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We investigate the role of some game solutions, such the Shapley and the Banzhaf values,

as probability transformations. The first one coincides with the pignistic transformation
proposed in the Transferable Belief Model; the second one is not efficient in general,

leading us to consider its normalized version. We study a number of particular models

of lower probabilities: minitive measures, coherent lower probabilities, as well as the
lower probabilities induced by comparative or distortion models. For them, we provide

some alternative expressions of the Shapley and Banzhaf values and study under which
conditions they belong to the core of the lower probability.
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1. Introduction

As discussed in 1, there are two main interpretations of set functions, or capacities:

on the one hand, we can regard them as representations of uncertainty, where the

capacity of a set A measures our belief that the outcome of an experiment belongs

to A. In this manner we can consider a number of models that generalize proba-

bility theory, and that are sometimes gathered together under the term imprecise

probabilities. These include for instance Choquet capacities 2, belief functions 3,

possibility measures 4 or coherent lower probabilities 5, among many others. One

possible interpretation of these models is that of lower bounds of some precise, but

unknown, probability distribution over the set of outcomes.

The second interpretation arises within cooperative game theory, and regards

each subset A of the possibility space as a set of players, and the capacity of A as

the payoff that is guaranteed for the coalition of the players in A. Although for-

mally different, the theories stemming from the two approaches have a number of
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notions and results in common. For instance, the core of a capacity within imprecise

probability theory is defined as the set of probability measures that dominate the

capacity, and can be regarded as the set of probability models that are compati-

ble with the available information. The exact same concept arises in cooperative

game theory, with the interpretation of the set of individual payoffs that cannot be

improved by any coalition.

One important problem within imprecise probabilities is that of eliciting a (pre-

cise) probability measure from an imprecise model. This is usually referred to as

a probability transformation, and has been approached in many different ways: we

can consider for instance the probability measure that minimizes (some) distance

to the lower probability 6, that with the maximum entropy 7, etc. The problem has

been considered with particular attention by the belief function community, where

a number of different transformations have been proposed 8,9. Among these, one of

the most widely used is the so-called pignistic transformation, considered by Smets

and proposed earlier by Dubois and Prade 10 and Williams 11.

It turns out that this transformation coincides with what Shapley proposed in
12 as a solution for a game, and that is understood as a distribution of the payoff

among the players that satisfies a number of desirable properties. The link allows us

to obtain the pignistic transformation as the center of gravity (a weighted average

of the extreme points) of the set of probability measures associated with the non-

additive measure.

Inspired by this result, in this paper we investigate game solutions as probability

transformations. On the one hand, we deepen in the properties of the Shapley value,

studying if it can be expressed in terms of the extreme points in more general

conditions than for 2-monotone lower probabilities, which is the result established

by Shapley in 13. In addition, we also study the role as a probability transformation

of another popular solution proposed within game theory: the Banzhaf value.

One basic desirable property of a probability transformation of a lower proba-

bility is that it belongs to the core of this lower probability. This is essential if the

latter is obtained as the envelope of a set of probability measures, as is the case

when it is given an epistemic interpretation and also when we consider exact games

in cooperative game theory, as we shall do in this paper. For this reason, we shall

study among other things if we can guarantee the consistency of the Shapley and

Banzhaf values with the lower probability it is induced from for different types of

lower probabilities.

After introducing some preliminary concepts in Section 2, from Section 3 on-

wards we investigate the properties of the Shapley and Banzhaf values for some

particular models: minitive measures (Section 3), 2-monotone capacities (Section 4)

and coherent lower probabilities (Section 5). We conclude the paper in Section 6

with some additional remarks.
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2. Preliminary concepts

Let us recall some basic notions from the two theories we link in this paper: imprecise

probabilities and cooperative game theory.

2.1. Lower probabilities

In this paper, we consider a finite possibility space Ω = {1, . . . , n}. A lower proba-

bility (also called capacity) on Ω is a function P : P(Ω) → [0, 1] that is monotone

(A ⊆ B ⇒ P (A) ≤ P (B)) and normalized (P (∅) = 0, P (Ω) = 1). Its conjugate

upper probability is given by P (A) = 1 − P (Ac) for every A ⊆ Ω, and its core

M(P ) is the set of additive models that are compatible with P , in the sense that

M(P ) = {P : P(Ω)→ [0, 1] probability measure : P (A) ≥ P (A) ∀A ⊆ Ω}.

We shall only consider in this paper lower probabilities P whose core is non-empty.

These are said to avoid sure loss. They are called coherent if they are moreover the

lower envelope of the core:

Definition 1. 5 A lower probability P : P(Ω) → [0, 1] is coherent if and only if

P (A) = min{P (A) : P ∈M(P )} for every A ⊆ Ω.

One particular family of coherent lower probabilities are the 2-monotone ones
2,14, which are those satisfying P (A ∪B) + P (A ∩B) ≥ P (A) + P (B) for any pair

of subsets A,B of Ω. They are sometimes referred to as convex capacities.

The notion can be strengthened by considering complete monotonicity, which

means that

P (∪ki=1Ai) ≥
k∑
i=1

P (Ai)−
∑

i,j∈{1,...,k}

P (Ai ∩Aj) + · · ·+ (−1)k+1P (∩ki=1Ai)

for every k ∈ N and every A1, . . . , Ak ⊆ Ω.

Completely monotone lower probabilities are also called belief functions in the

theory of evidence 3. One of their advantages is that they are uniquely determined by

their basic probability assignment m : P(Ω)→ [0, 1], which satisfies
∑
A⊆Ωm(A) =

1, by means of the formula

P (A) =
∑
B⊆A

m(B). (1)

In order to determine the values of P (A) using Eq. (1), the only relevant terms in

the summation are the focal sets, which are those sets E such that m(E) > 0.

More generally, any lower probability is determined by its Möbius inverse

m(B) =
∑
A⊆B

(−1)|B\A|P (A), (2)

in the sense that this function m determines P by means of Eq. (1); the only

difference is that m is non-negative if and only if P is a belief function.
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2.2. Game solutions

Within game theory, the possibility space Ω is interpreted as a set of players, and

P (A) is then regarded as the gain that is guaranteed by the coalition of the players

in A. Thus, a game is a function P : P(Ω) → R that provides the gain that is

guaranteed to each coalition. In this paper, we focus on games taking values on

[0, 1] and that are normalized and monotone; in other words, in those that can be

regarded as lower probabilities.

Under the assumption of transferable utility, which means that all players have

a common currency that is equally valued by all, the core of the game represents

the set of distributions of the total payoff among the players (i.e., those probability

distribution P such that
∑
i∈Ω P ({i}) = 1) that cannot be improved by any coalition

(so that P (A) ≥ P (A) for every coalition A ⊆ Ω).

A solution of a gamea is a function that associates with each game a distribution

of payoffs over the individual players in the game. Arguably the most important

solution of a game is the so-called Shapley value 12,13:

Definition 2. 12 Let P be a lower probability. Its Shapley value is given, for every

player i, by

Φ(P )(i) =
∑
A+{i}

t!(n− t− 1)!

n!

(
P (A ∪ {i})− P (A)

)
, (3)

where t = |A|.

We shall also use Φ(P ) to denote the probability measure determined by the above

equation, so that Φ(P )(A) :=
∑
i∈A Φ(P )(i).

The Shapley value is the only solution of the game that satisfies the following

four properties:

Efficiency
∑
i∈Ω Φ(P )(i) = P (Ω).

Symmetry P (A ∪ {i}) = P (A ∪ {j}) ∀A ⊆ Ω \ {i, j} ⇒ Φ(P )(i) = Φ(P )(j).

Linearity Φ(λ1P 1 +λ2P 2) = λ1Φ(P 1) +λ2Φ(P 2) ∀λ1, λ2 ∈ R and for every pair

of games P 1, P 2.

Null player P (A ∪ {i}) = P (A) ∀A ⊆ Ω⇒ Φ(P )(i) = 0.

When the game P is 2-monotone, Φ(P ) corresponds to the center of gravity of

the core, and it can therefore be computed using the extreme points ofM(P ). From
16, the extreme points of the core of a 2-monotone lower probability are related to

the permutations of Ω: any permutation σ defines an extreme point by means of

the equation

Pσ({σ(1), . . . , σ(i)}) := P ({σ(1), . . . , σ(i)}) for i = 1, . . . , n. (4)

aThe term solution is sometimes used within game theory to refer to a multifunction that to each
game assigns a set of valid strategies, and what we use in this paper is then referred to as a solution
concept.
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Proposition 1. 12,13 Let P be a 2-monotone lower probability, and let Φ(P ) denote

its associated Shapley value. Then for every i ∈ Ω it holds that

Φ(P )(i) =

∑
σ∈SΩ Pσ({i})

n!
, (5)

where SΩ denotes the set of permutations of Ω and Pσ is given by Eq. (4). As a

consequence, Φ(P ) belongs to the core M(P ) of P .

Note that in the above expression, if two different permutations σ1 6= σ2 give rise to

the same extreme point Pσ, the latter is added twice; in other words, the Shapley

value can be obtained as the weighted average of the extreme points, where the

weight of an extreme point depends on the number of different permutations that

induce it.

