
Noname manuscript No.
(will be inserted by the editor)

Real-time Soundprism

A.J. Muñoz-Montoro · J. Ranilla ·
P. Vera-Candeas · E.F. Combarro ·
P. Alonso-Jordá

Received: date / Accepted: date

Abstract This paper presents a parallel real-time sound source separation
system for decomposing an audio signal captured with a single microphone in
so many audio signals as the number of instruments that are really playing.
This approach is usually known as Soundprism. The application scenario of
the system is for a concert hall in which users, instead of listening to the mixed
audio, want to receive the audio of just an instrument, focusing on a particular
performance. The challenge is even greater since we are interested in a real-
time system on handheld devices, i.e. devices characterized by both low power
consumption and mobility. The results presented show that it is possible to
obtain real-time results in the tested scenarios using an ARM processor aided
by a GPU, when this one is present.

Keywords Sound source separation · Real-time · Score alignment · Audio
processing · Parallel computing · GPGPU

A.J. Muñoz-Montoro
Department of Telecommunication Engineering, Universidad de Jaén, Spain
E-mail: jmontoro@ujaen.es

J. Ranilla
Department of Computer Science, Universidad de Oviedo, Spain
E-mail: ranilla@uniovi.es

P. Vera-Candeas
Department of Telecommunication Engineering, Universidad de Jaén, Spain
E-mail: pvera@ujaen.es

E.F. Combarro
Department of Computer Science, Universidad de Oviedo, Spain
E-mail: efernandezca@uniovi.es

P. Alonso-Jordá
Department of Information Systems and Computation, Universitat Politècnica de València,
Spain
E-mail: palonso@upv.es

2 A.J. Muñoz-Montoro et al.

1 Introduction

Source separation (SS) of musical signals deals with the task of segregating
the original sound signals from a polyphonic mixture. Its application can be
used to ameliorate the way of consuming the musical entertainment. This
field of research has been a trending topic over the last two decades and now
offers a wide variety of possible applications for end-users and professionals,
such as instrument-wise equalization [16], personal music remixing [15], music
information retrieval [6], intelligent audio editing [9], etc. Depending on the
final application, there are two approaches for this problem, which are called
offline or online. In offline algorithms, the audio performance to be processed
is available as a whole. Thus, these algorithms require to see the whole audio
performance from start to end, and hence cannot be implemented in real time.
On the other hand, for streaming scenarios, an online system has to process its
input piece-by-piece in a serial fashion, in the order that the input (the audio
stream) is fed to the algorithm, without having the entire input available from
the start. Moreover, a low latency approach is required for a real-time behavior,
understanding latency as the delay between receiving the signal and starting
to perform the separation.

SS problems can be classified depending on the number of sources and sen-
sors. Over-determined and determined cases are those in which the number of
sensors is larger than or equal to the number of sources, respectively. In theses
cases, several methods [19][25][27] have achieved good results. However, the
single-channel SS problem is the extreme example of the under-determined
cases, in which sensors are fewer than sources. Therefore, a high SS qual-
ity is not reachable by blind SS methods [26]. In that sense, it is necessary
to exploit the knowledge of additional information to improve the separation
[10][27]. This information can be of different natures: the instrumentation [17],
score information [18], spatial and spectral information about the sources [20],
information about the recording/mixing conditions [8], etc. Considering the
case where a musical score (in the form of MIDI) is available [15][6][18], infor-
mation about the instruments and notes of the musical piece can be used to
guide the separation process even if the sources are hard to distinguish based
on their spectrotemporal behavior.

In this context, extant score-informed SS systems need a well alignment be-
tween the score and the audio [22][15], or use dynamic time warping (DTW) to
find the alignment [22][12] before separating sources. Duan et al. [7] proposed
an online score-informed SS method, called Soundprism. Similar to an optical
prism which breaks light up into its constituent spectral colors in real-time,
Soundprism is a computer algorithm able to decompose a mixture of music
on its constituent sound sources in real-time. Duan et al. address this prob-
lem dividing it in two stages: 1) audio-score alignment and 2) pitch-informed
source separation. The alignment is computed using a hidden Markov process
model, where each audio frame is associated with a 2-D state of score position
and tempo. A multi-pitch observation model is employed for indicating how
likely each audio frame contains the pitches of a hypothesized score position.

Real-time Soundprism 3

Afterwards, particle filtering is used to infer the score position and tempo
of each frame. Regarding the separation process, score-informed pitches at
the aligned score position are refined with a multi-pitch estimation algorithm
to build a harmonic mask. Nevertheless, due to the high computational cost
of this system, its real-time implementation is not possible with the current
technology.

In this paper, we propose an online SS framework for single-channel audio
signals of high polyphonic complexity that yields a server-client model appli-
cation. This framework is the solution for a classical music concert where every
audience member could select their favorite personal mix, switching between
enjoying the full performance or concentrating on a specifical instrument. In
this context, the server carries out the factorization of the audio input signal
and offers to the clients all the isolated signals of each instrument. For this
purpose, we decompose this problem in three stages: 1) the real-time audio-to-
score alignment, 2) the factorization process and 3) the source reconstruction
stage. The first stage is based on our system ReMAS [1]. ReMAS is a parallel
and efficient Real-time Musical Alignment System that has been implemented
and optimized for low-power processors, such as ARM processors. For the sec-
ond stage, the library NNMFPack [4][5] for solving the NMF problem is used.
NNMFPack is an efficient numerical library conceived for heterogeneous par-
allel shared memory systems. In the final stage, we propose to apply a Wiener
filtering method to compute the energy contribution of each instrument of the
audio mixture. With the aim of closing the whole process in real-time, a parallel
implementation of this final stage is proposed, according to the methodology
followed in ReMAS and NNMFPack. In the end, the whole system is a parallel
hybrid solution using the CPU and the GPU simultaneously.

