirability in full generality where both the spaces involved, of possibilities and
prizes, are unconstrained. We make this by showing that there is a one-to-one
correspondence between the axioms of preference and those of desirability.

In the Archimedean case, this leads to represent utilities via sets of finitely additive
probabilities. More generally speaking, we benefit from the representation power of
desirability so as to formulate a theory that can work with any spaces, Archimedean
and non-Archimedean problems, and without incurring problems of measurability.
To our knowledge this type of generality is achieved here for the first time.

Section 4 gives a rigorous interpretation of the rewards that conditional horse lotter-
ies deliver by constructing a linear utility scale based on so-called ‘probability
currency’.

Section 5 compares the traditional formalism based on horse lotteries and our new one
based on conditional horse lotteries. We show that they are equivalent in the case
where the prizes are in a finite number. When they are not, we discuss why our
formalism appears to be more suited to deal with infinitely many prizes.
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Section 6 focuses on the question of conglomerability. Conglomerability is a property
that probabilistic, as well as desirability, modelling has to face when we deal with
infinite spaces of possibilities, and in particular with infinite conditioning partitions
of those spaces. This is a subject of interest to us given the unconstrained nature
of the space of possibilities that we consider. The main question is whether or not
conglomerability should be a rationality axiom.

Conglomerability has been first discussed by de Finetti (1931) and later on by many
other authors, including Hill and Lane (1985); Armstrong (1990); Seidenfeld et al
(1998); Howson (2009); DiBella (2018). Berti et al (2017) have recently given an
overview of the subject. Despite the amount of work devoted to conglomerability,
it still remains a controversial question to date.

In this panorama, we have provided an original justification of conglomerability
through arguments of ‘temporal coherence’, that is, the idea that an uncertainty
model should be dynamically coherent in time (Zaffalon and Miranda 2013). This
idea holds the promise to finally resolve the controversy, given that conglomerabil-
ity turns out to be a consequence of temporal coherence. But the assumptions we
imposed to derive such a result make its application relatively narrow.

We reconsider the problem and show that we can weaken those assumptions
in a substantial way, thus de facto turning conglomerability into a rationality
requirement whenever a model is used to compute future beliefs and values—in
the same way as probabilistic updating is usually understood.

Appendix A summarises our past results about the decomposition and completeness
of preferences, and proves that those results continue to hold when the space of
prizes is infinite.

Our conclusions and future perspectives are in Section 7. The proofs of the paper
have been collected in Appendix B.

2 Preliminary notions

In this section, we introduce the main features of sets of desirable gambles and
preference relations that shall be needed in the remainder of the paper.

2.1 Desirable gambles

We next introduce the basic theory of sets of desirable gambles; for a deeper account of
the results and concepts mentioned in this section, we refer to the work of Walley (1991,
Section 3.7); Couso and Moral (2011); de Cooman and Miranda (2012); de Cooman
and Quaeghebeur (2012); Miranda (2008); Miranda and Zaffalon (2010) and Augustin
et al (2014, Chapter 1). For a philosophical defence of indeterminate probabilities, see,
e.g., Hijek and Smithson (2012).

In short, the idea is to consider states of nature and associated real-valued rewards
called gambles. The focus will be on those gambles that are ‘desirable’ to us and that
have the property of being coherent, which means that they satisfy some rationality
axioms (Definition 3 as well as Axioms D1-D4 below). A coherent set of desirable
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gambles determines a so-called coherent lower prevision, which has the interpretation
of a lower expectation. In turn, that determines a set of finitely additive probabilities."
Coherent sets of desirable gambles, as well as coherent lower previsions and sets of
probabilities, can be conditioned, marginalised or extended. The former are however
more general than the latter, in that they can readily deal with conditioning on events
of probability zero or with choices under zero expectation, for which the traditional,
Kolmogorovian, approach to probability is not applicable.
Let us see these notions in more detail now.

2.1.1 Logical foundations of desirability

Let (2 denote the set of possible outcomes of an experiment, that is, the space of
possibilities. We let the cardinality of {2 be general, so {2 can be infinite. A gamble
f : £2 = R is a bounded real-valued function of (2. A gamble is interpreted as
an uncertain reward in a linear utility scale. Accepting a gamble f is regarded as a
commitment to receive f(w) whatever w occurs.

Denote by £(§2) the set of all the gambles on 2 and by L1 (£2) := {f € L(£2) :
f > 0} the subset of the positive gambles, where f > 0 means that f > 0 and f # 0.
We denote these sets also by £ and LT, respectively, when there can be no ambiguity
about the space involved. Negative gambles are defined analogously by £~ := — L.

We examine a set of gambles () C £ and come up with the subset K of the gambles
in () that we find desirable. How can we characterise the rationality of the assessments
represented by [C?

We can follow the procedure adopted in similar cases in logic, where first of all
we need to introduce a notion of deductive closure: that is, we first characterise the
set of gambles that we must find desirable as a consequence of having desired X in
the first place. This is easy to do once we assume that our utility scale is linear; those
gambles are the positive linear combinations of gambles in X:

posi(K) = Z)\jfj: ek, A >0r>1

j=1

We must also consider that any gamble in £ should be desirable as well, given that it
may increase our utility without ever decreasing it. Stated differently, the set £ plays
the role of the tautologies in logic. This means that the actual deductive closure we are
after is given by the following:

Definition 1 (Natural extension for gambles) Given a set K of desirable gambles,
its natural extension R is the set of gambles given by

R = posi(K U LT).

Note that R is the smallest convex cone that includes K U L.
The rationality of the assessments is characterised through the natural extension
by the following:

! Such a correspondence follows from a separating hyperplane theorem.
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Definition 2 (Avoiding partial loss for gambles) A set IC of desirable gambles is
said to avoid partial loss if 0 ¢ R.

This condition is the analog of the notion of consistency in logic. The irrationality of a
natural extension that incurs partial loss depends on the fact (as it is possible to show)
that it must contain a negative gamble f, that is, one that cannot increase our utility
and can possibly decrease it. In contradistinction, a set that avoids partial loss does
not contain negative gambles.

There is a final notion that is required to make a full logical theory of desirability.
This is the logical notion of a theory, that is, a set of assessments that is consistent
and logically closed, in the sense that the consistent assessments coincide with their
deductive closure in the examined domain (). This means that we are fully aware of
the implications of our assessments on other elements of (). The logical notion of a
theory goes in desirability under the name of coherence:

Definition 3 (Coherence for gambles) Say that C is coherent relative to @Q if K
avoids partial loss and @ NR C K (and hence Q N'R = K). In case Q = L then we
simply say that K is coherent.

This definition alone, despite its conceptual simplicity, makes up all the theory of
desirable gambles: in principle, every property of the theory can be derived from
it. Moreover, the definition gives the theory a solid logical basis and in particular
guarantees that the inferences one draws are always coherent with one another. This
appears to giving a reply to Howson’s 2009 question, whether probability and logic can
be combined (see also Howson 2011): by reformulating ‘probability’ as desirability, we
do not even need to combine probability with logic, as we clearly see that probability
is already pure logic. At the same time, reformulating probability through desirability,
we obtain a very powerful theory: as we have seen, it can be defined on any space of
possibilities {2 and any domain () C L (in this sense, it is not affected by measurability
problems); and, as we shall make precise later on in this section, it can handle both
precise and imprecise assessments, as well as model both Archimedean and non-
Archimedean problems.

2.1.2 The case Q = L

In this paper we shall primarily be concerned with the case where the set of gambles
(@ that we examine is the entire set £. We shall then focus on this case to develop the
theory of desirability in some detail.

The first consequence of focusing on the case () = L is that coherence can
equivalently be characterised by four axioms (see Walley 1991, Section 3.7; Miranda
and Zaffalon 2010, Proposition 2):

Definition 4 (Coherence for gambles when () = £) In the case where Q = L, R
is said to be a coherent set of desirable gambles in L if and only if it satisfies the
following conditions:

D1. £ C R [Accepting Partial Gains];
D2. 0 ¢ R [Avoiding Null Gain];
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D3. f,g € R = f+ g € R [Additivity];
D4. f € R,A > 0= Af € R [Positive Homogeneity].

A coherent set of desirable gambles is thus a convex cone (D3, D4) that excludes the
origin (D2) and that contains the positive gambles (D1).

Consider an event B C (2. We denote by B both the subset of {2 and its indicator
function Iz (that equals one in B and zero elsewhere). Using this convention, we can
multiply B and a gamble f obtaining the gamble B f given for all w € {2 by

flw) ifweB,
0 otherwise.

1t -

Definition 5 (Conditioning for gambles) Consider a coherent set of desirable gam-
bles R on £ and let B be a non-empty subset of (2. The set of desirable gambles
conditional on B derived from R is defined as

R|B={feR:f=Bf}

There is a natural correspondence between B f and the restriction of f to B, whence
we can also put R|B in relation with

R|B :={fp € L(B): (3f € R|B)(Vw € B) f(w) = fp(w)},

which is a coherent set of desirable gambles in £(B). R|B and R | B are equivalent
representations of the conditional set.

Definition 6 (Marginalisation for gambles) Let R be a coherent set of desirable
gambles in the product space {2 x {2’, where (2, {2’ are two logically independent sets.
The 2-marginal set of desirable gambles on L(2 x §2') induced by R is defined as

Ro={feR:(Vwe 2)(Vw),wy € Q) f(w,wy) = flw,wy)}.

Since R, is made up of gambles that depend on 2 only (we call them §2-measurable
gambles), we can establish a bijection between R, and

0 ={9€ L(2): (3f e R)(Vw € Q) (Vo' € ') g(w) = f(w,w)}.

R, is a coherent set of gambles in L£({2).
A coherent set of desirable gambles encompasses a probabilistic model for {2
made of lower and upper expectations (also called previsions after de Finetti):

Definition 7 (Coherent lower and upper previsions) Let R be a coherent set of
desirable gambles in £. For all f € L, let

P(f)=sup{peR: f—peR}, (1)

where addition of a gamble with a constant is meant pointwise. It is called the lower
prevision of f. The conjugate value given by P(f) :== —P(—f) is called the upper
prevision of f. The functionals P, P : £ — R are respectively called a coherent lower
prevision and a coherent upper prevision.
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Definition 8 (Linear prevision) Let P, P be coherent lower and upper previsions on
L.If P(f) = P(f) for some f € L, then we call the common value the prevision of
f and we denote it by P(f). If this happens for all f € £ then we call the functional

P alinear prevision.
A coherent lower prevision P has a set of dominating linear previsions:
M(P) := {P linear prevision : (Vf € L) P(f) > P(f)}, (2)

which turns out to be closed” and convex. Since each linear prevision is in a one-to-one
correspondence with a finitely additive probability, we can regard M (P) also as a set
of probabilities (or a credal set). Moreover, P is the lower envelope of the previsions
in M(P):

(Vf e L) P(f) =min{P(f) : P € M(P)}.

