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Abstract

Structural Health Monitoring (SHM) is a methodology in development that aims to achieve
the autonomous supervision of engineering structures. In this project, which is meant to
be a contribution for the implementation of this methodology in industrial processes, a

whole SHM test bench has been designed. This test bench consists of a steel bar, which is the
structure under study, fixed to a metallic support, an excitation system that provokes vibrations
on the bar and a data acquisition system that captures the induced vibrations by means of three
accelerometers and processes and organizes the data to store it next. All this process has been
automated with the help of the NI USB 6356 data acquisition board and Matlab scripts. In
addition, Intelligent Data Analysis (IDA) applied to fault detection and diagnosis has been used
to analyze the acquired data in order to make statements about the structural health of the
studied system by means of Machine Learning algorithms.
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1
Introduction

The growing demand for the supervision of a large number of structures with many quality

requirements, the need to minimize the economic cost and personnel needed to perform

such supervision and the advancement of new technologies led to the birth of a technology

that allows autonomy in the supervision of a structure: Structural Health Monitoring (SHM).

SHM consists in the implementation of a damage detection and diagnosis system in engi-

neering structures. This system has to periodically acquire measurements from the structure by

means of sensors, extract damage-sensitive features from those measurements and perform a

statistical analysis in order to determine the health state of the structure [17]. The main stages

of SHM can be seen in figure 1.1.
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Figure 1.1: Stages involved in the SHM process.

Source: [25]

SHM systems can be analogously compared with the human nervous system, being sensors

the equivalent of nerve endings, damage indication in a computer the equivalent of the pain

indication in a human mind and decision making for fixing the damage, for instance, maintenance

activities the equivalent to the decision taken by the human about going or not to the doctor [26].

SHM is a technology with an infinite number of applications and possibilities which today

is more and more present in engineering companies. Some of its current applications are the

monitoring of bridges, buildings, dams, tunnels, wind turbines, aerial and maritime trasnport

and industrial facilities. SHM allows great savings in revision tasks, increases safety, reduces

uncertainty and aids in planning and designing maintenance activities. The benefits that SHM is

able to provide are making its market size grow significantly year by year. As [8] has pointed out:

"The global structural health monitoring (SHM) market size was valued at USD 1220 million in

2017 and it is estimated to reach USD 4340 million by 2025, rising at a CAGR of 17.3% during

the forecast period".

One of the areas where SHM can make a significant progress is industrial processes. SHM can

facilitate the supervision of both industrial equipment and the product itself that is being built.

This is the chosen field of work for this project, which aims to bring improvements to industrial

Roberto Arnaiz Burgueño
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processes through SHM systems. An appropiate deployment of SHM systems and an integration

of these systems into cloud data access services will be a contributing factor for the consolidation

of industry 4.0, letting an industrial plant have an almost real time diagnostic of its monitored

devices and have access to this information from any location. A diagram of the industry 4.0

model, where SHM plays an important role, is shown in figure 1.2.

Figure 1.2: Industry 4.0 diagram.

Source: [31]
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1.1.- Motivation

GSDPI research group [9] at the University of Oviedo has shown interest in SHM approaches

based on machine learning (ML) and its applications to industrial processes over the last few

years. The paper [24] written by GSDPI, whose main characteristics will be described in this

section, can be considered as the antecent of this project.

As it is shown in [24], the test bench initially proposed by GSDPI, which is based on the

excitation of a steel bar on which faults can be induced and on the measurement and analysis

of vibrations, allows flexibility in its configurations, achieves repeatability in tests and provides

an easy access to the measured data. The test bench consisted of: a simple metal structure; an

excitation system composed of an electromechanical actuator and H bridge motor driver controlled

from an arduino; and a vibration signal acquisition system formed by two accelerometers, an

oscilloscope receiving the signal from the accelerometers and a PC receiving the acquisitions from

the oscilloscope via serial port in a Python environment where data was stored in JSON format.

Finally, the results of the performed vibration analysis based on the feature extraction in the

frequency domain were presented. These results were based on a Principal Component Analysis

(PCA) where it was shown that PCA was able to cluster successfully data examples belonging to

two different classes, normal conditions and failure (loose bolt).

The limits found in this approach were the following: overheating of the hammer caused by

its inverse logic mode of operation, which may limit its prolonged use; the variability present in

the acquired data due to to the dependance on the environmental conditions, which could affect

the repeatability of the tests.

As future work, it was proposed: to improve the existing instrumentation by means of a data

acquisition board that could manage the acquisition of data and control the excitation system

at the same time; a modular organization of the software that lets perform different groups of

tests in an autonomous way and the standarization of the acquired data by adding metadata; the

deployment of a remote service that lets the user perform tests through a web page, increasing

the flexibility and the access to data.

The successful work done by GSDPI and the motivation to go further in this promising area of

study, encouraged the proposal of this thesis, which will focus on enhancing the configurable SHM

test bench created in 2017. The aim will be to improve the acquisition system and the automation

of the tests, as well as the way in which data are stored. Experiments, in which different ways of

inducing failures and extracting meaningful features are tested, will also be explored. Finally,

different techniques of Intelligent Data Analysis (IDA) will be tested, mainly Machine Learning

algorithms and visualization techniques, in order to draw conclusions about the health state of

Roberto Arnaiz Burgueño
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the bar. Special attention will be paid to the following drawbacks found in the state of the art:

• Need for a high degree of automation of the tests so that the measurements do not depend

on human errors and thus achieve a greater repeatability.

• High dependence on the environmental conditions of the effectiveness of the used algo-

rithms.

• High dependence of the results on the feature extraction process.

To conclude this section, it has to be mentioned that all the stages present in this project will

be addressed following the CRISP-DM methodology, which proposes a cyclic view of data mining

projects.

1.2.- Objectives

Once the context and the motivation to carry out this thesis have been introduced, the specific

objectives of this project will be enumerated:

• In order to improve the existing instrumentation of the SHM test bench, this project

proposes the development of a modular software for handling a new high performance

NI-USB-6356 board, using high level software (Matlab). The software must manage the

automation of the tests, allowing to configure them as a series of impacts by periodically

sending signals to the excitation device and measuring the generated vibrations with the

help of three accelerometers. The software developed must use the libraries provided by

the manufacturer (National Instruments).

• Wrapping the acquisitions in an organized data structure and storage in a standard file

(.csv, .mat, .json).

• Test data analysis algorithms (Machine Learning) aimed at monitoring the structural

condition and diagnosis.

• As a complement, new improvements of the bench will be explored, such as the use of 3D

printing technologies to introduce possible enhancements in the mechanical configuration

of the bench and in the design of the tests, through the incorporation of 3D printed parts as

parameterizable test elements.

Roberto Arnaiz Burgueño
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2
Methods

The development of this project was not straightforward. It was made following a method-

ology called CRISP-DM (CRoss Industry Standard Process for Data Mining) [18] which

is based on a cyclic view of the development of a data mining project. The phases of a

CRISP-DM data mining project and the tasks to carry out in each phase can be seen in figures

2.1 and 2.2, repectively.

As Berry and Linoff (1997) said, "data mining is not finished once a solution is deployed. The

lessons learned during the process and from the deployed solution can trigger new, often more

focused business questions. Subsequent data mining processes will benefit from the experiences

of previous ones" [19].
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Figure 2.1: Phases of the Current CRISP-DM Process Model for Data Mining.

Source: [18]

Figure 2.2: Overview of the CRISP-DM tasks and their outputs.

Source: [18]
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Throughout this chapter, the different techniques that have been taken into account when

developing this project will be presented. These techniques have been broken down as follows:

SHM principles; design of the test bench; data acquisition system; data pre-processing: feature

extraction; Intelligent Data Analysis: Machine Learning algorithms.

2.1.- Structural Health Monitoring principles

The purpose of Structural Health Monitoring systems is to track the performance of mechanical

systems (machines, aircrafts, large structures, etc.) and detect divergences from its normal

working conditions. These divergences are referred to as damages, which can be either classified

as defects, if they only affect the efficiency of the system or failures, if these damages compromise

the correct functioning of the system, being no longer suitable for the user [24].

SHM techniques aim to detect both failures and defects in mechanical systems providing, in

addition, characteristic information about them. According to [28], one of the ways to classify

SHM techniques is according to the quantity of information with which defects are characterized:

• Level 1: they determine the existence of a defect.

• Level 2: they determine the location of the defect.

• Level 3: they quantify the severity of the damage.

• Level 4: they predict the lifetime of the system.

The purpose of this section is to introduce the reader to SHM methodologies and it has been

broken down in the following way: evolution of SHM and vibration-based SHM methods.

2.1.1.- Evolution of SHM

Non-Destructive Testing methods (NDT) and visual inspection techniques are considered the

background of modern SHM systems. The main advantage of SHM over NTD is the deployment

of integrated systems that work online, what makes SHM systems autonomous. In the near

future, NDT methods may be replaced by on-line SHM systems, in which sensors are permanently

mounted on the structure. This autonomous inspection approach leads to the development of

smart structures.
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In order to talk about the future of SHM, this vision about the future development of SHM

in aeronautics by the Aerospace Industry Steering Committee on Structural Health Monitoring

(AISC-SHM) appears to be a good case study. According to [10], AISC-SHM defines these four

future phases:

• Phase I (current situation): stand-alone systems for advanced maintenance at manned

flights.

• Phase II (short term): evolution towards more automated SHM-support systems for manned

and unmanned flights.

• Phase III (medium term): evolution towards fully automated systems, can also be used for

remote control.

• Phase IV (long term): evolution where SHM is a design factor that is integrated into all

critical elements.

2.1.2.- Vibration-based SHM methods

One of the most common methods in the state of the art of fault detection is the vibration analysis

of the system, known as vibration-based methods [32]. These kind of techniques are based on the

modal analysis of vibration signals acquired from the monitored structure. Vibration analysis

is a consolidated method in the supervision of rotating machines, also referred to as condition

monitoring (CM) by [29, 30]. CM is a field of study analogous to SHM and hereby, it is appropiate

to make use of similar vibration-based techniques in both fields of study, but they differ in the fact

that vibration data acquired from rotatory machines is usually more invariant to environmental

conditions than measurements coming from large structures, which increases the challenge faced

in SHM [24].

The most widely used paradigm in vibration-based methods is the statistical pattern recogni-

tion, which is a knowledge-based methods and, unlike analytic methods, lets one reach solutions

even without mastering the physical phenomena beneath the studied process. According to [33],

statistical pattern recognition is divided in four tasks:

• Operational evaluation.

• Data acquisition and normalization.

• Feature extraction.

• Model development.
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Every ambit defined by [33], except operational evaluation, is strongly related with Inteligent

Data Analysis (IDA). A lot of the techniques proposed in the IDA field, as Machine Learning

algorithms, can be transferred to SHM with a remarkable potential contribution, such as helping

to solve the problem of the varability of environmental conditions with an effective feature

extraction.

In order to initiate a line of study in SHM, a baseline data repository is clearly necessary.

This data can be obtained from public SHM repositories or collected by oneself from real working

systems or from test benches that simulate reality. The availability of an already working test

bench in GSDPI’s laboratory made the latter choice direct. Having access to an own test bench is

a great advantage because it allows one to adapt how experiments are performed to the objectives

of the research.

2.2.- Design of the test bench

A compound steel bar will be used as structure of study for researching about the possibilities of

SHM applied to industrial and manufacturing processes because it is a relatively simple structure

where it is easy to introduce mechanical damages. But it must be borne in mind that the line of

work in which this project aims to contribute is the development of fault detection techniques

applicable to any type of structure or material. The final objective of this line of research is to

make the technique independent of the material or shape of the structure studied thanks to IDA.

In this section, which composes the operational evaluation mentioned in 2.1.2, it will be

explained how the physical system under study, the excitation system and the procedure for the

tests have been designed. The appeareance of the bench, its overall distribution and its hardware

diagram can be seen in figures 2.3, 2.4 and 2.5, respectively. The hardware diagram includes the

physical system in red, the excitation system in green and the data acquisition system in blue,

which will be described in section 2.3.
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Figure 2.3: Test bench.
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Figure 2.4: Test bench distribution.
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Figure 2.5: Hardware diagram.

2.2.1.- Physical system

A flat compound steel bar supported by a metallic structure composes the physical system under

study. This bar is formed by three sections joined by four metallic plates screwed with two screws

each one. The support metallic structure consists of a horizontal base and two vertical metal

profiles screwed to the base. These metal profiles offer support to the steel bar by means of two

support brackets screwed to both the profiles and the bar. This configuration is shown in figure

2.3.