To the best of our knowledge, there has not yet been presented a holistic,
free and cross-platform system that addresses these problems in real-time run-
ning on systems-on-chips (SoC) with ARM architecture, the most common in
devices such as tablets or mobile phones, among others. As a proof of concept,
some experiments are carried out on a dataset of orchestral music, showing
reliable results in terms of sound quality. Accordingly, the structure of the
paper is organized as follows. In Section 2, we describe the architecture of
the proposed framework whilst the evaluation datasets and the experimental
results are shown in Section 3. Finally, conclusions are outlined in Section 4.

2 Framework description and background

2.1 System overview

The aim of this work is to address the SS problem for high polyphonic complex-
ity signals through the development of an automated computer Soundprism
system. For this proposal, we have decomposed the problem into three stages:
the alignment between the input MIDI score and the input audio performance,
the factorization of this real audio mixture and the reconstruction of each in-

4 A.J. Muñoz-Montoro et al.

x(t)

Optimal unit

Alignment stage

FFT

ReMAS

Hanning

Online
DTW

Module

MIDI resolution

Compute Apply

Distortion Block

Feature Extraction

Set units

y(t)

Reconstruction stage

Wiener
Apply
mask

IFFT Block

Soft-masking

Hanning

IFFT

Linear
resolution

Phase

Factorization stage

NNMFPack

Decreasing MIDI resolution

Fig. 1 Block diagram of the proposed framework.

strument signal. Fig. 1 sketches the full system with the main blocks which
compound each stage.

The software solution proposed has been developed satisfying the following
two basic requirements: real-time and mobility. Therefore, this design should
take the low computational power of the handheld devices into consideration,
specially the cheapest ones, and should deeply use the possibilities offered by
some heterogeneous parallel architectures.

2.2 Alignment stage

The goal of this stage is to associate each temporal frame of the input audio
signal to an event in the MIDI score. This matching will be used as input
by the following stage. In that sense, we employ our algorithm ReMAS [1].
As can be observed in Fig. 1, when a new frame arrives, x(t), the process
starts at the feature extraction block. This block extracts from the audio sig-
nal the features that characterize some specific information about the musical
content. With this intention, a low-level spectral representation of the audio
data (time-frequency representation) is obtained by a Hanning-windowed fast
Fourier transform (FFT). Performed the FFT, the time-frequency represen-
tation is converted from linear frequency to MIDI resolution. To obtain this
computation, first the magnitude spectrogram (inset Module in Fig. 1) is com-
puted from the complex output of the FFT. Afterwards, the frequency bins
belonging to the same MIDI interval are summed up (inside MIDI Resolution
in Fig. 1).

Later, the distortion block is performed. It measures the similarity between
the time-frequency representation of each frame of the input signal and the

Real-time Soundprism 5

spectral patterns of each score unit, defining a score unit as the occurrence of
concurrent or isolated notes in the score (described in [24]).

Finally, DTW is used to associate the score position with each input sig-
nal frame. In this step, no backtracking is allowed in order to reduce latency.
In that way, the decision is made directly from the information contained in
frame t, taking the minimum value of the accumulated cost. A deep descrip-
tion of the theoretical aspects of the problem and the design of the multi-tier
architecture for the DTW functional block can be found in [3][24]. Our par-
allel implementation of this algorithm, presented in [1], has been used here
including some optimizations carried out to avoid the downside of a reduction
operation in parallel.

The output of ReMAS system at each audio frame is an event in the MIDI
score. This event is used to inform of the notes and instruments that are
sounding in that frame to the factorization stage. However, the alignment
algorithm, in which ReMAS is based on, commits misalignment errors [24], so
much so that the minimum onset deviation threshold required to obtain a full
precision is about 2s. In order to avoid misalignment errors, the final block
of the alignment process (inside Set Units in Fig. 1) selects the score events
which are adjacent in the score to the selected one by the ReMAS output.
In that way, this block looks up in MIDI score all the units which appear 1
s (referred to MIDI time) before and after the MIDI event selected by the
DTW. Thus, the factorization stage receives, as an input, a collection of units
φt, which correspond to the possible concurrent notes and instruments for each
real audio frame.

2.3 Factorization stage

The factorization stage is focused on the estimation of the spectrograms of
each source. The main idea is that an audio spectrogram can be decomposed
as a linear combination of spectral basis functions bn(f). In such a model, the
magnitude spectrogram of the signal x(f, t) in time-frame t and frequency f
is modeled as a weighted sum of basis functions as:

x(f, t) ≈ x̂(f, t) =

N∑
n=1

bn(f)gn(t) , (1)

where gn(t) is the gain of the basis function n at frame t, bn(f) are the bases
and N is the total number of units in the composition.

Applied to our problem, each basis function represents the spectral pattern
of each score unit and the corresponding gains contain information about the
onset and offset times of these units. The spectral patterns bn(f) are obtained
in the preprocessing stage for each score unit.