The coherent upper prevision P is the upper envelope of the same set; as a consequence,
it follows that P(f) < P(f) forall f € L.

Definition 9 (Strict desirability) A coherent set of gambles R is said to be strictly
desirable if it satisfies the following condition:

DO. f € R\ LT = (3§ > 0) f — § € R [Openness].

Strict desirability means that R \ £1 does not include its topological border. By an
abuse of terminology, R is said to be open too.?

There is a one-to-one correspondence between coherent lower previsions and
strictly desirable sets: from P we can induce set

R:={feLl:f=00rP(f)>0} 3)
‘R is coherent and strictly desirable and moreover induces P through Eq. (1).

Remark 1 (General vs strict and almost desirability) Note that a general coherent
set of desirable gambles is a cone that need not be open nor closed. The closure of a
coherent set of desirable gambles is called a set of almost-desirable gambles by Walley
(1991, Section 3.7.3). Strict desirability, as we have seen, is associated with open
cones. Both almost and strictly desirable gambles are in a one-to-one correspondence
with, and are therefore as informative as, a closed convex set of linear previsions. The
extra generality of sets of desirable gambles makes them useful when dealing with
the problem of conditioning on sets of probability zero, or of choosing between two
options under zero expectation (Zaffalon and Miranda 2013, Section 5; see also Dubins
1975; Seidenfeld et al 1995; Coletti and Scozzafava 2002; de Bock and de Cooman
2015a for other approaches to this problem).

2 1In the weak* topology, which is the smallest topology for which all the evaluation functionals given by
f(P) == P(f), where f € L, are continuous.

3" A note of caution to prevent confusion in the reader: the adjective ‘strict’ denotes two unrelated things
in desirability and in preferences. In preferences it characterises irreflexive relations, while in desirability
it formalises an Archimedean condition as it will become clear in Section 3. We are keeping the same
adjective in both cases for historical reasons and given that there should be no possibility to create ambiguity
by doing so.
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Remark 2 (On the regularity assumption) Note also that with coherent sets of de-
sirable gambles we need not enter the controversy as to whether or not we should
use the ‘regularity assumption’, which prescribes that probabilities of possible events
should be positive (see Pedersen 2014). Such an assumption goes back to an important
article by Shimony (1955). In the language of this paper, Shimony argued that de
Finetti’s framework could lead to the questionable undesirability of a positive gamble
in case zero probabilities were present, given that the prevision (expectation) of such a
gamble could be zero. In other words, Shimony argued, as we do, that D1 is an axiom
of rationality. This led Shimony and a number of later authors, among whom Carnap
(1980) and Skyrms (1980), to advocate strengthening de Finetti’s theory by requiring
regularity. But it has originated also much controversy given the very constraining
nature of regularity on probabilistic models. Between requiring regularity and drop-
ping the desirability of positive gambles, coherent sets of desirable gambles actually
offer a third possible way that keeps all desiderata together: events can have zero
probability, positive gambles are desirable, and all operations, such as conditioning or
comparisons, are well defined and informative. ¢

Definition 10 (Conditional coherent lower and upper previsions) Let R be a co-
herent set of desirable gambles in £({2) and B a non-empty subset of {2. For all
feL($),let

P(f|B) =sup{u € R: B(f —pu) € R} (4)
be the conditional lower prevision of f given B. The conjugate value given by
P(f|B) :== —P(—f|B) is called the conditional upper prevision of f. The functionals
P(:|B), P(:|B) : L(£2) — R are respectively called a conditional coherent lower
prevision and a conditional coherent upper prevision.

Denote by infp f the infimum value that f takes on B. P(:|B) satisfies the
following conditions for all f € £({2) and all real A > 0:
o P(f|B) > infp f;
o P(Af|B) = AP(f|B);
o P(f+g|B) = P(f|B) + P(g|B).
These conditions are sometimes used as axioms of coherent conditional lower previ-

sions, when not taking desirability as the primitive concept. Note that coherent lower
previsions can be defined as a special case of conditional ones obtained when B = f2.

Definition 11 (Maximal coherent set of gambles) Let R be a coherent set of desir-
able gambles. It is called maximal if

(VfeL\{0}) f¢R=—-f€eR.

Requiring maximality is tantamount to assuming complete preferences.
It is important for this paper to also say something about conglomerability:

Definition 12 (Conglomerability) Consider a coherent set of desirable gambles R C
L(£2) and let B be a partition of {2. R is said to be B-conglomerable if it satisfies the
following condition:*

(Vf € L(2)((VB € B) Bf e RU{0} = f € RU{0}).

4 In the following we shall just call it conglomerability for short.
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The rationale behind conglomerability is that if a gamble is desirable conditional on
each event of a partition of (2, then it should be unconditionally desirable. We refer to
the work by Miranda et al (2012) and Walley (1991, Chapter 6) for a discussion of
conglomerability in terms of sets of desirable gambles. See also Section 6.

Definition 13 (Marginal extension for gambles) Let R, be a marginal coherent set
of gambles in L(§2 x §2') and R|{w}, for all w € §2, be conditional coherent sets. Let

RIZ={he L2 xD): (Vwe ) h(w,-) € RI{w}U{0}}\ {0}

be a set that conglomerates all the conditional information along the partition {{w} x
2w e N2} of 2 x £ (by an abuse of notation, we denote this partition by {2 too).
Then the following coherent and {2-conglomerable set of gambles:

R:={g+h:geRoU{0}, heR|IQU{0}}\{0},
is called the marginal extension of the given marginal and conditional information.

The marginal extension is a generalisation of the law of total expectation to
desirable gambles. It can be defined for lower previsions too (see for instance Walley
1991, Section 6.7 and also Miranda and de Cooman 2007). To this end, we first give
some preliminary notions.

Definition 14 (Separately coherent conditional lower prevision) Let 53 be a parti-
tion of {2 and P(-|B) a coherent lower prevision conditional on B for all B € 5. Then

we call
P(:|B):= " BP(:|B)
BeB
a separately coherent conditional lower prevision.

For every gamble f, P(f|B) is the gamble on (2 that equals P(f|B) forw € B;so it
is a B-measurable gamble.

Definition 15 (Marginal coherent lower prevision) Let P be a coherent lower pre-
vision on £({2 x 2’). Then the 2-marginal coherent lower prevision it induces is
given by

Po(f) = E(f)
forall f € £(£2 x (') that are {2-measurable.

The {2-marginal is simply the restriction of P to the subset of gambles in L({2 x )
that only depend on elements of (2. For this reason, and analogously to the case of
desirability, we can represent the {2-marginal in an equivalent way also through the
corresponding lower prevision Py, defined on £(2).

Definition 16 (Marginal extension for lower previsions) Consider the possibility
space {2 x {2' and its partition {{w} X 2’ : w € 2}. We shall denote this partition by
(2 and its elements by {w}, with an abuse of notation. Let P}, be a marginal coherent
lower prevision and let P(-|{2) be a separately coherent conditional lower prevision
on L£(£2 x 2'). Then the marginal extension of P, and P(-|{2) is the lower prevision
P given for all f € £(2 x £2) by

P(f) = Po(P(f192)).
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2.2 Preference relations

We turn now our attention to the second pillar of this paper: preference relations.

Let {2 denote, as before, the space of possibilities. In order to deal with preferences,
we introduce now another set X’ of outcomes, or prizes. We assume that all the pairs
of elements in {2 x X" are possible or, which is equivalent, that {2 and X" are logically
independent.

The treatment of preferences in this paper relies on the notion of a conditional
horse lottery:

Definition 17 (Conditional horse lottery) A conditional horse lottery is a function
p:2xX—[0,1].

We should recall that the modelling of preferences is traditionally done by horse
lotteries since the early work of Anscombe and Aumann (1963): those are similar to our
conditional horse lotteries but actually correspond to placing a probability over prizes
for each w € {2 rather than an unnormalised function, as in Definition 17. Prominent
examples of axiomatisations of incomplete preferences through horse lotteries are
the works of Bewley (2002); Seidenfeld et al (1995); Nau (2006); Galaabaatar and
Karni (2013); Zaffalon and Miranda (2017). Since it is not immediate to work with
horse lotteries in the case of infinitely many prizes, in this paper we have decided to
define conditional horse lotteries. The essence of the two approaches is the same but
technically the latter appears more naturally suited for the extension to the general
case. We shall analyse the differences of the two approaches in detail in Section 5.

Let us denote by H (2 x X) := [0, 1]?*? the set of all conditional horse lotteries
on {2 x X. They will also be called acts for short. In the following we shall use the
notation H for the set of all the acts in case there is no possibility of ambiguity.

Conditional horse lotteries reward us with so-called ‘probability currency’. In
particular, if event w occurs, conditional horse lottery p rewards us with an increase of
probability to win prize x, for all z € X, proportional to p(w, «). The reward process
will be detailed in Section 4.

Now it is convenient to give a name to the special act that provides us with no
actual reward, no matter the w that eventually occurs:

Definition 18 (Zero act) Let 0 € H denote the zero act, which is defined by 0(w, ) =
Oforallw e 2,z € X.

Conditional horse lotteries are related to a behavioural interpretation through a
notion of preference. The idea is that, since we aim at receiving a prize in X', we will
prefer some acts over some others; this will depend in part on our knowledge about
the experiment originating an w € {2, and in part on our attitude, or liking, towards
the elements of X'. We are particularly interested in some rational type of preference
relations that we call coherent:

5 Our conditional horse lotteries should not be confused with Luce and Krantz’s 1971 conditional
acts. In such a case acts are conditional on subsets of {2 and are defined with the aim to increase their
theory’s expressiveness. Our horse lotteries p are conditional in the sense that p(w, -) intuitively represents
a collection of conditional probabilities. This is just a technical point that makes our theory simpler and
easier to extend to the case of infinitely many prizes compared to the case of horse lotteries.
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Definition 19 (Coherent preference relation) A preference relation ~ over condi-
tional horse lotteries is a subset of H x . It is said to be coherent if it satisfies the
next four axioms:

Al. (Vp € H\ {0}) p > 0 [Worst act];

A2. (Vp € H) p # p [Trreflexivity];

A3. (Vp,q,r € H) p = q = r = p > r [Transitivity];

A4, (Vp,q,r € H)p =g Vae (0,1]) ap+ (1 — a)r = ag + (1 — a)r [Mixture
Independence].

If also the next axiom is satisfied, then we say that the coherent preference relation is
weakly Archimedean.

