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Abstract—A machine learning technique is applied to the
design and optimization of reflectarray antennas to considerably
accelerate computing time without compromising accuracy. In
particular, Support Vector Machines (SVMs), automatic learning
structures that are able to deal with regression problems, are
employed to obtain surrogate models of the reflectarray element
to substitute the full-wave analysis tool for the characterization of
the unit cell in the design and optimization algorithms. The anal-
ysis, design and optimization of a very large reflectarray antenna
for Direct Broadcast Satellite applications are accelerated up to
three orders of magnitude. This is here demonstrated with three
examples: one showing the design of a reflectarray; and two for
the crosspolar optimization, one with one coverage for each linear
polarization (Europe and the Middle East) and another with a
Middle East coverage working in dual-linear polarization. The
accuracy of the proposed approach is validated by means of a
comparison of the final designs with full-wave simulations based
on local periodicity obtaining good agreement. The crosspolar
dicrimination and crosspolar isolation are greatly improved using
the SVMs while considerably reducing computing time.

Index Terms—Machine learning techniques, Support Vector
Machine (SVM), reflectarray, shaped beam antenna, Direct
Broadcast Satellite (DBS), space communications

I. INTRODUCTION

THE use of machine learning techniques to accelerate
reflectarray analysis is a relatively recent research topic.

The most widely used machine learning algorithms are Arti-
ficial Neural Networks (ANNs) [1]–[10], and more recently
Kriging [11] and Support Vector Machines (SVMs) [12]
are also being employed. These techniques can be used to
obtain an efficient surrogate model using those algorithms to
substitute the full-wave electromagnetic tool based on local
periodicity (FW-LP) for the characterization of the unit cell.
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To that end, the FW-LP tool is employed to generate a number
of samples of the electromagnetic behavior of the unit cell (i.e.
the matrix of reflection coefficients) as a function of several
input parameters (frequency, substrate, geometrical features,
etc.). Those samples are used to train the ANN or SVM to
obtain a function that matches the training samples and that
is also able to predict the behavior of the unit cell for other
values of the parameters which were not used in the training
process.

In the past, ANNs have been employed to characterize the
phase response of reflectarray unit cells [1]–[6]. This is useful
since the phase response is the main parameter employed
to carry out designs that meet given copolar requirements.
Some works have been limited to a single polarization [1]–[4]
while others characterized unit cells working in dual-linear
polarization [5], [6]. More recently, ANNs have also been
employed to predict the losses of the unit cell due to the
substrate [7], [8] in addition to the phase-shift, and in other
cases the cross-polarization [9] for dual-polarized unit cells.
Kriging has also been employed to predict the phase response
and losses [11], while SVMs have been used to characterize
the whole matrix of reflection coefficients [12].

These algorithms substantially accelerate computations to
carry out analysis of reflectarray antennas. In this regard, an
application which goes one step further is to apply machine
learning algorithms to the design of reflectarray antennas,
where the analysis routine is called a hundreds or thousands of
times in order to seek the unit cell geometry that provides the
required phase-shift for each reflectarray element. For instance,
in [10] ANNs are used along an optimization algorithm to
find the optimum Minkowski cell and then to carry out a
reflectarray design with a pencil beam pattern. In [6] a dual-
linear shaped-beam reflectarray for Direct Broadcast Satellite
(DBS) application is designed using ANNs achieving a speed-
up factor of 207 with regard to a Method of Moments based
on Local Periodicity (MoM-LP) [13].

The following natural step is to carry out optimization
employing those algorithms in order to shape the radiation
pattern using the geometrical features of the unit cell as opti-
mizing variables. Until now, this has been accomplished using
a MoM-LP tool directly in the optimization loop [14] or with
databases [15], [16]. Although using the MoM-LP provides
high accuracy for the computation of the reflection coefficient
matrix, it penalizes the optimization with slow computations.
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On the other hand, databases considerably accelerate compu-
tations using interpolation to predict the reflection coefficients.
Another approach to accelerate computations is the use of
machine learning algorithms such as ANNs or SVMs.

In this work, SVMs are used for the first time to carry out
reflectarray design and optimization of copolar and crosspolar
performances to substantially accelerate those processes with
regard to the use of a FW-LP. In particular, the strategies
developed in [12] are employed to train SVMs for the analysis
of a large reflectarray for DBS application. The design process
is detailed and carried out by a MoM-LP tool as well as
the SVM to assess the accuracy and the computing time
acceleration. Then, the same reflectarray is optimized to mini-
mize the crosspolar pattern with MoM-LP and SVM, proving
that machine learning algorithms are a promising technology
to accelerate reflectarray analysis, design and optimization.
Finally, the achieved acceleration for crosspolar optimization
is discussed along with other techniques to further accelerate
the crosspolar optimization of reflectarray antennas.

This paper is organized as follows. Section II provides a
brief overview of the reflectarray analysis and SVM theory.
Section III shows the results of using SVMs to the design of
reflectarrays. In Section IV, SVMs are applied to the crosspolar
optimization. Section V discusses the achieved acceleration
with SVMs. Finally, Section VI contains the conclusions.

