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Abstract:  Torque estimation in permanent magnet 
synchronous machines (PMSMs) is highly desirable in many 
applications.  Torque produced by a PMSM depends on the 
permanent magnets’ (PM) flux and dq-axis inductances.  
Consequently, precise knowledge of these parameters is required 
for proper torque estimation.  This paper proposes the use of a 
high frequency (HF) signal for PM flux and dq-axis inductances 
estimation.  The HF signals will be injected in the stator via 
inverter superposed on top of the fundamental excitation.  
Appealing properties of this method include operation in real 
time, without interference with the normal operation of the 
machine and independent of machine working condition.1 

Index Terms — High frequency signal injection, permanent 
magnet synchronous machines, temperature estimation, 
magnetization state estimation. 

I. Introduction 

Design and control of permanent magnet synchronous 
machines (PMSMs) has been the focus of significant research 
efforts during the last decades due to their high dynamic 
performance, torque density and efficiency.  Many 
applications require precise control of the torque produced 
by the machine, torque measurement/estimation being 
therefore needed. 

If torque is to be measured, torque transducers based on 
strain gauges are likely the preferred option [1]-[5].  However, 
these type of sensors can introduce resonances into the system, 
are highly sensitive to electromagnetic interference and their 
cost could account for a significant portion of the drive cost 
[6].  Less popular alternatives for torque measurement are 
systems based on torsional displacement [7]. Torsional 
displacement methods are immune to electromagnetic noise 
but they use optical probes, which are expensive and require 
accurate calibration [7]. Regardless of the method being used, 
precise torque measurement is expensive and requires room 
and extra cables. Due to this, torque estimation is preferred. 
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Torque estimation methods can be roughly classified into: 
torque equation methods [8]-[9], indirect estimation methods 
[10]-[17] or neural networks [18].  Torque equation methods 
include methods based on general torque equation [8], flux 
estimation [8] or look-up-tables [9]. Indirect estimation 
methods include methods based on the electric power and 
rotor speed [10], observer based methods [11]-[16] (e.g. 
sliding mode observers [11], model reference adaptive 
systems [12]-[13], model reference observers and reduced 
order observers [14], recursive least square parameters 
estimation [15] or affine projection algorithms parameters 
estimation [16] being the most extended) or methods requiring 
additional sensors, e.g. giant magnetoresistance effect (GMR) 
based methods [17].  All these methods [8]-[18] require 
previous knowledge of certain machine parameters and/or its 
operating condition (e.g. temperature, resistances or 
inductances). 

In this paper the fundamental torque equation of a PMSM 
will be used [19]-[20]. Torque provided by this equation 
depends on the permanent magnets (PM) remanent flux and 
on the dq-axis inductances [19]-[20]. These parameters must 
therefore be known with sufficient accuracy for reliable torque 
estimation.  PM remanent flux and dq-axis inductances change 
during the normal operation of the machine due to 
fundamental current injection [21]-[24] and PM temperature 
[20], [25]-[32].  An increase of the PM temperature reduces 
the PM remanent flux (i.e. magnetization state) reducing 
therefore the machine torque for a given current. In addition 
PM remanent flux variation changes the d-axis saturation level 
(assumed that the PMs are aligned with the d-axis), making 
the d-axis inductance to change [20], [28]-[29].  Injection of 
fundamental dq-axis current injection changes the dq-axis 
saturation level, resulting therefore in dq-axis inductances 
variation [20], [28]. 

This paper proposes a method for the estimation of 
machine parameters involved in the torque equation, i.e. PM 
flux and dq-axis inductances.  Two HF signals injected in the 
stator terminals of the machine via inverter will be used for 
this purpose.  The HF signals are superposed on top of the 
fundamental excitation, meaning that the method will not 
interfere with the normal operation of the machine. The paper is 
organized as follows: fundamental model of a PMSM is 
presented in section II, torque estimation using a HF signal is 
presented in section III, implementation of the method is 



 

 

presented in section IV, preliminary simulation results are 
presented in section V and conclusions are provided in section 
VI.  