A0. (Vp,geH:~(p>q))p>=q= (Fae (0,1)) ap > q [Weak Archimedeanity].
Let us comment on the given axioms.

o Axiom Al is a direct consequence of the implicit assumption that the elements
of X are prizes, that is, objects we would like to get; since the zero act surely
prevents us from increasing our chances to win them—as opposed to any other
act—, then it must be the worst possible act for us.

o Axioms A2 characterises the property of being ‘strict’ of the preferences we are
defining. In particular, by writing p > ¢ we want to express that p is strictly more
valuable than g for us. For this reason, there cannot be p such that p > p.

o As for Axiom A3, the expression p > ¢ > r means that for us p is strictly more
valuable than g, which is strictly more valuable than r; if we take this to mean that
we would pay a positive amount to exchange r for ¢, and another to exchange ¢
for p, then we would actually pay a positive amount to exchange r for p.

o Axiom A4 can be interpreted in different ways. One way to look at it, is that what
matters for establishing that p > ¢ is the increase, or decrease, of probabilities that
comes along with dropping act ¢ for p, and that can be expressed by the element-
wise difference p — ¢q. Axiom A4 will be discussed more widely in Section 5.

o Finally, Axiom AQ expresses a continuity property of the model. This is easier

to see by considering a violation of the axiom, where there is a preference p > ¢
such that any possible worsening of p would invalidate the preference itself: that
is, ap % q for all & € (0,1). In this case there is not continuity in the transition
from ap ¥ gforalla € (0,1),t0p = q.
Note that the axiom excludes from consideration the cases where p > ¢. The reason
is that requiring continuity in those cases would conflict with rationality. Imagine
for instance the case where our preference relation is given, for all r, s € H, by
r > s if and only if » > s. Consider acts p, g given by p(w, x) = q(w, ) = %
for all (w,x) € £2 x X except for the pair (w’, z'), for which we have p(w’, ') >
q(w’,2"). In this situation there is no o € (0,1) such that ap > ¢. And yet,
of course, we are fully rational in expressing p > ¢. Therefore continuity of
preferences does not seem justified when it comes to preferences that arise from
dominances like p > ¢q. See also Proposition 2 below.

A simple yet convenient consequence of the axioms is the following:
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Proposition 1 Suppose that for given p,q,r,s € H it holds that a(p — q) = (1 —
a)(r—s) for some o € (0, 1). Then for any preference relation - that satisfies mixture
independence, it holds that

p=q=r1>S5.

Let us consider now a special type of preference.

Definition 20 (Objective preference) Given acts p, ¢ € H, we say that p is object-
ively preferred to q if p > q and p # q (we denote objective preference also by

P> Q.

The idea is that p is objectively preferred to ¢ because the probability p assigns to
outcomes is always not smaller than that of ¢ while being strictly greater somewhere.
An objective preference is indeed a preference:

Proposition 2 Let > be a coherent preference relation on H x H and p,q € H. Then
PzZq=p-q

This proposition remarks in a formal way that objective preferences are those every
rational subject expresses. These preferences are therefore always belonging to any
coherent preference relation. If they are the only preferences in the relation, then we
call the relation vacuous because we are expressing only a non-informative, or trivial,
type of preferences.

3 Equivalence of desirability and preference

In the generalisation of desirability we are about to describe in this section, £ will be
redefined to be the set of gambles on {2 x X. These may be considered as functional-
valued gambles: for each w € 2, gamble f € L(§2 x X) delivers the reward function
f(w, ) whose elements are measured in ‘probabilistic’ units associated with the
respective prizes (see Section 4 for more details). R henceforth will denote a coherent
set of desirable gambles of this form, which is a subset of the new L. Such a generalised
definition of gambles makes them very close to conditional horse lotteries.

On this basis, we shall first show that each axiom of desirability has an equivalent
counterpart among the axioms of preference. From that, we will prove the equivalence
of the two theories.

3.1 Axiom-to-axiom equivalence

In this section we shall start work with preferences that are not necessarily coherent,
and we shall discuss then their axioms, in relations to those of desirability, one by
one. To this end, we shall initially consider only a minimal requirement on preference
relations:

Definition 21 (Linear preference relation) We say that a relation ~C H x H is
linearifp > q=r > sforall r,ssuchthatp —q=1r —s.
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Now we consider a special case of sets of desirable gambles that are in a bijective
relation with preferences.

Lemma 1l Let £1(2 x X) = {f € L2 x X) :sup|f| <1} and LT =L N LT
Sets of desirable gambles in L1(§2 x X) and linear preference relations in H x H
are in a one-to-one correspondence, where given a set of desirable gambles D, we
consider the preference relation = as p > q < p — q € D and given >~ we define

D:={feLli(2xX):EpgeH) f=p—qp>q}
Let us define coherence axioms for the special class of desirable gambles in L.

Definition 22 (Desirability axioms for linear relations) Consider a set of gambles
D C L. We say that:

DO'. D is strictly desirable if only if for all f € D\ £ and all g € £; such that
max(0, —f) < g < min(1,1—f), thereis @ € (0,1) suchthataf—(1—a)g € D.

D1’. D accepts partial gains if and only if L] C D.

D2’. D avoids null gain if and only if 0 ¢ D.

D3’. D is additive if and only if for all f,g € D suchthat f = p — gand g = ¢ — r for
some p, q,r € H, itholds that f + g € D.

D4'. D satisfies positive homogeneity if and only if f € D, A > 0 such that A\f € L,
implies that A\f € D.

Each of these axioms is in a one-to-one correspondence with one of the axioms of
preferences:

Theorem 1 Let D and > be respectively a set of gambles in L1 and the corresponding
linear relation. Then:

(A1<D1’) Relation = has worst outcome 0 if and only if D accepts partial gains.

(A2<D2') Relation = is irreflexive if and only if D avoids null gain.

(A3<D3’) Relation = is transitive if and only if D is additive.

(A4<D4’) Relation = satisfies mixture independence if and only if D satisfies positive homo-
geneity.

(AOSDO') Relation = is weakly Archimedean if and only if D is strictly desirable.

3.2 Equivalence of the theories

At this point we start considering the case where the basic rationality axioms hold
jointly.

Lemma 2 Let D be a set of gambles in L1. If D satisfies D4’ then D3’ is equivalent
to the following:

D3". Forall f,g € D such that f + g € L4, it holds that f + g € D.
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Recall that in the previous section we have shown that there is a one-to-one
correspondence between linear preference relations and sets of desirable gambles in
L. Now we want to show what is the one-to-one correspondence between coherent
preference relations and coherent sets of desirable gambles (whether in £4 or £). To
this end, we associate to a set of gambles D C L; the set

Rp={A\g: A>0,geD} CL. (5)

Vice versa, to each set of desirable gambles R C L, we associate the set

DR::{f:O#fGR}Cﬁl. (6)

sup ||

Theorem 2 1. Let D be a set of gambles in L1. If D satisfies D1'-D4’, then Rp is
coherent.

2. Conversely, given a coherent set of desirable gambles R C L the set Dy satis-
fies D1'-D4’.

3. Under coherence of R and D, the procedures in the two statements above are each
other’s inverses: Rp, = R and Dr,, = D.

4. If D satisfies D1'-D4’, then D is coherent relative to L1, and Rp is its natural
extension.

5. Under coherence, 'R is a set of strictly desirable gambles if and only if Dr
satisfies DO’

Among other things, this theorem states that coherent preference relations are in a
one-to-one correspondence with coherent sets of desirable gambles in £, whose
form is given in (6) when R is coherent. They are obviously also in a one-to-one
correspondence with coherent sets of desirable gambles in £ through (5).

‘We summarise the situation in the next theorem:

Theorem 3 There is a one-to-one correspondence between coherent preference rela-
tions on H x H and coherent sets of desirable gambles in L({2 x X). Moreover, strict
desirability is in a one-to-one correspondence with weak Archimedeanity.

3.3 Other axioms considered in the literature

Our previous results show that there is a correspondence between coherent preference
relations and coherent sets of desirable gambles. In fact, this correspondence can be
extended beyond the basic axioms of coherence: other interesting rationality conditions
that can be imposed onto a preference relation can be formulated in terms of desirable
gambles. Let us briefly discuss how this can be done.

One such axiom is called negative transitivity, and can be expressed as

A5. (Vp,q,7 € H) p # qand q % r = p # r [Negative transitivity].

Negative transitivity on constant acts has been considered by Galaabaatar and
Karni (2013), who related it to Knightian uncertainty. In terms of sets of desirable
gambles, we can prove the following:
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Proposition 3 Let - be a coherent preference relation on H X H, and let R be its
associated coherent set of desirable gambles in L(§2 x X). Then - is negatively
transitive if and only if R satisfies

L9ER=f+g9¢R. (7)

Interestingly, if a coherent set of desirable gambles satisfies Eq. (7) then not only
posi(R) = R (due to coherence), but also posi(R¢) = R (due to (7)), and as a
consequence it corresponds to what has been called a lexicographic set of desirable
gambles by Van Camp et al (2018b). The reason is that these sets of gambles are in
a correspondence with lexicographic probabilities. See also Appendix A.2.3 for a
somewhat related study of condition (7); in the framework of coherent lower previsions,
we refer to the work of Miranda and Zaffalon (2016).

Finally, another relevant axiom in the literature is the dominance axiom:

A6, (Vwe)p=q°=p>q,

where ¢“ is the {2-measurable conditional horse lottery given by ¢* (', x) := ¢(w, x)
forevery (w', z) € £2x X. This axiom has been considered for instance by Galaabaatar
and Karni (2013), and it is a weaker version of Savage’s postulate P7. We have shown
that it is related to independent products of marginal models in the theory of coherent
lower previsions, and more particularly to the strong product (Zaffalon and Miranda,
2017, Section 5.3).

Note, however, that the result does not extend immediately to the case where both
{2, X are infinite; as shown by Miranda and Zaffalon 2015a, Example 1, independent
products (and in particular the strong product) of coherent lower previsions may not
even exist in that case. In fact, we find more natural to rely on a weaker, asymmetric,
notion of irrelevance that always exists and that suffices to achieve the wanted decom-
position of beliefs and values. We illustrate this in Appendix A following ideas from
our previous work (Zaffalon and Miranda, 2017).

3.4 Probability and utility

We have established an equivalence result for desirability and preference at the level
of the cone of desirable gambles. This allows us to focus on desirable gambles in the
rest of the paper, while aiming to address questions of preference.

The result is very general since it allows us to deal also with problems that
cannot be addressed with (sets of) expected utilities, that is, with all the problems that
critically depend on a rigorous treatment of zero probabilities or expectations. For all
the other problems, it is often convenient to work directly with a probability-utility
representation. In our case, this means deducing from a coherent set of desirable
gambles the corresponding lower previsions.