2.2.2.- Excitation system

Although in some SHM tests, usually in big scale tests, it is enough with natural or human

excitations to observe the dynamic behaviour of a system, in this case it will be needed to

induce an external excitation in the system to be able to observe its dynamic response. An

electromechanical actuator switched by a H bridge preactuator have been used for this purpose.

Roberto Arnaiz Burgueño



UNIVERSITY OF OVIEDO
Polytechnic School of Engineering of Gijón 14 of 98

2.2.2.1.- Electromechanical actuator

The Ralux electromechanical actuator or hammer is attached to the support structure being fixed

to a third vertical metal profile screwed in the center of the horizontal base. It is composed by

a metallic axis with a nut screwed at one of its ends, a spring that surrounds the axis, a coil of

24V and 1A where the axis is introduced and a case that holds the coil. Its operating principle

is as follows: when the coil receives current because 24V are applied through a bifilar wire, the

magnetic field generated attracts the metal axis upwards to its nucleus and when the coil stops

receiving current because 0V are applied, the magnetic field decays and the metallic axis is

moved downwards due to the potential elastic energy stored by the spring, what generates an

impact on the steel bar. The nut works as a top for the spring not to go out.

As the magnetic field generated by the coil has influence on its surroundings, it doesn’t only

attract the metal axis but sometimes also the steel bar under study, which can ruin completely

the performance of the tests. A solution for this problem was found using a 3D-printed plastic

cover, which isolates the metal axis of the hammer, as it can be seen in figure 2.6.

Figure 2.6: Hammer with its 3D-printed cover in orange.
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2.2.2.2.- Preactuator

The preactuator is an H bridge motor driver, specifically a Devantech MD22 [14], designed for

controlling two DC motors but it is also compatible with the control of the coil inside the hammer.

In this case it receives a control signal from the data acquisition board, which will be described

later in section 2.3.1, and outputs a voltage signal adapted to the working conditions of the

hammer. The mode selector is put in the 1100 position to select the mode OV −2.5V −5V analog

inputs which permits an all/nothing control. It receives a signal between 2.5V and 5V DC from

the data acquisition board between pins GND and SDA, 5V DC signal in the pin +5 to feed the

microcontroller inside the driver and 24V DC from an external source between pins V+ and V-.

Then, it will generate an output signal between pins M2+ and M2- which will alternate between

0V and 24V depending on whether the control signal value is 2.5V or 5V , respectively. This

control signal will let the hammer work as desired when it is introduced a proper input signal,

which will be described in the section 2.3.2.

Figure 2.7: Driver MD-22 and its connections.
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2.3.- Data acquisition system

In this section, it will be explained how the data acquisition system has been designed and how it

is interconnected with the test bench so that the tests can be completely automated by means of

a software written in Matlab.

2.3.1.- DAQ hardware

The data acquisition system is composed of three accelerometers that measure the vibration in

the bar, a data acquisition board that samples the signals coming from the accelerometers and

also generates the control signal for the H bridge of the hammer and a PC that manages the

traffic of signals from the software Matlab.

2.3.1.1.- Data acquisition board

NI-USB 6356 data acquisition board [11] has been chosen for this test bench because of its high

sample rate and high resolution, which are the most relevant features for vibration analysis. It is

equipped with 8 simultaneous 16bit AD converters which can handle a maximum input sample

rate of 1.25MS/s [13].

This board is fed with a DC power supply of 30W and it receives the measured signals by the

accelerometers in the analog input pins AI0+ and AI0-; AI2+ and AI2-; and AI5+ and AI5-. The

output signals from this board are the control signal for the hammer going out from the analog

output pins AO0 and AO GND and a digital 5V continuous signal produced in pin no. 96 used

to feed the microcontroller in the H bridge. Figure 2.9 shows this conexions. The analog input

signals don’t have to be ground-referenced since this board works in differential mode as it is

described in the user manual [12]. The NI-USB 6356 is also connected to the PC through an USB

connector so it can exchange information with Matlab and vice versa.

Figure 2.8: Data acquisition board NI-USB 6356.
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Figure 2.9: Conexions in NI-USB 6356.

2.3.1.2.- Accelerometers

Three Wilcoxon Research piezoelectric accelerometers, which are suitable for vibration analysis

because of their wide frequency range, are located in the middle of each of the three sections that

compose the steel bar under study. Piezoelectric accelerometers working principle consists in a

seismic mass, that suffers the same acceleration as the structure it is measuring, and a piezoce-

ramic material attached to it, which outputs a voltage between two electrodes proportional to the

acceleration experienced by the mass. The accelerometers will measure vibration acceleration in

the vertical direction, transforming it into a voltage signal with a sensitivity of 100mV /g [15]
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and sending it to the data acquisition board through a supply stage of 27V DC and coaxial wires

[16]. A procedure similar to the one used for isolating the hammer with a 3D-printed cover was

used to isolate the three accelerometers, in this case because of the presence of noise. This fact

will be better described in section 3.4. An accelerometer with the cover and the supply stage are

shown in figures 2.10 and 2.11, respectively.

Figure 2.10: Wilcoxon Research accelerometer with its 3D-printed cover in orange.

Roberto Arnaiz Burgueño



UNIVERSITY OF OVIEDO
Polytechnic School of Engineering of Gijón 19 of 98

Figure 2.11: Wilcoxon Research power unit for accelerometers.

2.3.2.- DAQ software

An important concept to understand this module of the system is the theoretical meaning under

the sampling process, which yields a sequence of values from an analog signal [21].

x(t)→ xk, t = kTs, ∀k = ...,−1,0,1,2, ...(2.1)

fs = 1
Ts

(2.2)

where Ts is the sampling period and fs is the sampling frequency.

According to the Nyquist-Shannon theorem, which says that fs ≥ 2Fmax, being fs the sampling

frequency and Fmax the maximum frequency of the signal that has to be measured, it will have to

be checked that the chosen sampling frequency fs is high enough in order not to loose important

information in the high frequencies.

To automate the acquisitions, some Matlab scripts have been designed. They make a contin-

uous use of the Data Acquisition or DAQ Toolbox [1]. It was decided to make the program as

modular as possible by isolating every specific purpose in different functions in order to facilitate

debugging processes and future modifications. Several functions are called sequentially from the

main script so the tests can be performed automatically. The software diagram of the acquisition

showing the most representative aspects of these scripts can be seen in figure 2.12, every function

will be explained with more detail afterwards.
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Figure 2.12: Software diagram.

Before every experiment, the program asks the user, by means of a dialog in the command

line, for: the number of hits n to be performed; the sampling frequency fs for the data acquisition,

which is denoted as Sr (Sampling rate) in the scripts; a brief description of the test; and the label

indicating the previously known condition of the bar.

Then, the functions that are shown in the next list of items, whose code is shown in D.1, are

executed in order of appeareance:
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• s = init_exp(Sr): outputs a DAQ session s with a given sample rate frequency Sr and

configures pins AI0, AI2 and AI5 as analog inputs and AO0 as an analog output pin.

• out = control_signal(Sr): outputs the necessary signal to be sent to the H bridge to

make the hammer hit once. This signal has a duration of 15 s and the hit will happen at

the 5th second. This configuration has proven experimentally to be an effective compromise

between attenuation of the oscillations in the bar before the next hit and fluency to perform

big quantities of experiments. The signal returned by control_signal alternates between

5V and 2.5V , as it was said in 2.2.2, which are the necesary values to retract and release

the hammer, respectively. The shape of the generated control signal can be seen in figure

2.13

Figure 2.13: Control signal.

• [S1aq, S2aq, S3aq] = gen_aq(n,Sr,out,s): this function runs n times a for loop that

repeats the generation of the control signal and captures the signal coming from the

accelerometers with the sample rate Sr. Each time the function s.startForeground() is

executed, the control signal for a single hit is sent so the hammer hits the bar, the program

samples the signals arriving to the configured analog inputs and, after 15 seconds, they are

saved in the variable data. Then, the measurements are reshaped concatenating columns

of acquisitions in three different matrices S1aq, S2aq and S3aq, one for each sensor, so

they contain samples along rows and different hits along columns. After the last hit, the
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control signal is set to 5V so the hammer stops consuming power while it waits for a new

experiment to be performed and thus, its excessive overheating is avoided. Finally, the

three matrices S1aq, S2aq and S3aq are output.

• [S1, S2, S3] = data_preprocess(n,Sr,S1aq,S2aq,S3aq): acquired data S1aq, S2aq

and S3aq are cut to reduce necessary memory and it is also synchronized to make eassier

the posterior processing and for a better visualization of the repeatability in the experiments.

Concretely, it finds the first point that overpasses, in absolute value, a threshold of 0.5V in

every different hit in the central accelerometer (no. 2) and saves data from 0.5 s before each

hit until 3.5 s after it, so the total duration of the saved data is 4 seconds. This information

is saved in three new variables S1, S2 and S3, which again contain samples along rows and

different hits along columns.

• data_descrip(): this function creates a ".mat" file containing an array categories with

the fields Number of exp, number of hits, Sample rate, Label, Description and timestamp

where these characteristics about each test will be stored just after they are performed. The

save_data function, which will be described next, will be in charge of saving this informa-

tion together with the measurements. Every time that it is necessary to know information

about experiments performed in the past, it can be checked in this description.mat file.

Notice that it must be only executed once, at the begining of all the experiments.

• save_data(n, Sr, S1, S2, S3, label, descrip): this function creates, after each ex-

periment finishes, a new ".mat" file in the same path as description.mat with the name

Exp_N.mat, being N the number of the experiment in the history of the description.mat file.

The capture matrices S1, S2 and S3, the number of hits n in the experiment, the sample

rate Sr and the variable label will be stored in the Exp_N.mat file. save_data() also

fills a row in the categories array of description.mat file with the characteristic data of

the experiment. The appeareance of the categories inside a description.mat file and the

matrix S1 inside an Exp_N.mat are shown in figures 2.14 and 2.15, respectively. Note that

the variables appearing in the workspace in figure 2.15 are the ones saved inside each

Exp_N.mat file and that the files appearing in the top left of that same figure are the files

generated after a group of 14 different experiments.
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Figure 2.14: Categories stored in description.mat.

Figure 2.15: Appeareance of an Exp_N.mat file.
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• show_aq(n, Sr, S1, S2, S3): It shows three subplots with the n overlapped acquisitions

of the three sensors with a proper time vector according to the sample rate Sr of the

experiment. The shape of the acquired signals of five hits and a zoom over those signals

can be seen, respectively, in figures 2.16 and 2.17.

Figure 2.16: Group of five hits measured from the three accelerometers.

Figure 2.17: Zoom over the aquisitions.
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2.3.3.- Design of the tests

Before starting the tests, some procedural conventions had to be defined for the sake of clarity.

As the goal of the tests to be performed is to detect failures in the strucure, it has been decided to

deliberately induce several kind of failures in the bar by putting weights, loosening some screw

or using different plates for joining the sections of the steel bar. Each screw has been assigned a

number from one to eight, as it is shown in figure 2.18. Eleven labels have been defined to refer

to each kind of working condition of the beam, they can be seen in table 2.1.

Figure 2.18: Numbering convention used for setting the number of each screw.
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label no. failure no. of loose screw
1 normal conditions
2 loose screw 1
3 loose screw 4
4 loose screw 5
5 loose screw 8

6
10 kg weight over

left side

7
10 kg weight over

right side

8
8 kg weight over

left side

9
8 kg weight over

right side

10
3D-printed plastic

join

11
3D-printed plastic

join with narrowness

Table 2.1: Definition of failure classes of the structure.

In the case of nomal conditions it has been checked with a torque wrench that each screw has

been screwed with a torque of around 16 N ·m.

In the case of classes 2, 3, 4 and 5, when a screw is said to be loose, it’s been tightened to

4 N ·m. The rest of the screws are tightened to 16 N ·m.

In classes 6, 7, 8 and 9, weights have been put over the screws of either one side or the other

as it is shown in figure 2.19 and all the screws are tightened to around 16 N ·m .
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Figure 2.19: Weight over the beam before performing a test labeled in the class no. 7.

In classes 10 and 11, 3D-printed plastic joins in the center and right of figure 2.20, respectively,

have been used to join the steel bar just in the left side, where screws 1 to 4 are located, and all

the screws are tightened to around 16 N ·m . Note that each shown plate has a couple in order to

screw in four screws. The steel plate shown in the left of figure 2.20 has been used for classes 1 to

9.
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Figure 2.20: Different joining plates used.

This will be the way to proceed for each experiment or set of hits in the same condition:

• Induce one of the predefined failures in the system.