The computational intensity of the estimation of the parameter gn(t) is
extremely large due to its dependency on the number of score units. Conse-
quently, the higher the number of units of the score, the larger the compu-
tational intensity. In orchestra signals, several instruments playing different

6 A.J. Muñoz-Montoro et al.

melodies are present, and that means that the score is compound of a large
number of units. However, as explained in Section 2.2, only a few units are se-
lected by the alignment stage at each frame. Denoting by φt the subset of units
that can be potentially active at frame t, the signal model can be expressed
as follows:

x(f, t) ≈ x̂(f, t) =
∑
n∈φt

bn(f)gn(t) , (2)

where the number M of units of φt is much lower than N .
The Decreasing block (Fig. 1) reads the bases indicated by the subset φt

from the dictionary of bases, and arranges them in a block of memory which is
employed as input for the factorization process. Without this block, it would
not be possible to compute the factorization process in real-time, due to the
high computational cost of using the whole dictionary.

Once the Decreasing block is executed, the time-frequency representation
of the input signal is converted to a resolution of 1/4 of a semitone, which has
been proven to achieve better results for separation tasks [2]. Afterwards, the
factorization of the signal is carried out using our numerical library, NNMF-
Pack [4][5], that provides efficient algorithms to compute the NMF.

Under the nonnegativity restriction, the factorization parameters of Eq. 2
can be estimated by minimizing the β-divergence between the observed x(f, t)
and the modeled x̂(f, t) spectrograms. We have used some subroutines of the
library that implement the following multiplicative update rules required for
the factorization:

gn(t)← gn(t)�

(∑
f,n bn(f)[x̂(f, t)β−2 � x(f, t)]∑

f,n bn(f)x̂(f, t)β−1

)
. (3)

where β = 1.5.
Finally, given the time-varying amplitudes of each unit gn(t) at each frame,

the spectrogram of each source x̂s(f, t) can be computed knowing the concur-
rent and isolated instruments for each unit.

2.4 Source reconstruction stage

In this final stage, the reconstruction of each source is computed using a soft-
filter strategy. Fig. 1 outlines the main blocks which compound this stage.
Firstly, the spectrogram of each source is estimated by:

xs(f, t) =
∑
n∈φt

bn,s(f)gn(t) , (4)

where gn(t) is the time-varying amplitude acquired in the factorization stage
and bn,s(f) is the spectral patterns obtained in the preprocessing stage where
the amplitudes of each note of a musical instrument are learned in advance by

Real-time Soundprism 7

using the Real World Computing (RWC) music database [13][14] as a training
database of solo instruments playing isolated notes.

Subsequently, Wiener filter is applied to reconstitute the different sources of
the mixture based on the power spectrum ratio between the reference signals.
Once the spectrograms are estimated, soft masking Ms(f, t) is computed for
each source:

Ms(f, t) =
|xs(f, t)|2∑
s |xs(f, t)|2

, (5)

where Ms(f, t) represents the relative energy contribution of each source s for
each time-frequency bin and xs(f, t) is the magnitude spectrogram per instru-
ment. Then, to obtain the estimated source magnitude spectrogram x̂s(f, t),
Eq. 5 is used (inside Apply Mask in Fig. 1).

x̂s(f, t) =
√
Ms(f, t) · x(f, t) . (6)

Afterwards, the IFFT block is performed. The time representation is con-
verted from MIDI resolution to linear frequency allocating the value of a MIDI
bin to its corresponding frequency bins (inside Linear Resolution in Fig. 1).
The phase spectrogram of the input mixture is applied for each source (inside
Phase in Fig. 1). Finally, a windowed inverse fast Fourier transform (IFFT) is
computed with the same features as in the FFT block. The procedure of the
whole system is summarized in Algorithm 1.

Algorithm 1 Proposed system algorithm
1: Load bn(f) from the preprocessing stage.
2: while audio stream do
3: Read audio frame x(f, t).
4: Compute ReMAS to obtain the optimal unit.
5: Determine the subset φt.
6: Arrange the block of memory for the factorization process.
7: Change to a quarter of a semitone MIDI resolution.
8: Update the gains using the Eq. 3.
9: for s=1 to S do

10: Compute Wiener mask using the Eq. 5.
11: Estimate the spectrogram of each source xs(f, t) using Eq. 6.
12: Change to linear resolution.
13: Compute the IFFT.
14: Play xs(t).

15: end for
16: end while

From the computational point of view, several decisions have been made to
successfully address this stage regarding the way of storing the data. Conse-
quently, it is stored using vectors whose leading dimension have been arranged
according to the subsequent use. In this manner, we can exploit spatial locality
and use the high performance BLAS packages. Thus, Wiener filter is imple-
mented using vector-vector and matrix-vector routines. Taking into account

8 A.J. Muñoz-Montoro et al.

these considerations and observing Eq. 5 and Eq. 6, the temporal complexity
of this stage at each frame can be approximated by:

S · (PmFmf +
F · log2(F)

P
) (7)

where Pm is the number of pitches (MIDI notes) per instrument, S is the
number of sources (instruments), F is the fast Fourier transform length, P is
the number of cores and Fmf is the frequency in MIDI resolution sampled for
the factorization stage. As in [23], we have selected Pm = 456 that corresponds
to a range of notes of a 9.5-octaves in one sample per quarter of a semitone of
MIDI resolution. Fmf is fixed as 401, one sample per quarter of a semitone.
On the other hand, S depends on the composition and is obtained from the
reading of the MIDI score. Finally, we have used F = 16, 384 bins as in [23],
since this value is chosen to have enough frequency resolution for low frequency
sounds.

