Unusual Reactivity of Isoquinolinones Generated by Silver_ Catalyzed Cycloisomerizations of Imines Derived from ortho${ }_{3}$ Alkynylsalicylaldehydes

${ }_{4}$ Patricia Fernández, Carlos Valdés, © Francisco J. Fañanás,* and Félix Rodríguez**
5 Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, E-33006 Oviedo, 6 Spain

(S) Supporting Information

INTRODUCTION

Coinage metal-catalyzed cycloisomerization reactions of orthoalkynylbenzaldehydes performed in the presence of different reagents have become valuable tools for the synthesis of a wide range of interesting complex molecules. ${ }^{1-3}$ Although the imine derivatives of ortho-alkynylbenzaldehydes are also known to 3 suffer cycloisomerization processes under catalytic conditions, its reactivity has been much lesser studied than that of their parent aldehydes. ${ }^{4}$ In this context, we have recently reported 6 the silver-catalyzed reaction of imines derived from orthoalkynylsalicylaldehydes 1, a particular type of ortho-alkynylbenzaldimines, to obtain azaphilone derivatives (Scheme la). ${ }^{5}$ This reaction proceeds through an initial cycloisomerization 3 reaction to generate the 8 -isoquinolinone derivative 2 that, 1 surprisingly, performs as a nucleophile in a subsequent formal dimerization reaction. ${ }^{5}$ Interestingly, isoquinolinone derivative 2 also contains in its structure a 1,4-heterodiene and an alkene (highlighted in color in Scheme 1b) that might participate in [4 + 2]- and/or [2 +2]-cycloaddition processes, respectively. ${ }^{6}$ Thus, apart from being a nucleophile at α-position, this molecule 2 could also be an appropriate partner for new cycloaddition reactions with alkynes (Scheme 1b).
With this idea in mind, we initiated a study on the in situ generation of 8 -isoquinolinone derivatives from ortho-alkynylsalicylaldehydes and its subsequent reaction with alkynes. Our results are presented herein.

RESULTS AND DISCUSSION

Considering that imines $\mathbf{1}$ are easily formed from the corresponding aldehyde through a condensation reaction with appropriate amines, we started our investigation by studying the multicomponent reaction of ortho-alkynylsalicylaldehyde derivatives 3, anilines 4, and dimethyl acetylenedi-

Scheme 1. 8-Isoquinolinones Derived from ortho-

 Alkynylsalicylaldimines: Previous Work and Our Proposala) Our previous work. Isoquinolone $\mathbf{2}$ as a nucleophile (ref 5)

b) Our proposal (this work)

carboxylate 5a (Table 1). Thus, when a 1:1:1 mixture of these 49 t1 three reagents was dissolved in tetrahydrofuran in the presence 50 of $5 \mathrm{~mol} \%$ of silver triflate and was heated at reflux for 3 h , it 51 was possible to gain the desired multicomponent coupling 52 products 6 in moderate yields (Table 1). As shown, different 53 substitution was allowed at the aldehyde 3 and aniline 4 but, 54 unfortunately, the reaction did not proceed with other alkynes 55 lacking the two electron-withdrawing groups. Structural 56

[^0]Table 1. Synthesis of Pyrano[2,3,4-ij]isoquinolines 6

ent	3	R	4	Ar	6	yield ${ }^{a}$
1	3a	Bu	4a	4-MeC66 H_{4}	6a	62\%
2	3a	Bu	4b	4- $\mathrm{ClC}_{6} \mathrm{H}_{4}$	6b	56\%
3	3a	Bu	4c	4-MeOC6 H_{4}	6c	62\%
4	3a	Bu	4d	$3-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	6d	58\%
5	3a	Bu	4e	2- $\mathrm{PhC}_{6} \mathrm{H}_{4}$	6 e	59\%
6	3a	Bu	4f	2- $\mathrm{MeC}_{6} \mathrm{H}_{4}$	6f	$56 \%{ }^{\text {b }}$
7	3a	Bu	4 g	2- $\mathrm{BrC}_{6} \mathrm{H}_{4}$	6 g	59\% ${ }^{\text {c }}$
8	3a	Bu	4h	2-Br,3-MeC66 H_{3}	6h	$57 \%{ }^{\text {c }}$
9	3b	$c-\mathrm{C}_{5} \mathrm{H}_{9}$	4a	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	6 i	55\%
10	3b	$c-\mathrm{C}_{5} \mathrm{H}_{9}$	4e	2- $\mathrm{PhC}_{6} \mathrm{H}_{4}$	6j	58\%
11	3c	Ph	4a	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	6k	62\%
12	3d	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	4b	4- $\mathrm{ClC}_{6} \mathrm{H}_{4}$	61	58\%
13	3d	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	4 i	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	6m	56\%
14	3d	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	4 j	4- $\mathrm{BrC}_{6} \mathrm{H}_{4}$	6 n	58\%
15	3d	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	4d	$3-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	60	55\%
16	3 e	3-Thienyl	4a	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	6p	62\%
17	3f	$2-\mathrm{MeC}_{6} \mathrm{H}_{4}$	4 e	2- $\mathrm{PhC}_{6} \mathrm{H}_{4}$	6q	65\%
18	3f	$2-\mathrm{MeC}_{6} \mathrm{H}_{4}$	4 g	$2-\mathrm{BrC}_{6} \mathrm{H}_{4}$	6 r	$57 \%{ }^{\text {d }}$