• Start the experiment: The user runs the Matlab scripts and types the parameters of the

test in the command line. Then, the hammer will hit the steel bar each 15 seconds for

the selected number of times while the acquisition system stores the measurements and

metadata.
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2.4.- Data pre-processing: feature extraction

According to [20], Feature extraction, seen from the SHM perpective, "is the process of identifying

damage-sensitive properties derived from the measured vibration response, which allows one to

distinguish between the undamaged and damaged structure". This process reduces drastically

the memory needed to store the data and the computational capacity needed to process it and, at

the same time, tries to preserve as much information as possible. It will also make much eassier

the subsequent application of ML algorithms.

These damage-sensitive properties or features can be experimentally chosen by observing

the dynamic response of the system by means of frequency analysis, which will provide us with

reliable indicators.

In addition, a visualization technique will be tested with the results of the feature extraction

in order to check the repeatability of the experiments.

2.4.1.- Feature extraction: spectral analysis

To gain some intuition about which frequency bands should get more attention, Fourier transforms

are very useful tools that decompose a waveform in individual sinusoidal components with an

specific amplitude, frequency and phase. Fast Fourier Transform (FFT), which is an efficient

version of the Discrete Fourier Transform (DFT), will be used to analyze signals in the frequency

domain. DFT is defined as:

(2.3) Yn =
N−1∑
k=0

yke− jnθ0k, n = {0,1, ..., N −1}

where Yn is the output sequence in the frequency domain, yk the input sequence in the time

domain, N the number of samples in a period, k the position in the time sequence, n the number

of harmonic and θ0 = 2π/N the normalized fundamental frequency (which has the relationship

θ0 =ωTs)[22].

The RMS (Root Mean Square) value of a signal is also an essential tool when working with

waveforms because it can express the energy of a signal over a period of time. Taking into account

that a signal can be decomposed into single components with an specific frequency by means of

FFT, RMS value of a grouping of these components can be performed, obtaining the energy of a

signal in an specific frequency band.

Computing the RMS value of a discrete periodic signal yk in a frequency band, with a period

of N samples, can be deduced from the Parseval theorem, which states that the power of the
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signal in both the frequency and time domains is equal:

N−1∑
k=0

|yk|2 =
1
N

N−1∑
n=0

|Yn|2

where Yn are the Fourier (DFT) coefficients of the signal. Dividing by N and obtaining the

square root: √√√√ 1
N

N−1∑
k=0

|yk|2 = 1
N

√√√√N−1∑
n=0

|Yn|2

the expressions of the RMS value in both the frequency and time domains is obtained,

respectively. By restricting the summation in the frequency domain expression to the terms

corresponding to the frequencies inside an specific frequency band and multiplying by a factor of

2 in all terms, except the DC term and the Nyquist term, it is possible to get the RMS value of

that band [23].

A windowing technique is applied to perform the feature extraction. It consists in computing

the FFT of several overlapped windows of size N samples and displacement δ and performing

the RMS values of the selected frequency bands at each window. The results of this operation

can be concatenated obtaining the evolution in time of the energy of each frequency band. A

condensed representation of this first process can be seen in figure 2.21. Later, three particular

time intervals are selected and it is performed the mean of the RMS values of each frequency

band at each interval. After performing the whole feature extraction process, a feature vector will

be output for each hit and it will have the following shape: x εRn, being n = number of sensors ×
number of frequency bands × number of time intervals. In this way, ML algorithms will be able

to compare information between different hits in both frequency and time domains in order to

extract conclusions.
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Figure 2.21: Representation of the frequency feature extraction process.

Source: [21]

It is impossible to get all the possible information in the time domain and in the frequency

domain at the same time. So, the selection of the size N of the windows has to be done making a

compromise. A too high value of N would provide a very rich information in the frequency domain,

but a very poor information in the time domain. The opposite would happen choosing a too low

value of N.

In order to choose the adequate frequency bands for the feature extraction, the frequency

content of time signals of hits can be experimentally checked with the help of the above described

technique or performing Welch’s Power Spectral Density estimate. The first one lets one see the

evolution of the energy over time in different frequency bands while the second one, by averaging

the spectrum of FFTs of overlapped windows, reduces random variations due to noise, resulting

in a cleaner spectrum. Welch’s PSD does not let one check the energy evolution over time, but

it allows one to appreciate the most active frequency regions of a signal. The frequency peaks

found with either method indicate the characteristic frequencies of the vibration signal and if
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they are properly selected, their variation in energy over time can be a very precise indicator of

the working condition of a structure.

2.4.2.- Data visualization: Repeatability tests

Data visualization, which implies the creation and study of the visual representation of data, is

considered as a modern field of visual communication [27].

The most simple approach for checking the repeatability of tests is to observe time signals of

several hits from different classes and try to spot similarities and discrepancies between them.

In order to try to take a deeper advantage of data visualization techniques to study the

repeatability of the tests, it has been proposed to develop an algorithm that produces an image

that contains condensed information about a simple hit, so anyone who doesn’t know about

SHM or spectral analysis could spot differences or similarities between various hits by finding

similarities or differences between their corresponding images. To do this, the feature vector has

to be reshaped so it gets a similar number of rows and columns. Then the value of each element

of the new matrix is assigned to a colour proportinal to its value so the human eye can recognize

patterns easier.

2.5.- Intelligent Data Analysis: Machine Learning algorithms

To develop Intelligent Data Analysis algorithms applied to SHM, which are currently helping

to make supervision systems more and more autonomous, is among the main goals of GSDPI

research group. In fact, the data acquired during the development of this project will be used in

the future to test innovative IDA algorithms that allow a reliable fault detection and diagnosis

and a subsequent robust decision making.

This section corresponds to the model development step presented in section 2.1.2. ML

algorithms, that permit the implementation of IDA techniques to fields such as SHM, will be the

subject of study along this section. The upgrades that ML brings are truly meaningful, apart

from making systems more autonomous, it lets one make inferences about the health state of a

structure without having a great idea about the physics that govern it. Figure 2.22 shows the

different stages to be adressed when facing a problem from a Machine Learning approach. Notice

the value that is placed on the feedback that further steps in the process can provide to previous

ones, as it is also stated in CRISP-DM methodology.
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Figure 2.22: Stages of a Machine Learning project.

Source: [4]

A brief introduction about Machine Learning algorithms and an explanation about supervised

and unsupervised learning algorithms used in this project will be the topics in this section.

2.5.1.- Introduction to Machine Learning

Machine Learning (ML), which is seen as a subset of Artificial Intelligence (AI), consists of the

scientific study of algorithms and statistical models used by computer systems to efficiently carry

out a certain task by relying on patterns and inference and without having received explicit

instructions [34, 35].

To better understand the concept of ML, two more perspectives are provided in [5]. Arthur

Samuel described it as: "the field of study that gives computers the ability to learn without being

explicitly programmed," although it is an older and informal definition. Tom Mitchell provided a

more modern definition: "A computer program is said to learn from experience E with respect to

some class of tasks T and performance measure P, if its performance at tasks in T, as measured

by P, improves with experience E."

ML algorithms, that have been taking over in the last years, have become one of the most

powerful tools available for fault detection and diagnosis. Although there are several branches

in ML algorithms, this project will focus on supervised learning and unsupervised learning

algorithms applied to damage detection.

The general approach when it comes to applying ML is to train an algorithm, which will build

a mathematical model with a training set of sample data; then, test the algorithm with a test
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set of data; and finally check if the algorithm made the desired predictions or decisions. It is

also often used a cross validation set which lets evaluate parameters of the algorithm without

making it particularize over the training set, this possible situation is what is called overfitting

or high variance and it is unwanted. The opposite situation is called underfitting or high bias and

consists in the lack of precision of the algorithm due to its low complexity. The goal is to look for

an algorithm that generalizes well for every possible acquired data from the studied process. The

optimal situation is a balance between both overfitting and underfitting and it can be achieved

with the help of a regularization technique which will be explained later.

2.5.2.- Supervised Learning

In supervised learning, the handled data set contains the actual output of the system appart

from the feature vector or input vector. These algorithms will aim to make predictions over new

examples outputting the predicted value for each new evaluated test example.

Supervised learning problems are divided into regression and classification problems. In a

regression problem, the aim is to predict results within a continuous output, trying to map input

variables to some continuous function. In a classification problem, the aim is to predict results in

a discrete output, trying to map input variables into discrete categories [5]. Regression algorithms

are able to find the existence of anomalies, but they are not very efficient at characterizing the

damages. In contrast, classification algorithms are able to detect and characterize damages when

they are trained with a data set that contains enough information about the possible failures.

The notation for dealing with these algorithms follows the next rules as it is defined in [5].

It will be used x(i) to denote the input or feature vector and y(i) to denote the output or target

variable to be predicted. A pair (x(i), y(i)) is called a training example, and the data set used

to learn—a list of m training examples (x(i), y(i)); i = 1, ...,m—is called a training set. Being

m the number of training examples and n the number of available feaures. The superscript

(i) ε {1,2, ...,m} and the subscript j ε {0,1, ...,n} can be used in the next way to denote the jth

feature of the ithexample: x(i)
j . As a convention, a new feature x0 = 1 is added to every example,

which makes eassier the subsequent operations with matrices. X εRm×(n+1) is used to denote the

space of input values and Y εRm×1 to denote the space of output values . In case there are only

two different categories, it is called binary classification and y(i) ε {0,1} expresses if the example

belongs to the negative or to the positive class, respectively. In the current case, which is an

example of multiclass classification, the output can take as much values as existing categories,

which are eleven: y(i) ε {1,2,3,4,5,6,7,8,9,10,11}.

Once extracted the feature matrix X as explained in section 2.4, a common and useful practice

is to perform mean normalization and feature scaling in order to optimize the performance of
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the algorithms. Mean normalization consists in substracting the mean of each input feature x j

along the data set µ j from the corresponding input feature x(i)
j and feature scaling consists in

dividing the input features x(i)
j by the standard deviation σ j of each of the correspondent input

features x j along the data set. This results on a feature matrix X̂ with zero-centered features

and standard deviation equals 1. In case the features are already in similar scales feature scaling

is not essential. This transformation is computed in this way:

(2.4) µ j = 1
m

m∑
i=1

x(i)
j σ j =

√√√√∑m
i=1(x(i)

j −µ j)2

m
x̂(i)

j =
x(i)

j −µ j

σ j

Linear methods like logistic regression and non-linear methods like neural networks, which

can be used to perform multiclass classification, will be used to try to predict categories of damage

in the structure.

2.5.2.1.- Logistic Regression

Logistic regression is a linear method based on the optimization of a parameter vector θ, that

is used to predict wether an example belongs to one class or another through the hypothesis

function hθ(x) shown in equation 2.5. This hypothesis expresses the probability that a data

example belongs to the positive class given its feature vector x(i) and it makes use of the sigmoid

function g(z). Equations 2.6 define the boundary conditions of the hypothesis. In the current case

of multiclass classification, a one-vs-all approach is used, which consists in choosing one class

and then grouping all the rest into a single second class. This is done over and over, applying

binary logistic regression to each case, and then using the hypothesis that outputs the highest

value as the final prediction y(i) [5]. θ can be trained by means of a gradient descent (equation

2.8) over the cost function defined in equation 2.7. Feature scaling is necessary to optimize this

process. Gradient descent is performed for multiple iterations until convergence in order to make

the algorithm as accurate as possible. The parameter α is the step of the gradient descent and λ

is the regularization parameter, which can be used to avoid overfitting of the training set.

(2.5) hθ(x)= g(θT x) z = θT x g(z)= 1
1+ e−z

hθ(x)≥ 0.5→ y= 1 g(z)≥ 0.5 θT x≥ 0→ y= 1(2.6)

hθ(x)< 0.5→ y= 0 whenz ≥ 0 θT x< 0→ y= 0
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(2.7) J(θ)=− 1
m

m∑
i=1

[y(i)log(hθ(x(i)))+ (1− y(i))log(1−hθ(x(i)))]+ λ

2m

n∑
j=1
θ2

j

(2.8) θ j := θ j −α δ

δθ j
J(θ)

2.5.2.2.- Neural Networks

Neural Networks (NN) are a very powerful kind of supervised learning non-linear algorithm.

Their performance will be compared to the one of logistic regression in this project, but, as the

results obtained with logistic regression were succesful, NN won’t be described in depth. A more

complex vibration analysis problem may necessarily need the application of NN.

Artificial Neural Networks are inspired by the behaviour of the human brain itself. NN consist

of a group of artificial neurons, connected to each other in a way that an input feature vector can

be mapped to an output vector by means of the trained weights that define the function mapping

from each layer to the next one. The layers in between the input layer and the output layer are

known as hidden layers. The process of predicting an output for a given input vector is called

forward propagation. NN can be trained as any other ML algorithm, in this case following the

backpropagation method for upgrading the weights of the network during the gradient descent

that minimizes the cost function (in case the reader wants to get a deeper comprehension of

froward and backpropagation, additional information can be found in [5, 7]). Once the NN have

been trained, they can be applied to new data examples in order to predict whether the output

is positive or negative or, as it is the case in this project, produce a one-hot encoded output

associated to the class that the evaluted data example is most likely to belong to. This last case is

the multiclass approach, where the output unit with the biggest value will be considered as the

predicted class, similarly to how it was done in logistic regression.