More precisely, given a coherent set of desirable gambles R C L({2 x X), we
obtain its corresponding lower prevision for all f € L£(§2 x X') using (1):

P(f) =sap{peR: f—peR}
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P(f) is interpreted as the lower expectation of f taken with respect to the probabilities
and utilities that are implicit in the definition of R. These can be made explicit very
simply by applying P to some special indicator functions so as to use marginalisation
(see Definition 15); we have that:

P(B x X),P(2 x C)

are respectively the lower probability of B C 2 and the lower utility of C' C X’. Note
that:

o The lower probability corresponds to a set of finitely additive probabilities on {2,
as it follows from (2).

o Similarly, the lower utility corresponds to a set of finitely additive probabilities too,
again using (2), which this time are interpreted as utilities. This means that a utility
function in our formalism is mathematically equal to a finitely additive probability
on X. A discussion on this point can be found in our past work (Zaffalon and
Miranda, 2017, Section 4.1).

o Separate probabilities and utilities cannot reproduce P unless this is subject to the
property of ‘state independence’; in the opposite condition of state dependence,
the analysis needs to be done using the ‘joint’ model P directly. See Appendix A
for details.

These considerations can be extended to the conditional case in a straightforward way.
For instance, we can use (4) to compute the conditional lower prevision of a gamble
f € L(2 x X) given some B C (2

P(fIBxX)=sup{peR: (BxX)(f—pn) €R}

This can be given the updating interpretation: P(f|B x X) would then represent our
lower expected value of f under the assumption that B occurs and that is it the only
thing we get to know about (2. Note that P(-|B x X') updates both our beliefs and
values in the general setting of this paper.

Note also that, mathematically speaking, nothing prevents us from computing
P(f|£2 x C): the lower prevision of f conditional on a subset C' of prizes. But we
cannot give it the updating interpretation as C' simply does not ‘occur’. See Section 6
for more details.

4 Interpreting the rewards

We have shown that there is an equivalence between coherent preferences and coherent
sets of desirable gambles. We exploit this fact in order to give a clear interpretation of
the process that allows us to win prizes by using the framework of gambles.

In order to avoid confusion, let us remark that the discussion in this section should
better be understood as the description of a ‘hypothetical’ reward process: most
probably we will not want to run this process in practice, but we need the intuition it
conveys in order to give meaning to rewards. And we need this meaning to be able
to see which gambles are desirable to us and which are not. Stated differently, the
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previous sections have described the theory, while here we talk about its interpretation;
we should bear in mind not to mix up these two levels.

The process by which we are rewarded is based on the idea of having compound
lotteries, which underlies the definition of conditional horse lotteries.

The basic framework is constituted by a collection of simple lotteries, one per pair
(w,x) € 2 x X, which we denote by

Li={lwz) : (w,z)€ 2 xX}.

In each of these we can either win prize x or nothing. Before the process starts, we
have already a % chance of winning prize z, for each x € X under each w € (2.
Then the process goes like this:

1. We are offered a finite number of gambles f1, ..., f, € L(2 x X); we select a
subset of them that we accept: without loss of generality, say fi,..., fmn, with
m < n.

2. As a consequence, we are given € y .-, f; in probability currency, where 0 <
e < 1/3" | sup|fi| is a constant. Our new probabilities to win the prizes then
become

1 m
p;=§+s;fi. (8)
3. Event w occurs. We focus on the subset of simple lotteries given by
Ly ={lwao €L:2xe X} )

One of the simple lotteries from L, is chosen by an extraneous device that is
unknown to us, except for the fact that it is independent of us and of our choices,
and that we have no reason to believe unfair. Such a lottery is eventually run so as
we can win prize  with probability p(w, x).

The most important part of this process is that the rewards are given in probability
currency, because this makes sure that Axioms D1-D4 are automatically satisfied. Let
us show why by following the reasoning outlined by Walley (1991, Section 2.2.4):

o Axioms DI is a trivial case: assume that among f1,..., f, there is a positive
gamble f € L. We are certainly willing to accept it as by doing so we increase
our chance to win the prizes.

o As for Axiom D4, assume that among fi, ..., f, there are gambles f and \f,
with A > 0. Assume for the moment that A > 1. Compare (a) the reward e\ f in
probability currency with (b) a reward e\ f in probability currency if an extraneous
random event C with known positive chance a occurs (C' has to be unrelated to
the experiments under considerations and more in general to us). Since (b) yields
zero if C' does not occur, then it should be desirable to us if and only if we desire
it conditional on C'. In this case (a) and (b) are equivalent, thus we should desire
(a) if and only if we desire (b). But (b) is equivalent to a payment in probability
currency of ae A f. This shows that e\ f is desirable if and only if ae )\ f is desirable
for all @ € (0, 1]. Choosing « := 1/, we obtain that Af should be desirable if
and only if f is desirable. The case where A < 1 is analogous.
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o With respect to Axiom D2, we first notice that, reasoning in an analogous way to
the case of D1, we are certainly not willing to accept a gamble f < 0. In order
to enforce this constraint, we require that the zero gamble not be acceptable: in
this way, in case we accepted the negative gamble f, then — f would be positive
and hence accepted through D1, but their sum, accepted via D4, would be zero.
By making zero not acceptable, we thus reject the negative gambles. Therefore
Axiom D2 follows.

o With respect to D3, assume that among f1, . .., f, there are gambles f, g that are
both desirable. Consider again an extraneous event C' with probability % and the
compound gamble h defined as follows: if C' occurs we are given f and otherwise
we are given g. Given that & is desirable both if C' occurs and if it does not, then h
should be unconditionally desirable. But the probability currency corresponding
to h is equal to %5 f+ %ag, whence % f+ % g should be desirable; applying D4
we obtain that f + ¢ is desirable.

The interpretation above is based on the actual construction of a linear utility scale
through the idea of probability currency and using gambles. Using such a scale allows
us to have Axioms D1-D4 automatically satisfied. As a side note, observe that all this
is granted also by the requirement to use a small € in the definition of p that keeps it
far away from the deterministic probabilities: in fact, if we allowed p to get to 0 or
1, then knowing that we could win or lose a prize (almost) for sure would invalidate
the linear character of our wealth as a function of gamble values—given that we have
non-linear utility in the prizes in general.

The same ideas and outcomes apply to preferences, given the equivalence between
the formalisms of preference and desirability. This means that such a type of rewards
satisfy in particular Axioms A3 and A4. What may be worth remarking, in the case
of preferences, is that conditional horse lotteries return probabilities that are only
proportional to the ones used in the simple lotteries that enable us to win prizes. This
is a sensible point to properly interpret horse lotteries, because one could be misled to
think that those are the absolute probabilities by which prizes are won. But this view
would conflict in particular with the mixture independence axiom A4, that is, with
the underlying requirement of linearity. Stated differently, the long-term controversy
that surrounds Axiom A4 in the literature (see Allais 1953; Machina 1982), which
has eventually given rise to a number of alternative formalisms that drop A4, appears
to be originated by using it jointly with an interpretation of horse lotteries that is,
indeed, inconsistent with it. This is not to diminish the value of the criticisms of A4
in any way, it is only to remark the importance of having a correct interpretation of a
mathematical theory.

Finally, we can also sketch another interpretation of the rewards that is favoured
by the use of sets of desirable gambles and that may be somewhat more realistic than
that based on probability currency. The idea is that we could regard reward f(w, x) as
an amount of prize x; it can also be negative, in which case it is a loss of — f(w, x)
units of . Similarly to the case of the probability currency, at some point there would

6 This is not the only way to reject the negative gambles: e.g., we could accept the zero gamble and
directly require in an axiom that the negative gambles not be acceptable. However, we want to deal with
strict preferences in this paper and for that we need irreflexivity, that is, D2.
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be an extraneous device deciding which z € X would be selected and we would be
rewarded with f(w, ) units of z. This kind of interpretation is well posed if and only
if, for all z € X, our wealth is a linear function of the amounts of prize x. This is in
fact the rationale behind the desirability axioms D3 and D4.

As a side note, consider that the linear character of the way we desire each prize
does not prevent us from desiring some prizes more than others, in general; this is the
reason why we need to distinguish the prizes and the related amounts we might get.
As an example, we might imagine the prizes to be different currencies (e.g., dollars,
euros, francs, etc.); if we bound the amount of money we can win or lose to some
small quantity, then it is known that our appreciation of the prizes is approximately
linear. At the same time we will obviously desire strong currencies more than weak
ones.

5 Horse lotteries vs conditional horse lotteries

The proposed formulation of rational preferences in this paper, as detailed in Sec-
tion 2.2, is slightly different from the traditional one, because the main modelling unit
is that of conditional horse lotteries rather than horse lotteries. This leads, in turn, to a
slightly different formulation of the rationality axioms. The aim of this section is to
clarify the relation between the two formulations, by distinguishing in particular the
case of finite vs infinite space of prizes.

5.1 Finite case

We show that when we restrict the attention to the case of a finite set of prizes X, the
two mentioned formalisms for preference are equivalent. Let us briefly recall them:

F1. The first is the traditional development of decision theory, a la Anscombe-Aumann.
In this formulation, the set of prizes is defined by X, := X U {z}, where z ¢ X is
meant to represent the null prize: that is, not receiving any prize from X.

The basic object of the formalism is that of a horse lottery: it is a function p; :
2 x X, — [0, 1], with the additional requirement that ), pi1(w, ) = 1 forall
w € (2. In other words, a horse lottery is a collection of probability mass functions
p1(w, -), one per each element of the possibility space (2. The set of all horse
lotteries is denoted by H ..

As usual, one defines a preference relation -, in this case between horse lotteries.
This relation is assumed to have the worst act, which, without loss of generality
(from Zaffalon and Miranda 2017, Section 3.1), can be represented by the act
z that is identically degenerate on outcome z: z(w, z) := 1 for all w € (2. The
relation is subject to coherence axioms analogous to A1-A4 so that if we let
denote the operator that drops all the z-elements from acts, or differences of them,
we get that Ry = {\(p1 — ¢1) : A > 0,p1 > q1} is a coherent set of desirable
gambles in £({2 x X') (Zaffalon and Miranda, 2017, Section 3.2).

The interpretation of a horse lottery is that of a pair of nested lotteries. At the outer
level there is the experiment that determines the element w € (2 that occurs. This
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part is in common with conditional horse lotteries. The inner level is different: in
the case of a horse lottery, the mass function p; (w, -) is related to a single simple
lottery. In order to have a consistent interpretation of horse lotteries with that
illustrated in Section 4 for conditional horse lotteries, we are going to assume what
follows:

— Initially we have a uniform probability over winning or losing, i.e., % prob-
ability to win and % to lose, that is, to receive z (note that these are the same
initial probabilities we have with conditional horse lotteries). In turn, we as-
sume that the probability to win prizes is uniform as well, and so equal to
k/2:=1/(2|X]).

— Such a probability changes after receiving p; (w, ), becoming equal to

K (; +ep1<w,x>) (10)

for all x € X, and with the constant £ > 0 determined so as to make the
resulting numbers probabilities (and far away from the deterministic cases,
similarly to the discussion in Section 4). The probability of 2 is determined by
those of the prizes.
F5. The second formalism is precisely that defined in Section 2.2, with the given
semantics.
— According to Section 4, we assume that only one lottery in L,,, from (9), is
selected with probability k& = 1/|X|, and then run; and the chance that we win
prize z through a certain conditional horse lottery ps is equal to

K (; +ep2<w,x>) (an

forall z € X, as it follows from (8). (Here we are implicitly assuming, without
loss of generality, that ps is one of the gambles f1, ..., fi,, in Section 4.)