II. Fundamental model of a PMSM 

The fundamental model of a PMSM in a reference frame 
synchronous with the rotor is given by (1) where Rd, Rq, Ld 
and Lq are the d and q-axes resistances and inductances 
respectively and λpm is the PM flux.  The output torque can be 
expressed by (2), where 𝑃 is the number of poles.  The first 
term on the left-hand side of (2), Tsyn, is the 
electromagnetic/synchronous torque, while the second term on 
the right-hand side of (2), Trel, is the reluctance torque.  It can 
be concluded from (2) that Tsyn estimation requires λpm 
estimation, while Trel requires differential inductance, i.e. (Ld-
Lq), estimation.  It will be shown in the next section that λpm, 
Ld and Lq can be estimated by injecting two HF signals into 
the stator terminals of a PMSM. 
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III. Torque estimation in PMSMs using a HF signal 

This section analyzes the physical principles of torque 
estimation in PMSMs using HF signal injection. 

HF model of a PMSM 
If the stator of a PMSM is fed with a HF 

voltage/current, the magnet flux dependent term in (1) 
can be safely neglected, as it does not contain any HF 
component, the resulting HF model being (3). 
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If the frequency of the injected HF signal is sufficiently 
higher than the rotor frequency, the rotor speed dependent 
terms can also be safely neglected, the simplified HF model 
shown in (4) being obtained.  An indicative threshold for this 
assumption can be 

  
ω hf >ω r + 2 ⋅π ⋅500  [29]. 
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Electromagnetic torque estimation 
As shown in (2), electromagnetic torque (Tsyn) estimation 

requires knowledge of PM flux, λpm.  D-axis inductance of a 
PMSM, Ld (1), has been demonstrated to be function of the 
PM flux [22], [29] (d-axis is aligned with PMs). λpm variation 
with d-axis inductance can be expressed by (5), where λpm0 
and Ld0 are the PM flux and d-axis inductance at the room 
temperature (Tr0) and when no dq-axis fundamental current is 
injected respectively, Ld(Id.Iq,Tr) is the d-axis inductance when 
the magnet temperature is Tr and when dq-axis fundamental 
current is injected, and KBEMF is the coefficient linking the d-
axis HF inductance with the PM flux.  D-axis inductance 
variation with fundamental current and magnet temperature 
(Tr) can be expressed as (6), where αId, αIq, αTr are the 
coefficients linking the d-axis inductance with the d-axis 
fundamental current ( Isd

r ), q-axis fundamental current ( Isq
r ) 

and magnet temperature (Tr).  D-axis inductance depends on 
Isd
r  due to saturation while dependence on Isq

r  is due to cross-
coupling between d and q-axes. On the other hand, d-axis 
inductance depends on PM remanent flux, which is affected 
by the magnet temperature [20], [28], [29]. 
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D-axis inductance can be estimated by injecting a 
pulsating d-axis HF current (7) into the stator terminals of the 
machine. A resonant controlled can be used to inject the HF 
current [29].  The HF voltages commanded by the resonant 
controller are (8).  By taking only the d-axis component of the 
resulting HF voltage complex vector, 

  
vdqsHF1

r*  in (8), the 
voltage complex vector 

  
vdqsHF1

r ' , (9), is defined.  Both (7) and 
(9) can be separated into positive sequence (

  
idqsHF1pc

r*

 and 

  
vdqsHF1pc

r ' ) and negative sequence (
  
idqsHF1nc

r*

 and 
  
vdqsHF1nc

r ' ) 
components, (10) and (11), each with a magnitude equal to 
half of that of the original signal.  The d-axis HF impedance, 
(12), can be obtained either from the positive or negative 
sequence components.  The d-axis HF inductance is finally 
obtained as the imaginary part of d-axis HF impedance, (13).  
Tsyn estimation using pulsating HF current injection is 
schematically shown in Fig. 1. 
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Fig. 1.-. Schematic representation of the process followed to estimate the 
synchronous torque using pulsating HF current injection 