2.5.3.- Unsupervised Learning

As it is said in [5]:

"Unsupervised learning allows us to approach problems with little or no idea what our

results should look like. We can derive structure from data where we don’t necessarily

know the effect of the variables. We can derive this structure by clustering the data
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based on relationships among the variables in the data. With unsupervised learning

there is no feedback based on the prediction results".

Methods like clustering, which consists in grouping together sets of data examples that are

more similar to each other than to the rest of data, or dimensionaluty reduction (DR), which

consists in reducing the size of the feature vector while trying to maintain a high percentage of

the differences and similarities between data examples, belong to this field.

The notation used to deal with these algorithms is almost the same as the one used in the case

of supervised learning, section 2.5.2, with a few tweaks. In this case, the algorithms only manage

feature vectors x(i), the output variable y(i) is not taken into account. In addition, the column

x0 = 1 is not added to the input vector as it is done in the case of supervised learning. Feature

scaling and mean normalization have to be performed in the same way as it was explained in

section 2.5.2 in order to optimize the performance of the algorithms.

This project emphasizes the benefit of dimensionality reduction applied to fault detection

and data visualization, using linear techniques like Principal Component Analysis (PCA) and

non-linear techniques like T-distributed Stochastic Neighbor Embedding (t-SNE).

2.5.3.1.- Principal Component Analysis

Principal Component Analysis (PCA) is a statistical method that maps, by means of an orthogonal

transformation, a set of sample data, whose measured variables are possibly correlated, into a

new space founded on linearly uncorrelated variables known as principal components [3].

PCA can be used for converting x(i) ε Rn into a lower dimension vector z(i) ε Rk being n the

dimensions of the original feature vector and k the number of dimensions to which the data will

be reduced. It is very useful for visualization purposes as it is able to reduce the dimensions to

a sufficiently small value so data can be plotted, while at the same time it preserves as much

information as possible. It is desirable that the resulting low dimensional vector basis keeps a

high percentage of the total variance in the data [5].

Before performing the transformation, the covariance (equation 2.9) of the input matrix

X εRm×n, Σ εRn×n, has to be decomposed in singular values (SVD) (equation 2.10):

(2.9) Σ= 1
m

m∑
i=1

(x(i))(x(i))T
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(2.10) Σ=USV T

where U εRm×m contains the left singular vectors or principal components, S εRm×n contains the

singular values of Σ on its diagonal or the variance along each componentand ordered by size

and V εRn×n contains the right singular vectors.

After the SVD is computed, the transformation, which consists in keeping the singular vectors

associated to the highest singular values, is performed. A new matrix Ureduced εR
n×k, which is

extracted from U , is the result of this operation. Then, data can be mapped from X εRm×n into

Z εRm×k by means of this equation:

(2.11) z(i) =UT
reduced x(i)

where x(i) εRn×1 and z(i) εRk×1.

2.5.3.2.- T-SNE

T-distributed Stochastic Neighbor Embedding (T-SNE) is an unsupervised learning algorithm

able to perform a non-linear dimensionality reduction for visualization purposes. T-SNE models

each data example in a way that similar points in the high dimensional space are close in the low

dimensional space and dissimilar points are distant [6].

An important parameter to have into account when training T-SNE is the perplexity, which

indicates whether the algorithm will try to find more local differences within the data for low

values of this parameter or more global differences for high values. A proper value of the perplexity

has to be achieved by checking how output data are clustered.

As in the case of NN, T-SNE hasn’t been studied in depth in this project but it will be used to

compare its results with PCA ones.
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3
Results

This section is dedicated to present the output of the methods previously explained. Observations

about the data acquisition and the feature extraction processes, the results of the repeatability

tests, a digression about problems with noise and the output of Machine Learning algorithms

will be shown below.

3.1.- Data acquisition

After checking the FFT of several acquisitios it was seen that information was condensed in the 0

to 10kHz band. So according to Nyquist-Shannon theorem, it is more than enough to choose a

sample rate Sr of 40kHz for all the acquisitions.

Concretely, data used for computing the below shown results was acquired in three different

days. On the first day, 270 total hits where recorded in nine experiments of 30 hits belonging

to each of the nine first classes defined in section 2.3.3. Due to a mistake in the acquisition one

hit of each class had to be erased resulting in a 261 data set. On the second day, same approach

was taken, 30 hits belonging to each one of the first nine classes were acquired, obtaining 270

new data examples. On the third day, 30 hits of classes 1, 10 and 11 were captured, in order to

compare the influence of different joining plates. This resulted in a new data set of 90 hits.
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3.2.- Feature extraction by means of spectral analysis:
observations

Welch’s PSD was used for analyzing several hits from different classes in order to see which

frequency bands to choose for the feature extraction. One thing was noticed here, the selected

bands could be different for each of the three accelerometers. Even if some active regions in

frequency coincide for the three sensors, such as 80 Hz and 610 Hz, others do not. Selecting

different bands for each sensor can be an advantage, allowing to make a more efficient use of the

feature vector. As it can be seen in figure 3.1, some peaks concide but others do not.

Figure 3.1: Welch’s Power Spectral Density of diverse hits from different classes computed for the
measurements from each one of the three accelerometers S1, S2 and S3.

For the feature extraction algorithm, size N of the window was set to 4000 samples, which was

found to be a good balance between information got from time and frequency and δ was calculated

for an overlapping of 90 %; nine 40Hz wide frequency bands were chosen independently for each

of the three sensors; and the three time intervals where the energy in this bands was evaluated

were: 0.4s to 0.5s, 0.5s to 0.6s and 0.6s to 0.8s (being 0.5s the moment in which the hammer

hits the bar). The explanation for choosing the first interval before the hit happens is because

the windowing technique displaces the information in time. The energy evolution over time in

the nine chosen bands for accelerometer number 3 can be seen in figure 3.2, where different

behaviours for different conditions of the steel bar can be spotted.
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Figure 3.2: Energy evolution over time of the nine chosen frequency bands for hits from classes 1
(red), 2 (blue) and 4 (green) measured from accelerometer number 3.

Performing the feature extraction with this technique over nine frequency bands and three

time intervals in the three sensors produced a feature vector x(i) of 9×3×3= 81 dimensions. If

this feature extraction is performed over all the acquisitions, a feature matrix X εRm×n will be

obtained, being m the total number of hits and n the total number of features. The code that has

been used in this feature extraction process can be seen in D.2.

3.3.- Outcome of the repeatability tests

It was accidentally noticed that the addition of the 3D-printed part to the hammer helped

increasing the repeatability of the tests. It could be checked by listening to the sounds the hits

produced, which became more similar one to another and also by observing the time signals of

the acquisitions. The similarity of hits from the same class and the differences between hits from

different classes can be seen in figure 3.3.
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Figure 3.3: Repeatability check for several hits from clases 1 (red), 3 (green) and 7 (blue) measured
from accelerometer number 1.

The algorithm explained in section 2.4.2 has been tested with data coming from 45 hits from

the same day, where 5 hits were carried out for each one of the first nine classes. The normalized

feature vector, that is composed by 81 elements, has been reshaped so that it forms an squared

matrix of size 9x9. The results of this algorithm are shown in figure 3.4. Different classes are

distributed in columns and different hits in rows, so the purpose is to find similarities in the

columns of this figure and differences between different columns.

It is checked that, even if some blurry patterns could be guessed, it is not an effective method

for this exact purpose.
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Figure 3.4: Repeatability test performed over 5 hits of each of the first 9 classes.

3.4.- Noise

While observing the first measurements, when the test bench was being developed, it appeared a

constant noise in the capture of the accelerometers whose source wasn’t possible to be found at a

first glance. The noise was structured and constant, but it was split in all the frequency domain

so it was imposible to filter it out. Lots of possible sources of noise were proposed but none of them

was proved to be the main one. Some options like electromagnetic noise captured by the steel

bar directly transmitted to the accelerometers or the magnetic field created by the hammer were

taken into account. Every device was plugged to the same connector of the electrical network

so they could share the ground connection, but there were no noticeable improvements. Apart

from the main noise, it was possible to appreciate the noise coming from the electrical network at

around 50Hz but this one was much smaller and also harder to eliminate.

It was deduced that these accelerometers aren’t working in their optimal conditions. Using

some accelerometers with a bigger sensitivity and less susceptible to noise would improve the

performance of these acquisitions.

Finally, it was decided to put the 3D-printed plastic cover shown in section 2.3.1.2 in all the

three accelerometers. Although it acts as a low pass filter and has some resonance peaks, it

considerably reduces the noise captured by the sensors and it respects the frequencies in which

the algorithms will focus. In any case, when it came to the feature extraction, it was avoided to
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choose the main frequencies of the remaining noise. Even if it could seem that the usage of the

plastic covers in the accelerometers is not as clear as in the case of the hammer, it was decided

together with the research team to keep them just in case some different feature extraction

technique which is sensitive to the noise is applied in the future to the obtained acquisitions

during this research.

Time signals and the spectrogram of one hit captured by the accelerometers can be seen in

figures 3.5 and 3.6, respectively. A spectrogram is the representation of the amplitude of a signal

with a colour code for different time intervals and frequency bands and it is also based on the

windowing technique and FFT. First and second accelerometers are isolated with the plastic

cover and the third one is not in order to highlight its influence on the measured vibrations. It

can be clearly seen that the third window in both figures shows a bigger level of noise.

Figure 3.5: Time signal of accelerometers 1 and 2 with cover and accelerometer 3 without it.
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Figure 3.6: Spectrograms of accelerometers 1 and 2 with cover and accelerometer 3 without it.

3.5.- Machine Learning algorithms outcome

Machine Learning algorithms described in section 2.5 have been applied to the extrated feature

vectors. The results of the applied classification and dimensinality reduction algorithms will be

analyzed during this section.

It must be said that the code used for implementing ML algorithms, which is shown in D.3,

was mainly extracted from the Machine Learning Course by Andrew Ng [5].
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3.5.1.- Classification

Classification by means of logistic regression and neural networks has been applied to the data

captured in the test bench. Once feature scaling and mean normalization were applied to all the

data, the algorithms were trained in Matlab different ways in order to remark the dependence of

the accuracy on the size of the training set and on the variability of the environmental conditions.

First, it will be shown the performance of LR and NN diagnosing classes from 1 to 9 in

five different cases to show how the algorithms can make differences between loose screws,

added weights and normal conditions. Later, examples belonging to classes 1, 10 and 11 will be

diagnosed with LR to show how the algorithms make differences between different joining plates.

The performance of these algorithms will be evaluated by means of the percentage of accuracy in

the predictions and confusion matrices (shown in appendix A), which are tables that compare the

true class of tested data examples versus their predicted class.

3.5.1.1.- Normal conditions, loose screws and added weights

Initially, both LR and NN algorithms were used following two different procedures: in case 1,

training with data from the first day and testing with data from that same day and in case 2,

training with data from the first day and testing with data from the second day. The training set

size was set to 20% of the total amount of data and the remaining 80% was used as test set. The

topology of the used neural network consists of: an input layer of 81 units, which is the size of the

feature vector; a hidden layer of 200 units, which was experimentally found to be a good balance

between computing speed and algorithm’s prediction accuracy; and an output layer of 9 units,

which is the number of evaluated classes. The obtained results are shown in the next item list:

• LR in case 1. Accuracy of 82.12%.

• NN in case 1. Accuracy of 89.37%.

• LR in case 2. Accuracy of 56.48%.

• NN in case 2. Accuracy of 60.19%.

Looking at the previous results and the associated confusion matrices shown in tables A.1

to A.4, three things can be said: a low size of the training set has made the algorithms overfit

the few data examples that they were given during the training, causing a poor accuracy in the

prediction. It can be also said that when it comes to predict data acquired in a different day than

the day when the training set was acquired, it is clearly seen that the accuracy is decreased. The
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reason for this is the high dependence of the dynamic response of structures on enviromental

conditions like temperature or moisture, which had been previously pointed out by Sohn et al.

(2003) [20]. Lastly, it can be said that Neural Networks are able to achieve a little higher accuracy

because they can learn non-linearities from the input data.

To improve the performance of the algorithms, the same procedure was used but this time

choosing a training set size of 70% of the total amount of data and the remaining 30% was used

as test set. The obtained results in case 3, training and testing with data from the same day, and

case 4, training and testing with data from different days, can be seen below:

• LR in case 3. Accuracy of 98.61%.