II. SVM MODELING OF REFLECTARRAY UNIT CELL

Reflectarrays are classified as planar apertures and thus
the radiation pattern may be efficiently computed from the
tangential field applying the principle of equivalence [17]. The
reflected tangential field at the reflectarray aperture is obtained
from the incident field ~Einc imposed by the feed as follows:

~Eref(xm, yn) = Rmn ~Einc(xm, yn), (1)

where (xm, yn) are the coordinates of the (m,n)th reflectarray
element and:

Rmn =

(
ρmn
xx ρmn

xy

ρmn
yx ρmn

yy

)
, (2)

is the matrix of reflection coefficients and is obtained with a
full-wave analysis based on local periodicity (FW-LP) [17].
ρmn
xx and ρmn

yy are known as the direct coefficients and mainly
determine the shape of the copolar pattern through their phases
for each polarization and the losses through their magnitude.
On the other hand, ρmn

xy and ρmn
yx are the cross-coefficients

and contribute significantly to the crosspolar pattern. Thus,
a correct prediction of both copolar and crosspolar patterns
requires the full characterization of (2).

Once the tangential reflected field in (1) has been obtained,
the far field is efficiently computed using the Fast Fourier
Transform (FFT) and applying the first principle of equiv-
alence [14]. Finally, the copolar and crosspolar components
are obtained using Ludwig’s third definition of crosspolariza-
tion [18].

Since the far field is efficiently computed using the FFT, the
most time consuming operation in the reflectarray analysis is
the computation of (2) using a FW-LP for each reflectarray

element. The goal of the SVMs is to obtain a surrogate model
of each reflection coefficient which is able to predict the
electromagnetic behavior of the unit cell as a function of
certain parameters.

A. Surrogate Model Based on SVM

SVMs are automatic and supervised learning algorithms
which are used to solve regression and classification problems
[19]. For the purposes of this work, the regression features
of the SVMs are adapted to find a surrogate model of the
reflectarray unit cell. Here we will merely review the basic
concepts necessary to understand the approach that follows
and refer the reader to [12] for details.

SVMs use a training set comprised of a series of inputs
and outputs, T = {~xi, yi}i=1, 2, ..., Nr

with ~xi ∈ χ ⊆ RL and
yi ∈ R, to obtain a function f that estimates the output (ỹ)
corresponding to any new input ~x ∈ χ. The function f takes
the form:

f(~x) = ỹ = b+

Ns∑
i=1

[(
α−i − α+

i

)
K(~xi, ~x)

]
, (3)

where b is the offset; Ns is the number of support vectors;
α−i and α+

i are the optimal Lagrange multipliers; ~xi are the
support vectors, and K(· , ·) is the kernel function. In this
work, we use a Gaussian Kernel that follows the equation:

K(~x, ~x ′) = exp
(
−γ ‖~x− ~x ′‖2

)
, (4)

where γ is a tunable parameter [12] and ‖ · ‖ stands for the
Euclidean norm.

The function f of the SVM model minimizes a regularized
risk functional that accounts for the empirical errors (weighted
by parameter C) and for the flatness of f . In addition, we
use the ε-insensitive loss function to compute the empirical
errors. The parameters C, ε and γ determine the shape of the
regression function f and they must be selected carefully to
achieve an accurate estimation of new outputs. In particular,
the SVM training was carried out considering 1750 samples
for the training set, 375 samples for the validation set and
375 samples for the test set. The parameter ε is dynamically
calculated as a function of the desired error and output
samples, while C and γ are found following the efficient grid
search detailed in [12].

The considered reflectarray unit cell is depicted in Fig. 1. It
is comprised of two layers of dielectric substrate having two
sets of parallel and coplanar dipoles shifted half a period with
respect to each other. Each set of four parallel dipoles controls
the phase-shift of a linear polarization. The SVM is trained to
estimate the reflection coefficient matrix in (2) starting from
a training set of samples that, in this work, is obtained using
the MoM-LP described in [20].

All the parameters on which matrix Rmn depends on may
be taken as input variables of the SVM training. Nonetheless,
in order to reduce the complexity of the training process and
to further improve the accuracy of the surrogate model, we
reduce the number of input variables and set some of them
to fixed values. The working frequency is set to 11.85 GHz
and the periodicity to 14 mm×14 mm. The selected substrate
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Fig. 1. Reflectarray unit cell consisting of two layers of parallel and coplanar
dipoles divided in two sets of four dipoles per linear polarization.

has a height of 2.363 mm and a complex relative permittivity
εr = 2.55 − j2.295 · 10−3 for the bottom layer, while the
top layer has a height of 1.524 mm and a complex relative
permittivity εr = 2.17 − j1.953 · 10−3. In addition, only the
length of the dipoles will be used as training variables, thus
fixing the width of the dipoles to 0.5 mm and the separation
between them to 4 mm. This leaves eight geometrical variables
to train the SVMs plus two angles of incidence. Following the
strategy in [12], the geometrical variables are reduced to two,
Tx and Ty , with the lengths of the dipoles proportional to
those variables according to the following relations [21]:

La4
= Tx ; Lb1 = Lb3 = 0.63Tx ; Lb2 = 0.93Tx,

Lb4 = 0.95Ty ; La1 = La3 = 0.58Ty ; La2 = Ty.
(5)

These relations were found by other authors using MoM-LP,
seeking a linear phase response and a broadband performance.
In addition, one SVM will be trained per angle of incidence.