Interestingly, the Shapley value of a belief function coincides with what Smets

called its pignistic transformationb within the Transferable Belief Model 18, as

shown in 8. This means that we can also compute the Shapley value as:

Φ(P )(i) =
∑
i∈B

m(B)

|B|
, (6)

where m is determined by Eq. (2). In fact, the above formula can also be used for

lower probabilities that are not belief functions, as shown in Section 3.6.1 in 1. As a

consequence it can be used to justify the use of the pignistic transformation beyond

this framework. See 19,20 for some works making use of the pignistic transformation.

Another popular solution of a game is the so-called Banzhaf value (21; see also
15), which is often used as a power index in voting systems.

Definition 3. 21 Let P be a lower probability. Its Banzhaf value is given by

B(P )(i) =
1

2n−1

∑
A+{i}

(
P (A ∪ {i})− P (A)

)
for every i ∈ Ω. (7)

It satisfies the symmetry, linearity and null player axioms 22. However, and unlike

the Shapley value, the equation above does not produce a probability mass function,

because it does not satisfy the efficiency axiom: we may have
∑
i∈ΩB(P )(i) > 1 or∑

i∈ΩB(P )(i) < 1 (see the forthcoming Example 2). For this reason, it has been

suggested 23 to consider instead the normalized Banzhaf value, which is given by

Ψ(P )(i) =
B(P )(i)∑
j∈ΩB(P )(j)

, (8)

and we shall denote Ψ(P )(A) =
∑
i∈A Ψ(P )(i).

Although the normalized Banzhaf value does not share all the properties of the

Banzhaf value 24 (it loses for instance the linearity axiom), it has been axiomatized

from the point of view of game theory in 23.

bSee 11,17 for earlier proposals of this transformation.
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Remark 1. Both Shapley and Banzhaf values constitute examples of probabilistic

values for games, using the terminology of Weber 15. Given a game P , a probabilistic

value S(P ) would be determined by the formula

S(P )(i) =
∑
A+{i}

piA(P (A ∪ {i})− P (A)),

where, for each player i, {piA : A + {i}} is a probability distribution over those

coalitions that do not include i.

If we regard P (A∪{i})−P (A) as the reward for player i for joining coalition A,

then the probabilistic value S(P ) on i could be interpreted as the expected reward

for player i, considering his probabilities of joining the different coalitions. Both

Shapley and Banzhaf values can be understood as probabilistic values:

• The Shapley value corresponds to the case piA = t!(n−t−1)!
n! for all i, where

t = |A|: the probability of joining a coalition depends on the size of the

coalition, and all coalitions of the same size are equally likely;

• The Banzhaf values corresponds to piA = 1
2n−1 : all coalitions are equally

likely, irrespective of their size. �

In this paper, we investigate the properties of the Shapley value and the nor-

malized Banzhaf value as probability transformations of the core. Specifically, we

shall study for which types of lower probabilities they are guaranteed to belong to

their core, as well as provide some simpler expressions for a number of particular

cases.

3. Minitive measures

We begin by considering a particular case of belief functions: minitive measures.

Definition 4. A lower probability P : P(Ω) → [0, 1] is called minitive when it

satisfies.

P (A ∩B) = min{P (A), P (B)} ∀A,B ⊆ Ω.

In such case, its conjugate upper probability, given by P (A) = 1− P (Ac), is called

maxitive and it satisfies P (A ∪B) = max{P (A), P (B)} for every A,B ⊆ Ω.

Since we are dealing with finite possibility spaces, minitive and maxitive mea-

sures are equivalent to necessity and possibility measures, respectively. Moreover,

given conjugate minitive and maxitive measures P , P on {1, . . . , n}, it holds that

maxj=1,...,n P ({j}) = 1. Without loss of generality, we can assume that the elements

in Ω are ordered so that 1 = P ({1}) ≥ P ({2}) ≥ . . . ≥ P ({n}) ≥ 0.

As particular cases, minitive measures include the unanimity games we shall

mention later on; from the point of view of coalitional game theory, they correspond

to games that are uniquely determined by the maximum rewards associated with

the different players and the total order these maxima determine.



January 2, 2018 10:8 WSPC/INSTRUCTION FILE ShapleyCore-Revised

Shapley and Banzhaf values as probability transformations 7

It was proven by Nguyen 25 that any minitive measure is in particular completely

monotone, and therefore also 2-monotone. As a consequence, its Shapley value can

also be obtained in this case as the center of gravity of the elements of the core (see

Proposition 1). Furthermore, its focal sets are nested. Therefore, if P is a minitive

measure, we can assume without loss of generality that its focal elements are among

the sets {1, . . . , j} for j = 1, . . . , n.

Using the expression of the Shapley value in terms of the pignistic transforma-

tion, Dubois and Prade established the following formula:

Proposition 2. 17,26 Let P be a minitive measure with conjugate maxitive measure

P . Then its Shapley value is given by:

Φ(P )(i) =

n∑
j=i

P ({j})− P ({j + 1})
j

∀i = 1, . . . , n,

where we adopt the convention P ({n+ 1}) = 0.

Using this result, if m denotes the basic probability assignment associated with P ,

the Shapley value can equivalently be expressed by:

Φ(P )(i) =

n∑
j=i

m({1, . . . , j})
j

∀i = 1, . . . , n.

This can also be derived using Eq. (6).

With respect to the normalized Banzhaf value, we have the following:

Proposition 3. Let P be a minitive measure, and denote by m its basic probability

assignment. Then its Banzhaf value is given by:

B(P )(i) =
1

2n−1

n∑
j=i

2n−jm({1, . . . , j}) ∀i = 1, . . . , n.

Proof. Remember that we are assuming without loss of generality that 1 =

P ({1}) ≥ . . . ≥ P ({n}), hence the focal sets associated with P are among the

sets {1, . . . , j} for j = 1, . . . , n. Hence, P can be expressed by:

P (A) =
∑

{1,...,j}⊆A

m({1, . . . , j}) ∀A ⊆ Ω.

Recall that the Banzhaf value is given by Eq. (7). However, note that if {1, . . . , i−
1} 6⊆ A, then the value k = max{l : {1, . . . , l} ⊆ A} satisfies k < i− 1. Therefore, it

holds that:

P (A ∪ {i})− P (A) =
∑

{1,...,j}⊆A∪{i}

m({1, . . . , j})−
∑

{1,...,j}⊆A

m({1, . . . , j})

=

k∑
j=1

m({1, . . . , j})−
k∑
j=1

m({1, . . . , j}) = 0.
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Therefore, Eq. (7) can be simplified to:

B(P )(i) =
1

2n−1

∑
A⊆{i+1,...,n}

(
P (A ∪ {1, . . . , i})− P (A ∪ {1, . . . , i− 1})

)
.

Recall also that for any A ⊆ {i + 1, . . . , n}, if we denote k = max{l : {1, . . . , l} ⊆
A ∪ {1, . . . , i}} ≥ i, it holds that:

P (A ∪ {1, . . . , i})− P (A ∪ {1, . . . , i− 1})

=

 k∑
j=1

m({1, . . . , j})

−
i−1∑
j=1

m({1, . . . , j})

 =

k∑
j=i

m({1, . . . , j}).

Thus, the only values that appear in the sum of the Banzhaf value are m({1, . . . , j})
for j ≥ i. To see how many times any value m({1, . . . , j}) (for j ≥ i) appears, note

that, given any fixed j ≥ i, it holds that:

• There is
(
n−j

0

)
= 1 set A ∪ {1, . . . , i} with cardinality j (the set {1, . . . , j})

such that {1, . . . , j} ⊆ A ∪ {1, . . . , i}.
• There are

(
n−j

1

)
sets A ∪ {1, . . . , i} with cardinality j + 1 such that

{1, . . . , j} ⊆ A ∪ {1, . . . , i}.
• . . .

• There are
(
n−j
k

)
sets A ∪ {1, . . . , i} with cardinality j + k such that

{1, . . . , j} ⊆ A ∪ {1, . . . , i}.
• . . .

• There is
(
n−j
n−j
)

= 1 set A∪{1, . . . , i} with cardinality n = j+n− j (the set

{1, . . . , n}) such that {1, . . . , j} ⊆ A ∪ {1, . . . , i}.

Therefore, the value m({1, . . . , j}) appears 2n−j times:(
n− j

0

)
+

(
n− j

1

)
+ . . .+

(
n− j
n− j

)
=

n−j∑
k=0

(
n− j
k

)
= 2n−j ,

and as a consequence:

B(P )(i) =
1

2n−1

n∑
j=i

2n−jm({1, . . . , j}).

This completes the proof.

From this result, it follows immediately the expression of the normalized Banzhaf

value for minitive measures:

Corollary 1. Let P be a minitive measure, and denote by m its basic probability

assignment. Then its normalized Banzhaf value is given by:

Ψ(P )(i) =

∑n
j=i 2n−jm({1, . . . , j})∑n

j=1 j · 2n−jm({1, . . . , j})
∀i = 1, . . . , n. (9)
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Proof. First of all, let us compute the sum of all the Banzhaf values:

n∑
i=1

B(P )(i) =
1

2n−1

n∑
i=1

n∑
j=i

2n−jm({1, . . . , j}). (10)

Now, the value 2n−jm({1, . . . , j}) appears in the previous sum for i = 1, . . . , j,

whence Eq. (10) becomes:

n∑
i=1

B(P )(i) =
1

2n−1

n∑
j=1

j · 2n−jm({1, . . . , j}),

and applying Eq. (8) we conclude that the normalized Banzhaf value is given by

Eq. (9).