• NN in case 3. Accuracy of 100%.

• LR in case 4. Accuracy of 81.48%.

• NN in case 4. Accuracy of 83.95%.

Looking at this results and tables A.5 to A.8, it can be seen that increasing the size of the

training set, in comparison with cases 1 and 2, clearly helps improving the accuracy of the

algorithms. This is because the algorithms get a richer information about the variability of data

belonging to the same class and about the difference between data from different classes. It can

be said that the algorithms are able to generalize better for new tested data examples. The results

have improved, but still, when it comes to predict the class of data acquired in a different day than

the training set, the accuracy decreases due to the variability of the environmental conditions.

Also, it can be checked again the little higher accuracy of Neural Networks in comparison to

Logistic Regression.

Finally, in order to avoid the dependence of the algorithms on the environment and achieve

the optimal possible performance, LR and the same NN presented in the previous cases, were

trained with data from both days and tested with data also from both days. The size of the

training set was 70% of the total amount of data and the remaining 30% was used as test set.

The results of this final upgrade, case 5, are shown below:

• LR in case 5. Accuracy of 98.04%.

• NN in case 5. Accuracy of 99.35%.

Looking at these final results and tables A.9 and A.10, it can be observed the unquestionable

enhancement of the performance of the algorithms when they are trained with data acquired in
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different days, learning to properly classify damage classes neglecting the circumstances of the

moment of the acquisition. It can also be seen again how Neural Networks perform a little bit

better than Logistic Regression, but the difference is not very significant in this case.

A bar chart showing the progressive improvement of the performance of Logistic Regression

and Neural Networks in the five previously explained cases can be seen below:

Figure 3.7: Bar chart showing the percentage of accuracy of LR and NN in the five described
cases.

A condensation of the weigths θ learnt by the trained Logistic Regression algorithm in case 5

has been done from a data visualization approach. The weights have been separated in three

different matrices associated to the data coming from each one of the three accelerometers. Then,

the average of each group of three weights associated to the three evaluated intervals of time

for a given frequency and accelerometer has been computed in order to show just classes versus

frequencies. The results are presented in a discrete three-color scale in order to show low values
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(lighter), medium values and high values (darker). Note that, before the averaging, the absolute

value of each weight was performed, so darker squares are reliable indicators, but they can

indicate that high values of energy in a frequency band make a hit belong to one class or the

opposite, not belong to it. This is a very useful technique because it can let one know which

features are contributing to the decisions taken by the algorithm with respect to each class. The

three following figures, 3.8, 3.9 and 3.10, show the learnt indicators by LR algorithm from the

three accelerometers.

Figure 3.8: Indicators learnt from data coming from sensor 1. The evalutated frequencies in
accelerometer 1 are, in ascending order: 80, 610, 710, 1100, 1590, 1730, 2110, 3330 and 3490 Hz.
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Figure 3.9: Indicators learnt from data coming from sensor 2. The evalutated frequencies in
accelerometer 2 are, in ascending order: 80, 360, 610, 1230, 1390, 1590, 2040, 3330 and 3675 Hz.

Figure 3.10: Indicators learnt from data coming from sensor 3. The evalutated frequencies in
accelerometer 3 are, in ascending order: 80, 610, 710, 1390, 1570, 1970, 2030, 3330 and 3470 Hz.
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Finally, it has to be said that, as it was experienced, in the case the feature vector is composed

just with data coming from one or two accelerometers, the loss of information is not too large

and classification algorithms keep performing with high success rates. This fact should be taken

into account in the case a company wants to install this system. It should be studied how many

sensors are necessary to achieve the needed accuracy, making sure the economic cost is not

greater than necessary.

3.5.1.2.- Different joining plates

In order to check if classification algorithms were also able to distinguish between different

joining plates, LR algorithm was trained with the 70% of data acquired on the third day and

tested with the remaining 30%. The obtained results were optimal. As it can be seen in table A.11,

an accuracy of 100% was achieved. These results are due to the noticeable deviation induced

when substituting essential parts of the structure with pieces made of different materials or with

different shapes.

3.5.2.- 2D projections

PCA and T-SNE have been trained in order to map data examples acquired in the same day from

their high dimensional space to a lower dimensional space, which allows the visualization of data

and helps to find clusters within the data. Feature scaling and mean normalization of the feature

matrix have been computed before training the algorithms.

As it was done before in the case of classification, the results will be divided in two groups:

clustering normal conditions, loose screw and added weight classes and clustering different

joining plate classes.

3.5.2.1.- Normal conditions, loose screws and added weights

2D projections of data obtained by means of PCA and T-SNE are shown in 3.11 and 3.12,

respectively. In the case of PCA, 70% of the evaluated data was used to train the PCA and the

reamaining 30% was used to check if new examples fall close to training examples belonging

to their same class or not. In the case of T-SNE, all the data set has to be provided to train the

algorithm. The parameter perplexity was set to 20.
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Figure 3.11: Projected data from classes 1 to 9 in 2D by means of PCA. Training set of 70% of the
data set and the remaining 30% used as test set.

Roberto Arnaiz Burgueño



UNIVERSITY OF OVIEDO
Polytechnic School of Engineering of Gijón 53 of 98

Figure 3.12: Projected data from classes 1 to 9 in 2D by means of T-SNE.
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It can be seen that PCA was able to represent data examples that belong to the same class

close one to another, but the boundaries between different classes are not very clear. It can also

be seen that the tested data was mapped into close positions to the training data from its same

class. The poor separation of the classes is due to the fact that the first two principal components

just contain the 37.25% of the variance in the data.

T-SNE, in contrast, is able to not only locate data examples belonging to the same class close

one to another, but also defines clearer boundaries between different classes. This is due to the

fact that T-SNE is able to find non-linearities in the data while PCA algorithm is linear. The same

data examples used for testing the PCA are represented with crosses in the T-SNE plot so they

can be identified. Anyway, notice that in this case they have been used for training the T-SNE.

3.5.2.2.- Different joining plates

In this section, PCA and T-SNE where trained with data from classes where different joining

plates are assembled to the bar. The results can be seen in figures 3.13 and 3.14, respectively.

Again, 70% of the evaluated data was used to train the PCA and the reamaining 30% was used

as test set. The parameter perplexity of T-SNE algorithm was set to 20.
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Figure 3.13: Projected data from classes 1 ,10 and 11 in 2D by means of PCA. Training set of 70%
of the data set and the remaining 30% used as test set.
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Figure 3.14: Projected data from classes 1, 10 and 11 in 2D by means of T-SNE.
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In this case, PCA algorithm is able to perform better than in the 9 classes analysis. This is

because the two first principal components contain a 75.85% of the total variance in the evaluated

data set and also because oh the lower number of classes being evaluated.

T-SNE algorithm is able to perform again better than PCA, not only defining boundaries

between classes but also concentrating data examples from the same class in very close locations

in the low dimensional space.
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Discussion

A fter presenting the results of this project: the contributions it has made, an assessment

about the obtained results and ideas about future lines of work will be exposed.

4.1.- Contributions

The contributions that this work has brought are the following:

• Review of the SHM bibliography and its potential benefits in industrial processes.

• Automation of a Structural Health Monitoring test bench by means of the high level

language software Matlab, that handles the NI-USB 6356 data acquisition board, which

improves the old test bench in aspects such as the possibility of increasing drastically the

sample rate for the acquisitions or making easier the signal management. The sofware has

been written in a modular way so it can be reused and expanded in the future.

• Structured organization of the acquired data and posterior storage in an intuitive way in

".mat" files, making the subsequent data processing easier.

• Design of a convention for SHM tests with which large repositories can be made and shared

in order to contribute to the SHM research.
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• Analysis of the possibilities of Machine Learning applied to frequency features in SHM

problems. In particular, usefulness of classification and dimensionality reduction algorithms

applied to fault detection was proved.

4.2.- Assessment

After analyzing the development of the project and the obtained results, the next ideas can be

remarked:

• The design of every aspect of an SHM test bench, ranging from instrumentation and test

automation to data processing and diagnostic, makes a considerable contribution.

• The design of a robust test bench like this brings the possibility to do future work without

worrying about design defects and in which efforts can focus on improving the applications

of Intelligent Data Analysis algorithms in SHM.

• High repeatability in the measurements was achieved in tests performed in the same time

frame, partly thanks to the addition of the 3D-printed part on the hammer.

• It has been checked that noise problems can be a real obstacle for the data acquisition and

that laboratory conditioning and isolation of the instrumentation play an important role.

• It was experienced that the fact of having a 3D printer allows you to obtain any type of piece

with the desired characteristics in a matter of minutes, which brings flexibility, wealth to

the information extracted from the experiments and the possibility of modifying mechanical

aspects of any element of the system to taste.

• The dependence of the results on the chosen parameters was observed during the feature

extraction process, where a proper selection of the frequency bands and time intervals has

a crucial role.

• The dependence of the results of the Machine Learning algorithms on the environmental

conditions was verified. Clearly, it is an aspect that deserves to be taken into account and

it is recommended to collect data from different days, so that the algorithms are able to

generalize when they face new situations.
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4.3.- Future work

In accordance with the experience accumulated after carrying out this project, the analysis of the

tasks that took more time and the motivation found to develop some aspects for which there was

not available time, the following future lines of work are proposed:

• Development of an algorithm that automatically optimizes the feature extraction process

(center and width of frequency bands, window size, overlapping, etc.) from the available

sampled signal, using the prediction error of the applied Machine Learning algorithm as a

way to evaluate it.

• Modal analysis and damage detection algorithms proposed in this field.

• Test other systems of excitation such as electrodynamic shakers in order to cause different

responses on the structure.

• Test other kind of accelerometers which have a higher sensitivity and are less susceptible

to noise.

• Further research into the enhancement that 3D printing technologies can bring to SHM

test benches design and performance.

• Build a 3D-printed case to make the test bench hardware more compact.

• Integrate the test bench into a cloud data access service in order to contribute to the

settlement of industry 4.0.
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Confusion matrices

In this appendix, the confusion matrices associated to each of the situations explained in section

3.5.1 will be shown.

A.1.- Confusion matrices: Normal conditions, loose screws and
added weights

Predicted class
1 2 3 4 5 6 7 8 9

True
class

1 15 4 0 0 2 0 1 1 0
2 0 23 0 0 0 0 0 0 0
3 0 8 15 0 0 0 0 0 0
4 0 0 0 23 0 0 0 0 0
5 0 2 3 0 18 0 0 0 0
6 0 4 0 0 0 19 0 0 0
7 0 0 0 0 0 0 22 0 1
8 0 0 1 0 0 5 0 14 3
9 1 0 0 0 0 0 1 0 21

Table A.1: Confusion matrix of logistic regression in case 1. LR algorithm trained with data from
day one and tested with data from that same day. Training set 20% and test set 80% of the total
amount of data. Accuracy of 82.12%
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Predicted class
1 2 3 4 5 6 7 8 9

True
class

1 16 6 0 0 1 0 0 0 0
2 0 23 0 0 0 0 0 0 0
3 0 3 18 0 0 0 0 0 2
4 0 0 0 23 0 0 0 0 0
5 0 0 0 0 23 0 0 0 0
6 0 0 0 0 0 23 0 0 0
7 0 0 0 0 0 0 23 0 0
8 0 0 1 0 0 5 0 13 4
9 0 0 0 0 0 0 0 0 23

Table A.2: Confusion matrix of neural networks in case 1. NN algorithm trained with data from
day one and tested with data from that same day. Training set 20% and test set 80% of the total
amount of data. NN with one hidden layer of 200 units. Accuracy of 89.37%

Predicted class
1 2 3 4 5 6 7 8 9

True
class

1 6 1 10 0 1 0 0 5 1
2 0 24 0 0 0 0 0 0 0
3 5 1 18 0 0 0 0 0 0
4 1 0 3 15 5 0 0 0 0
5 1 1 4 0 18 0 0 0 0
6 0 0 1 0 0 22 0 1 0
7 0 17 0 1 0 0 5 0 1
8 1 10 0 2 0 1 1 8 1
9 0 6 0 3 0 0 6 3 6

Table A.3: Confusion matrix of logistic regression in case 2. LR algorithm trained with data from
day one and tested with data from day 2. Training set 20% and test set 80% of the total amount
of data. Accuracy of 56.48%
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Predicted class
1 2 3 4 5 6 7 8 9

True
class

1 7 1 7 0 4 0 1 1 3
2 0 22 1 0 0 0 0 0 1
3 4 0 18 1 0 0 0 0 1
4 1 0 0 18 5 0 0 0 0
5 0 0 0 0 16 0 0 0 8
6 0 0 0 0 0 17 0 7 0
7 0 9 0 0 0 3 11 0 1
8 1 2 0 0 0 12 0 9 0
9 0 6 0 0 0 0 5 1 12