Note that we are using the same symbol ¢ for the constants in (10) and (11). The
reason is that even if those two constants were different, we could always take their
minimum and use it in both equations. In fact, the absolute value of the constant is not
important and we could actually work out the rest of the section with two different
constants, but the development would be unnecessary complicated. For this reason, in
the rest of the section we take the two constants to be equal.

In the following we use subscripts 1 and 2 for acts in order to denote the specific
formalism (F; and F2) an act belongs to. We keep the same symbol >, though, for the
preference relations defined within the different formalisms.

It turns out, perhaps not surprisingly, that formalisms F; and F» are fully equivalent
ways to deal with preferences in the finite case:

Proposition 4 Let R, and R be the two coherent sets of desirable gambles our
preferences originate respectively within F1 and Fs. Then it follows that R1 = Ro.

Yet, we prefer the less traditional formalism F5 over F;: for one thing, the axioms
it is bound to seem more direct and simple than those of F1, and the corresponding
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proofs seem so as well; most importantly, the infinite case appears to be much more
natural, if not just possible, to formulate in full generality using conditional horse
lotteries.

5.2 Infinite case

We move on now to consider the case where X’ can be infinite, while imposing no
restrictions on its cardinality.

5.2.1 Formalism Fo

We start by considering formalism Fs, that is, the one used in this paper as detailed in
Section 2.2.

The essential difference that arises in F, compared to the case of finite X is
concerned with the question of selecting one of the lotteries in L,,, given that this set
can be infinite and even unbounded; in other words, the problem is how we should
implement step 3 of the reward process (Section 4) in the case of infinite X'. Section 4
stressed that the selection is supposed to be “fair”, because otherwise we would be
induced to bias our beliefs and values in order to account for the lottery-sampling
process. In the finite case, the fair selection was implemented by sampling lotteries
uniformly at random. How about the infinite case?

In the infinite case, uniform selection is much more of a delicate matter. The
central issue is that uniform selection cannot be done in general using o-additive
probabilities; finitely additive probabilities can be used to that end, but they are not
constructible in general (see, e.g., Walley 1991, Sections 2.9.5-2.9.7 and 3.5.7-3.5.9).
One could wonder, in addition, what it means in practice to sample from a finitely
additive probability. Stated differently, it is clear that there is no real way in which one
can actually be rewarded through (conditional) horse lotteries in the general case of
infinitely many prizes in X'.

However, what really matters is the viewpoint of the subject that assesses the
desirability of the gambles; for this subject there is no need to know the details of the
sampling process or that it can actually be implemented; it is enough that the process
be regarded as fair to enable an assessment of desirability (and if the adjective ‘fair’
entails some degree of ambiguity for the subject, then this will eventually be reflected
in some additional imprecision in the subject’s set of desirable gambles, which will
anyway be naturally accommodated by the theory).

In other words, the present discussion serves the purpose to delineate an ideal
reward process, which however allows us to have a clear interpretation behind the
formalism of preferences/desirability.

To make all this clearer, we briefly rewrite the selection process that allows us to
win prizes in more formal terms. We denote by Py : £(X) — R the linear prevision
corresponding to a finitely additive probability that selects a lottery in L, uniformly
at random. Consider the event {win} that a prize is won and its complementary
event {lose}, and let W := {win, lose}. We denote by Py(-|X) : LW x X) = R
the separately coherent conditional linear prevision that represents, for all x € X,
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our probability of winning prize = once lottery /(,, ) has been selected; in practice,
Py({win}|{z}) is defined by (8). The joint model for the selection of lotteries and
prizes is obtained by marginal extension:’

Py = Ro(Po(-|)).

Py is a linear prevision defined on L(W x X) that corresponds to a finitely additive
probability (given that so does F), and that represents the mechanism by which we
are eventually rewarded.

5.2.2 Formalism F1

Formalism F; makes things more complicated when it comes to define the mechanism
to assign prizes. The reason is that horse lotteries p € H . are traditionally defined in
such a way that p(w, -) is a probability over X, for all w € (2. This can be made to
work when X, is countable by means of countable additive probabilities (see, e.g.,
the work in Seidenfeld et al 1995), even though there are limits to it: for instance we
cannot represent the situation where for a certain w we are rewarded with an equal
amount of probability currency for all prizes—given that uniform distributions on
a countable space cannot be countably additive. The situation becomes even more
complex when X is continuous.

The straightforward idea that comes to mind is then to let p(w, -) be a finitely
additive probability; this would also cover the case of continuous and unbounded .
But this typically implies p(w, x) = 0 for all z € X, which makes p hard to specify
in a way that is clear at all for the subject that is assumed to take gambles; moreover,
finitely additive probabilities are often non-constructible, so even in principle we
would be prevented from clearly seeing how a certain act is made. In addition, how
would gambles look like? For in the end we need to consider scaled differences of
horse lotteries, such as f := A(¢(p) — ¥(q)); but this would be a finitely additive
set-function with all the problems mentioned above (e.g., it would be identically
equal to zero on the singletons). Note that restricting the attention to a bounded
space X would partially alleviate the problem, since if we were not to use finitely
additive probabilities (one might want to use density functions for instance) we would
start having measurability problems; so not all gambles (or not all spaces) would
be admissible for use. We prefer a theory to be free from this type of constraints in
general.

So it seems to us that traditional horse lotteries are not really suited to be extended
to handle infinitely many prizes in general. We find it more natural and powerful to
move to conditional horse lotteries, which solve the problem right away and in full
generality, and, as a bonus, make axioms as well as proofs simpler.

As a final note, consider that all the problems of F; are originated by the require-
ment that p(w, -) be a probability. But why should it be? The requirement appears to
follow from the traditional interpretation that regards p(w, -) as the probabilities by
which we would win prizes running the related simple lottery. But we have already

7 Strictly speaking, Py should be defined on the subset of X'-measurable gambles of L(WW x X). We
neglect this detail to make things simpler.
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argued in Section 4 that this interpretation is unfortunate, as it is inconsistent with
the linearity assumption embodied by A4 in particular. A more sensible interpretation
regards p(w, -) only as a relative increase of a pre-existing probability over prizes;
as such, it need not be normalised, i.e., be a probability. Once we take this step, it is
immediate to consider the opportunity to work with conditional horse lotteries; so a
correct interpretation favours also a more natural formulation.

6 Conglomerability

Let us start by considering an uncertainty model alone, for the moment neglecting
considerations of value. We recall the formulation of conglomerability given in Defini-
tion 12:

(Vf € L) (VB € B) Bf e RU{0} = f € RU{0}).

Conglomerability follows from additivity (D3) in case B is finite; therefore it is an
issue only for infinite partitions. The debate about whether or not conglomerability
should be imposed in that case has not been settled in spite of the long time passed since
de Finetti’s seminal work (1931). The controversy seems to be kept alive by the tension
originating from two opposite tendencies: on the one hand, the fact that imposing
conglomerability makes things mathematically quite harder (the corresponding models
being somewhat less well behaved); on the other, that the absence of conglomerability
creates a number of paradoxical situations that seem to require some fixing.

In the following we address the question from a specific point of view, that of
‘temporal coherence’, thus without pretending to be exhaustive on the matter. For
a broader discussion about conglomerability, see, e.g., Berti et al (2017). For some
logical and philosophical perspectives, see Howson (2009); DiBella (2018).

6.1 The scope of conglomerability in the case of beliefs

In some past work we have established a clear connection between conglomerability
and the question of being coherent in time (Zaffalon and Miranda, 2013).

Assume that we hold beliefs at present time in the form of a coherent set of
desirable gambles R. At some later time an event B € 5 occurs; we will then hold
new beliefs in the form of a coherent set of desirable gambles R® C £(B). R and
RE C L(B) need not entertain any relation; in particular, RE need not be the set of
conditional beliefs that can be derived from R and that are denoted by R |B C L(B)
(this point appears to have been explicitly raised first by Hacking 1967). To clarify
this point, let us recall the following:

Definition 23 (Perfect information) If B € 5 represents all and only the informa-
tion we receive about {2 from the establishment of our current beliefs R up to the
occurrence of B, then we say we are in a case of perfect information (this terminology
has been introduced by Shafer et al 2003).
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Thanks to this definition, we can precisely recall what updated beliefs mean by
the next definition:

Definition 24 (Updating interpretation—beliefs) Conditional beliefs R | B are called
updated beliefs when they are interpreted as beliefs under the assumption that B occurs
in a case of perfect information.

Note in particular that updated beliefs are still beliefs expressed at present time, so
in principle they have no relation with future beliefs, those that we hold after the
occurrence of B.

However, there are situations where R” and R | B are related. One of these cases
arises when we decide to establish our future ‘beliefs’ at present time (in this case, we
we will talk of future commitments rather than beliefs). This means that we decide in
advance to stick to the future behaviour that is induced by current conditional beliefs;
in other words, we decide in advance that R” := R | B for all B € B.

When may this be going to be the case?

Cl1. A condition that seems necessary is that we are in a case of perfect information,
otherwise conditional beliefs would not represent our actual beliefs after B occurs
as these would involve considerations about evidence other than B.

C2. What appears to be left is our capability to examine the evidence at hand to the
extent of establishing our current beliefs as well as we can. If we have enough
time and any other needed resource to that end, we can assume that our uncertainty
model is the best, in our judgement, we can produce on the basis of the given
evidence.

Given these two conditions, there seems to be no reason why we might want a model
for future beliefs different from current conditional ones.

But establishing future commitments at the time of present beliefs gives us the
opportunity to check, and actually impose as a rationality requirement, that the two of
them cohere with each other. Note that this is an additional property, required on top
of the (separate) coherence of R and the coherence of R? (for all B € B), that arises
out of temporal considerations. We have called it strong temporal coherence.®

The main outcome of our 2013 work, in this regard, is that strong temporal
coherence coincides with the conglomerability of R.

For us, this result essentially closes the long controversy about conglomerability:
conglomerability turns out to be a form of temporal coherence, which means that it is
a rationality requirement when we decide in advance to establish future commitments
equal to current conditional beliefs. In case we are not interested in future beliefs, for
instance because we work with unconditional models only, then conglomerability is
not a rationality requirement for an uncertainty model.

However, the scope of conglomerability is still quite narrow. This happens in
particular because of condition C2, as it requires the availability of resources we may
as well not have, first of all the time to examine all the evidence carefully. What we
are going to argue now is that there is a simple, realistic, assumption that can render

8 For a discussion of the rationality of this axiom and the connection with other, weaker, requirements,
see (Zaffalon and Miranda, 2013, Section 6.4).
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the scope of conglomerability much wider, by essentially removing the need of C2. It
is based on the following:

Definition 25 (Reliable assessments) We say that an assessment is reliable if it is not
stronger than what is justified by the evidence and the available resources, including
time. Similarly, we say that the assessment process is reliable if all assessments are.