2.5 Hybrid GPU-CPU implementation

From the computational complexity point of view, source reconstruction and
ReMAS stages have a high impact on the system. On the one hand, compo-
sitions with a high number of instruments increase the parameter S (see Eq.
7) involving a high computational cost in the reconstruction stage, regardless
of the duration of the composition. On the other hand, compositions with a
high duration lead to an increase in the execution time of alignment stage
because the number of score units and the MIDI time frames grow (see [1]).
There will be situations where the combination of the values of these param-
eters will make the execution time of both stages the same. In others, a pure
CPU system (homogeneous) could not be executed in real-time due to the
high duration and large number of instruments.

Looking back to Fig. 1, once the audio frame has been captured, the fac-
torization stage begins when the alignment stage (based on ReMAS) has as-
sociated the audio frame to a MIDI score point. This MIDI score point is
represented by a scalar. In addition, during the execution of ReMAS, the
FFT of the audio is computed and stored; this information, obtained at the
beginning of ReMAS, is necessary to carry out the reconstruction of each in-
strument. Finally, the reconstruction stage generates an output audio frame
for each source, which must be sent to the output sound card.

In [11], Fastl et al. studied the time difference perceived by the human hear-
ing system between the directly transmitted audio signals and the processed
audio signals and a critical value of 50 ms for speech and music applications
was fixed. This fact allows us to assume a maximum response time of 50 ms
for our system.

Considering all these aspects, we can divide the logic of Soundprism into
two main blocks running concurrently: ReMAS (alignment stage) and NMF+Re
(factorization and reconstruction stages). Thus, while one functional unit (CPU

Real-time Soundprism 9

Fig. 2 Hybrid GPU-CPU parallelization scheme. Left when the NMF+Re stage is the
longest. Right when ReMAS is the longest.

or GPU) executes ReMAS over frame i, the other applies NMF+Re to the
frame i − 1 (see Fig. 2). Remember that the FFT information needed by
NMF+Re is ready to send at the beginning of aligned stage, and thereby,
Soundprism can overlap computing and communications hiding the impact of
this kind of communications over time. However, note that ReMAS over frame
i has to finish to start NMF+Re over the same frame. As mentioned, NMF+Re
generates the audio to send to the sound card and, to avoid additional com-
munications, the best choice is to assign ReMAS to the GPU and NMF+Re
to the CPU. In this manner, we can achieve a real-time behaviour with high
duration compositions and with a large number of instruments. Thus, for ex-
ample, when the execution time of ReMAS and NMF+Re is approximately the
same, the theoretical overall execution time will be reduced by half, compared
to the parallel implementation using only the CPU.

3 Evaluation and experimental results

For the experimentation of our proposed framework, we have employed a
database developed by Pätynen et al. [21]. The database consists of four com-
positions of symphonic music from Classical and Romantic styles. The audio
files are approximately 3 minutes long and are sampled at 44.1 KHz from real
performances. The passages are composed of ten different kind of sources (in-
struments). Furthermore, we have analyzed the performance of the proposal
with two more musical pieces of different duration and number of sources:
“American Quartet”, a string quartet by Antońın Dvor̆ák of about 26 min-
utes of duration and “Finland”, a symphonic poem written by Jean Sibelius
of about 8 minutes. Table 1 provides more details of the database, includ-
ing duration, the number of instruments that make up the performance, and
the number of units extracted from the MIDI file. As shown, Sibelius has the
highest number of sources (16 instruments), and Dvor̆ák the lowest.

Regarding the used testbed, this is an Nvidia Jetson TX2 development kit,
which is an embedded system-on-module (SoM) with a NVIDIA Pascal GPU
256 cores and one quad-core ARM Cortex-A57 CPU. It operates at 2 GHz and
runs a version of Linux operating system specially tailored to this device. This
kind of architecture is the heart of smartphones, laptops, tablets, and other
embedded systems.

10 A.J. Muñoz-Montoro et al.

Composer Piece name Dur. Instruments Score units

Beethoven Symphony no. 7 3m 11s 10 908
Bruckner Symphony no. 8 1m 27s 10 521
Mahler Symphony no. 1 2m 12s 10 717
Mozart Don Giovanni 3m 47s 8 857
Dvor̆ák American Quartet 26m 43s 4 3392
Sibelius Finland 8m 33s 16 1549

Table 1 Characteristics of the orchestral dataset used for the evaluation of our source
separation system.

3.1 Experimental results

In this section, we are going to analyze the experimental results obtained in
the evaluation of the proposed database. Table 2 shows the execution time of
ReMAS and NMF+Re blocks for each implementation and audio excerpt. In
addition, speedup and efficiency results are included.