Table A.4: Confusion matrix of neural networks in case 2. NN algorithm trained with data from
day one and tested with data from day 2. Training set 20% and test set 80% of the total amount
of data. NN with one hidden layer of 200 units. Accuracy of 60.19%

Predicted class
1 2 3 4 5 6 7 8 9

True
class

1 8 0 0 0 0 0 0 0 0
2 0 8 0 0 0 0 0 0 0
3 0 0 8 0 0 0 0 0 0
4 0 0 0 8 0 0 0 0 0
5 0 0 0 0 8 0 0 0 0
6 0 0 0 0 0 8 0 0 0
7 0 0 0 0 0 0 8 0 0
8 0 0 0 0 0 0 0 7 1
9 0 0 0 0 0 0 0 0 8

Table A.5: Confusion matrix of logistic regression in case 3. LR algorithm trained with data from
day one and tested with data from that same day. Training set 70% and test set 30% of the total
amount of data. Accuracy of 98.61%
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Predicted class
1 2 3 4 5 6 7 8 9

True
class

1 8 0 0 0 0 0 0 0 0
2 0 8 0 0 0 0 0 0 0
3 0 0 8 0 0 0 0 0 0
4 0 0 0 8 0 0 0 0 0
5 0 0 0 0 8 0 0 0 0
6 0 0 0 0 0 8 0 0 0
7 0 0 0 0 0 0 8 0 0
8 0 0 0 0 0 0 0 8 0
9 0 0 0 0 0 0 0 0 8

Table A.6: Confusion matrix of neural networks in case 3. NN algorithm trained with data from
day one and tested with data from that same day. Training set 70% and test set 30% of the total
amount of data. NN with one hidden layer of 200 units. Accuracy of 100%

Predicted class
1 2 3 4 5 6 7 8 9

True
class

1 3 0 2 0 0 0 0 4 0
2 0 9 0 0 0 0 0 0 0
3 0 0 9 0 0 0 0 0 0
4 0 0 0 6 2 0 0 1 0
5 0 0 0 0 9 0 0 0 0
6 0 0 0 0 0 9 0 0 0
7 0 0 0 0 0 0 8 0 1
8 1 0 0 3 0 1 0 4 0
9 0 0 0 0 0 0 0 0 9

Table A.7: Confusion matrix of logistic regression in case 4. LR algorithm trained with data from
day one and tested with data from day 2. Training set 70% and test set 30% of the total amount
of data. Accuracy of 81.48%
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Predicted class
1 2 3 4 5 6 7 8 9

True
class

1 2 0 6 0 0 0 0 1 0
2 0 9 0 0 0 0 0 0 0
3 0 0 9 0 0 0 0 0 0
4 0 0 0 9 0 0 0 0 0
5 0 0 0 0 9 0 0 0 0
6 0 0 0 0 0 8 0 1 0
7 0 2 0 0 0 0 7 0 0
8 0 0 0 0 0 3 0 6 0
9 0 0 0 0 0 0 0 0 9

Table A.8: Confusion matrix of neural networks in case 4. NN algorithm trained with data from
day one and tested with data from day 2. Training set 70% and test set 30% of the total amount
of data. NN with one hidden layer of 200 units. Accuracy of 83.95%

Predicted class
1 2 3 4 5 6 7 8 9

True
class

1 17 0 0 0 0 0 0 0 0
2 0 17 0 0 0 0 0 0 0
3 0 0 17 0 0 0 0 0 0
4 0 0 0 17 0 0 0 0 0
5 0 0 0 0 17 0 0 0 0
6 0 0 0 0 0 16 0 1 0
7 0 0 0 0 0 0 17 0 0
8 0 0 0 0 0 2 0 15 0
9 0 0 0 0 0 0 0 0 17

Table A.9: Confusion matrix of logistic regression in case 5. LR algorithm trained with shuffled
data from both days and tested with data from both days too. Training set 70% and test set 30%
of the total amount of data. Accuracy of 98.04%

Roberto Arnaiz Burgueño



UNIVERSITY OF OVIEDO
Polytechnic School of Engineering of Gijón 68 of 98

Predicted class
1 2 3 4 5 6 7 8 9

True
class

1 17 0 0 0 0 0 0 0 0
2 0 17 0 0 0 0 0 0 0
3 0 0 17 0 0 0 0 0 0
4 0 0 0 17 0 0 0 0 0
5 0 0 0 0 17 0 0 0 0
6 0 0 0 0 0 17 0 0 0
7 0 0 0 0 0 0 17 0 0
8 0 0 0 0 0 1 0 16 0
9 0 0 0 0 0 0 0 0 17

Table A.10: Confusion matrix of neural networks in case 5. NN algorithm trained with shuffled
data from both days and tested with data from both days too. Training set 70% and test set 30%
of the total amount of data. NN with one hidden layer of 200 units. Accuracy of 99.35%

A.2.- Confusion matrices: Different joining plates

Predicted
class

1 10 11

True
class

1 9 0 0
10 0 9 0
11 0 0 9

Table A.11: Confusion matrix of LR algorithm applied to distinguish between classes 1, 10 and
11. Training set 70% and test set 30% of the total amount of data. Accuracy of 100%

.
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Timeline of work

The following chronogram shows the indicative times dedicated to the different carried out

tasks:

Figure B.1: Project timeline.
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Abbreviations

AD Analog Digital

AI Artificial Intelligence

CAGR Compound Annual Growth Rate

CM Condition Monitoring

CRISP-DM Cross Industry Standard Process for Data Mining

DAQ Data Acquisition

DC Direct Current

DFT Discrete Fourier Transform

FFT Fast Fourier Transform

GSDPI Group of Supervision and Diagnosis of Industrial Processes

IDA Intelligent Data Analysis

LR Logistic Regression

ML Machine Learning

NDT Non Destructive Testing

NN Neural Networks

PC Personal Computer

PCA Principal Component Analysis

PSD Power Spectral Density

RMS Root Mean Square

SHM Structural Health Monitoring

SVD Singular Value Decomposition

T-SNE T-distributed Stochastic Neighbor Embedding
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USB Universal Serial Bus

USD United States Dollar
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D
Matlab scripts

The Matlab code used for obtaining the results shown in this document will be presented along

this appendix. The code has been classified in DAQ (Data Acquisition), feature extraction and

Machine Learning scripts.

D.1.- DAQ scripts

The code used for automating the data acquisition and storage can be seen next.

D.1.1.- DAQ main

%% Data Acquisition

clear all;

close all;

ask_sr = 'Type the sample rate in Hz: ';

Sr = input(ask_sr);

ask_n = 'Type the number of hits to be performed: ';

n = input(ask_n);

label1 = ('normal conditions ');
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label2 = ('Loose screw (1)');

label3 = ('Loose screw (4)');

label4 = ('Loose screw (5)');

label5 = ('Loose screw (8)');

label6 = ('10Kg weight in the left side');

label7 = ('10Kg weight in the right side');

label8 = ('8Kg weight in the left side');

label9 = ('8Kg weight in the right side');

label10 = ('3D-printed plastic join');

label11 = ('3D-printed plastic join with narrowness ');

fprintf(strcat('Possible labels: \n 1-->', label1 , '\n 2-->',

label2 , '\n 3-->', label3 , '\n 4-->', label4 , '\n 5-->', label5

, '\n 6-->', label6 , '\n 7-->', label7 , '\n 8-->', label8 , '\n

9-->', label9 , '\n 10-->', label10 ,'\n 11-->', label11 , '\n'));

ask_label = 'Type the label of the experiment: ';

label = input(ask_label);

ask_descripcion = 'Write a description for the experiment: ';

descrip = input(ask_descripcion ,'s');

s = init_exp(Sr);

out = control_signal(Sr);

message_aq = ['Wait ' num2str (15*n) ' seconds while the test is

performed ...'];

disp(message_aq);

[S1aq , S2aq , S3aq] = gen_aq(n,Sr,out ,s);

[S1, S2, S3] = data_preprocess(n,Sr,S1aq ,S2aq ,S3aq);

save_data(n, Sr, S1, S2, S3, label , descrip);

show_aq(n, Sr, S1, S2, S3);

final_message = ['The test has finished '];

disp(final_message);

D.1.2.- Initializing the experiment

function s = init_exp(Sr)

% Necessary config to perform experiments with a given sample
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rate Sr

% Detect connected devices

d = daq.getDevices;

% Create session s

s = daq.createSession('ni');

% Add AI --> accelerometers

s.addAnalogInputChannel('Dev2', 0, 'Voltage ');

s.addAnalogInputChannel('Dev2', 2, 'Voltage ');

s.addAnalogInputChannel('Dev2', 5, 'Voltage ');

% Add AO driver

s.addAnalogOutputChannel('Dev2',0,'Voltage ');

% Sample rate of the experiment

s.Rate = Sr;

end

D.1.3.- Control signal

function out = control_signal(Sr)

% Square wave close to impulse (200 ms)

% waveform duration: 15 s.

out = 5*( ones (15*Sr ,1)); % 5 V, hammer is contracted

out(5*Sr:5.2*Sr) = 2.5; % 2.5 V, hammer hits

end

D.1.4.- Data generation and acquisition

function [S1aq , S2aq , S3aq] = gen_aq(n,Sr,out ,s)

% Generates the control signal and captures the data for n

experiments

% Stores acquisitions of sensors in matrices S1aq , S2aq and S3aq

S1aq = [];

S2aq = [];

S3aq = [];

for k=1:n

% control signal to output buffer

if k == n

out(end)=2.5; % last element of control signal = 2.5,

so the hammer stops receiving voltage after the last

hit
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else

out(end)=5;

end

s.queueOutputData ([out]);

% Start generation and acquisition in the foreground

[data ,time] = s.startForeground ();

% Storage of data coming from each sensor (rows=samples ,

columns =no. experiment)

S1aq = [S1aq ,data (1:15*Sr ,1)];

S2aq = [S2aq ,data (1:15*Sr ,2)];

S3aq = [S3aq ,data (1:15*Sr ,3)];

end

end

D.1.5.- Data pre-processing

function [S1, S2, S3] = data_preprocess(n,Sr,S1aq ,S2aq ,S3aq)

% The starting instant of vibration is saved in S2_start in order

to synchronize the different hits and check repeatability

% In SX, data from the accelerometer X is saved , in a way that

measurements are distributed along rows and hits along columns

from 0.5 s before the hit until 3.5 s after the hit

S2_start = [];

S1 = [];

S2 = [];

S3 = [];

for i=1:n

S2_start = [S2_start , find(abs(S2aq(:,i)) >0.5,1)];

S1 = [S1, S1aq(S2_start(i) -0.5*Sr:S2_start(i)+3.5*Sr -1,i)];

S2 = [S2, S2aq(S2_start(i) -0.5*Sr:S2_start(i)+3.5*Sr -1,i)];

S3 = [S3, S3aq(S2_start(i) -0.5*Sr:S2_start(i)+3.5*Sr -1,i)];

end

end

D.1.6.- Data description file

function data_descrip ()
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% This function creates the file where the description of each

experiment will be stored

% This function has to be executed only once , at the begining of

all the experiments

categories = {'Number of Exp' 'number of hits' 'Sample Rate' '

Label ' 'Description ' 'Timestamp '};

save 'description.mat' categories;

end

D.1.7.- Data storage

function save_data(n, Sr, S1, S2, S3, label , descrip , tmstmp)

description = matfile('descripcion.mat','Writable ',true);

N = size(description.categories ,1);

tmstmp = datestr(now);

new_categories = {N n Sr label descrip tmstmp };

description.categories = [description.categories; new_categories

];

file = strcat('Exp_',num2str(N),'.mat');

save (file , 'S1', 'S2', 'S3', 'n', 'Sr', 'label ', 'descrip ', '

tmstmp ');

end

D.1.8.- Plotting the acquisitions

function show_aq(n, Sr, S1, S2, S3)

% Shows all the measurements after an experiment

time_sync = linspace (-0.5,3.5,4*Sr);

Legend=cell(n,1);

figure;

clf;

for i = 1:n

subplot (3,1,1)

hold on

plot(time_sync ',S1(:,i),'color ',rand (1,3));

hold off

subplot (3,1,2)

hold on
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plot(time_sync ',S2(:,i),'color ',rand (1,3));

hold off;

subplot (3,1,3)

hold on

plot(time_sync ',S3(:,i),'color ',rand (1,3));

hold off;

Legend{i}= strcat('Exp:', num2str(i));

end

ax1 = subplot (3,1,1);

hold on

ylabel('Voltage 100 mV/g');

xlabel('Time (Secs)');

title('Acquired Signal Sensor 1');

legend(Legend);

hold off

ax2 = subplot (3,1,2);

hold on

ylabel('Voltage 100 mV/g');

xlabel('Time (Secs)');

title('Acquired Signal Sensor 2');

legend(Legend);

hold off

ax3 = subplot (3,1,3);

hold on

ylabel('Voltage 100 mV/g');

xlabel('Time (Secs)');

title('Acquired Signal Sensor 3');

legend(Legend);

hold off

linkaxes ([ax1 ax2 ax3], 'xy')

D.2.- Feature extraction scripts

The scripts used in the feature extraction process are presented below.
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D.2.1.- Feature extraction main and repeatability visualization

%% This script takes the collection of tests and computes the

feature extraction

% Sr has to be the same for every different training subset

clear all;

% load captures from 9 different classes

data {1} = load('Exp_15.mat');

data {2} = load('Exp_16.mat');

data {3} = load('Exp_17.mat');

data {4} = load('Exp_18.mat');

data {5} = load('Exp_19.mat');

data {6} = load('Exp_20.mat');

data {7} = load('Exp_21.mat');

data {8} = load('Exp_22.mat');

data {9} = load('Exp_23.mat');

n = data {1}.n; %number of hits inside each label

Sr = data {1}.Sr; %sample rate

%% Y (Output)

num_labels = 9;

Y = zeros(num_labels*n,1);

k=1;

for i=1: num_labels

for j=1:n

Y(k) = data{i}.label;

k = k+1;

end

end

%% X. Input. feature extraction.