The concept of reliable assessments appears to have been introduced first by Walley
(1991, Sect. 6.1.2).

It is important to realise, first of all, that the assessment process can always be
reliable with imprecise probability models: the reason is that in such a setting we can
weaken our assessments as much as we need, up to expressing a condition of total
lack of knowledge. So what Definition 25 describes is simply a process that does
not yield overconfident assessments; this can always be achieved by acting on their
strength. We can even weaken our assessments some extra bit in case we prefer to be
very confident not to express too strong judgements (in this case, we would yield an
incomplete representation of our beliefs, rather than an exhaustive one; see Walley
1991, Section 2.10.3 for a discussion about this point).

In any case the point is that the assumption of reliability implies that we are not
taking appreciable risks in the assessment process while modelling the evidence as
well as we can, given the available resources. For this reason, we should definitely be
willing to set future commitments equal to current conditional beliefs. But once we
do so, we can argue again, as we have done in our 2013 work, that conglomerability
is a consequence of strong temporal coherence. To summarise the situation, what we
argue is the following:

Whenever we are interested in future behaviour in a setting of perfect informa-
tion, and our assessments are reliable, then conglomerability is a rationality
requirement.

And since the assumption of reliability can always be met (it is just a ‘good practice’
in the assessment process), it makes the scope of conglomerability very wide: it is
essentially extended to all cases of perfect information—which remains then the only
actual constraint.

An important remark is that all this does not prevent us from behaving in the future
according to a probabilistic model R’ that is more precise than that characterised by
our conditional beliefs, i.e., such that R |B = RE C R'B; there is not any form of
incoherence in doing so. In fact the meaning of a probabilistic model is to prescribe
the limits of what we can do, but within those limits we have ample choice; we can
in fact behave as we prefer as long as the model that we use to that end contains
RE (this constraint has to be maintained since it represents our established future
commitments). This is useful and important given that there might be a certain time
between the establishment of conditional beliefs and the future occurrence of B. This
may make us reflect more deeply about the evidence, thanks possibly also to the
availability of resources other than time (such as computational resources), and make
us see that we can be somewhat bolder in our evaluations.

Finally, let us recall that so far we have been considering the case of imprecise
probability. If we instead restrict the attention to the more traditional case of precise,
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Bayesian, probability, it turns out that the assumption of reliability is not needed:
conglomerability is a rationality requirement in a temporal setting based on perfect
information alone (Zaffalon and Miranda, 2013, Section 6.5). The rationale is that, for
a Bayesian violating reliability amounts to violating the idea of being Bayesian itself,
since in that case Bayes’ rule is the only temporal-coherent way to update beliefs;
whence sticking to reliability can be assumed outright for a Bayesian.

6.2 Extension to the general case of beliefs and values

Now we turn to the general case where R C L({2 x X). It is important to remember,
from Section 3.4 in particular, that {2 is still the only space of possibilities: the elements
of X do not ‘occur’; as a consequence it only makes sense to update R on subsets of
{2 alone.

Having made this point, now we proceed with our focus on updating, and in
particular on the definition of conglomerability extended so as to jointly handling the
case of beliefs and values.

Definition 26 (Conglomerability—extended) Consider a coherent set of desirable
gambles R C L({2x X') and let B be a partition of {2. R is said to be B-conglomerable
if it satisfies the following condition:

D5. (Vfe L2 xX)((VBeB)(BxX)f e RU{0} = f € RuU{0}) [Conglom-
erability].

The rationale behind this definition is exactly as before in Definition 12. Moreover,
the mathematical form is also as before: we are simply focusing on a special type of
partitions in the enlarged space {2 x X'. For this reason, the conclusions of our 2013
work apply here as well, as summarised in the previous section.

The additional discussion concerned with reliability and perfect information es-
sentially applies too; there is however a caveat in this general case, which has to do
with the different nature of beliefs and values. Once we make our joint assessments of
beliefs and values in a reliable way (Definition 25), we still create the conditions, as
before, to stick to the future commitments RZ*? in the form of our current condi-
tional assessments R | (B x X'). But the time that passes from the establishment of
‘R to the occurrence of B may have a different effect on our values compared to our
beliefs. In fact, under perfect information, it is perfectly plausible that our beliefs can
only become stronger in time. This is not the case of our values, which might change
in unpredictable ways due to the occurrence of events that have nothing to do with
B or {2 x X: we could for instance become very risk-averse as a consequence of a
financial loss. For this reason, it seems necessary to require in addition what follows:

Definition 27 (Perfect isolation) If B € 5 represents the only information that can
affect our values in the experiment concerned with {2 x X, then we say we are in a
case of perfect isolation of values from external factors.

Note that, as a consequence, the updating interpretation should be extended to account
for isolation in the general case of beliefs and values:
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Definition 28 (Updating interpretation) Conditional assessments R |(B x X) are
called updated assessments when they are interpreted as assessments under the as-
sumption that B occurs in a case of perfect information and isolation.

Having said this, the situation can finally be summarised as follows:

In the general case, conglomerability is a consequence of reliability, perfect
information and isolation.

Under these assumptions (and of course in a temporal setting) D5 should be added
to D1-D4 as a further rationality requirement on preferences.

Note, as discussed in the previous section, that reliability can be skipped when we
are Bayesian (in this case: precise beliefs and values); whence conglomerability is a
consequence of perfect information and isolation only.

6.3 A final remark

‘We have argued that conglomerability should be a rationality requirement under very
broad conditions. This follows from the identification of conglomerability with a
special type of coherence: if conglomerability is not imposed, we can find situations
where we are inconsistent with ourselves at the very same point in time—in spite of
the fact that some of our beliefs and values are regarded as commitments for the future.
This is clearly a principled support for the adoption of conglomerability.

There is, however, also a very practical support for conglomerability that comes
along with the principled justification; it is the fact that conglomerability can make
our inferences very strong, and hence informative, compared to the case where we
do not impose it. Consider for instance Example 4 in Miranda and Zaffalon’s 2015b
work. There we show that a model that is vacuous between two possibilities, that is,
completely uninformative about them, becomes a precise probabilistic model after it is
corrected to make it conglomerable. In this case the sole adoption of conglomerability
makes such a change possible. We see that conglomerability can have a very practical
role to play in our models that goes well beyond its theoretical justification.

7 Conclusions

In this paper we have reconsidered our previous work on the equivalence between
(incomplete) rational preferences and desirability.

We have shown that such an equivalence continues to hold when we formulate
rational preferences in full generality, with unconstrained spaces of possibilities and
prizes, unlike in our original work where prizes were in a finite number. Moreover, we
have discussed the role of conglomerability and deduced that it should be a rationality
requirement under weak assumptions, and whence it should be widely imposed in
probabilistic and decision-theoretic models.

We have also provided a rigorous interpretation of gamble values based on the idea
of probability currency. This allows us to make desirability live on its own, without
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the need to base its development on preferences, in the sense that it becomes a self-
contained theory. As a consequence, one may wonder whether the founding notion for
decision-theoretic modelling should be that of desirability rather than preference. In
fact we are inclined to regard desirability as the primary notion, given that both the
axioms and the theory itself appear to become much more direct and easy to access.

All this provides the foundations for a very general theory of uncertainty and
decision making. Where can we go from here?

There are many directions that we envisage for future research. A very natural ex-
tension of the ideas presented here involves considering the recent work by Van Camp
et al (2018a) (see also Van Camp 2018). It is based on so-called coherent choice func-
tions, which generalise preference modelling to non-binary comparisons of options
(the original axiomatisation for the case of incomparability is due to Seidenfeld et al
2010, with slightly different axioms). This gives additional modelling power compared
to incomplete preferences and desirability, while including these models as particular
cases (Van Camp et al, 2018a, Section 4). Notably, Van Camp et al (2018a, Section 3)
have already exploited our 2017 work so as to extend choice functions to handle values
besides beliefs, albeit in the case of finitely many prizes. The present paper could
allow such an approach to be eventually generalised to the case of fully unconstrained
spaces.

A different opportunity of research lies instead in the connection established by
Benavoli et al (2016a) between desirability and quantum mechanics: in short, the
authors prove that imposing D1-D4 on gambles made of Hermitian matrices is enough
to derive quantum mechanics, or, stated differently, that quantum mechanics is nothing
else than desirability in an opportune domain. Subsequent work by Benavoli et al
(2016b) has extended those ideas relying on our 2017 work so as to derive a rational
theory of decision making for quantum experiments. All this could be, again, combined
with the present paper to get to a higher level of generality.

A more pragmatic, though equally important, avenue of research would be to
establish clear connections between the theory presented here and all the research
in Al based on preferences. It seems that such developments in Al and the theory of
desirability have proceeded independently so far; linking them would provide benefits
in both directions and would automatically provide a formal basis for robust methods
in AL

Most of all, however, we believe that the traditional theories of preference fall
short in the realism of the problems that they are able to address. On the one hand,
Anscombe and Aumann’s theory is well founded if we adopt the correct interpretation,
but it requires paying rewards indirectly, through the idea of probability currency,
which entails a certain degree of artificiality; the same happens for the theories that
build on it, like the theory we present here. Savage (1954) models rewards directly,
but his theory suffers from an underlying assumption of linearity, much in the spirit of
Axiom A4, that clashes with the non-linearity of prize values and that eventually leads
to Allais’ paradox. A number of attempts have been made to correct these issues in the
direction of more realistic theories (e.g., see Machina 1982; Tversky and Kahneman
1992; Nau 2011; Cerreira-Vioglio et al 2016), but the situation still appears quite open.
The challenge, in our view, would be to work out a desirability-based theory that can
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bypass those problems. We believe this should be possible, and we leave it for future
research.

Acknowledgements The authors are grateful to the anonymous referees for a careful reading of the paper
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A Decomposition and completeness of preferences

We now turn to the formalisms of desirability and coherent lower previsions to briefly show how they
can represent and generalise well-known concepts in rational preferences. The following discussion is a
summary of the one we presented in (Zaffalon and Miranda, 2017, Section 5), with some additional remarks
and proofs for the case of infinitely many values.

A.1 In terms of sets of desirable gambles

We begin by considering the case where our assessments are modelled by sets of desirable gambles.

A.1.1 State independence

State independence is the condition that allows us to have separate models for beliefs and values.

We showed in (Zaffalon and Miranda, 2017, Section 5.3) that the traditional notion of state inde-
pendence in the literature of preferences is equivalent to the notion of ‘strong independence’ in imprecise
probability. In the case of totally ordered Archimedean preferences (i.e., precise probability and utility
models), this means that probability and utility are stochastically independent models, when utility is
mathematically represented through a probability function (like we do in this paper, see Section 3.4).