Since the SVMs are conceived to estimate real-valued
functions and the reflection coefficients are complex numbers,
we need at least eight SVM models to characterize (2). In
this work, for each incident angle, we obtain one SVM model
for the real part of each reflection coefficient, another for the
imaginary part, plus two additional models to estimate the
magnitude of the direct coefficients. This makes a total of
ten SVM models per angle of incidence. In addition, using
the proposed smart grid search in [12] to find the optimum
C, ε and γ parameters, the mean training time per SVM is
63 seconds; this is approximately three orders of magnitude
lower than an exhaustive grid search, achieving a similar error.

Fig. 2 shows the results comparing the surrogate model
of ρxx and ρxy with the MoM-LP simulation for an oblique
incidence of (θ = 29°, ϕ = 55°). The agreement between the
SVM model and MoM-LP is excellent for the direct coefficient
in both magnitude and phase, and in the magnitude of the
cross-coefficient; while there are slight discrepancies in the
phase of ρxy due to its highly variability. Overall, the agree-
ment is very good and the differences are mainly produced at
those points where the phase of the cross-coefficient abruptly
changes. This accuracy is expected to be the same as direct
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Fig. 2. Comparison of ρxx and ρxy for (θ = 29°, ϕ = 55°) between
SVM and MoM-LP as a function of Tx and Ty for the cut Tx = Ty in
(a) magnitude in dB and (b) phase in degrees.

interpolation in databases using high-order splines.
Finally, we have opted for a 2D problem to achieve a

highly accurate SVM model. In light of the results of other
works in the literature [5], [22] dealing with machine learning
algorithms in higher dimensions, it may be possible the use of
SVMs to increase the number of available degrees of freedom
for reflectarray optimization. Nevertheless, as it will be shown
in Section IV, the improvement of the achieved results with
two variables per element is significant with regard to the
starting point.

III. ACCELERATING REFLECTARRAY DESIGN WITH SVMS

A. Design Procedure

The design procedure of a reflectarray antenna consists of
finding, for each reflectarray element, the dimensions of the
element which produces the desired phase-shift. The required
phase-shift may be obtained analytically for canonical patterns
such as pencil beams or more generally by means of a Phase-
Only Synthesis (POS) for shaped-beams [17]. If the reflectar-
ray works in one polarization, only one phase-shift distribu-
tion will be obtained. On the other hand, for dual-polarized
reflectarrays, two phase-shifts per element are required, and
both need to be matched by the geometry of the unit cell
depending on the polarization of the impinging wave coming
from the feed. Here, we will detail the design procedure aimed
at obtaining the layout of dual-linear polarized reflectarrays.

The design procedure followed in this work is illustrated
in Fig. 3. First, a table of phase-shifts is generated varying
Tx and Ty in little steps. The phase-shift obtained modifying
each variable is practically uncoupled [23], so this is done
independently for each polarization. In this way, we select two
values for each variable Tx and Ty which provide a phase-shift
that is close to the required one, but a little above and below
the exact value. Then, using a linear equation, the approximate
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Fig. 3. Flowchart of the design procedure from the required phase-shift to
the final reflectarray layout.

value of the length that provides the required phase shift is
estimated. This is done independently for Tx and Ty . Finally,
using a zero-finding routine (Newton-Raphson method in this
case), the exact value of Tx and Ty for both polarizations is
found, taking into account the little coupling between the two
polarizations that there may exist. Following this approach, Tx
and Ty are found for each reflectarray element, and given the
relations in (5), all dipole dimensions are obtained.

This design process is usually done either by employing a
commercially available full-wave simulation software, which
is very time-consuming, or in-house full-wave analysis tools
[17], which are substantially faster but more limited in scope.
However, the design process involves hundreds or even thou-
sands of calls to this tool, and may take several hours to
complete a design for a large reflectarray [6]. Consequently,
techniques to accelerate this procedure without compromising
accuracy are advantageous. In this work, we use SVM surro-
gate models to achieve this acceleration.