% 9 freq bands x 3 sensors x 3 time intervals. X vector of 81

elements for each example

X = []; %Feature vector

%frequencies to be analyzed in each sensor

freq = [80 610 710 1100 1590 1730 2110 3330 3490;

80 360 610 1230 1390 1590 2040 3330 3675;
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80 610 710 1390 1570 1970 2030 3330 3470];

N=4000; %window size

k = 1;

%i = number of labels e = number of hits belonging to each label

for i = 1: num_labels

for e=1:n

[x, f] = feat_ex(data{i},e,N,freq);

X = [X; x];

k = k+1;

end

end

%% saving data (not normalized)

file = strcat('Data_joints_0 .4_0.5_0.6_0.8.mat');

save (file , 'X', 'Y', 'n', 'Sr', 'freq', 'W' );

%% Repetibility test with feature scaling and mean normalization

im = {};

[X_norm , mu, sigma] = featureNormalize(X);

k=1;

for i = 1: num_labels

for w=1:n

im{k} = reshape(X_norm ((i-1)*n+w,:) ,9,9);

k = k+1;

end

end

for i=1: num_labels

figure;

for w = 1:n

subplot(6,5,w)

image(im{(i-1)*n+w},'CDataMapping ','scaled ')

title(strcat('label: ',num2str(i),' strike: ',num2str(w)));

colorbar

caxis([-3 3])

end

end
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D.2.2.- Feature extraction function

function [X] = feat_ex(data , e, N, freq)

% This function performs the feature extraction of a given sample

test.

Sr = data.Sr;

S1 = data.S1(:,e);

S2 = data.S2(:,e);

S3 = data.S3(:,e);

tm = 1/Sr;

delta = 0.1*N; % 90% overlapping

Srf = Sr/delta; % feature sample rate

Q = size(S1 ,1);

time = linspace (-0.5,3.5,4*Sr); %time vector

f = 0:(Sr/N):(Sr/N)*(N-1); % Frequency vector

marg = 20; %20 Hz margin

%time intervals to pay attention to

t1 = 0.4;

t2 = 0.5;

t3 = 0.6;

t4 = 0.8;

idx = {};

for j = 1:3

for i = 1:size(freq ,2)

idx{j,i} = find((f>(freq(j,i)-marg)) & (f<(freq(j,i)+marg)));

end

end

%% Feature extraction: j for each sensor , k for each window (new

sample) and h for each feature (band)

F = {};

S = {S1 S2 S3};

for j=1:3

i=1;

for k=N:delta:Q

yv = S{j}(k-N+1:k);

Y = abs(fft(yv));

for h = 1:size(freq ,2)

F{j}(i,h) = sqrt(sum(2*Y(idx{j,h}).^2))/N;
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end

i = i+1;

end

end

%% rms average in the time intervals: j for each sensor , i for

each freq band

R = {};

for j=1:3

for i=1: size(freq ,2)

R{i,j} = [mean(F{j}( uint16(t1*Srf):uint16(t2*Srf -1),i)),

mean(F{j}( uint16(t2*Srf):uint16(t3*Srf -1),i)), mean(F{j

}( uint16(t3*Srf):uint16(t4*Srf -1),i))];

end

end

I = cell2mat(R);

X = (I(:)) ';

end

D.3.- Machine Learning scripts

The Matlab scripts used to implement Machine Learning algorithms are shown in this section.

Some common functions to several algorithms, Logictic Regression scripts, Neural Networks

scripts and PCA and T-SNE scripts will be presented.

D.3.1.- Common functions

D.3.1.1.- Feature normalization

function [X_norm , mu, sigma] = featureNormalize(X)

%FEATURENORMALIZE Normalizes the features in X

X_norm = [];

mu = zeros(1, size(X, 2));

sigma = zeros(1, size(X, 2));

for i=1: size(X,2)

mu(i) = mean(X(:,i));

sigma(i) = std(X(:,i));

Roberto Arnaiz Burgueño



UNIVERSITY OF OVIEDO
Polytechnic School of Engineering of Gijón 83 of 98

X_norm = [X_norm , (X(:,i) - mu(i))./sigma(i)];

end

end

D.3.1.2.- Shuffling and getting training and test set

function [X,y,Xtest ,ytest] = train_test(X,Y,n1,n2,num_labels)

% training set and test set

% n1 is the number of examples per class and n2 is the number of

examples per class that are used as training set. the rest will

be used for the test set.

% this function choses the training set and test set randomnly

from the examples of each class

%num labels is the number of different classes

Xrand = [];

for i = 1: num_labels

rps = randperm(n1)+n1*(i-1);

Xrand = [Xrand;X(rps ,:)];

end

aux = []; auxt = []; auy = []; auyt = [];

for i=1: num_labels

aux = [aux;X((i-1)*n1+(1:n2) ,:)];

auxt = [auxt;X((i-1)*n1+(n2+1:n1) ,:)];

auy = [auy;Y((i-1)*n1+(1:n2) ,:)];

auyt = [auyt;Y((i-1)*n1+(n2+1:n1) ,:)];

end

X = aux;

y = auy;

Xtest = auxt;

ytest = auyt;

end

D.3.1.3.- Sigmoid function

function g = sigmoid(z)

%Computes the sigmoid of z.

g = 1.0 ./ (1.0 + exp(-z));
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end

D.3.1.4.- Sigmoid gradient

function g = sigmoidGradient(z)

%SIGMOIDGRADIENT returns the gradient of the sigmoid function

evaluated at z

g = zeros(size(z));

g = sigmoid(z).*(1- sigmoid(z));

end

D.3.2.- Logistic Regression scripts

D.3.2.1.- Logictic regression main and visualization of the weights

%% LOGISTIC REGRESSION

%% Initialization

clear; clc; close all;

num_labels = 9;

n_ex_class = 30;

% load data set 1

data {1} = load('Data_N4000_0 .4_0.5_0.6_0.8 _indfreqs3.mat'); %

data stored in arrays X, y

X = data {1}.X(:,:); % in case i just want to use info from one

sensor

Y = data {1}.Y;

[X_norm , mu, sigma] = featureNormalize(X);

% load dataset 2

data {2} = load ('Data2_N4000_0 .4_0.5_0.6_0.8 _indfreqs3.mat')

X_b = data {2}.X(:,:);

y_b = data {2}.Y;

n2 = data {2}.n

[Xtest_b , mu_b , sigma_b] = featureNormalize(X_b);

%% training set y test set

[Xtrain_a ,Ytrain_a ,Xtest_a ,Ytest_a] = train_test(X_norm ,Y,

n_ex_class ,21, num_labels);
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[Xtrain_b ,Ytrain_b ,Xtest_b ,Ytest_b] = train_test(Xtest_b ,y_b ,n2

,21, num_labels);

%m = size(Xtrain , 1);

Xtrain = [Xtrain_a; Xtrain_b ];

Ytrain = [Ytrain_a; Ytrain_b ];

Xtest = [Xtest_a; Xtest_b ];

Ytest = [Ytest_a;Ytest_b ];

%% One -vs-All Training

lambda = 0.0;

[all_theta] = oneVsAll(Xtrain , Ytrain , num_labels , lambda);

%[all_theta] = oneVsAll ([ Xtrain (1:10 ,:); Xtest_b (1:3 ,:)], [ytrain

(1:10); ytest_b (1:3)], num_labels , lambda);

% Prediction A

pred = predictOneVsAll(all_theta , Xtest);

fprintf('\nTest Set A Accuracy: %f\n', mean(double(pred == Ytest)

) * 100);

CM = confusionmat(Ytest ,pred)

% Prediction B

pred_b = predictOneVsAll(all_theta , Xtest_b);

fprintf('\nTraining Set B Accuracy: %f\n', mean(double(pred_b ==

Ytest_b)) * 100);

CM_b = confusionmat(Ytest_b ,pred_b)

%% Visualization of the Weights

S1_theta = abs(all_theta (: ,2:28));

S2_theta = abs(all_theta (: ,29:55));

S3_theta = abs(all_theta (: ,56:82));

S1_theta_avg = []; S2_theta_avg = []; S3_theta_avg = [];

for i = 0:9-1

S1_theta_avg = [S1_theta_avg , mean(S1_theta (:,(i*3+1):(i*3+3)) ,2)

];

S2_theta_avg = [S2_theta_avg , mean(S2_theta (:,(i*3+1):(i*3+3)) ,2)

];

S3_theta_avg = [S3_theta_avg , mean(S3_theta (:,(i*3+1):(i*3+3)) ,2)

];
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end

maximum = max(max(S2_theta_avg));

minimum = min(min(S2_theta_avg));

classes = {'class 1' 'class 2' 'class 3' 'class 4' 'class 5' '

class 6' 'class 7' 'class 8' 'class 9'};

frequencies = {'frq. 1' 'frq. 2' 'frq. 3' 'frq. 4' 'frq. 5' 'frq.

6' 'frq. 7' 'frq. 8' 'frq. 9'};

mymap = flip(bone (4));

figure; image(S1_theta_avg +(maximum -minimum)/3,'CDataMapping ','

scaled '); colormap(mymap); caxis([ minimum maximum ]);

%figure; imagesc(S1_theta_avg >2.5); colormap(mymap);

title('Weights Sensor 1')

set(gca ,'Ytick ' ,[1:9],'YTickLabel ', classes);

set(gca ,'Xtick ' ,[1:9],'XTickLabel ', frequencies);

figure; image(S2_theta_avg +(maximum -minimum)/3,'CDataMapping ','

scaled '); colormap(mymap); caxis([ minimum maximum ]);

%figure; imagesc(S2_theta_avg >2.5); colormap(mymap);

title('Weights Sensor 2')

set(gca ,'Ytick ' ,[1:9],'YTickLabel ', classes);

set(gca ,'Xtick ' ,[1:9],'XTickLabel ', frequencies);

figure; image(S3_theta_avg +(maximum -minimum)/3,'CDataMapping ','

scaled '); colormap(mymap); caxis([ minimum maximum ]);

%figure; imagesc(S3_theta_avg >2.5); colormap(mymap);

title('Weights Sensor 3')

set(gca ,'Ytick ' ,[1:9],'YTickLabel ', classes);

set(gca ,'Xtick ' ,[1:9],'XTickLabel ', frequencies);

D.3.2.2.- Logictic regression cost function

function [J, grad] = lrCostFunction(theta , X, y, lambda)

%LRCOSTFUNCTION Compute cost and gradient for logistic regression

with regularization

m = length(y); % number of training examples

J = 0;

grad = zeros(size(theta));

h_theta = sigmoid(X*theta);
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J = (1/m)*sum((-y)'*log(h_theta) -(1-y)'*log(1-h_theta))+lambda

/(2*m)*sum((theta (2:end)).^2);

grad (1) = (1/m).*X(:,1) '*(h_theta -y);

grad (2:end) = (1/m).*X(:,2:end) '*(h_theta -y)+( lambda/m)*theta (2:

end);

grad = grad (:);

end

D.3.2.3.- One vs all gradient descent

function [all_theta] = oneVsAll(X, y, num_labels , lambda)

%ONEVSALL trains multiple logistic regression classifiers and

returns all the classifiers in a matrix all_theta , where the i-

th row of all_theta corresponds to the classifier for label i

m = size(X, 1);

n = size(X, 2);

all_theta = zeros(num_labels , n + 1);

% Add ones to the X data matrix

X = [ones(m, 1) X];

options = optimset('GradObj ', 'on', 'MaxIter ', 50);

% fmincg is an optimizer that will perform the gradient descent

provided: the cost function , the initial theta and the maximum

number of iterations

for c = 1: num_labels

initial_theta = zeros(n + 1, 1);

[theta] = ...

fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), ...

initial_theta , options);

all_theta(c,:) = theta;

end

end

D.3.2.4.- Predict one vs all

function p = predictOneVsAll(all_theta , X)

%PREDICT Predict the label for a trained one -vs-all classifier.