3.1.1 CPU results

The computational complexity of the system depends mainly on the duration
of the score and the number of instruments of the composition. In this sense,
attending firstly to the duration of the score, the alignment stage (ReMAS
in Table 2) is about the 54% of the total execution time of the system for
the Dvor̆ák composition independently of the number of cores. However, for
the remaining scores, the alignment stage time represents just between 10%
and 19%. As expected, the complexity burden per frame of the alignment
block increases due to score duration. CPU implementation guarantees real-
time with 4 cores for: (1) long compositions (tested until 1603 seconds) with a
reduced number of instruments (4 instruments in Dvor̆ák score), and (2) short
compositions (tested until 512 seconds) in symphonies. Focusing on 3 cores,
the only audio excerpt that is not possible to execute in real-time is Sibelius’s,
which combines a relatively high duration (512 seconds) and a large number
of instruments (16 instruments). However, this limitation can be sorted out
just by reducing the FFT length to F = 8, 192. Changing this parameter only
affects the quality of low pitch sounds in separation, giving the system the
opportunity to be executed in real-time. Using less cores, we conclude that
the execution time can not be considered real-time.

Secondly, regarding the number of instruments, we have tested the sys-
tem with a variety of symphonies of different composers (Beethoven, Mozart,
Mahler, Bruckner and Sibelius) all with a number of groups of instruments
higher than 8. These examples are the more demanding ones in terms of in-
struments in the case of classical music scores. For all orchestra scores, the
NMF+Re block increases its execution times with respect to ReMAS, con-
suming between 80% and 90% of the total execution time of the system in
comparison with a range from 40% to 50% in Dvor̆ák.

Real-time Soundprism 11

At source reconstruction stage, some of the blocks require to repeat some
operations depending on the number of score instruments, such as wiener Mask
estimation and the IFFT algorithm. The approach used in this work is based
on separating all the group of instruments at the score, just to be fair with
the analogy of the name Soundprism. Consequently, the system is designed
to perform the separation of audio input in all its components (instruments
in the audio case). However, the system proposed in [7] only implements the
separation of a single instrument, and even so, it cannot be executed in real-
time.

Finally, the behavior obtained by the system is as expected regarding the
efficiency. Better results are obtained with long compositions, due to the align-
ment stage efficiency increases with higher score duration. For the NMF+Re
block, we obtain a global efficiency higher than 60% for the worst-case sce-
nario. Note that, for the Wiener filter, a set of matrix-vector routines (memory
bound) is computed. Therefore, the sequential approach maximizes the perfor-
mance, taking advantage of the whole memory bandwidth, while a/the parallel
approach is limited by this fact. At the same time, the NNMFPack library also
has a memory bound component and, furthermore, the optimal performance is
obtained with higher matrix dimensions (see [5]). Fig. 3 displays the efficiency
results for each audio excerpt and number of cores.

Beethoven Bruckner Dvorák Sibelius Mahler Mozart
0%

20%

40%

60%

80%

100%
4 cores
3 cores
2 cores

Fig. 3 Efficiency of the CPU implementation depending on the number of cores for each
composition.

3.1.2 Hybrid parallel scheme results

The goal of our proposal is to provide a parallel real-time sound source sep-
aration system for decomposing an audio signal when devices characterized
by both low power consumption and mobility are used. As discussed in the
previous subsection, the pure CPU system (homogeneous) achieves a real-time

12 A.J. Muñoz-Montoro et al.

behaviour for all signals of the dataset when all available cores are used. How-
ever, in exceptional cases in which the number of instruments is very high and
the duration of the composition is very long, and/or there is even an addi-
tional load in the system, it is possible that the response time is not within
the real-time window.

The hybrid GPU-CPU proposal resolves precisely these more demanding
situations. Looking at the numerical results in Table 2, the behavior of this
implementation is as expected. On the one hand, the execution time of the
NMF+Re block is equal to the pure CPU implementation when all the cores
are used. This fact allows to infer that if the number of cores used was lower, the
execution time obtained would be approximately equal to that obtained with
the CPU version, allowing to free resources for other tasks in the system and
providing greater stability in the response time of Soundprism. On the other
hand, the ReMAS time is substantially reduced. This is especially relevant in
long compositions, where the speedup over the CPU version using all the cores
is about 50% (see Fig. 4). Regarding less demanding compositions, the speedup
is above 10%. Then, as can be observed in Table 2, the overall execution time
of this version presents a fixed overload of low impact lower than 2.5% with
respect to the theoretical value, which would be the maximum time between
ReMAS and NMF+Re. This value indicates a high concurrence level and a
perfect masking of the communications between both subsystems (from GPU
to CPU), an objective pursued.

Finally, from the point of view of the usefulness and/or scalability of the
system, it should be remarked that the execution time in long compositions
(see Dvor̆ák in Table 2) is approximately 30% of the duration, reaching re-
sponse times less than 5 milliseconds.

Beethoven Bruckner Dvorák Sibelius Mahler Mozart
0

20%

40%

60%

80%

100%
4 cores
Hybrid GPU-CPU

Fig. 4 Overlapping of the speedup of the hybrid proposal and the efficiency of the pure
CPU implementation.