This result allows us to establish the following:

Proposition 4. Let P be a minitive measure. Then its normalized Banzhaf value

Ψ(P ) belongs to its core M(P ).

Proof. Let us show that Ψ(P )({1, . . . , k}) ≥ P ({1, . . . , k}) for any k = 1, . . . , n.

For simplicity, let B = {1, . . . , k}. It follows from Eq. (9) that

Ψ(P )(B) =

k∑
i=1

Ψ(P )(i) =

k∑
i=1

∑n
j=i 2n−jm({1, . . . , j})∑n

j=1 j · 2n−jm({1, . . . , j})

=

∑k
j=1 j · 2n−jm({1, . . . , j})∑n
j=1 j · 2n−jm({1, . . . , j})

=

∑k
j=1 j · 2n−jm({1, . . . , j})∑k

j=1 j · 2n−jm({1, . . . , j}) +
∑n
j=k+1 j · 2n−jm({1, . . . , j})

≥ k · 2n−kP (B)

k · 2n−kP (B) + (k + 1)2n−k−1(1− P (B))
.

To see this inequality, note that a ratio a
a+b , where a, b are non-negative numbers

satisfying some constraints independent of each other, is minimized when we min-

imize a and maximize b. Also, since f(j) = j · 2n−j is a non-increasing function it

holds that:

k∑
j=1

j · 2n−jm({1, . . . , j}) ≥ k · 2n−k
k∑
j=1

m({1, . . . , j}) = k · 2n−kP (B),

and
n∑

j=k+1

j · 2n−jm({1, . . . , j}) ≤ (k + 1) · 2n−k−1
n∑

j=k+1

m({1, . . . , j})

= (k + 1) · 2n−k−1(1− P (B)).
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Now,

k · 2n−kP (B)

k · 2n−kP (B) + (k + 1) · 2n−k−1(1− P (B))
≥ P (B)

⇐⇒ k · 2n−kP (B) ≥
(
k · 2n−kP (B) + (k + 1) · 2n−k−1(1− P (B))

)
P (B)

⇐⇒
(
k · 2n−k − (k + 1) · 2n−k−1

)
P (B) ≥

(
k · 2n−k − (k + 1) · 2n−k−1

)
P 2(B),

and this last inequality holds because f(j) = j · 2n−j is non-increasing and P (B) ∈
[0, 1].

Now, since we are assuming that the focal elements of P are among the sets

{1, . . . , k} for k = 1, . . . , n, we deduce that for any other set A, if we let kA be the

maximum k ∈ {1, . . . , n} such that {1, . . . , k} ⊆ A,

P (A) = P ({1, . . . , kA}) ≤ Ψ(P )({1, . . . , kA}) ≤ Ψ(P )(A).

Thus, Ψ(P ) belongs to the core of P .

As a summary, we conclude that for minitive functions the computation of both

the Shapley and the normalized Banzhaf values can be simplified, and also that

both of them belong to the core (Propositions 1 and 4).

4. 2-monotone lower probabilities

From Proposition 1 we know that the Shapley value belongs to the core for 2-

monotone lower probabilities. In this section we investigate some particular cases

of 2-monotone lower probabilities, such as coherent lower probabilities defined on

spaces of cardinality 3, probability intervals, distortion models or belief functions,

to investigate if we can simplify the expression in Eq. (6). Also, we aim to see if in

these particular cases the normalized Banzhaf value belongs to the core or not.

4.1. 2-monotone lower probabilities in a 3-element space

Let us consider the particular case where the possibility space has three elements.

It has been proven that in that case a lower probability is 2-monotone if and only

if it is coherent (see 27, Page 58). Moreover, in the case of cardinality three 2-

monotone lower probabilities are particular instances of probability intervals 28,

that is, they are uniquely determined by the constraints [P ({i}), P ({i})]. In other

words, it suffices to know in this case the lower and upper limits on the gain of each

player.

Our next proposition gives an alternative expression for the Shapley value in

this case:

Proposition 5. Let P : P({1, 2, 3}) → [0, 1] be a 2-monotone lower probability.

Then,

Φ(P )(i) =
1

3
+

1

2

(
P ({i}) + P ({i})

)
− 1

6

3∑
l=1

(
P ({l}) + P ({l})

)
∀i ∈ Ω.
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Proof. Given a permutation σ of {1, 2, 3}, from Eq. (4) its associated extreme

point Pσ is given by:

Pσ({σ(1)}) = P ({σ(1)}),
Pσ({σ(1), σ(2)}) = P ({σ(1), σ(2)}),
Pσ({σ(1), σ(2), σ(3)}) = P ({σ(1), σ(2), σ(3)}) = 1.

Hence:

Pσ({σ(1)}) = P ({σ(1)}),
Pσ({σ(2)}) = Pσ({σ(1), σ(2)})− Pσ({σ(1)})

= P ({σ(1), σ(2)})− P ({σ(1)}) = 1− P ({σ(3)})− P ({σ(1)}),
Pσ({σ(3)}) = Pσ({σ(1), σ(2), σ(3)})− Pσ({σ(1), σ(2)})

= 1− P ({σ(1), σ(2)}) = P ({σ(3)}),

using twice the equality P ({σ(1), σ(2)}) = 1 − P ({σ(1), σ(2)}c) = 1 − P ({σ(3)}).
Thus, there are the following possibilities:

• If σ({1}) = i, then Pσ({i}) = P ({i});
• If σ({2}) = i, then Pσ({i}) = 1− P ({σ(3)})− P ({σ(1)});
• If σ({3}) = i, then Pσ({i}) = P ({i}).

Therefore, since any of the previous cases appears for two permutations:

Φ(P )(i) =
1

n!

∑
σ

Pσ({i})

=
1

6

(
2P ({i}) + 2 + 2P ({i})− P ({j})− P ({k})− P ({j})− P ({k})

)
,

which can be equivalently be rewritten as

1

3
+

1

2

(
P ({i}) + P ({i})

)
− 1

6

3∑
l=1

(
P ({l}) + P ({l})

)
.

It is also possible to derive the above result by means of Eq. (6). Next, we provide

a simple expression for the normalized Banzhaf value in the case of cardinality three.

Proposition 6. Let P : P({1, 2, 3}) → [0, 1] be a 2-monotone lower probability.

Then, its normalized Banzhaf value is given by:

Ψ(P )(i) =
4m({i}) + 2

∑
j 6=im({i, j}) +m(Ω)

4−m(Ω)
∀i ∈ Ω.

Proof. It follows from Eq. (7) that

B(P )(1) =
1

4

(
P ({1}) + P ({1, 2})− P ({2}) + P ({1, 3})− P ({3}) + 1− P ({2, 3})

)
,
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which in terms of the Möbius inverse is equal to

4m({1}) + 2m({1, 2}) + 2m({1, 3}) +m(Ω)

4
.

Thus,

B(P )(1) +B(P )(2) +B(P )(3)

=
4
(
m({1}) +m({2}) +m({3}) +m({1, 2}) +m({1, 3}) +m({2, 3})

)
+ 3m(Ω)

4

=
4−m(Ω)

4
= 1− m(Ω)

4
,

from which the expression of the normalized Banzhaf value follows.

From the expression above we can derive that the normalized Banzhaf value

always belongs to the core in the case of games with three players:

Proposition 7. Let P be a 2-monotone lower probability on Ω = {1, 2, 3} and let

Ψ(P ) be its normalized Banzhaf value. Then Ψ(P ) belongs to M(P ).

Proof. We need to establish that Ψ(P )(i) ∈ [P ({i}), P ({i})] for every i ∈ Ω. Let

us prove it for i = 1.

Let us first see that Ψ(P )(1) ≥ P ({1}) = m({1}). From Proposition 6,

Ψ(P )(1) =
4m({1}) + 2m({1, 2}) + 2m({1, 3}) +m({1, 2, 3})

4−m({1, 2, 3})
.

Then, Ψ(P )(1) ≥ P ({1}) = m({1}) if and only if

4m({1}) + 2m({1, 2}) + 2m({1, 3}) +m({1, 2, 3}) ≥ 4m({1})−m({1, 2, 3})m({1})

or, equivalently, if and only if

2m({1, 2}) + 2m({1, 3}) +m({1, 2, 3})(1 +m({1})) ≥ 0. (11)

2-monotonicity implies that P ({1, 2}) ≥ P ({1})+P ({2}) and P ({1, 3}) ≥ P ({1})+

P ({3}). Applying Eq. (1), we deduce that m({1, 2}),m({1, 3}) ≥ 0. Now, we have

two cases:

(1) If also m({1, 2, 3}) ≥ 0, then Eq. (11) trivially holds because all the terms are

non-negative.