Such a notion of independence extends over multiple probability-utility pairs, and even to sets of
desirable gambles. However, it ceases to exist when both {2 and X are infinite (Miranda and Zaffalon
2015a, Example 1).° This holds also for most other notions of independence while, interestingly, that
need not be the case for notions of ‘irrelevance’: these are asymmetric notions where mutual (symmetric)
independence is replaced by independence in only one direction. In the case of this paper, for instance, this
means assuming that values are independent of states but not vice versa; we say that states are irrelevant to
values.

This makes of irrelevance a very natural candidate for a notion of state independence that exists no
matter the cardinalities of the spaces involved. But there is more to it, as it is arguable that irrelevance
qualifies itself as the right notion to use in the present context, unlike independence. The reason is that
while it makes sense that states may be irrelevant to values, the opposite seems to be questionable: in fact,
as we have already remarked, it appears meaningless to update a model on elements of X', which do not
occur; as a consequence the irrelevance of values to states appears meaningless too.

Let us then consider the following definition of irrelevance for desirability:

Definition 29 ({2-X irrelevant product for gambles) A coherent set of gambles R on (2 x X is called
an £2-X irrelevant product of its marginal sets of gambles R/, R, if it includes the set

RIQ:={h € LR x X): (Yw € 2) h(w,-) € Ry U{0}} \ {0}.

We have already considered these products, in another context and for lower previsions, in (Miranda and
Zaftalon, 2015a) (see also the work by de Cooman and Miranda 2009; de Bock and de Cooman 2014 and
de Bock and de Cooman 2015b).

The rationale of the definition is the following. First, the requirement that h(w, -) € R/, U {0} is
there so that the inferences conditional on {w} encompassed by R|{2 should yield the marginal set R’

9 This is due to the involvement of conglomerability in the definition of independence; de Bock (2017)
has recently shown that some other notions of independence continue to exist by dropping conglomerability.
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This is just a way to formally state that w is irrelevant to X'. The same is repeated for every w, so that
R|£2 can be regarded as being born out of aggregating all the irrelevant conditional sets.'® Finally, that R
contains R |2 is imposed to make sure that R is a model coherent with the irrelevance of beliefs on values.

If R satisfies Definition 29 we say it models state-independent preferences. The least-committal among
these models is given by!!

Proposition S Given two marginal coherent sets of desirable gambles R, R x defined on the subsets
of L(2 x X) given by the (2-measurable and X-measurable gambles, respectively, their smallest §2-
X irrelevant product is given by the marginal extension of R and Rl{w} = Rx forall w € (2.
Namely,

R:={g+h:g€RoU{0},heRIPU{0}}\ {0} 12)

Definition 29 and Eq. (12) represent our main proposal to model state-independent preferences.

A.1.2 State dependence

We say that a set of desirable gambles R models state-dependent preferences when it does not satisfy the
conditions in Definition 29, i.e., when it does not include the set R|{2 derived from its marginal R x and
the assumption of £2-X irrelevance.

A.1.3 Completeness

So far we have discussed the general case of coherent sets of gambles R without discussing in particular
the so-called complete or maximal coherent sets for which it holds that f ¢ R = —f € R for all
f € L, f # 0. Given the equivalence between coherent sets of gambles in £(2 x X’) and coherent
preferences in H X H, discussing the case of maximal sets amounts to discussing the case of complete
preferences.

Definition 30 (Completeness of beliefs and values for gambles) A coherent set of desirable gambles
R C L(2 x X) is said 10 represent complete beliefs if R, is maximal. It is said 7o represent complete

values if R x is maximal. Finally, if R is maximal, then it is said to represent complete preferences.

The rationale of this definition is straightforward: when we say, for instance, that R represents complete
beliefs, we mean that there is never indecision between two options that are concerned only with §2. The
situation is analogous in the case of complete values. Finally, in the case of complete preferences, the
definition is just the direct application of the definition of maximality.

A.2 In terms of lower previsions

We now consider the case where preferences are modelled by means of a coherent lower prevision P on
L(02x X).

A.2.1 State independent preferences

We proceed as in the case of desirability by focusing on irrelevance of states to values.

10" Given that £2 is possibly infinite, this entails an assumption of conglomerability; without such an
assumption one could obtain uninformative preferences, see (Miranda and Zaffalon, 2015a, Section 5.1) for
details.

1 We refer to the work by Moral (2005, Section 2.4); de Cooman and Miranda (2012, Theorem 13) and
de Bock and de Cooman (2015b, Theorem 8) for somewhat related results on finite referential spaces.
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Definition 31 ({2-X irrelevant product for lower previsions) Given marginal coherent lower previsions
P, P, let
P(f{w}) = Ph(f(w,)),
forall f € £(£2 x X), and
P(12) = Y Iy P(Hw)).

weN
Then a coherent lower prevision P on £(§2 X X) is called an 2-X irrelevant product of P, B’X if

P> Po(P(92)).
In this case we also say that P models state-independent preferences.

Here P(-|£2) plays the role that R|2 took in Section A.1, that is, conglomerating all the conditional
information. The concatenation P’ (P(-|§2)) is a marginal extension: in particular, it is the least-committal
coherent {2-conglomerable model built out of the given marginals and the assessment of irrelevance that
defines P(-|£2) through P’,.. Every coherent lower prevision that dominates P’ (P(:|£2)) is compatible
with the irrelevance assessment but is also more informative than that:

Proposition 6 Given two marginal coherent lower previsions P',, P’ their smallest 2-X irrelevant
product is given by the marginal extension

Po(P(142)).

We refer to the work of Walley (1991, Section 6.7), Miranda and de Cooman (2007); de Cooman and
Miranda (2009) and de Cooman and Hermans (2008) for additional information on the marginal extension
and its use in a number of different contexts.

A.2.2 State dependent preferences

As in the case of desirable gambles, we define state dependence as the lack of state independence: this
means that if we consider a coherent lower prevision P with marginals B}Z,B’X, it is said to model
state-dependent preferences when it does not dominate the concatenation P, (P(-[£2)), where P(-|2) is
derived from P’,, by an assumption of epistemic irrelevance.

A.2.3 Completeness

The definition of completeness for lower previsions is a rephrasing of that for desirable gambles:

Definition 32 (Completeness of beliefs and values for lower previsions) A coherent lower prevision P
on L(£2 x X) is said to represent complete beliefs if its marginal P, is linear. It is said to represent
complete values if its marginal P ,. is linear. Finally, if P is linear, then it is said to represent complete
preferences.

There are a number of equivalent ways in which we can characterise the linearity of previsions in terms
of the corresponding set of desirable gambles:

Proposition 7 Let P be a coherent lower prevision on L and R its corresponding coherent set of strictly
desirable gambles. The following are equivalent:
(i) P isa linear prevision.
(ii) If f ¢ Rthene — f € R foralle > 0.
(iii) R is negatively additive, meaning that f,g ¢ R = (Ve >0) f+g—c ¢ R.

We can then focus on any of those formulations to immediately deduce characterisations for all the
cases of completeness in preferences:

Proposition 8 Consider a coherent preference relation - on gambles represented by a coherent lower
prevision P on L(§2 x X), whose corresponding coherent set of gambles is denoted by R. Let R, Rx
denote its marginals. Then:

(i) P represents complete beliefs < R, is negatively additive.

(ii) P represents complete values < R x is negatively additive.
(iii) P represents complete preferences < R is negatively additive.
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B Proofs

Proof of Proposition 1. Using the mixture-independence axiom A4 together with the assumption,
p-qeapt+(l—a)yr>=ag+(l—a)r=ap+(1—a)s<r>s.

Proof of Proposition 2. By p > g we deduce that0 < p — ¢ < 1.Then (p —¢q) € Hand (p —q) > 0

by Al. And since
1 1
—(p—q)==[(p—q)—0],
5P—a)=5l(p—q) —0]

we deduce by Proposition 1 that p > q.

Proof of Lemma 1. Consider a set of desirable gambles D C £ ({2 X X) and define the linear relation
=CHXHbyp>gifandonlyifp—q € D.

Observe also that for any f € D we can always find p, ¢ € H such that f = p — q: it is sufficient to
let p := max(f,0) and ¢ := min(0, f).

Let us now prove injectivity. Assume by contradiction that there are sets D1 # Da in L1 such that the
respective linear relations are equal: >1=32. Since the sets are different, then we can assume without loss
of generality that there is f1 € D1 \ Da. At the same time for all p, ¢ € H with p — ¢ = f1, we have
that p >1 q and p >2 g. This implies that there is fo € Ds such that fo = p — q. Butthen f; = f2,a
contradiction.

Let us focus on surjectivity. Consider a linear relation =C H x H andlet D’ := {f € L1(2 x X) :
(3p,q € H) f =p—q,p > q}. The relation it induces is given by p >’ g < p—q € D’. Now, if p > ¢,
then p — g € D’, whence p = q. Conversely, if p =’ ¢, then p — q € D’; as a consequence, there are
p',q" € H,p' = q' suchthat p — q = p’ — ¢’. But relation > is linear, whence p > q. It follows that
=

Proof of Theorem 1. Consider a set of desirable gambles D C £ and its corresponding linear relation >.
They are related through

D={feLi(2xX):(3p,q€H) f=p—¢q,p > q},
p>=qsp—qeD.

(Al<D1) If p = Oforallp € H,p # 0, then p € D; and since ET = H \ {0}, then we have the

thesis. Conversely, if L'f C D,thenp € Dforallp € H \ {0}; as a consequence p > 0 for all
pEMH,p#O0.

(A2<D2') By contradiction, if p > p for some p € H, then 0 € D; and if 0 € D, then for some p € D, p = p.

(A3<D3’) Assume that the relation is transitive and take f, g € D such that f = p — q, g = q — r for some
p,q,r € H. Then we have that p > g and ¢ > r; by transitivity we conclude that p > r, whence
f+geD.

Conversely, assume that D is additive and take p > ¢, g > r. Letting f :=p — q,g9 := q — r, we get
by additivity that f + g = p — r € D, so thatp > 7.

(A4<D4’) Assume that > satisfies mixture independence and take f € D and A > 0 such that A\f € £1. Then
there are p > ¢ such that f = p — g. Moreover, there must be r, s € H such that \f = r — s given
that Af < 1 (it is enough as usual to take the positive and negative parts of A f, respectively). Using
Proposition 1, we get that > s, whence Af € D.

Conversely, assume that f € D implies that A f € D for all A > 0 such that \f € £1. Taking p > ¢,
we have then that A\p + (1 — X\)r = A\g + (1 — M\)r forall p,q,r € H and X € (0, 1]. On the other
hand, if Ap + (1 — A\)r = Ag+ (1 — N)r forall p,q,r € H and X € (0, 1], then trivially p > q.