Real-time Soundprism 13

E
x
ec

u
ti

o
n

T
im

e

Im
p

le
m

en
ta

ti
o
n

H
y
b

ri
d

G
P

U
-C

P
U

4
co

re
s

3
co

re
s

2
co

re
s

1
co

re

C
o
m

p
o
si

ti
o
n

D
u

ra
ti

o
n

(s
)

R
eM

A
S

N
M

F
+

R
e

T
o
ta

l
R

eM
A

S
N

M
F

+
R

e
T

o
ta

l
R

eM
A

S
N

M
F

+
R

e
T

o
ta

l
R

eM
A

S
N

M
F

+
R

e
T

o
ta

l
R

eM
A

S
N

M
F

+
R

e
T

o
ta

l
(s

)
(s

)
(s

)
(s

)
(s

)
(s

)
(s

)
(s

)
(s

)
(s

)
(s

)
(s

)
(s

)
(s

)
(s

)

B
ee

th
o
v
en

1
9
1

1
0
.4

2
1
1
8
.0

4
1
2
0
.9

5
1
9
.0

1
1
1
8
.0

4
1
3
7
.0

5
2
3
.4

0
1
4
8
.4

6
1
7
1
.8

6
2
9
.3

5
1
7
2
.4

0
2
0
1
.7

5
5
3
.5

3
2
8
1
.9

9
3
3
5
.5

2
B

ru
ck

n
er

8
7

3
.7

0
5
3
.6

1
5
4
.3

3
6
.0

1
5
3
.6

1
5
9
.6

2
7
.7

4
6
8
.6

9
7
6
.4

3
9
.4

9
7
9
.2

7
8
8
.7

6
1
6
.7

2
1
3
1
.8

0
1
4
8
.5

2
D

v
o
ra

k
1
6
0
3

2
0
3
.7

5
5
0
2
.7

5
5
1
5
.5

5
5
4
3
.0

4
5
0
2
.7

5
1
0
4
5
.7

9
6
5
3
.6

5
6
2
9
.3

1
1
2
8
2
.9

6
8
8
0
.6

7
7
2
7
.4

9
1
6
0
8
.1

6
1
6
7
8
.7

2
1
2
0
6
.4

5
2
8
8
5
.1

7
S

ib
el

iu
s

5
1
2

3
6
.0

2
4
3
3
.1

5
4
4
4
.8

5
7
3
.8

3
4
3
3
.1

5
5
0
6
.9

8
9
1
.4

0
5
8
3
.9

5
6
7
5
.3

5
1
2
3
.2

6
6
7
1
.8

1
7
9
5
.0

7
2
2
2
.0

3
1
0
9
0
.0

5
1
3
1
2
.0

8
M

a
h

le
r

1
3
2

6
.2

8
8
0
.2

0
8
2
.0

0
1
1
.0

5
8
0
.2

0
9
1
.2

5
1
3
.8

0
1
0
2
.3

4
1
1
6
.1

4
1
7
.2

2
1
1
9
.8

4
1
3
7
.0

6
3
1
.0

4
1
9
5
.8

2
2
2
6
.8

6
M

o
za

rt
2
2
7

1
2
.4

5
1
1
3
.4

7
1
1
5
.8

5
2
2
.9

8
1
1
3
.4

7
1
3
6
.4

5
2
9
.1

1
1
4
6
.5

7
1
7
5
.6

8
3
5
.9

2
1
7
1
.3

2
2
0
7
.2

4
6
5
.8

8
2
8
8
.7

4
3
5
4
.6

2

E
x
ec

u
ti

o
n

T
im

e
p

er
F

ra
m

e

Im
p

le
m

en
ta

ti
o
n

H
y
b

ri
d

G
P

U
-C

P
U

4
co

re
s

3
co

re
s

2
co

re
s

1
co

re

C
o
m

p
o
si

ti
o
n

D
u

ra
ti

o
n

(s
)

R
eM

A
S

N
M

F
+

R
e

T
o
ta

l
R

eM
A

S
N

M
F

+
R

e
T

o
ta

l
R

eM
A

S
N

M
F

+
R

e
T

o
ta

l
R

eM
A

S
N

M
F

+
R

e
T

o
ta

l
R

eM
A

S
N

M
F

+
R

e
T

o
ta

l
(m

s)
(m

s)
(m

s)
(m

s)
(m

s)
(m

s)
(m

s)
(m

s)
(m

s)
(m

s)
(m

s)
(m

s)
(m

s)
(m

s)
(m

s)

B
ee

th
o
v
en

1
9
1

8
.1

9
1
.2

9
7
.9

9
9
.2

8
1
.5

8
1
0
.0

5
1
1
.6

3
1
.9

9
1
1
.6

7
1
3
.6

6
3
.6

2
1
9
.0

9
2
2
.7

1
B

ru
ck

n
er

8
7

8
.0

8
0
.8

9
7
.9

7
8
.8

7
1
.1

5
1
0
.2

2
1
1
.3

7
1
.4

1
1
1
.7

9
1
3
.2

0
2
.4

9
1
9
.6

0
2
2
.0

9
D

v
o
ra

k
1
6
0
3

4
.1

6
4
.3

8
4
.0

5
8
.4

3
5
.2

7
5
.0

7
1
0
.3

4
7
.1

0
5
.8

7
1
2
.9

7
1
3
.5

4
9
.7

3
2
3
.2

6
S

ib
el

iu
s

5
1
2

1
1
.2

2
1
.8

6
1
0
.9

2
1
2
.7

9
2
.3

0
1
4
.7

3
1
7
.0

3
3
.1

1
1
6
.9

4
2
0
.0

5
5
.6

0
2
7
.4

9
3
3
.0

9
M

a
h

le
r

1
3
2

8
.0

3
1
.0

8
7
.8

6
8
.9

4
1
.3

5
1
0
.0

2
1
1
.3

8
1
.6

9
1
1
.7

4
1
3
.4

3
3
.0

4
1
9
.1

8
2
2
.2

2
M

o
za

rt
2
2
7

6
.6

0
1
.3

1
6
.4

6
7
.7

7
1
.6

6
8
.3

5
1
0
.0

0
2
.0

5
9
.7

6
1
1
.8

0
3
.7

5
1
6
.4

4
2
0
.1

9

S
p

ee
d

u
p

v
s.