(2) Otherwise, from Theorem 2.7.4 in 5, the inequality P ({1, 2}) + P ({2, 3}) ≤
1 + P ({2}) holds, and it can be equivalently expressed in terms of the Möbius

inverse as 0 ≤ m({1, 3}) + m({1, 2, 3}), again using Eq. (1). Since moreover

1 +m({1}) ≤ 2, we conclude that:

2m({1, 2})+2m({1, 3}) +m({1, 2, 3})(1 +m({1}))
≥ 2m({1, 2}) + 2m({1, 3}) + 2m({1, 2, 3})

= 2m({1, 2}) + 2
(
m({1, 3}) +m({1, 2, 3})

)
≥ 0,
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because we have seen that both m({1, 2}) and m({1, 3}) +m({1, 2, 3}) are non-

negative.

We conclude that in both cases Eq. (11) holds, whence Ψ(P )(1) ≥ P ({1}).
Next, let us see that Ψ(P )(1) ≤ P ({1}). From Proposition 6, this inequality is

equivalent to:

Ψ(P )(1) =
4m({1}) + 2m({1, 2}) + 2m({1, 3}) +m({1, 2, 3})

4−m({1, 2, 3})
≤ P ({1}),

which can also be expressed as:

4m({1}) + 2m({1, 2}) + 2m({1, 3}) +m({1, 2, 3}) ≤ 4P ({1})−m({1, 2, 3})P ({1})
= 4
(
m({1}) +m({1, 2}) +m({1, 3}) +m({1, 2, 3})

)
−m({1, 2, 3})P ({1}),

where in the last equality we have just expressed P ({1}) in terms of m. The above

inequality is equivalent to:

2m({1, 2}) + 2m({1, 3}) +m({1, 2, 3})(3− P ({1})) ≥ 0. (12)

Remember that, as we have already mentioned, m({1, 2}),m({1, 3}) ≥ 0. We have

two cases:

(1) If m({1, 2, 3}) ≥ 0, the above equation holds trivially because all the terms are

non-negative.

(2) Otherwise, use that

−m({1, 2, 3})(3− P ({1})) ≤ −3m({1, 2, 3}) ≤ 2m({1, 2}) + 2m({1, 3}),

since, with an analogous reasoning to that above, m({1, 2}) +m({1, 2, 3}) ≥ 0

and m({1, 3}) +m({1, 2, 3}) ≥ 0.

In both cases, we conclude that Eq. (12) holds, and therefore Ψ(P )(1) ≤ P ({1}).

As we shall see, this result does not extend to greater cardinalities (see Exam-

ples 1 or 3 later on). In other words, this is the largest cardinality of a possibility

space where the Banzhaf value is always guaranteed to belong to the core for 2-

monotone lower probabilities.

4.2. Probability intervals

One of the simplest cases of 2-monotone lower probability is that of probability

intervals 28. A probability interval is given by I = {[li, ui] : i = 1, . . . , n}, where

0 ≤ li ≤ ui ≤ 1 and [li, ui] represents that the unknown probability of i lies between

li and ui. Any probability interval defines a core by:

M(I) = {P : P(Ω)→ [0, 1] probability measure : li ≤ P ({i}) ≤ ui ∀i = 1, . . . , n}.
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Using the probabilistic information of the core, we can define a lower and an upper

probability by:

P (A) = inf
P∈M(I)

P (A), P (A) = sup
P∈M(I)

P (A) ∀A ⊆ Ω. (13)

From the point of view of coalitional game theory, a model of probability intervals

means that we are only given the information about the coalitions formed by one,

or all but one player, and that the information about the other coalitions is the one

we can derive from these.

In 28, it is proven that P , P are coherent if and only if P ({i}) = li and P ({i}) =

ui for any i = 1, . . . , n. In such a case, P and P can be computed, for any A, by:

P (A) = max

{∑
i∈A

li, 1−
∑
i/∈A

ui

}
, P (A) = min

{∑
i∈A

ui, 1−
∑
i/∈A

li

}
.

On the one hand, when the lower probability induced by a probability interval by

means of Eq. (13) is coherent, it is also 2-monotone. Therefore, from Proposition 1

the Shapley value can be computed using Eq. (6) and it belongs to the core.

We may think that the normalized Banzhaf value also belongs to the core.

However, this is not true in general, as our next example shows.

Example 1. Consider the probability interval I in Ω = {1, 2, 3, 4} given by:

l1 ∈ [0.2, 0.2], l2 ∈ [0.1, 0.4], l3 ∈ [0.2, 0.3], l4 ∈ [0.1, 0.4].

The Banzhaf value is given by: B(P ) =
(

1.6
8 ,

2.2
8 ,

2.2
8 ,

2.2
8

)
, and therefore the nor-

malized Banzhaf value is given by: Ψ(P ) =
(

1.6
8.2 ,

2.2
8.2 ,

2.2
8.2 ,

2.2
8.2

)
. Whence, Ψ(P )(1) <

l1 = u1, and therefore Ψ(P ) /∈ M(I). This example also shows that the condition∑n
i=1B(P )(i) ≤ 1 is not satisfied. �

On the other hand, in our previous section we considered the case of three-

element spaces, and showed that in that particular case any coherent lower probabil-

ity is also a probability interval. Moreover, Proposition 7 allows us to conclude that

for any probability interval in a 3-element space both the Shapley and normalized

Banzhaf values belong to the core. Our example above shows that the normalized

Banzhaf value need not belong to the core for spaces of higher cardinality.

4.3. Lower probabilities induced by a distortion model

Two particular cases of 2-monotone lower probabilities are those induced by a Pari-

mutuel model (PMM for short) or an ε-contamination model; these two cases are

usually referred to as instances of distortion models. The PMM has its origin in

horse racing. It considers a probability P0 on P(Ω) and a distortion value δ > 0.

Using P0 and δ, the PMM defines a lower probability P by 5,29,30,31:

P (A) = max{(1 + δ)P0(A)− δ, 0}. (14)
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From 29, the lower probability P induced by a PMM is in particular a probability

interval, and as a consequence also 2-monotone. Thus, Proposition 1 implies that

the Shapley value coincides with the center of gravity of the core.

The same happens with ε-contamination models. There we consider a probability

P0 and a contamination value called ε ∈ (0, 1), that represents the distortion made

to P0. The ε-contamination model defines a lower probability by:

P (A) = (1− ε)P0(A) + εPΩ(A), (15)

where PΩ is the vacuous lower probabilityc that assigns the value 1 to Ω and 0

otherwise. In other words, P (A) = (1 − ε)P0(A) for every A ( Ω and P (Ω) = 1.

The lower probability associated with an ε-contamination model is known to be,

not only 2-monotone, but also completely monotone, that is, P is a belief function.

This follows for instance from Theorems 5 and 11 of 32, taking into account that

complete monotonicity is preserved by convex combinations. ε-contamination mod-

els are sometimes referred to as linear-vacuous mixtures (see Section 2.9.2 of 5),

and can be used for instance in a cautious Bayesian approach where the expert has

incomplete confidence in the assessment P0.

A possible interpretation of distortion models from the point of view of coali-

tional game theory would correspond to the case where we have precise information

about the reward associated with each player, in terms of a probability measure P0,

but, due to a number of factors, there is some probability of error in its estimation

(measured by the coefficients δ and ε), that transforms P0 into a set of possible

probability measures, that we summarize by means of its lower envelope P .

Although one may think that for a distortion model based on the probability

P0, both the Shapley and normalized Banzhaf values coincide with P0, our next

example shows that this is not the case:

Example 2. Consider the probability P0 on {1, 2, 3} given by P0({1}) = 0.1,

P0({2}) = 0.2 and P0({3}) = 0.7. Take δ = ε = 0.3, and denote by P δ and P ε
the lower probabilities induced by the PMM and ε-contamination, respectively. Us-

ing Eqs. (14) and (15), P δ and P ε are given by:

A {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}
P δ(A) 0 0 0.61 0.09 0.74 0.87 1

P ε(A) 0.07 0.14 0.49 0.21 0.56 0.63 1

We deduce from Eq. (4) that the extreme points of M(P δ) and M(P ε) are given

cThe vacuous lower probability is an instance of a unanimity game (see Section 2.8.2 of 1), also

referred to as simple support functions by Shafer 3.
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by:

σ Pσ for M(P δ) Pσ for M(P ε)

(1, 2, 3) (0, 0.09, 0.91) (0.07, 0.14, 0.79)

(1, 3, 2) (0, 0.26, 0.74) (0.07, 0.44, 0.49)

(2, 1, 3) (0.09, 0, 0.91) (0.07, 0.14, 0.79)

(2, 3, 1) (0.13, 0, 0.87) (0.37, 0.14, 0.49)

(3, 1, 2) (0.13, 0.26, 0.61) (0.07, 0.44, 0.49)

(3, 2, 1) (0.13, 0.26, 0.61) (0.37, 0.14, 0.49)

The centers of gravity of M(P δ) and M(P ε) are Φ(P δ) = (0.08, 0.145, 0.775) and

Φ(P ε) = (0.17, 0.24, 0.59), respectively, and none of them coincide with P0.

Similarly, the normalized Banzhaf values are given by Ψ(P δ) = (0.35
4.09 ,

0.61
4.09 ,

3.13
4.09 )

and Ψ(P δ) = (0.58
3.7 ,

0.86
3.7 ,

2.26
3.7 ), which do not coincide with P0 either. �

We now consider the PMM in the particular case P0({i}) < 1 and δ < P0({i})
1−P0({i})

for any i = 1, . . . , n. As we shall see, this corresponds to the case where P is strictly

positive for any non-empty set. In that case we can give a simple expression for the

Shapley and the normalized Banzhaf values.