The labels are in the range 1..K, where K = size(all_theta , 1).

m = size(X, 1);
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num_labels = size(all_theta , 1);

p = zeros(size(X, 1), 1);

% Add ones to the X data matrix

X = [ones(m, 1) X];

hs_theta = sigmoid(X*all_theta ');

[M,p] = max(hs_theta , [], 2);

end

D.3.3.- Neural Networks scripts

D.3.3.1.- Neural Networks main

%% Neural Networks

%% Initialization

clear ; close all; clc

input_layer_size =81; % 20x20 Input Images of Digits % feature

^4

hidden_layer_size = 200; % 200 hidden units

num_labels = 9; % 9 labels

%% Loading and normalizing data

data {1} = load('Data_N4000_0 .4_0.5_0.6_0.8 _indfreqs3.mat');

X = data {1}.X(:,:);

n1 = data {1}.n;

Y_a = data {1}.Y;

[X_norm , mu, sigma] = featureNormalize(X);

%% load data from another day

data {2} = load ('Data2_N4000_0 .4_0.5_0.6_0.8 _indfreqs3.mat');

X_b = data {2}.X;

y_b = data {2}.Y;

n2 = data {2}.n;

[Xtest_b , mu_b , sigma_b] = featureNormalize(X_b);

%% training set and test set

[Xtrain_a ,Ytrain_a ,Xtest_a ,Ytest_a] = train_test(X_norm ,Y_a ,n1

,21, num_labels);

[Xtrain_b ,Ytrain_b ,Xtest_b ,Ytest_b] = train_test(Xtest_b ,y_b ,n2

,21, num_labels);
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Xtrain = [Xtrain_a; Xtrain_b ];

Ytrain = [Ytrain_a; Ytrain_b ];

Xtest = [Xtest_a; Xtest_b ];

Ytest = [Ytest_a;Ytest_b ];

m = size(Xtrain , 1);

%% Initializing Pameters

initial_Theta1 = randInitializeWeights(input_layer_size ,

hidden_layer_size);

initial_Theta2 = randInitializeWeights(hidden_layer_size ,

num_labels);

% Unroll parameters

initial_nn_params = [initial_Theta1 (:) ; initial_Theta2 (:)];

%% Training NN

options = optimset('MaxIter ', 550);

lambda = 0.00;

costFunction = @(p) nnCostFunction(p, ...

input_layer_size , ...

hidden_layer_size , ...

num_labels , Xtrain_a , Ytrain_a

, lambda);

[nn_params , cost] = fmincg(costFunction , initial_nn_params ,

options);

% Obtain Theta1 and Theta2 back from nn_params

Theta1 = reshape(nn_params (1: hidden_layer_size * (

input_layer_size + 1)), ...

hidden_layer_size , (input_layer_size + 1));

Theta2 = reshape(nn_params ((1 + (hidden_layer_size * (

input_layer_size + 1))):end), ...

num_labels , (hidden_layer_size + 1));

%% Predictions

%Prediction A

pred = predict(Theta1 , Theta2 , Xtest_a);

fprintf('\nTraining Set A Accuracy: %f\n', mean(double(pred ==
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Ytest_a)) * 100);

CM = confusionmat(Ytest_a ,pred)

% Prediction B

pred_b = predict(Theta1 , Theta2 , Xtest_b);

fprintf('\nTest Set B Accuracy: %f\n', mean(double(pred_b ==

Ytest_b)) * 100);

CM_b = confusionmat(Ytest_b ,pred_b)

D.3.3.2.- NN random initialization

function W = randInitializeWeights(L_in , L_out)

%RANDINITIALIZEWEIGHTS Randomly initialize the weights of a layer

with L_in incoming connections and L_out outgoing connections

W = zeros(L_out , 1 + L_in);

E = 0.12;

W = rand(L_out ,L_in +1) *(2*E)-E;

end

D.3.3.3.- NN cost function

function [J grad] = nnCostFunction(nn_params , ...

input_layer_size , ...

hidden_layer_size , ...

num_labels , ...

X, y, lambda)

%NNCOSTFUNCTION Implements the neural network cost function for a

two layer neural network which performs classification

% Reshaping nn_params back into the parameters Theta1 and Theta2 ,

the weight matrices for our 2 layer neural network

Theta1 = reshape(nn_params (1: hidden_layer_size * (

input_layer_size + 1)), ...

hidden_layer_size , (input_layer_size + 1));

Theta2 = reshape(nn_params ((1 + (hidden_layer_size * (

input_layer_size + 1))):end), ...

num_labels , (hidden_layer_size + 1));

m = size(X, 1);
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X = [ones(m,1) X];

hyp = zeros(m,num_labels);

yk = zeros(m,num_labels);

for i=1:m

yk(i,y(i)) = 1;

end

J = 0;

A1 = zeros(size(Theta1));

A2 = zeros(size(Theta2));

Theta1_grad = zeros(size(Theta1));

Theta2_grad = zeros(size(Theta2));

for i = 1:m

% forward propagation

a1 = X(i,:) ';

z2 = Theta1 * a1;

a2 = sigmoid(z2);

a2 = [1;a2];

z3 = Theta2 * a2;

hyp(i,:) = sigmoid(z3);

% backprop

delta3 = (hyp(i,:)-yk(i,:))';

delta2 = Theta2 '* delta3 .* sigmoidGradient ([0;z2]); % add a term

in z that will be discarded after

delta2 = delta2 (2:end); %avoid first term

% accumulate gradients from the different experiments

A1 = A1 + delta2*a1 ';

A2 = A2 + delta3*a2 ';

end

% divide by m to get the gradient of the NN

Theta1_grad = (1/m)*A1;

Theta2_grad = (1/m)*A2;

% adding regularization term

Theta1_grad (:,2:end) = Theta1_grad (:,2:end) + (lambda/m)*Theta1

(:,2:end);

Theta2_grad (:,2:end) = Theta2_grad (:,2:end) + (lambda/m)*Theta2

(:,2:end);
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for i = 1:m

for k = 1: num_labels

J = J + (1/m)*(-yk(i,k)*log(hyp(i,k)) -(1-yk(i,k))*log(1-hyp(i,k))

);

end

end

for j=1: hidden_layer_size

for k = 2: input_layer_size +1

J = J + (lambda /(2*m))*( Theta1(j,k)^2);

end

end

for j=1: num_labels

for k = 2: hidden_layer_size +1

J = J + (lambda /(2*m))*( Theta2(j,k)^2);

end

end

% Unroll gradients

grad = [Theta1_grad (:) ; Theta2_grad (:)];

end

D.3.3.4.- Prediction

function p = predict(Theta1 , Theta2 , X)

%Predicts the label of an input given a trained neural network

m = size(X, 1);

num_labels = size(Theta2 , 1);

p = zeros(size(X, 1), 1);

h1 = sigmoid ([ones(m, 1) X] * Theta1 ');

h2 = sigmoid ([ones(m, 1) h1] * Theta2 ');

[dummy , p] = max(h2, [], 2);

end
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D.3.4.- PCA and T-SNE scripts

D.3.4.1.- 2D projections main

%% PCA and T-SNE

clear all

close all

data {1} = load ('Data_N4000_0 .4_0.5_0.6_0.8 _indfreqs3.mat')

X_a = data {1}.X(:,:);

Y_a = data {1}.Y(:);

n1 = data {1}.n;

num_labels = 9;

[X_a_norm , mu_a , sigma_a] = featureNormalize(X_a);

%% training set y test set

[Xtrain_a ,Ytrain_a ,Xtest_a ,Ytest_a] = train_test(X_a_norm ,Y_a ,n1

,21, num_labels);

% Project the data onto K = 3 dimension

[U, S, V] = pca_1(Xtrain_a);

K = 3;

Z1 = projectData(Xtrain_a , U, K);

Z2 = projectData(Xtest_a , U, K);

% PCA scatter 2D

figure;

scatter(Z1(:,1),Z1(:,2) ,40,Ytrain_a ,'filled ');

hold on

scatter(Z2(:,1),Z2(:,2) ,60,Ytest_a ,'x');

colormap(parula (9));

hc = colorbar;

set(get(hc,'title '),'string ','label ');

title('PCA 2D')

xlabel('PC 1')

ylabel('PC 2')

legend;

%% T-SNE

a = tsne([ Xtrain_a; Xtest_a],'perplexity ' ,20);
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figure;

title('T-SNE')

hold on

f = size(Xtrain_a ,1);

scatter(a(1:f,1),a(1:f,2) ,40,Ytrain_a ,'filled ');

scatter(a(f+1:end ,1),a(f+1:end ,2) ,60,Ytest_a ,'x');

colormap(parula (9));

hc = colorbar;

set(get(hc,'title '),'string ','label ');

D.3.4.2.- PCA

function [U, S, V] = pca_1(X)

%PCA Run principal component analysis on the dataset X

[m, n] = size(X);

U = zeros(n);

S = zeros(n);

Sigma = (1/m)*X'*X;

[U, S, V] = svd(Sigma);

end

D.3.4.3.- PCA projection

function Z = projectData(X, U, K)

%PROJECTDATA Computes the reduced data representation when

projecting only on to the top k eigenvectors

Z = zeros(size(X, 1), K);

Z = X * U(:,1:K);

end
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Budget

In this document, the cost associated to the development of this thesis will be presented. It has

been divided in three sections: labour, necessary material for the implementation of the system

and software licenses.

1.1.- Budget breakdown

1.1.1.- Labour

The labour has been defined as engineering, where the development of the thesis itself and the

work done by tutor and cotutor supervising the correct evolution of the project and reviewing the

documentation have been included. Table 1.1 shows the cost associated to the necessary labour to

carry out this project.

Type of labour Quantity [hours] Unit cost[C/h] Full cost[C]

Engineering 350 10.00 3,500.00

SUBTOTAL 3,500.00

Table 1.1: Labour cost.
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1.1.2.- Necessary material for the implementation of the system

The costs associated to the necessary material for the implementation of the test bench, excitation

system and data acquisition system are shown in table 1.2.

Material for system implementation Quantity Unit cost[C/u] Full cost[C]

Data acquisition board NI-USB 6356 1 4,233.00 4,233.00
Accelerometers Wilcoxon Research 786F 3 490.00 1,470.00
Power unit Wilcoxon Research 1 680.00 680.00
Electromechanical actuator Ralux 1 40.00 40.00
Dual motor driver Devantech MD22 1 70.00 70.00
3D printer filament roll 0.172 Kg 22.95 C/Kg 3.95
Torque wrench 1 105.00 105.00
3 Steel plates (10 mm x 150 mm x 500 mm 18 Kg 0.96 C/Kg 17.28
2 Steel weights (8 Kg and 10 Kg) 18 Kg 0.96 C/Kg 17.28
Aluminium profile (700 mm) 3 13.30 39.90
Aluminium joining plates 4 39.00 156.00
Aluminium support base 1 130.00 130.00
12V Voltage source 1 19.90 19.90

SUBTOTAL 6,982.31

Table 1.2: Cost of the necessary material for the implementation of the system.

Apart from the here mentioned material, it was nesassary a PC and some devices or material

like oscillocopes or wire, but it is supposed this is available in an electronical engineering

laboratory.

1.1.3.- Software licenses

The cost associated to the necesary software licenses to develop this project is shown in table 1.3

Software license Type Quantity Unit cost[C/h] Full cost[C]

Matlab R2018a student license 1 69.00 69.00

SUBTOTAL 69.00

Table 1.3: Software licenses cost.
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1.2.- Total cost

The estimated total cost, which can be computed by adding the cost generated by the three

previously explained concepts, is shown in table 1.4.

Type of cost Full cost[C]

Labour 3,500.00
Material for system implementation 6,982.31
Software licenses 69.00

TOTAL 10,551.31

Table 1.4: Total cost.

It must be borne in mind that the total cost could vary depending on the store where the

material is acquired or on the lack of basic material available in the laboratory.
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