4
co

re
s

E
ffi

ci
en

cy

Im
p

le
m

en
ta

ti
o
n

H
y
b

ri
d

G
P

U
-C

P
U

4
co

re
s

3
co

re
s

2
co

re
s

C
o
m

p
o
si

ti
o
n

D
u

ra
ti

o
n

(s
)

R
eM

A
S

N
M

F
+

R
e

T
o
ta

l
R

eM
A

S
N

M
F

+
R

e
T

o
ta

l
R

eM
A

S
N

M
F

+
R

e
T

o
ta

l
R

eM
A

S
N

M
F

+
R

e
T

o
ta

l

B
ee

th
o
v
en

1
9
1

1
2
.1

%
7
0
.4

%
5
9
.7

%
6
1
.2

%
7
6
.3

%
6
3
.3

%
6
5
.1

%
9
1
.2

%
8
1
.8

%
8
3
.2

%
B

ru
ck

n
er

8
7

9
.3

%
6
9
.6

%
6
1
.5

%
6
2
.3

%
7
2
.0

%
6
4
.0

%
6
4
.8

%
8
8
.1

%
8
3
.1

%
8
3
.7

%
D

v
o
ra

k
1
6
0
3

5
0
.9

%
7
7
.3

%
6
0
.0

%
6
9
.0

%
8
5
.6

%
6
3
.9

%
7
5
.0

%
9
5
.3

%
8
2
.9

%
8
9
.7

%
S

ib
el

iu
s

5
1
2

1
2
.5

%
7
5
.2

%
6
2
.9

%
6
4
.7

%
8
1
.0

%
6
2
.2

%
6
4
.8

%
9
0
.1

%
8
1
.1

%
8
2
.5

%
M

a
h

le
r

1
3
2

1
0
.5

%
7
0
.2

%
6
1
.0

%
6
2
.2

%
7
5
.0

%
6
3
.8

%
6
5
.1

%
9
0
.1

%
8
1
.7

%
8
2
.8

%
M

o
za

rt
2
2
7

1
5
.4

%
7
1
.7

%
6
3
.6

%
6
5
.0

%
7
5
.4

%
6
5
.7

%
6
7
.3

%
9
1
.7

%
8
4
.3

%
8
5
.6

%

T
a
b
le

2
E

x
ec

u
ti

o
n

ti
m

es
m

ea
su

re
d

in
se

co
n

d
s

a
n

d
in

m
il
li
se

co
n

d
s

p
er

fr
a
m

e,
sp

ee
d

u
p

a
n

d
effi

ci
en

cy
fo

r
ea

ch
im

p
le

m
en

ta
ti

o
n

,
b

lo
ck

a
n

d
a
u

d
io

ex
ce

rp
t.

14 A.J. Muñoz-Montoro et al.

4 Conclusions and future work

First, we would like to stress that the proposed system is, to the best of our
knowledge, the first implementation in real-time for the Soundprism paradigm.
Our approach has focused on achieving real-time execution using handheld
devices characterized by both low power consumption and mobility. Under
these limitations, the proposed system is real-time for all the audio excerpts
in the case of an execution in the CPU implementation with 4 cores and
in the hybrid parallel proposal. Secondly, it has been shown that the length
of the score affects moderately the total complexity of the system. However,
the number of score instruments has a strong impact, because it requires the
computation of the same number of Wiener masks and IFFT blocks as there
are instruments.

Finally, for future work, we plan to extend the current approach to be able
to manage with multi-channel audio input. To achieve this goal, the concert
hall should include a group of microphones distributed along the room. Using
this proposal, the quality of the separation will be greatly increased because
the system will deliver to the user the signal received for the microphone closer
to a particular instrument.

Acknowledgements This work has been supported by the “Ministerio de Economı́a y
Competitividad” of Spain and FEDER under projects TEC2015-67387-C4-{1,2,3}-R.

References

1. Alonso P, Cortina R, Rodŕıguez-Serrano FJ, Vera-Candeas P, Alonso-González M,
Ranilla J (2017) Parallel online time warping for real-time audio-to-score alignment
in multi-core systems. J Supercomput 73: 126. https://doi.org/10.1007/s11227-016-
1647-5

2. Carabias-Orti JJ, Cobos M, Vera-Candeas P, Rodŕıguez-Serrano FJ (2013) Non-
negative signal factorization with learnt instrument models for sound source sepa-
ration in close-microphone recordings EURASIP J Adv Signal Process 2013: 184.
https://doi.org/10.1186/1687-6180-2013-184

3. Carabias-Orti JJ, Rodriguez-Serrano FJ, Vera-Candeas P, Canadas-Quesada FJ,
Ruiz-Reyes N (2015) An audio to score alignment framework using spectral factoriza-
tion and dynamic time warping. In: 16th International Society for music information
retrieval conference 742–748

4. Dı́az-Gracia N, Cocaña-Fernández A, Alonso-González M, Mart́ınez-Zald́ıvar FJ,
Cortina R, Garćıa-Mollá VM, Alonso P, Ranilla J (2014) NNMFPACK: a versatile
approach to an NNMF parallel library. Proc 2014 Int Conf Comput Math Methods
Sci Eng 456–465