Proposition 8. Let P be the lower probability associated with a PMM induced by

P0, δ, and assume that δ < P0({i})
1−P0({i}) for any i = 1, . . . , n. Then the Shapley value

is given by:

Φ(P )(i) = (1 + δ)P0({i})− δ

n
, (16)

while the normalized Banzhaf value is

Ψ(P )(i) =
(1 + δ)P0({i})− δ

2n−1

k
, where k = (1 + δ)− nδ

2n−1
. (17)

Moreover, both the Shapley and normalized Banzhaf values belong to the core.

Proof. First of all, since δ < P0({i})
1−P0({i}) for any i = 1, . . . , n, it holds that:

(1+δ)P0({i})−δ = δ(P0({i})−1)+P0({i}) > P0({i})
1− P0({i})

(P0({i})−1)+P0({i}) = 0.

Thus, P ({i}) > 0 for any i = 1, . . . , n, and as a consequence for any A 6= ∅, the

monotonicity of P (see Section 2.7.4 in 5) implies that P (A) > 0. By conjugacy, we

obtain P (A) < 1 for every A 6= Ω.

To obtain the expression for the Shapley value, we use Eq. (5). For any permu-

tation σ and any j < n, from Eq. (4) it holds that:

Pσ({σ(1), . . . , σ(j)}) = P ({σ(1), . . . , σ(j)}) = (1 + δ)P0({σ(1), . . . , σ(j)})− δ > 0.

From this we deduce that

Pσ({σ(1)}) = P ({σ(1)}) and Pσ({σ(i)}) = (1 + δ)P0({σ(i)}) ∀i = 2, . . . , n.
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In other words,

Pσ({i}) =

{
P ({i}) = (1 + δ)P0({i}) if i 6= σ(1).

P ({i}) = (1 + δ)P0({i})− δ if i = σ(1).

Note also that i = σ(1) for (n− 1)! permutations, while i 6= σ(1) for n!− (n− 1)! =

(n− 1)!(n− 1) permutations. Therefore:

Φ(P )(i) =
1

n!

∑
σ∈SΩ

Pσ({i})

=
1

n!

(
(n− 1)!((1 + δ)P0({i})− δ) + (n− 1)!(n− 1)(1 + δ)P0({i})

)
=

1

n

(
(1 + δ)P0({i})− δ + (n− 1)(1 + δ)P0({i})

)
= (1 + δ)P0({i})− δ

n
.

On the other hand, if we take into account that P (A) = (1 + δ)P0(A)− δ for every

non-empty A, we obtain that the Banzhaf value on i is given by

B(P )(i) =
1

2n−1

∑
i/∈A

(
P (A ∪ {i})− P (A)

)
=
P ({i})
2n−1

+
1

2n−1

∑
i/∈A 6=∅

(
P (A ∪ {i})− P (A)

)
=

(1 + δ)P0({i})− δ
2n−1

+
2n−1 − 1

2n−1
(1 + δ)P0({i}) = (1 + δ)P0({i})− δ

2n−1
.

This implies that
∑
i∈ΩB(P )(i) = (1 + δ)− nδ

2n−1 , from which the expression of the

normalized Banzhaf value follows.

It only remains to see that both the Shapley and normalized Banzhaf values

belong to M(P ). On the one hand, since the lower probability induced by the

PMM is 2-monotone, it follows from Proposition 1 that the Shapley value belongs

to the core. Let us see that this is also the case for the normalized Banzhaf value.

For this aim, we shall prove that Ψ(P )(A) ≤ P (A) for every A ⊆ Ω, where P

denotes the upper probability of the PMM, given by:

P (A) = min{(1 + δ)P0(A), 1}.

First of all, the condition δ < P0({i})
1−P0({i}) ensures that (see Lemma 1 in 29):

P (A) = (1 + δ)P0(A) =
∑
i∈A

P ({i}) ∀A ( Ω.

We begin by proving that Ψ(P )(i) ≤ P ({i}) for any i = 1, . . . , n. This holds if and

only if:

(1 + δ)P0({i})− δ
2n−1

(1 + δ)− nδ
2n−1

≤ (1 + δ)P0({i}),
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which is equivalent to:

P0({i})
(

(1 + δ)− (1 + δ)2 +
nδ

2n−1
(1 + δ)

)
≤ δ

2n−1
,

and therefore to:

(1 + δ)P0({i})
( n

2n−1
− 1
)
≤ 1

2n−1
,

and this inequality holds because for n ≥ 1, n
2n−1 − 1 ≤ 0. Thus, Ψ(P )(i) ≤ P ({i}).

Now, given A ( Ω, it holds that

Ψ(P )(A) =
∑
i∈A

Ψ(P )(i) ≤
∑
i∈A

P ({i}) = P (A).

Since trivially Ψ(P )(Ω) = P (Ω) = 1, we conclude that Ψ(P ) ≤ P and therefore

Ψ(P ) belongs to the core.

Next result shows that for ε-contamination models we can also obtain the Shap-

ley and Banzhaf values, from expressions similar to those of Eqs. (16) and (17).

Proposition 9. Let P be the lower probability associated with an ε-contamination

induced by P0, ε. Then the Shapley value is given by:

Φ(P )(i) = (1− ε)P0({i}) +
ε

n
,

while the normalized Banzhaf value is

Ψ(P )(i) =
(1− ε)P0({i}) + ε

2n−1

k
, where k = (1− ε) +

nε

2n−1
. (18)

Moreover, both the Shapley and normalized Banzhaf values belong to the core.

Proof. To obtain the expression for the Shapley value, we use again that, since

the ε-contamination model is completely monotone, we can apply Eq. (5). First of

all, note that for A 6= Ω, it holds that:

P (A) = (1− ε)P0(A) = (1− ε)
∑
i∈A

P0({i}).

This implies that for any permutation σ and j < n, from Eq. (4) it holds that:

Pσ({σ(1), . . . , σ(j)}) = (1− ε)P0({σ(1), . . . , σ(j)}).

From this we deduce that for j < n:

Pσ({σ(j)}) = Pσ({σ(1), . . . , σ(j)})− Pσ({σ(1), . . . , σ(j − 1)})
= (1− ε)P0({σ(1), . . . , σ(j)})− (1− ε)P0({σ(1), . . . , σ(j − 1)})
= (1− ε)P0({σ(j)}),
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and also:

Pσ({σ(n)}) = Pσ({σ(1), . . . , σ(n)})− Pσ({σ(1), . . . , σ(n− 1)})
= (1− ε)P0({σ(1), . . . , σ(n)}) + ε− (1− ε)P0({σ(1), . . . , σ(n− 1)})
= (1− ε)P0({σ(n)}) + ε.

Then, we obtain that:

Pσ({i}) =

{
(1− ε)P0({i}) if i 6= σ(n).

(1− ε)P0({i}) + ε if i = σ(n).

Also, i = σ(n) for (n − 1)! permutations, while i 6= σ(n) for n! − (n − 1)! =

(n− 1)!(n− 1) permutations. Therefore:

Φ(P )(i) =
1

n!

∑
σ∈SΩ

Pσ({i})

=
1

n!

(
(n− 1)!((1− ε)P0({i}) + ε) + (n− 1)!(n− 1)(1− ε)P0({i})

)
=

1

n

(
(1− ε)P0({i}) + ε+ (n− 1)(1− ε)P0({i})

)
= (1− ε)P0({i}) +

ε

n
.

To compute the normalized Banzhaf value, note that if A ∪ {i} 6= Ω, it holds that:

P (A ∪ {i}) = (1− ε)
(
P0({i}) +

∑
j∈A P0({j})

)
P (A) = (1− ε)

∑
j∈A P0({j})

and therefore P (A∪{i})−P (A) = (1−ε)P0({i}). On the other hand, if A∪{i} = Ω,

it holds that:

P (A ∪ {i}) = 1

P (A) = (1− ε)
∑
j∈A P0({j}) = (1− ε)− P0({i})(1− ε)

and therefore P (A ∪ {i})− P (A) = ε+ P0({i})(1− ε).
Taking into account that there are 2n−1 − 1 sets A such that A ∪ {i} 6= Ω, we

can compute the Banzhaf value:

B(P )(i) =
1

2n−1

∑
A+{i}

(
P (A ∪ {i})− P (A)

)
=

1

2n−1

(
(2n−1 − 1)(1− ε)P0({i}) + ε+ (1− ε)P0({i})

)
= (1− ε)P0({i}) +

ε

2n−1
.