B. Antenna Specifications

The reflectarray for DBS application is rectangular and
comprised of 74× 70 unit cells in a regular grid, with a total
of 5180 elements. The working frequency is 11.85 GHz and
the periodicity is 14mm × 14mm. The feed is modeled as
a cosq θ function, with q = 23, producing an illumination
taper of −18.5 dB at the edges. The feed is placed at (−0.358,
0, 1.070) m with regard to the center of the reflectarray. For
this arrangement, the highest value of the angle of incidence
is θmax = 43°, which guarantees that no grating lobes will
appear for the employed periodicity. The unit cell is the same
described in Section II-A and shown in Fig. 1. In addition, one
SVM is trained per angle of incidence and they are discretized
as shown in Fig. 4, obtaining a total of 152 (θ, ϕ) pairs, which
are further reduced to 76 pairs using symmetries. Thus, a total
number of 190 000 are required to train all the SVMs. In
contrast, the database used in [16] employs 1 980 000 samples
per frequency.

The antenna is assumed placed in a satellite in geostationary
orbit. Two different coverages are considered for the example,
one for each linear polarization. They are shown in Fig. 5 and
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Fig. 4. Discretization of the angles of incidence. (a) θ. (b) ϕ.
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Fig. 5. Coverages for DBS application with (u, v) coordinates in the antenna
coordinate system. (a) Europe. (b) Middle East.

correspond to Europe and the Middle East. In both cases, the
outer contour takes into account typical pointing errors (0.1°
in roll, 0.1° in pitch and 0.5° in yaw).

C. Results

The design procedure has been applied to the reflectarray
described in Section III-B with both MoM-LP and the SVM.
To that end, first a Phase-Only Synthesis (POS) [24] was
carried out to obtain the phase-shifts that provide the European
coverage in polarization X and the Middle East coverage in
polarization Y. The designs have been carried out with a laptop
computer with an Intel Core i7-4712MQ CPU at 2.30 GHz.
Using MoM-LP, the design took 4655.98 seconds (1 hour
and 18 minutes) while using SVM it took only 8.24 seconds
to complete the process. This corresponds to an acceleration
factor of 565. The same reflectarray was designed in [6]
with ANNs following a similar procedure, although using
a different MoM-LP, where the reported acceleration factor
was 207.

After carrying out the design with the MoM-LP and SVMs,
both designs are simulated with MoM-LP, to assess the dif-
ferences between the two tools since the MoM-LP provides
more accurate simulations using the real angles of incidence at
each reflectarray element. The results for the copolar patterns
are shown in Fig. 6. Although there are small discrepancies
between the patterns, in both designs the copolar pattern
perfectly complies with the requirement of 28 dBi of minimum
gain in the coverage area. In addition, the minimum gain
obtained in the coverage zone for polarization X with the
MoM-LP design is 28.7 dBi while for the SVM design is
28.4 dBi. For comparison, in [6] the difference in minimum
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Fig. 6. Copolar radiation patterns simulated with MoM-LP using the real
angles of incidence at each reflectarray element for the (a) MoM-LP design
for polarization X, (b) SVM design for polarization X, (c) MoM-LP design
for polarization Y, and (d) SVM design for polarization Y.
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Fig. 7. For the SVM design: (a) obtained values of Ty geometrical variables;
(b) relative difference of Ty with regard to the MoM-LP design using the real
angles of incidence.

gain between the MoM-LP and ANN simulations is 1 dB,
which is attributed to small errors in the predicted phase-shifts
by the ANN. For Y polarization the minimum copolar gain in
the Middle East coverage is 28.6 dBi in both cases.

Finally, Fig. 7 shows the value of Ty obtained for the design
with SVM and the relative difference between the SVM and
MoM-LP designs. The differences are very small even though
the MoM-LP took into account the real angles of incidence
and the SVM used the discretization shown in Fig. 4.

IV. CROSSPOLAR OPTIMIZATION WITH SVMS

A. Optimization Algorithm

For the crosspolar optimization, the generalized Intersection
Approach (IA) presented in [14] is used, employing the

Levenberg-Marquardt Algorithm (LMA) [25] in the backward
projection. A flowchart of the optimization algorithm is shown
in Fig. 8, where the main building blocks of the LMA are
shown. The forward projection imposes the requirements on
the radiation pattern while the backward projection minimizes
the distance between the current radiation pattern and the one
that complies with the specifications. For the latter task, the
LMA is employed, and is set to perform three iterations per
iteration of the IA, since the backward projection only requires
to decrease a distance, not to reach a local minimum [26].
The optimization algorithm is independent of the polarization.
In this work, dual-linear polarization is considered since the
employed unit cell was conceived for dual-linear operation.
However, if the reflectarray was analysed in circular polariza-
tion, using an adequate unit cell and feed, the algorithm could
optimize the right and left handed components of the far field
for cross-polarization improvement.

In order to effectively reduce the crosspolar component, its
corresponding specification template is set to 40 dB below the
maximum copolar gain and the crosspolar residual is scaled
by a factor of 103 in linear scale. The value of 40 dB is set
arbitrarily as a target with the aim of minimizing the crosspo-
lar pattern (parameters such as the crosspolar discrimination
or crosspolar isolation, discussed below, are thus improved
indirectly). In addition, the optimization will be carried out
in a subset of the whole visible region, corresponding to
u ∈ (0.05, 0.45) and v ∈ (−0.20, 0.15) with a resolution
of 11 187 points in a regular U-V grid. The optimization will
consider two variables per reflectarray element, since the SVM
has been trained with two geometrical variables (Tx and Ty).
Thus, the total number of optimizing variables will be 10 360.