5. Dı́az-Gracia N, Cocaña-Fernández A, Alonso-González M, Mart́ınez-Zald́ıvar FJ,
Cortina R, Garćıa-Mollá VM, Vidal AM (2015) Improving NNMFPACK with hetero-
geneous and efficient kernels for β-divergence metrics. J Supercomput 71: 1846–1856.
https://doi.org/10.1007/s11227-014-1363-y

6. Driedger J, Grohganz H, Prätzlich T, Ewert S, Müller M (2013) Score-informed
audio decomposition and applications. In: Proceedings of the 21st ACM international
conference on Multimedia pp. 541-544

7. Duan Z, Pardo B (2011) Soundprism: an online system for score-informed source
separation of music audio. IEEE J. Sel. Top. Signal Process. 5(6):1205–1215

Real-time Soundprism 15

8. Duong NQ, Vincent E, Gribonval R (2010) Under-determined reverberant audio
source separation using a full-rank spatial covariance model. IEEE T Audio Speech
18(7): 1830-1840. https://doi.org/10.1109/TASL.2010.2050716

9. Ewert S, Müller M (2011) Estimating note intensities in music recordings. In: Int
Conf Acoust Spee pp. 385-388

10. Ewert S, Pardo B, Mueller M, Plumbley MD (2014) Score-Informed Source Sep-
aration for Musical Audio Recordings: An overview. IEEE Signal Process Mag
31:116–124. https://doi.org/10.1109/MSP.2013.2296076

11. Fastl H, Zwicker E (2007) Psychoacoustics. Springer Berlin Heidelberg, Berlin, Hei-
delberg

12. Ganseman J, Scheunders P, Mysore GJ, Abel JS (2010) Source separation by score
synthesis. Int Comput Music Conf 2010 1–4

13. Goto M, Hashiguchi H, Nishimura T, Oka R (2002) RWC Music Database: Popular,
Classical and Jazz Music Databases. Ismir 2:287–288

14. Goto M (2004) Development of the RWC music database. Proc 18th Int Congr Acoust
(ICA 2004) 553–556

15. Hennequin R, David B, Badeau R (2011) Score informed audio source
separation using a parametric model of non-negative spectrogram.
Acoust Speech Signal Process (ICASSP), 2011 IEEE Int Conf 45–48.
https://doi.org/10.1109/ICASSP.2011.5946324

16. Itoyama K, Goto M, Komatani K, et al (2008) Instrument Equalizer for Query-by-
Example Retrieval: Improving Sound Source Separation Based on Integrated Har-
monic and Inharmonic Models. Ismir. https://doi.org/10.1136/bmj.324.7341.827

17. Marxer R, Janer J, Bonada J (2012) Low-latency instrument separation in polyphonic
audio using timbre models. In: International Conference on Latent Variable Analysis
and Signal Separation 314-321

18. Miron M, Carabias-Orti JJ, Janer J (2015) Improving score-informed source separa-
tion for classical music through note refinement. ISMIR 448-454

19. Ozerov A, Févotte C (2010) Multichannel nonnegative matrix factorization in convo-
lutive mixtures for audio source separation. IEEE Trans Audio, Speech Lang Process.
https://doi.org/10.1109/TASL.2009.2031510

20. Ozerov A, Vincent E, Bimbot F (2012) A general flexible framework for the handling
of prior information in audio source separation. IEEE Trans Audio, Speech Lang
Process. https://doi.org/10.1109/TASL.2011.2172425

21. Pätynen J, Pulkki V, Lokki T (2008) Anechoic Recording System
for Symphony Orchestra. Acta Acust united with Acust 94:856–865.
https://doi.org/10.3813/AAA.918104

22. Raphael C (2008) A Classifier-Based Approach to Score-Guided
Source Separation of Musical Audio. Comput Music J 32:51–59.
https://doi.org/10.1162/comj.2008.32.1.51

23. Rodriguez-Serrano FJ, Duan Z, Vera-Candeas P, Pardo B, Carabias-Orti JJ (2015)
Online Score-Informed Source Separation with Adaptive Instrument Models. J New
Music Res 44:83–96. https://doi.org/10.1080/09298215.2014.989174

24. Rodriguez-Serrano FJ, Carabias-Orti JJ, Vera-Candeas P, Martinez-Munoz D
(2016) Tempo Driven Audio-to-Score Alignment Using Spectral Decomposition
and Online Dynamic Time Warping. ACM Trans Intell Syst Technol 8:1–20.
https://doi.org/10.1145/2926717

25. Sawada H, Araki S, Makino S (2011) Underdetermined convolutive
blind source separation via frequency bin-wise clustering and permuta-
tion alignment. IEEE Trans Audio, Speech Lang Process 19(3): 516-527.
https://doi.org/10.1109/TASL.2010.2051355

26. Vincent E, Araki S, Theis F, et al (2012) The signal separation evaluation
campaign (2007–2010): Achievements and remaining challenges. Signal Processing
92:1928–1936. https://doi.org/10.1016/j.sigpro.2011.10.007

27. Vincent E, Bertin N, Gribonval R, Bimbot F (2014) From blind to
guided audio source separation: How models and side information can
improve the separation of sound. IEEE Signal Process Mag 31:107–115.
https://doi.org/10.1109/MSP.2013.2297440