 
Fig. 2.-. Schematic representation of the process followed to estimate the 
reluctance torque using pulsating HF current injection 

Reluctance torque estimation 
As shown in (2), reluctance torque (Trel) estimation 

requires knowledge of the differential inductance (Ld - Lq).  D-
axis inductance (Ld) can be estimated by injecting a pulsating 
d-axis HF current as shown in (7)-(13).  Q-axis inductance 
(Lq) can be estimated by injecting a pulsating q-axis HF 
current (14)-(20).  Trel estimation using pulsating HF current 
injection is schematically shown in Fig. 2. 
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IV. Implementation  

 
Fig. 3.- Injection of HF pulsating currents. Dashed lines indicate optional 
functionalities. 

 
Fig. 4.- Schematic representation of the signal processing for torque 
estimation using pulsating HF current injection. 

Fig. 3 shows the general block diagram used for the 
implementation of the method, including inverter control and 
injection of pulsating HF signals; torque estimation requires 
the injection of two HF pulsating signals, to estimate LdHF and 
λpm, and to estimate LqHF respectively.  Fig. 4 shows the signal 
processing required for torque estimation.  Inputs to the torque 
estimation block are the output voltage of the HF resonant 

Synchronus 
torque 

estimation 
(2) 

Pulsating d-axis 
HF current 
injection 

(7) 

LdHF estimation 
(12)-(13) 

λpm estimation 
 (5) 

Reluctance 
torque 

estimation 
(2) Pulsating q-axis 

HF current 
injection 

(14) 

LqHF estimation 
(19)-(20) 

Differential 
inductance 
estimation 

 (LdHF - LqHF) 

Pulsating d-axis 
HF current 
injection 

(7) 

LdHF estimation 
(12)-(13) 

  
  

-   

v   dqs   
  r*     

    

    
  

  

  

+ 

+   

  

      

    

    

i   dqs   r   

i   dqsHF1   
r 

i   dqsf   
r* 

  

    

v   dqsHF1 
r* 

Torque 
Estimation 

+ dq  

abc  

r 

Inverter 
(PWM) 

Machine 

i a i b θ r 

dq  

abc  
Signal  

Processing 

  
    

Fundamental 
current reg. 

  
    

  
    

Limits of   
operation 

θ 

T   e 
* 

HF resonant 
controller 

- 

+ i   dqsHF1 
r* 

T   out 

v   dqsHF2 
r* 

HF resonant 
controller 

  i   dqsHF2   
r 

  dqsf 
r* i 

^ 

  

- 

+ i   dqsHF2 
r* 

+ + 

v   dqsHF1 
r* v   dqsHF2 

r* 

  -ω hf 
  

v   dqsHF1 
r* 

i   dqsHF1 
r* 

d 
q 

v   dqs1HF 
r’ 

Eq (2) 

  

    

Eq (13) 

T   out 
    

Eq (12) 
L   dHF Z   dHF 

^ 

Signal processing for torque estimation 

BSF1 

  -ω hf 

BSF2 

v   dqsHF1pc 
r’ 

i   dqsHF1pc 
r* 

    

Eq (5) 
λ pm 

  -ω hf 
  

v   dqsHF2 
r* 

i   dqsHF2 
r* 

d 
q 

v   dqs2HF 
r’ 

  

    

Eq (20) 

    

Eq (19) 
L   qHF Z   qHF 

BSF1 

  -ω hf 

BSF2 

v   dqsHF2pc 
r’ 

i   dqsHF2pc 
r* 

  dqsf   
r* i 



 

 

current controllers   
vdqsHF1

r*  (9) and   
vdqsHF 2

r*  (16), the 
commanded HF currents   

idqsHF1
r*  (7) and   

idqsHF 2
r*  (14) and the 

injected fundamental current   
idqsf

r* , see Fig. 3.  Two band stop 
filters, BSF1 and BSF2, are used to remove the negative 
sequence components of the HF currents and voltages.  The d 
and q-axis HF impendences are estimated using (12) and (19), 
the d and q-axis HF inductances are estimated using (13) and 
(20), the PM flux is estimated using (5) and the torque is 
finally estimated using (2). 