Two different crosspolar optimizations will be carried out
using the same reflectarray presented in Section III-B. The
first optimization will be that of the design with the European
coverage for X polarization and the Middle East coverage for
Y polarization. The goal of the optimization is to lower the
crosspolar far field while preserving the copolar pattern within
requirements. The second crosspolar optimization corresponds
to a reflectarray with the Middle East coverage in dual-linear
polarization. In contrast to the first example, this case operates
in a smaller angular region imposing copolar and crosspolar
conditions in the same region in both linear polarizations.
For both examples, a minimum requirement of 28 dBi in the
coverage zone for the copolar pattern is imposed.

Finally, the crosspolar optimization is carried out in a
workstation with two Intel Xeon E5-2650v3 at 2.3 GHz.

B. Europe-Middle East Optimization

The starting point for the crosspolar optimization corre-
sponds to the SVM design carried out in Section III-C and
whose radiation pattern is shown in Fig. 6. The copolar
pattern after the crosspolar optimization is shown in Fig. 9,
for the MoM-LP and SVM optimizations. In both cases, the
final layout was simulated with MoM-LP. Only the copolar
pattern for X polarization (European coverage) is shown,
since it represents the worse case. The copolar pattern is
slightly affected after the optimization, but in both cases it still
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Fig. 8. Flowchart of the generalized Intersection Approach used for the
crosspolar optimization of large reflectarrays for DBS applications.

complies with the requirement of 28 dBi in the coverage area.
In fact, for the MoM-LP optimization the minimum copolar
gain in the coverage area is 28.5 dBi while for the SVM
optimization (and then simulated with MoM-LP) is 28.3 dBi.
The starting point had a minimum copolar gain of 28.4 dBi.

Fig. 10 shows the initial and optimized crosspolar discrim-
ination (XPD) for the coverage zone. The XPD (measured in
dB) is defined as the difference, point by point, of the copolar
gain and the crosspolar gain (both measured in dBi). The min-
imum XPD improved 5.5 dB for the optimization carried out
with the SVM. Another parameter of interest is the crosspolar
isolation (XPI; measured in dB), which is defined for the
coverage zone as the difference between the minimum copolar
gain and the maximum crosspolar gain. The initial value of
the XPI was 27.57 dB, while for the MoM-LP optimization is
34.35 dB and for the SVM optimization is 32.32 dB. The drop
in XPI when the SVM optimization is simulated with MoM-
LP is due to small discrepancies in the minimum copolar gain
and maximum crosspolar gain obtained with each technique.
As demonstrated in [12], the discretization of the angles of
incidence (see Fig. 4) affects the crosspolar pattern more
than the copolar pattern. Nevertheless, the improvement over
the initial value is 4.75 dB using the SVM for the optimiza-
tion. In addition, previous works [21], [27], [28] show that,
for large reflectarrays for DBS applications, the crosspolar
pattern is close to fulfil requirements or they are fulfilled
by little margin. Any further improvement in the crosspolar
pattern, such as the ones obtained with this optimization,
would allow for manufacturing tolerances and non-idealities
of the working environment since the fulfilment margin would
increase. Moreover, system level parameters such as the signal-
to-interference-plus-noise ratio (SINR) would also improve
due to the better cross-polarization performance achieved by
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Fig. 9. Copolar pattern for X polarization with European coverage simulated
with MoM-LP (taking into account the real angles of incidence at each
reflectarray element) after the crosspolar optimization with (a) MoM-LP and
(b) SVM.

the optimization.

Finally, Table I summarizes the main results for this opti-
mization in both polarizations. It also includes the results from
the SVM optimization when it is simulated with SVM instead
of MoM-LP (fourth row), and another optimization carried
out with MoM-LP using the same discretization of the angles
of incidence as the SVM (third row). It is interesting to note
how similar are the results obtained after the optimization with
MoM-LP and SVM when the same angles of incidence are
employed (third and fifth rows). Similarly, the results shown
in the second and fourth rows, corresponding to the reference
optimization with MoM-LP and the SVM optimization simu-
lated with SVM are also very similar. This proves that the main
source of discrepancies is the discretization of the angles of
incidence and, to a lesser extent, the inaccuracies of the SVM
model. In any case, the improvement over the starting point
is patent in all optimizations, as shown in Table I.
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Fig. 10. Crosspolar discrimination (XPD) for X polarization simulated with MoM-LP for the European coverage. (a) Initial XPD (XPDmin = 27.78 dB),
(b) optimized with MoM-LP (XPDmin = 35.10 dB) and (c) optimized with SVM (XPDmin = 33.26 dB).