(A0<D0’) Assume that for all p = g, with p > g not holding, there is « € (0, 1) such that ap > g. We want to
show that for all f € D\ £] and all g € £1 such that max(0, —f) < g < min(1,1 — f), there is
a € (0,1) such that af — (1 — a)g € D.

Letq := gand p := f + ¢, so that f = p — q. Let us show that ¢ € H; it is enough to prove that
max(0, —f) < min(1,1— f).Incase f(w,x) > 0, the inequality reduces itselfto 0 < 1 — f(w, z),
which is true since f(w,x) < 1.Incase f(w,z) < 0, the inequality becomes — f(w, z) < 1, which
is again true since f(w,z) > —1.

Let us similarly show thatp = f+¢q € H too. We know that f +max(0, —f) < p < f+min(1,1—
f). Again, if f(w,z) > 0, we see that 0 < f(w,z) < p(w,z) < 1;if f(w,z) < 0, we have that
0<pwaz)<f+1<L
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At this point we can apply the hypothesis, recalling that f ¢ L'f and hence that p > ¢ does not
hold, and so we deduce that there is « € (0,1) suchthat ap — ¢ = a(p — ¢) — (1 — a)g =
af —(1-—a)g=af — (1 —a)g € D.

Conversely, suppose that for all f € D\ E{r and all g € £; such that max(0,—f) < g <
min(1,1 — f), there is @ € (0, 1) such that af — (1 — a)g € D. Let us show that p > ¢, with
p > g not holding, implies that there is o € (0, 1) such that ap > gq.

Let f := p — g, from which it follows that f ¢ £1+, and g := ¢. Observe that if max(0, —f) < g <
min(1, 1 — f) holds, then from the assumption the thesis follows immediately. In other words, we have
to show that max(0,q — p) < ¢ < min(1, g+ (1 — p)). This is immediate since on the left-hand
side we decrease g by some non-negative amount while on the right-hand side we are increasing it by a
non-negative amount.

Proof of Lemma 2. That D3" implies D3’ is trivial. Therefore let us assume that D satisfies D3’ and
prove that D3’/ holds.

Consider f, g € D such that f + g € £1. By D4’ we have that %f, %g € D. We can always write
f=p—q,9g=r— sforsomep,q,r,s € H.Itfollows that

1 n 1 1 n 1 cD
“p+-r)—(=qg+=r ,
2?73 2173
1 1 1 1
g+ =r)—(zq+=s)eD.
(2q+2r) (2q+28)€
Using D3’ we obtain that (%p—i— %r) — (%q + %s) = %f + %g € D. Using D4’ again, we have the thesis.

Proof of Theorem 2. Let us prove the five points of the theorem.
1. Assume that D satisfies D1’-D4’ and show that Rp is coherent.
D1. Consider f € L1 and let g := f/sup|f], so thatg € ﬁf. As a consequence of D1/, g € D,
whence f € Rp.
D2. Trivial.
D3. Take f,g € Rp, so that there are f',g’ € D,N,\” > 0with f = XN f',g = \N'g.
If we let A := X + X, we have that f/(2)\),g/(2)\) € D by D4’ and at the same time
(f+9)/(2X\) € L1,sothat (f + g)/(2X) € D by D3”. As a consequence, f + g € Rp.
D4. Trivial.
2. That Dy, satisfies D1’-D4’ once R is coherent is straightforward.
3. We need to show that, under coherence of R, D, it holds that RDR = R and DRD = D. For the
first equality, that Rp,, 2 R follows from

g
sup |g]

RDR:{Ag:A>O,g€DR}:{>\ :A>0,g€R}Q’R
by taking A := sup |g|.
To show that Rp., C R, consider any h in R, implying that ﬁ\hl € Dx. Note that sup |h| > 0;
indeed, if sup |h| would be 0 then h = 0. For any given A > 0, this implies that ,\ﬁw = M h for
A= —2 > 0indeed belongs to R, because this set satisfies D4.

sup |h|

Let us prove now the equality D, = D. Take D satisfying D1’-D4’. To see that D, C D, take

f € Dr,. Then there is some g € Rp such that f = ﬁlsﬂ' Since g € Rp, there is some h € D
and some X\ > O such that g = A\h, whence f = ﬁ\h)\h\ = #\hl' Since f € L1, we deduce

from D4’ that f € D.
Conversely, take f € D. Then f € Rp and as a consequence ﬁ\fl € Drp- Since D,

satisfies D4’ and f € L1, we deduce that f € D .

4. Since D C Rp and Rp is coherent (apply 1), then D avoids partial loss by (Miranda and Zaffalon,
2010, Proposition 3(e)). This implies that the minimal coherent extension of D exists. Let us call it £.
That Rp C & is trivial. Since Rp is coherent, then by definition of £, it must be that Rp O £. As a
consequence Rp is the natural extension.

Let us show that Rp N L1 C D (the converse inclusion is trivial). Consider f € Rp N L1. Then
f = Mg forsome A > 0,g € D. And since A\g € L1, we get by D4’ that f = Ag € D. This shows
that D is coherent relative to L.
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5. (=) Showing that Dy, satisfies DO’ is equivalent to showing that the preference relation it induces is
weakly Archimedean, thanks to Theorem 1. Therefore consider g € D \ £1+ suchthatg = p — q
for some p, g € H. We want to show that there is o € (0, 1) such that ap — ¢ € Dxg.

Thanks to point 4, we have that g € R \ £ and hence by strict desirability that there is § > 0 such
that g — § € R. Choose « € (0,1) sothat (1 —a)p < 0. Thenap—q>p—qg—35 =g — 9,
whence ap — q € Dr.

(<) Finally, let us assume that Dy, satisfies DO’-D4’ and show that forallh € R\ LT and k € L,
there is @ € (0, 1) such that ah + (1 — @)k € R. If we prove this, then it is enough to take a constant
k <Otogetthath —§ € R, with § := 71TT"‘I€ > 0. This means that R would be strictly desirable.
Now then consider the positive and negative parts of k, namely, k™, k~, such that k = kT — k.
Note that for the thesis it is enough to show that there is o € (0, 1) such thatoz% —(1—-a)k~ €R,

given that a% + (1 — a)k™ belongs to R already, whence by additivity the result follows.
To that end, choose A > 0 such that f := % and g == k% satisfy the inequalities in DO’. Then there
is o € (0, 1) such that aQ’—L)\ —(1- a)k% € Dpr; and as a consequence, a% —(1-a)k™ eR.

Proof of Theorem 3. Thanks to Theorems 1 and 2, we have an equivalence between coherent preference
relations > and sets of desirable gambles coherent relative to £1; the latter are in a one-to-one correspond-
ence with their natural extensions, from which we deduce the first part of the theorem. The second part is
granted again by Theorems 1 and 2.

Proof of Proposition 3 Assume first of all that > is negatively transitive, and let f,g ¢ R. Then f % 0
and g »* 0, from which it follows that 0 ¥ —g. Applying the negative transitivity of >, we deduce that
f # —g. or, equivalently, that f 4+ g % 0, whence f + g ¢ R.

Conversely, assume that Eq. (7) holds and let p, g, € H satisfy p # gand q % r. Thenp —q ¢ R
and ¢ — r ¢ R, whence p — r ¢ R, and using the correspondence between > and R we conclude that

P

Proof of Proposition 4. From (10) and (11), we see that simply defining

p2 = (p1) (13)

for all horse lotteries p1 € H., we obtain a correspondence between H and . made of elements
that are equally valuable for us: their respective probability currencies are just the same. Moreover, the
correspondence is one-to-one as it follows from (Zaffalon and Miranda, 2017, Remark 5 in p. 1098) (note
also that 1 is a linear operator).

It is now a simple step to prove the two inclusions.

Ra2 CR1 If A(p2 — g2) € Ra for some p2, g2 € H and A > 0, then also A\p(p1 — q1) € R1, where p1, 1
are obtained through (13). This follows from the identity p2 — g2 = 1(p1 — ¢1), as obtained from
linearity of 1), and the fact that the lotteries defined through (13) are equally valuable.

R1 C Ro Similarly, consider any Ap(p1 — q1) € R1 and let p2 == ¥ (p1), g2 := ¥ (q1), so that pa, g2 € H.
It follows that A(p2 — g2) € R2 for the same reasons given in the proof of the converse inclusion.

Proof of Proposition 5 It follows from (Miranda et al, 2012, Proposition 29) that R is the smallest
conglomerable and coherent set of gambles that includes R, and R|{w} (for all w € £2). It includes R |2
by construction. We are left to show that R induces both R nand Ry.

We begin by proving that the {2-marginal of R is Rgy. Consider an £2-measurable gamble f € R.
Then there are g € R, and h € R|{2 such that f > g + h. For any w € (2, it holds that

0 < sup h(w,z) < sup (f(w,z) — g(w,2)) = f'(w) — ¢’ (w),
reEX rzeX

where in last equality we are using that both f, g are {2-measurable, and are denoting by f’, g’ their
equivalent representations as gambles on {2. Thus, f > g, and since R ; is a coherent set of gambles we
conclude that also f € R . The converse inclusion follows from Eq. (12).

Next, consider an X’-measurable gamble f € . Then there are g € Ry and h € R|42 such that
f > g+ h.If g # 0, then there exists w € §2 such that g’ (w) > 0. Then,

flroy 2 ' (@) + hloy > by,
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and since h(w,-) € Ry U {0}, either h(w, ) € Ry, in which case f(w, ) € Ry, or h(w, ) = 0,
whence f(w,-) > ¢’(w) > 0, meaning that also f(w, ) € Rx. Finally, the proof when g = 0 is similar
(in that case we can pick any w € {2 such that hly.y # 0, since one is bound to exist). Again, the converse
inclusion follows from Eq. (12).

Proof of Proposition 6 The result follows immediately from Definition 31, taking into account that
P, (P(-|£2)) is a coherent lower prevision by (Walley, 1991, Section 6.7.2).

Proof of Proposition 7 We make a circular proof.

(1) = (i1) Tt f ¢ R, it follows from Eq. (3) that P(f) = P(f) < 0, whence P(—f) = —P(f) > 0, and
therefore P(e — f) > O for every € > 0. Thus, Eq. (3) implies thate — f € R.
(it) = (414) Assume ex-absurdo the existence of f, g ¢ R such that f + g — e € R. It follows from (ii) that
£ — f,§ — g € R, and applying D3 we conclude that — 5 € R, a contradiction with D2.

(i3) = (4) If P is not linear, we can find a gamble f such that P(f) < P(f). The conjugacy of the lower and
upper previsions and Eq. (1) implies that for every € > 0 the gambles f — P(f) —cand P(f)— f —¢
do not belong to R, and (iii) implies then that for every § > 0 the gamble (f — P(f) —¢) + (P(f) —
f — €) — & does not belong to R. But for ¢, § satisfying 2¢ + & < P(f) — P(f) this sum is a
non-negative gamble. This is a contradiction with D1.

Proof of Proposition 8 This is an immediate consequence of Proposition 7.
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