 

V. FEM results  

Preliminary simulation results showing the performance of 
the proposed method are presented in this section.  Fig. 5 shows 
the schematic representation of the machine that will be used 
for verification of the method, the parameters being shown in 
Table I.  

a)  

b)  

c)  

d)  

e)  
Fig. 7.- FEM results.  (a) Estimated d-axis HF inductance, LdHF. (b) 
Estimated q-axis HF inductance, LqHF. (c) Estimated PM flux, λpm. (d) 
Estimated and measured torque. (e) Estimated torque error. 0<

 
Isdq

r <1pu (

 
Isq

r = − Isd
r ), Tr =20ºC, ωHF1 = 2· π · 500 rad/s and IHF1 = 0.05 pu, ωHF2 = 2· π 

· 1000 rad/s and IHF2 = 0.05 pu, ωHF2 = 2· π · 50 rad/s. 

Fig. 6 shows machine response obtained by FEM when the 
magnitude of the q-axis component of the fundamental 
current, 

 
Isq

r , changes from -1pu to 1pu. D-axis component of 
the fundamental current,  Isd

r , is 0 pu and the PM temperature 
is constant.  Fig. 6a shows the estimated d-axis HF inductance 
(13), LdHF; a pulsating HF signal of 500 Hz and 0.05 pu 
amplitude has been injected in the d-axis for this purpose.  Fig. 
6b shows the estimated PM flux, λpm; LdHF shown in Fig. 6a 
being used to estimate λpm (5).  λpm is used to estimate the 
electromagnetic/synchronous torque (2).  Fig. 6c shows the 
estimated differential inductance, i.e. LqHF- LdHF, which will be 
used to estimate the reluctance torque (2); LqHF, (20), being 
estimated using a pulsating q-axis HF current of 1000 Hz and 
0.05 pu amplitude. Fig. 6d shows the estimated, (2), and 
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Fig. 5.- Schematic representation of the test machine. 

a)  

b)  

c)  

d)  

e)  
Fig. 6.- FEM results.  (a) Estimated d-axis HF inductance, LdHF. (b) 
Estimated q-axis HF inductance, LqHF. (c) Estimated PM flux, λpm. (d) 
Estimated and measured torque. (e) Estimated torque error. -1<
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r <1pu, 
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r =0pu, Tr =20ºC, ωHF1 = 2· π · 500 rad/s and IHF1 = 0.05 pu, ωHF2 = 2· π · 

1000 rad/s and IHF2 = 0.05 pu, ωHF2 = 2· π · 50 rad/s. 
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measured torque of the machine while Fig. 6e shows the error 
in the torque estimation, which is observed to be <0.2 Nm. 

Fig. 7 shows analogous results when the fundamental 
current magnitude 

 
isdq

r = Isdq
r , changes from 0pu to 1pu, 

 
Isq

r = − Isd
r  (   − Isd

r < 0 , i.e. flux weakening current).  It is 
observed from Fig. 7e that the error in the estimated torque in 
this case is <0.8 Nm. 

Finally Fig. 8 shows analogous results to Fig. 6 but when 

  
isdq

r = Isdq
r = 1  pu (

 
Isq

r = − Isd
r ) and PM temperature changes 

from 20ºC to 140ºC. An increase of the PM temperature will 
result in a reduction of PM remanent flux, Br.  The machine 
used for simulation is equipped with NEOMAX-42SH PMs, 
which for an increase from 20ºC to 140ºC experience a 
reduction of Br from 1 to 0.88 pu.  It is observed from Fig. 8e 
that the error in the estimated torque in this case is <0.7 Nm.  

VI. Conclusions 

This paper proposes PMSMs torque estimation using the 
torque equation enhanced with online parameters estimation 

using HF signal injection.  The HF signals are superposed on 
top of the fundamental excitation, allowing therefore real time 
torque estimation for any operating condition and without 
interfering with the normal operation of the machine.  
Extensive FEM results have been provided to demonstrate 
the viability of the proposed method. 
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