Table I
SUMMARY OF THE MAIN PARAMETERS FOR THE CROSSPOLAR OPTIMIZATION OF THE REFLECTARRAY WITH EUROPEAN (POLARIZATION X) AND

MIDDLE EAST (POLARIZATION Y) COVERAGES. CPmin IS IN DBI; XPDmin AND XPI IN DB.

Optimization tool Angles of incidence
in optimization

Final simulation
tool

Angles of incidence
in final simulation

X polarization Y polarization

CPmin XPDmin XPI CPmin XPDmin XPI

None (initial layout) — MoM-LP Real 28.41 27.78 27.57 28.64 28.07 26.90
MoM-LP Real MoM-LP Real 28.52 35.10 34.35 28.56 36.41 34.50
MoM-LP Discretized MoM-LP Real 28.32 33.23 32.37 28.66 35.06 32.99

SVM Discretized SVM Discretized 28.51 35.42 34.23 28.58 35.70 34.13
SVM Discretized MoM-LP Real 28.28 33.26 32.32 28.58 34.49 32.48

C. Optimization of Middle East in Dual-Linear Polarization

The second crosspolar optimization example corresponds
to the same reflectarray but with the Middle East coverage in
both linear polarizations. As starting point, a new design was
carried out using the same phase-shift for both polarizations
and following the procedure described in Section III-A. After
the optimization with MoM-LP and SVM the worst results
were obtained for X polarization. Again, it complies with the
specifications, having a minimum copolar gain in the coverage
zone of 28.76 dB for the optimization with MoM-LP and
28.44 dB for the optimization with SVM. Table II summarizes
the main results for this optimization in both polarizations,
obtaining the same conclusions as in the previous example.

V. DISCUSSION ON THE ACHIEVED SPEED-UP

The main goal of using the SVM to analyze reflectarray
antennas is the substantial acceleration in computing the
matrix of reflection coefficients while still obtaining high
accuracy. However, there is an initial one-time cost accounting
for the 760 SVM trainings (76 angles and 10 coefficients
per angle), that for the case at hand took less than an
hour using a workstation with two Intel Xeon E5-2650v3 at
2.3GHz; this is the case since the training of one SVM is
independent from the rest and can be easily parallelized. In
any case, using the same computer employed for the design
in Section III-C and the same reflectarray comprised of 5 180
elements, the analysis with SVM takes a mean time of 34.8 ms
to analyze all the elements, while using MoM-LP in the same
conditions takes a mean time of 116.70 s, corresponding to a
speed-up factor of 3350. This acceleration factor corresponds
exclusively to a single analysis of the reflectarray. Since the

design involves some operations that are not accelerated by the
SVM, the acceleration factor is smaller: 565. Nevertheless, this
acceleration is still close to three orders of magnitude and it
means a considerable time saving on the design compared to
MoM-LP.

On the other hand, the acceleration factor for the crosspolar
optimization is considerably reduced since there are many
operations that are not accelerated by the SVM. For the
example investigated here, the slowest part of the generalized
IA is the backward projector that employs the LMA (see
Fig. 8; computing time of the forward projector is negligible).
The LMA can be divided into four main blocks: computation
of the cost function, Jacobian matrix (J), matrix multiplication
(JTJ) and linear equation solver [25]. The use of the SVM
accelerates the computation of the cost function and of the
Jacobian matrix, since they are the building blocks where the
reflectarray elements are analyzed. On the contrary, the matrix
multiplication and linear equation solver only depend on the
size of the problem which is, in this case, the number of
optimizing variables and points in the U-V grid where the
far field is computed.

Table III summarizes the computing time for each building
block of the LMA using MoM-LP and SVM for the large
reflectarray for DBS applications. While the matrix multipli-
cation and linear equation solver computing time remain the
same, the cost function and Jacobian are accelerated. However,
the acceleration factor of the Jacobian computation is much
smaller than the one of the cost function computation. This
is caused due to the fact that the computation of the Jacobian
matrix requires many more operations that are not sped up
by the SVM. In particular, each column of the Jacobian only
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Table II
SUMMARY OF THE MAIN PARAMETERS FOR THE CROSSPOLAR OPTIMIZATION OF THE REFLECTARRAY WITH MIDDLE EAST COVERAGE IN DUAL-LINEAR

POLARIZATION. CPmin IS IN DBI; XPDmin AND XPI IN DB.

Optimization tool Angles of incidence
in optimization

Final simulation
tool

Angles of incidence
in final simulation

X polarization Y polarization

CPmin XPDmin XPI CPmin XPDmin XPI

None (initial layout) — MoM-LP Real 28.25 31.11 29.28 28.62 31.02 29.69
MoM-LP Real MoM-LP Real 28.76 36.18 34.94 28.97 36.06 34.82
MoM-LP Discretized MoM-LP Real 28.47 34.79 33.15 28.93 34.66 33.36

SVM Discretized SVM Discretized 28.83 36.25 34.98 28.93 36.36 34.50
SVM Discretized MoM-LP Real 28.44 34.80 33.19 28.93 34.59 33.40

Table III
COMPUTING TIME IN SECONDS OF THE MAIN LMA BUILDING BLOCKS

FOR THE CROSSPOLAR OPTIMIZATION OF A REFLECTARRAY COMPRISED
OF 5 180 ELEMENTS AND USING A WORKSTATION WITH 40 THREADS.