Finally, taking into account that

n∑
i=1

B(P )(i) = (1− ε) +
nε

2n−1
,

we can normalize B(P )(i) and we obtain the value on Eq. (18).
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It only remains to see that both the Shapley and normalized Banzhaf values

belong to the core. On the one hand, since the lower probability induced by the ε-

contamination model is 2-monotone, it follows from Proposition 1 that the Shapley

value belongs to the core. Let us see that the normalized Banzhaf value also belongs

to M(P ). For this aim, let us see that Ψ(P )(i) ≥ P ({i}) for any i = 1, . . . , n:

Ψ(P )(i) ≥ P ({i}) ⇐⇒
(1− ε)P0({i}) + ε

2n−1

(1− ε) + nε
2n−1

≥ (1− ε)P0({i})

⇐⇒ (1− ε)P0({i})
[
ε− nε

2n−1

]
+

ε

2n−1
≥ 0,

The last inequality holds because n
2n−1 − 1 ≤ 0 for n ≥ 1, so ε− nε

2n−1 ≥ 0, and as a

consequence Ψ(P )(i) ≥ P ({i}); if we now consider A ( Ω, it holds that

Ψ(P )(A) =
∑
i∈A

Ψ(P )(i) ≥
∑
i∈A

P ({i}) = P (A),

and since Ψ(P )(Ω) = P (Ω) = 1 we conclude that Ψ(P ) belongs to M(P ).

A common choice for P0 in a distortion model is the uniform distribution (see

for example 33,34). Next result shows that for the ε-contamination model and for the

PMM with small enough values of δ, the Shapley and normalized Banzhaf values

coincide with P0 if and only if P0 follows a uniform distribution.

Corollary 2. Let P be the lower probability associated with either a PMM induced

by P0, δ, where δ satisfies δ < P0({i})
1−P0({i}) for any i = 1, . . . , n, or an ε-contamination

model. Then the following are equivalent:

(1) Φ(P ) = P0.

(2) Ψ(P ) = P0.

(3) P0({i}) = 1
n ∀i ∈ Ω.

Proof. Assume that P is the PMM defined from P0, δ. Since δ satisfies the condi-

tion of Proposition 8, we deduce from Eq. (16) that:

Φ(P )(i) = (1 + δ)P0({i})− δ

n
= P0({i}) ⇐⇒ P0({i}) =

1

n
.

Similarly, by Eq. (17),

Ψ(P )(i) = P0({i})

⇔ (1 + δ)P0({i})− δ

2n−1
=

(
(1 + δ)− nδ

2n−1

)
P0({i})⇔ P0({i}) =

1

n
.

Next, if P is an ε-contamination model defined from P0, ε, we deduce from Propo-

sition 9 that

Φ(P )(i) = (1− ε)P0({i}) +
ε

n
= P0({i}) ⇐⇒ P0({i}) =

1

n
.
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With respect to the normalized Banzhaf value, applying Proposition 9,

Ψ(P )(i) = P0({i}) ⇐⇒ (1− ε)P0({i}) +
ε

2n−1
= (1− ε)P0({i}) + P0({i}) nε

2n−1
,

which is also equivalent to P0({i}) = 1
n .

In fact, for the PMM we easily derive from the symmetry axiom satisfied by

the Shapley and the Banzhaf values that, if P0 is the uniform probability measure,

then it coincides with the Shapley value of the PMM (P0, δ) irrespective of the

value of δ; to see that the converse is not true in general, i.e., that Φ can be the

uniform probability measure for other PMM (P0, δ), it suffices to consider that

M(P ) is the set of all probability measures for P = (P0, δ) provided δ is large

enough (specifically, when δ ≥ 1
P0(Ac) for every A 6= Ω): in that case Φ becomes the

uniform distribution. Similar comments apply to the normalized Banzhaf value.

The key here is that, even if we may think that the distortion made with the

PMM and the ε-contamination models is uniform, it has implications in the proba-

bility transformations, that do not return the probability measure we started with,

except when this measure is uniform itself.

4.4. Belief functions

In the particular case when P is completely monotone (that is, a belief function),

we also have that the Shapley value of P belongs to the core M(P ). Interestingly,

the same property does not hold for the normalized Banzhaf value, as the following

example shows:

Example 3. Let Ω = {1, 2, 3, 4}, and consider the belief function associated with

the basic probability assignment given by m({1}) = m({2, 3, 4}) = 0.5, and m(A) =

0 for any other A. Then it follows from Eq. (7) that

B(P )(1) = 0.5, B(P )(2) = B(P )(3) = B(P )(4) =
1

8
.

As a consequence, the probability mass function of the normalized Banzhaf value

is given by Ψ(P ) = ( 4
7 ,

1
7 ,

1
7 ,

1
7 ). However, this does not belong to the core of P : we

have that Ψ(P )({2, 3, 4}) = 3
7 < 0.5 = P ({2, 3, 4}).

For comparison, in this case Eq. (3) tells us that Φ(P ) = ( 3
6 ,

1
6 ,

1
6 ,

1
6 ). �

This means that the result we have established in Proposition 4 does not extend

to arbitrary belief functions. It also illustrates the difference between the Shapley

and the normalized Banzhaf values.

One property of the Banzhaf value when P is a belief function is that the sum of

the payoffs of the individual players never exceeds the total payoff, as the following

proposition shows:

Proposition 10. Let P be a belief function, and let B(P ) be its associated Banzhaf

value. Then
∑n
i=1B(P )(i) ≤ 1.
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Proof.

From Eq. (7), it follows that, for every i ∈ Ω,

B(P )(i) =
1

2n−1

∑
A+{i}

(
P (A ∪ {i})− P (A)

)
=

1

2n−1

∑
A+{i}

∑
B⊆A

m(B ∪ {i})

=
1

2n−1

∑
B+{i}

m(B ∪ {i})2n−1−|B|,

where last equality holds because any set B that does not include i can be included

in 2n−1−|B| subsets A of Ω \ {i}. Then:∑
i∈Ω

B(P )(i) =
1

2n−1

∑
B+{i}

m(B∪{i})2n−1−|B| =
1

2n−1

∑
B 6=Ω

∑
i/∈B

m(B∪{i})2n−1−|B|.

(19)

Now, if we take into account that there is a one-to-one correspondence between

the subsets B of Ω \ {i} and those subsets C of Ω that include i, Eq. (19) can be

equivalently expressed by:∑
i∈Ω

B(P )(i) =
1

2n−1

∑
C 6=∅

∑
j∈C

m(C)2n−|C| =
1

2n−1

∑
C 6=∅

m(C)2n−|C||C|,

where the last equality follows because fixed a set C 6= ∅, m(C)2n−|C| does not

depend on the chosen element j ∈ C.

Now, since k ≤ 2k−1 for every k ≥ 1 and since any belief function P satisfies

that m(C) ≥ 0 for any subset C, we deduce that

1

2n−1

∑
C 6=∅

m(C)2n−|C||C| ≤
∑
C 6=∅

m(C) ≤ 1.

To see that this does not hold for 2-monotone lower probabilities that are not

completely monotone, note that in Example 2 it holds that
∑3
i=1B(P δ)(i) = 4.09

4 >

1. This can also be seen using Proposition 6.

One instance of belief functions correspond to unanimity games, which are those

for which there is some set S ⊆ Ω such that

P (A) =

{
1 if S ⊆ A
0 otherwise.

This follows because P is a belief function with only one focal set: m(S) = 1 and

m(A) = 0 for any A 6= S. The expressions of the Shapley and normalized Banzhaf

values are given in the following proposition:

Proposition 11. Let P be the unanimity game associated with S. Then

Ψ(P )(i) = Φ(P )(i) =

{
1
|S| if i ∈ S
0 otherwise.
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Proof. The formula for the Shapley value can be found in Lemma XII.1.5 of 35.

With respect to the normalized Banzhaf value, it follows from Eq. (7) that

B(P )(i) =

{
1

2|S|
if i ∈ S

0 otherwise,

from which the expression in the statement follows.

The same expressions can also be obtained taking into account that the una-

nimity game is also minitive, and therefore we can use the results from Section 3.

Moreover, it follows from 5 that any 0-1 valued lower probability (called simple game

in cooperative game theory) is coherent if and only if there is a filterd of subsets

F of Ω such that P (A) = 1 if A ∈ F , and P (A) = 0 otherwise. When Ω is finite,

as is the case in this paper, any filter of subsets of Ω is fixed, which means that

any coherent simple game corresponds to a unanimity game, and therefore that we

can use Proposition 11 to compute the Shapley and normalized Banzhaf values. We

shall show in Remark 2 that the result does not extend to simple games that are

not coherent.

5. Coherent lower probabilities

We consider next the case of coherent lower probabilities. These correspond to exact

games within cooperative game theory. It was established by Baroni and Vicig (see
6, Proposition 5) in terms of the pignistic transformation, that the Shapley value of

a coherent lower probability need not be an element of the core or, in other words,

that Proposition 1 does not extend to coherent lower probabilities. The very same

example allows us to show that the normalized Banzhaf value need not belong to

the core, either:

Example 4. Consider Ω = {1, 2, 3, 4, 5}, and let P be the coherent lower probabil-

ity that is the lower envelope of the probability measures with mass functions

P1 = (0.49, 0.35, 0.12, 0.01, 0.03)

P2 = (0.14, 0.03, 0.07, 0.36, 0.40)

P3 = (0.36, 0.05, 0.29, 0.14, 0.16)

Baroni and Vicig (see Proposition 5 in 6) showed that the Shapley value of P is

given by the mass function

Φ(P ) = (0.31983, 0.163166, 0.14233, 0.17233, 0.20233).