Tool FFT grid Cost function Jacobian JT J Solver

MoM-LP 512×512 29.49 75.08 18.94 1.28

SVM 512×512 0.13 25.53 19.47 1.29

MoM-LP 128×128 29.96 61.03 1.39 1.24

SVM 128×128 0.12 2.76 1.36 1.24

analyzes one reflectarray element using MoM-LP or SVM,
while it has to compute the spectrum functions using eight
FFTs. When a high resolution of 512×512 points for the FFT
is employed, the acceleration factor in the computation of the
Jacobian is small due to the relatively slow computations of
the FFT with regard to the analysis of a single element. This
does not apply to the cost function, where all the elements are
analyzed and the radiation pattern is computed only once.

For the sake of comparison, the computing time was also
measured with a lower resolution of 128 × 128 for the FFT.
In this case, the contribution of the computing time of the
FFTs is much smaller and thus the acceleration factor when
using SVM instead of MoM-LP considerable increases (from
an acceleration of roughly 3 to 22). Accordingly, the time
cost of the matrix multiplication also decreases since the size
of the Jacobian matrix is considerably reduced. The same
pattern appears in Table IV, where the smaller reflectarray
taken from [29] was optimized using the laptop described
in Section III-C. In this last example, the optimization was
performed in the whole visible region, instead of in a subset
of the U-V grid, which accounts for the different (and lower)
acceleration in the Jacobian matrix calculation for high reso-
lutions of the FFT.

Regarding the total computing time for the crosspolar op-
timizations presented in Section IV, the optimization for the
reflectarray with European coverage for polarization X and the
Middle East coverage for polarization Y took 111 iterations
of the generalized IA to achieve those results. Since three
iterations of the LMA were performed for each IA iteration,
this gives a total of 333 iterations where the cost function
and Jacobian matrix were computed. Using MoM-LP it took
approximately 11 hours and 30 minutes, while using SVM this

Table IV
COMPUTING TIME IN SECONDS OF THE MAIN LMA BUILDING BLOCKS

FOR THE CROSSPOLAR OPTIMIZATION OF A REFLECTARRAY COMPRISED
OF 900 ELEMENTS AND USING A LAPTOP WITH 8 THREADS.

Tool FFT grid Cost function Jacobian JT J Solver

MoM-LP 512×512 21.53 101.99 28.62 0.03

SVM 512×512 0.23 80.37 29.08 0.02

MoM-LP 128×128 21.83 45.77 1.84 0.03

SVM 128×128 0.05 2.40 1.74 0.03

time was reduced to 4 hours and 18 minutes. Thus, more than
seven hours were saved by using SVM in this optimization.
For the other example with the Middle East coverage in dual-
linear polarization, the algorithm only took 24 iterations of
the generalized IA, and a total of 72 iterations of the LMA.
The total time using MoM-LP was two hours and a half,
while using the SVM it was 56 minutes, thus saving more than
90 minutes. Please note that in all these cases the employed
FFT resolution was 512×512 points.

From the results shown in Tables III and IV it is clear
that the use of SVMs to accelerate crosspolar optimization
is not enough. The computation of the gradient (Jacobian
matrix) in local search algorithms is also highly dependent on
the FFT resolution, which is related to the number of points
in which the far field is computed. For small- or medium-
sized reflectarrays lower resolutions may be used along with
SVMs to accelerate more than one order of magnitude the
optimizations. However, this might not be possible for larger
reflectarrays. Since larger antennas are more directive, higher
resolution is required, especially for stringent applications such
as DBS, where a good resolution in the coverage zone is
necessary. Thus, alternatives to a lower resolution to accelerate
the computation of the Jacobian matrix are required.

One approach could be the use of multiresolution UV
grids using the Non-Uniform FFT (NUFFT) [30]. In this
case, although the NUFFT is slower than the FFT [31], the
employed U-V grid would have high resolution in the area of
interest while few points are used elsewhere to account for
the side lobes. In this way, the employed grid would have far
fewer points than the typical high-resolution grid of the FFT,
and computations would be accelerated for the Jacobian matrix
and the matrix multiplication. Another approach, compatible
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with the use of a multiresolution grid, is to avoid the use of the
(NU)FFT in the computation of the Jacobian. This is possible
by taking only into account the differential contribution of
the array element which is modified to compute the far field.
Progress is being made in this regard to further accelerate
the computation of the Jacobian matrix as well as the matrix
multiplication.