This does not belong to M(P ) because Φ(P )({1, 4}) = 0.49216 < 0.5 = P ({1, 4}).
On the other hand, the normalized Banzhaf value of P is given by:

Ψ(P ) =

(
5.25

15.79
,

2.49

15.79
,

2.07

15.79
,

2.75

15.79
,

3.23

15.79

)
.

dF is a filter of subsets of Ω is it is non-empty, for every A,B ∈ F there exists C ∈ F such that
C ⊆ A and C ⊆ B, and for every A ∈ F and B such that A ⊆ B, then B ∈ F .
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It then holds that, for A = {2, 3, 5}, Ψ(P (A)) = 7.79
15.79 < 0.5 = P (A). Thus, Ψ(P )

does not belong to the core of P . �

Remark 2. Coherent lower probabilities are the weakest model we shall consider

in the study we are carrying out in this paper; to see why, note that an even weaker

model would be those lower probabilities that avoid sure loss5, which are those for

which the coreM(P ) is non-empty. They correspond to balanced games within game

theory 42. However, for them the Shapley and Banzhaf values need not belong to the

core, not even for spaces of cardinality three, where coherence is undistinguishable

from normalized 2-monotonicity. This can be seen for instance with P given by

P ({1}) = P ({2}) = P ({3}) = P ({2, 3}) = 0, P ({1, 2}) = P ({1, 3}) = 1,

and of course with P ({1, 2, 3}) = 1. We obtain that the Shapley value is Φ(P ) =

( 2
3 ,

1
6 ,

1
6 ) and the normalized Banzhaf value is Ψ(P ) = ( 3

5 ,
1
5 ,

1
5 ), while the only

element of M(P ) is given by the mass function (1, 0, 0).

That is why we are focusing on lower probabilities that satisfy (at least) the

property of coherence. �

In spite of these negative results, we shall prove that the Shapley and Banzhaf

values belong to the core in a number of particular cases, and therefore in those

instances it makes sense their use as probability transformations. We begin by

considering the case of coherent lower probabilities that are the lower envelope of

two probability measures. They may arise for instance when we are aggregating

information from two different sources.

5.1. Lower envelopes of two probability measures

Proposition 12. Consider two probability measures P1, P2 on P(Ω) and let P

be the coherent lower probability they determine. Then Ψ(P )(i) = Φ(P )(i) =
P1({i})+P2({i})

2 for every i ∈ Ω.

Proof. Let us denote by P the conjugate of P . Then P (A)+P (A) = P1(A)+P2(A)

for every A ⊆ Ω.

We begin by establishing the result for the Shapley value. From Eq. (3), and
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recalling that we denote t = |A|,

Φ(P )(i) =
∑
A+{i}

t!(n− t− 1)!

n!

(
P (A ∪ {i})− P (A)

)

=
(n− 1)!

n!

(
P ({i}) + P ({i})

)
+

n−2∑
t=1

∑
A+{i},|A|=t

t!(n− t− 1)!

n!

(
P (A ∪ {i})− P (A)

)
=

(n− 1)!

n!

(
P ({i}) + P ({i})

)
+

n−2∑
t=1

∑
A+{i},|A|=t

t!(n− t− 1)!

n!
(1− P (Ω \ (A ∪ {i}))− P (A))

=
(n− 1)!

n!

(
P ({i}) + P ({i})

)
+

n−2∑
t=1

∑
A+{i},|A|=t

t!(n− t− 1)!

n!

(
1− P (A)− P (A)

)
,

(20)

where last equality holds because given A with cardinality t, the set Ω \ (A ∪ {i})
has cardinality (n− t− 1).

Now, for any fixed t ∈ {1, . . . , n− 2}, it holds that∑
A⊇{i},|A|=t

(
P (A) + P (A)

)
=

∑
A+{i},|A|=t

(
P1(A) + P2(A)

)
=

(
n− 2

t− 1

)
(2− P1({i})− P2({i})

)
=

(
n− 2

t− 1

)(
2− P ({i})− P ({i})

)
, (21)

taking into account that any j 6= i can be included in
(
n−2
t−1

)
different subsets of

Ω \ {i} of cardinality t.

Thus, Eq. (20) is equal to

(
P ({i}) + P ({i})

) [ (n− 1)!

n!
+

n−2∑
t=1

t!(n− t− 1)!

n!

(
n− 2

t− 1

)]

+

n−2∑
t=1

t!(n− t− 1)!

n!

[(
n− 1

t

)
− 2

(
n− 2

t− 1

)]
.

The first term is equal to

(
P ({i})+P ({i})

) [ 1

n
+

n−2∑
t=1

t!(n− t− 1)!

n!

(n− 2)!

(t− 1)!(n− t− 1)!

]

=
(
P ({i}) + P ({i})

) [ 1

n
+

n−2∑
t=1

t

n(n− 1)

]

=
(
P ({i}) + P ({i})

) [ 1

n
+
n− 2

2n

]
=
P ({i}) + P ({i})

2
,
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while the second term is equal to

n−2∑
t=1

t!(n− t− 1)!

n!

(
n− 1

t

)
− 2

n−2∑
t=1

t!(n− t− 1)!

n!

(
n− 2

t− 1

)

=

n−2∑
t=1

1

n
− 2

n−2∑
t=1

t

n(n− 1)
=
n− 2

n
− n− 2

n
= 0.

We conclude that Φ(P )(i) = P ({i})+P ({i})
2 = P1({i})+P2({i})

2 .

Consider next the Banzhaf value. Reasoning as before, we obtain

B(P )(i) =
1

2n−1

(
P ({i}) + P ({i})

)
+

n−2∑
t=1

∑
A+{i},|A|=t

1

2n−1

(
1− P (A)− P (A)

)
,

which in turn, using Eq. (21), is equal to

(
P ({i})+P ({i})

) [ 1

2n−1
+

n−2∑
t=1

1

2n−1

(
n− 2

t− 1

)]
+

n−2∑
t=1

1

2n−1

[(
n− 1

t

)
− 2

(
n− 2

t− 1

)]
.

Now,
∑n−2
t=1

(
n−1
t

)
= 2n−1 − 2 = 2 · (2n−2 − 1) = 2

∑n−2
t=1

(
n−2
t−1

)
, whence the last

term is equal to 0. Moreover,

1

2n−1
+

n−2∑
t=1

1

2n−1

(
n− 2

t− 1

)
=

1

2n−1
(1 + 2n−2 − 1) =

1

2
.

Thus, B(P )(i) = P1({i})+P2({i})
2 = Φ(P )(i). From this it follows that the Banzhaf

value is normalized: ∑
i∈Ω

B(P )(i) =
∑
i∈Ω

P1({i}) + P2({i})
2

= 1,

and as a consequence B(P )(i) = Ψ(P )(i) = Φ(P )(i) for every i ∈ Ω.

5.2. Four-element space

Interestingly, in the case considered in the proposition above the Banzhaf value is

always normalized. On the other hand, the result does not extend to coherent lower

probabilities that are the envelope of three probability measures, as Example 4

shows.

Another situation in which we can guarantee that the Shapley value of a coherent

lower probability belongs to its core is when the possibility space has cardinality

four, as our next result shows:

Proposition 13. Let Ω = {1, 2, 3, 4} and let P : P(Ω)→ [0, 1] be a coherent lower

probability. Then, Φ(P ) belongs to M(P ).
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Proof. Let us prove that Φ(P )(A) ≥ P (A) for every A ⊆ Ω. Consider first of all

A = {i}. From Eq. (3),

Φ(P )({i}) =
∑
B+{i}

t!(n− t− 1)!

n!

(
P (B ∪ {i})− P (B)

)
∈ [P ({i}), P ({i})],

taking into account that, since P is coherent,

P ({i}) + P (B) ≤ P (B ∪ {i}) ≤ P (B) + P ({i})

for every B that does not include i. We deduce that Φ(P )(A) ≥ P (A) for any set

A with |A| = 1, 3. It remains thus to prove that Φ(P )(A) ≥ P (A) when |A| = 2.

Take for instance A = {1, 2}; the proof the remaining sets is analogous.

Applying Eq. (3), we obtain that Φ(P )({1, 2}) = Φ(P )({1})+Φ(P )({2}) is equal

to

12

24
+

4

24
[P ({1})− P ({2, 3, 4}) + P ({2})− P ({1, 3, 4})

+ P ({1, 2})− P ({3})− P ({4}+ P ({1, 2, 3}) + P ({1, 2, 4})− P ({3, 4})],

whence it dominates P ({1, 2}) if and only if

P ({1}) + P ({2}) + P ({1, 2, 3}) + P ({1, 2, 4}) + 3

≥ 5P ({1, 2}) + P ({3}) + P ({4}+ P ({2, 3, 4}) + P ({1, 3, 4}) + P ({3, 4}).

Now, as a consequence of the coherence of P we have the following inequalities (see
5, Theorem 2.7.4):

P ({1, 2}) + P ({2, 3, 4}) ≤ 1 + P ({2})
P ({1, 2}) + P ({1, 3, 4}) ≤ 1 + P ({1})
P ({1, 2}) + P ({3, 4}) ≤ 1

P ({1, 2}) + P ({3}) ≤ P ({1, 2, 3})
P ({1, 2}) + P ({4}) ≤ P ({1, 2, 4}).

Their addition implies that Φ(P )({1, 2}) ≥ P ({1, 2}). This conludes the proof.