Finally, the achieved acceleration in this work, plus the
potential further acceleration mentioned above, paves the way
towards the optimization of even larger reflectarrays that
are being proposed for applications such as Synthetic Radar
Aperture (SAR) [32] or multibeam coverage [33]. These
reflectarrays are comprised of tens of thousands of elements,
and thus, the optimization process would be extremely slow
without accelerating techniques, since the computational time
increases with the cube of the number of optimizing variables
due to the matrix multiplication, while the time for filling
the Jacobian matrix grows quadratically. In addition, since
a local-search algorithm is employed, several runs of the
optimization algorithm employing different starting points
and/or tuning different parameters such as a weighting function
may be necessary in order to avoid undesired local minima.
This is especially true for applications with very stringent
requirements, such as [21], where there are multiple coverage
zones, each one with different requirements, and fine-tuning
of different weighting constants in the cost function is most
likely necessary to comply with both copolar and crosspolar
specifications.

VI. CONCLUSIONS

In this work, machine learning techniques in the form of
Support Vector Machines (SVMs) have been used for the first
time for the design and crosspolar optimization of reflectarray
antennas. The goal was to obtain a surrogate model of the
reflectarray unit cell to use in substitution of a full-wave
analysis technique based on local periodicity. The use of this
surrogate model speeds up the analysis of the whole antenna
more than three orders of magnitude. The design process of
a dual-polarized reflectarray antenna is detailed to accurately
find the element geometry that matches the required phase-
shift for two linear polarizations. Then, a large reflectarray for
Direct Broadcast Satellite (DBS) application is designed with
MoM-LP and SVM following this procedure. An acceleration
factor close to three orders of magnitude is obtained for the
design when using SVM instead of MoM-LP while still obtain-
ing accurate results. Finally, SVMs were applied to accelerate
the crosspolar optimization of the same large reflectarray
for space communications. Two examples are provided, one
with a different coverage footprint for each linear polarization
(Europe and the Middle East) and another example with the
same coverage footprint working in dual-linear polarization
(Middle East). In both cases the XPD and XPI are greatly
improved while computations are accelerated thanks to the use
of SVMs instead of MoM-LP. However, the acceleration factor
for the crosspolar optimization is considerably dependent on
the resolution of the far field and in some cases the use of
the SVM gives acceleration factors lower than one order of

magnitude. Nevertheless, further computational improvements
are currently under research to accelerate the computation of
the gradient.
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[25] D. R. Prado, J. Álvarez, M. Arrebola, M. R. Pino, R. G. Ayestarán, and
F. Las-Heras, “Efficient, accurate and scalable reflectarray phase-only
synthesis based on the Levenberg-Marquardt algorithm,” Appl. Comp.
Electro. Society Journal, vol. 30, no. 12, pp. 1246–1255, Dec. 2015.

[26] O. M. Bucci, G. D’Elia, G. Mazzarella, and G. Panariello, “Antenna
pattern synthesis: a new general approach,” Proc. IEEE, vol. 82, no. 3,
pp. 358–371, Mar. 1994.

[27] J. A. Encinar, L. S. Datashvili, J. A. Zornoza, M. Arrebola, M. Sierra-
Castaner, J. L. Besada-Sanmartin, H. Baier, and H. Legay, “Dual-
polarization dual-coverage reflectarray for space applications,” IEEE
Trans. Antennas Propag., vol. 54, no. 10, pp. 2827–2837, Oct. 2006.

[28] J. A. Encinar, M. Arrebola, L. F. de la Fuente, and G. Toso, “A transmit-
receive reflectarray antenna for direct broadcast satellite applications,”
IEEE Trans. Antennas Propag., vol. 59, no. 9, pp. 3255–3264, Sep.
2011.

[29] D. R. Prado, M. Arrebola, M. R. Pino, F. Las-Heras, R. Florencio,
R. R. Boix, and J. A. Encinar, “Reflectarray antenna with reduced
crosspolar radiation pattern,” in 10th European Conference on Antennas
and Propagation (EuCAP), Davos, Switzerland, Apr. 10–15, 2016, pp.
1–5.

[30] D. R. Prado, M. Arrebola, M. R. Pino, F. Las-Heras, and J. A. Encinar,
“Efficient computation of the reflectarray far fields in adaptive grids for
speed improvement,” in IEEE International Symposium on Antennas and
Propagation (APSURSI), San Diego, California, USA, Jul. 9–14, 2017,
pp. 1181–1182.

[31] D. R. Prado, M. Arrebola, M. R. Pino, and F. Las-Heras, “An efficient
calculation of the far field radiated by non-uniformly sampled planar
fields complying Nyquist theorem,” IEEE Trans. Antennas Propag.,
vol. 63, no. 2, pp. 862–865, Feb. 2015.

[32] C. Tienda, M. Younis, P. López-Dekker, and P. Laskowski, “Ka-band
reflectarray antenna system for SAR applications,” in The 8th European
Conference on Antennas and Propagation (EUCAP), The Hague, The
Netherlands, Apr. 6–11, 2014, pp. 1603–1606.

[33] E. Martı́nez-de-Rioja, J. A. Encinar, A. Pino, B. González-Valdés, S. V.
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