Note that a similar result does not hold for the normalized Banzhaf value, as

we can see from Example 3.

5.3. Comparative lower probabilities

Our attention shifts now to another useful model of non-additive measures: com-

parative probabilities. These 36,37 correspond to the case where the available infor-

mation about the probability of the events is of qualitative nature, in the sense that

we can only make statements of the type ‘the probability of A is at least as much as

that of B’. From the point of view of coalitional game theory, these models would

appear if it is possible to give a partial order among the coalitions, so that all we
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can tell in some cases that the reward associated with the coalition of the players

in A is at least as large as the coalition of the players in B.

The mathematical study of comparative models can be complicated, in the sense

that it is not guaranteed the existence of an additive model that is compatible

with them 38,39; we refer to 40 for a survey of this topic. In 41, the particular

case of elementary comparative probabilities was considered, where we only give

qualitative assessments about the value of individual players. This motivates the

following definition:

Definition 5. Let Ω be a possibility space, and consider I ⊆ Ω×Ω. The (elemen-

tary) comparative model determined by I is the lower envelope P of the set

M := {P probability measure : P ({i}) ≥ P ({j}) ∀(i, j) ∈ I}.

It was proven in 41 that the core of these models can be given quite a neat

structure, and that it has at most 2n−1 different extreme points. However, the

lower probability induced by this core need not be 2-monotone in general (see 41,

Section 4.3). Taking this into account, it is not surprising to see that the pignistic

transformation cannot be computed by means of Eq. (5), as our next example shows:

Example 5. Let us consider the comparative assessments

P ({1}) ≥ P ({2}), P ({1}) ≥ P ({3}), P ({2}) ≥ P ({4}), P ({3}) ≥ P ({4}).

If we consider the set of probability measures compatible with these assessments, it

follows from Theorem 1 in 41 that the extreme points of this set are the probability

measures

(1, 0, 0, 0),

(
1

2
,

1

2
, 0, 0

)
,

(
1

2
, 0,

1

2
, 0

)
,

(
1

4
,

1

4
,

1

4
,

1

4

)
,

(
1

3
,

1

3
,

1

3
, 0

)
,

From this we deduce that the lower probability P associated with these assessments

is the lower envelope of these extreme points. It is given by P (A) = 0 if 1 /∈ A, and

P ({1}) =
1

4
, P ({1, 2}) = P ({1, 3}) =

1

2
, P ({1, 4}) =

1

3
,

P ({1, 2, 3}) =
3

4
, P ({1, 2, 4}) = P ({1, 3, 4}) =

1

2
, P (Ω) = 1.

Now, from Eq. (3), the pignistic transformation is given by

Φ(P ) =

(
41

72
,

13

72
,

13

72
,

5

72

)
.

On the other hand, in this case there are permutations σ whose associated

probability by Eq. (4) does not belong to the core M(P ): if we take for instance

σ = (1, 2, 4, 3), we obtain Pσ = ( 1
4 ,

1
4 ,

1
2 , 0), and Pσ({1, 4}) = 1

4 < P ({1, 4}). If we

apply Eq. (5), we obtain the probability measure(
167

288
,

49

288
,

49

288
,

23

288

)
,
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that belongs to M(P ) but does not coincide with Φ(P ). �

Next we prove that both the Shapley and the normalized Banzhaf values belong

to the core in this case:

Proposition 14. Let P be a lower probability determined by elementary compara-

tive probabilities. Then Φ(P ) and Ψ(P ) belong to the core M(P ).

Proof. Consider i, j ∈ {1, . . . , n} such that the assessment P ({i}) ≥ P ({j}) is one

of the comparative probability assessments in the definition of P . Then it follows

from Eq. (3) that

Φ(P )(i) =
∑
A+{i}

t!(n− t− 1)!

n!

(
P (A ∪ {i})− P (A)

)
and

Φ(P )(j) =
∑
A+{j}

t!(n− t− 1)!

n!

(
P (A ∪ {j})− P (A)

)
.

Consider a set A ⊆ Ω \ {i}. There are two possibilities:

• If A ⊆ Ω\{j}, then P (A∪{i})−P (A) ≥ P (A∪{j})−P (A) ⇐⇒ P (A∪{i}) ≥
P (A∪{j}). For every extreme point P ofM(P ) it holds that P (A∪{i})−P (A∪
{j}) = P ({i}) − P ({j}) ≥ 0, and since P is the lower envelope of M(P ), we

also conclude that P (A∪{i}) ≥ P (A∪{j}), simply by considering the extreme

point where the value P (A ∪ {i}) is attained.

• If j ∈ A, we consider A′ := A∪ {i} \ {j} ⊆ Ω \ {j}. Then P (A∪ {i})−P (A) ≥
P (A′∪{j})−P (A′) ⇐⇒ P (A′) ≥ P (A) ⇐⇒ P (A∪{i}\{j}) ≥ P (A). Again,

for every extreme point P of M(P ) it holds that P (A ∪ {i} \ {j}) − P (A) =

P ({i}) − P ({j}) ≥ 0, and since P is the lower envelope of M(P ), we also

conclude that P (A∪{i}\{j}) ≥ P (A), by considering the extreme point where

P (A ∪ {i} \ {j}) is attained.

If we now consider that in the above procedure we are making a one-to-one corre-

spondence between the families {A ⊆ Ω \ {i}} and {A ⊆ Ω \ {j}}, we conclude that

Φ(P )(i) ≥ Φ(P )(j). Since this holds for any of the elementary comparative assess-

ments in the definition of P , we conclude that Φ(P ) belongs to the core M(P ).

The proof of the inclusion of Ψ(P ) in the core is similar: by Eq. (8),

Ψ(P )(i) =
∑
A+{i}

1

2n−1

(
P (A ∪ {i})− P (A)

)
and

Ψ(P )(j) =
∑
A+{j}

1

2n−1

(
P (A ∪ {j})− P (A)

)
.

If we notice that the weights t!(n−t−1)!
n! played no role in the proof above for the

Shapley value, we conclude that Ψ(P )(i) ≥ Ψ(P )(j) and therefore Ψ(P ) belongs to

M(P ).
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6. Conclusions

The results in this paper show that some of the nice properties of the Shapley

value can be extended beyond the framework of 2-monotone lower probabilities and

belief functions. We have considered a number of imprecise probability models; the

relationship between them is summarised by the following figure, where the arrow

means an inclusion between the two families:

Avoiding sure loss

Coherent

Comparative

Distortion models

2-monotone

Completely monotone

Minitive

With respect to the Banzhaf value, although the lack of efficiency leads to the

definition of the normalized version, it is also possible to prove its consistency with

the core in a number of cases. Our results are summarised in the following table:

Properties Φ(P ) Ψ(P ) Φ(P ) center
∑
iB(P )(i) ≤ 1?

of P in core? in core? of gravity?

Coherent, |Ω| ≤ 3 YES YES YES NO

Coherent, |Ω| ≤ 4 YES NO NO NO

Comparative YES YES NO NO

Coherent NO NO NO NO

Distortion YES YES YES NO

2-monotone YES NO YES NO

Probability intervals YES NO YES NO

Belief YES NO YES YES

Minitive YES YES YES YES

Although in this paper we have focused on the consistency with these game

values with the core, in the future we should deepen into the investigation of the

mathematical properties of these models as probability transformations, so as to

be able to compare them properly with the existing models. In addition, it may be

interesting to extend the study to other relevant models within imprecise probability

theory, such as probability intervals 28 or probability boxes 43.

More generally, we would like to continue this research by considering the prob-

abilistic solutions of games considered in 15. In addition, we should also study the

properties of other probability transformations, such as the maximum entropy one,

for some of the imprecise probability models considered in this paper.
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17 (1931) 298–329.
37. B. Koopman, “The bases of probability”, Bulletin of the Ameraican Mathematical

Society 46 (1940) 763–774.
38. M. Kaplan and T. Fine, “Joint orders in comparative probability”, Annals of Proba-

bility 5 (1977) 161–179.
39. C. Kraft, J. Pratt and A. Seidenberg, “Intuitive probability on finite sets”, The Annals

of Mathematical Statistics 30 408–419.
40. C. Regoli, “Comparative probability and robustness”, Lecture Notes-Monograph Series

29 (1996) 343–352.
41. E. Miranda and S. Destercke, “Extreme points of the credal sets generated by com-

parative probabilities”, Journal of Mathematical Psychology 64/65 (2015) 44–57.
42. L.S. Shapley, “On balanced sets and cores”, Naval Research Logistic Quarterly 14



January 2, 2018 10:8 WSPC/INSTRUCTION FILE ShapleyCore-Revised

Shapley and Banzhaf values as probability transformations 33

(1967) 453–460.
43. S. Ferson, V. Kreinovich, L. Ginzburg, D.S. Myers and K. Sentz, Constructing proba-

bility boxes and Dempster-Shafer structures Technical report SAND2002-4015, Sandia
National Laboratories, 2003.

44. E. Miranda and I. Montes, “Game solutions, probability transformations and the
core”, Proc. 10th International Symposium on Imprecise Probability: Theories and Ap-
plications, ISIPTA 2017, Lugano, Switzerland, 2017, pp. 217–228.