${ }^{a}$ Isolated yield based on $3 .{ }^{b} 3.5: 1$ mixture of rotamers. ${ }^{c}$ 2.6:1 mixture of rotamers. ${ }^{d_{8: 1}}$ mixture of rotamers.
assignments of all these new compounds were based on a series of NMR studies. Additionally, the structure of $\mathbf{6 1}$ was confirmed by single-crystal X-ray diffraction analysis. ${ }^{7}$
As previously noted, all these reactions were executed with equimolecular quantities of all three reagents. However, interesting results were observed when the reaction of orthoalkynylsalicylaldehyde derivatives 3 and anilines 4 was performed in the presence of an excess of dimethyl acetylenedicarboxylate 5 a (2.5 equiv) in tetrahydrofuran as solvent at reflux for 12 h (Table 2). Under these conditions, the expected pyrano[2,3,4-ij]isoquinolines 6 were not obtained, and instead, formation of benzo[de]chromene derivatives 7 , incorporating two molecules of dimethyl acetylenedicarboxylate $5 \mathbf{5 a}$ in their structure, was observed. These one-pot four-component coupling products 7 were

Table 2. Synthesis of Benzo[de]chromene Derivatives 7
ent
${ }^{a}$ Isolated yield based on 3 .
isolated as single diastereoisomers. The complex structure and 72 the apparent intricate skeletal rearrangement observed in 73 benzo[de]chromene derivatives 7 should be remarked upon at 74 this point. The structure of these compounds was determined 75 by NMR studies and confirmed by single-crystal X-ray 76 diffraction analysis performed on $7 \mathbf{d} .^{7}$

Controlled experiments were conducted to gain insights into 78 the reaction mechanisms. First, the isoquinolinone derivative 79 $\mathbf{2 a}$ was synthesized by reacting aldehyde $3 \mathbf{a}$ and aniline $4 \mathbf{a}$ in 80 1,2 -dichloroethane (DCE) at $65{ }^{\circ} \mathrm{C}$ for 3 h . Interestingly, we 81 observed that the reaction of isolated 2a with dimethyl 82 acetylenedicarboxylate 5a in tetrahydrofuran at reflux led to 83 pyrano[2,3,4-ij]isoquinoline 6a (60% yield) in the absence of 84 any additional reagent or catalyst (Scheme 2a). This 85 s 2

Scheme 2. Controlled Experiments

a) Synthesis of isoquinolinone $\mathbf{2 a}$ and its thermal reaction with $\mathbf{5 a}$

b) Thermal reaction of isolated $\mathbf{6 g}$ with alkynes $\mathbf{5 a , b}$

experiment not only indicated that 8 -isoquinolinones 2 were 86 intermediates of the reaction but also that their reaction with 87 alkyne 5 a may not necessarily be a catalytic process.

We also verified that the reaction of isolated pyrano[2,3,4-89 $i j]$ isoquinoline derivative 6 g and dimethyl acetylenedicarbox- 90 ylate $5 \mathbf{a}$ in tetrahydrofuran at reflux cleanly led to benzo[de]-91 chromene derivative 7d (Scheme 2b). Again, this reaction did 92 not require any catalyst or additional reagent and it went to 93 completion by simple heating. Under similar conditions, 94 pyrano $[2,3,4-i j]$ isoquinoline derivative $\mathbf{6 g}$ reacted with diethyl 95 acetylene dicarboxylate $\mathbf{5 b}$ to generate the new benzo[de]- 96 chromene derivative 7 h in high yield (78%; Scheme 2b). 97
A plausible mechanism for the formation of pyrano[2,3,4-98 $i j]$ isoquinolines 6 and benzo[de]chromene derivatives 7 is 99 shown in Scheme 3. Thus, the initial coordination of the 100 s 3 catalyst to the triple bond of the imines $\mathbf{1}$, derived from the 101 condensation between ortho-alkynylsalicylaldehydes $\mathbf{3}$ and 102 anilines 4, generates the first intermediates 8. This 103 coordination favors the intramolecular addition of the nitrogen 104 of the imine to the alkyne to form the isoquinolinium 105 intermediates 9. The subsequent formal intramolecular 106 protodemetalation reaction regenerates the silver catalyst and 107 delivers the 8 -isoquinolinone derivatives 2 . These intermedi- 108 ates can participate as the heterodiene partners of $[4+2] 109$ thermal cycloaddition reactions with dimethyl acetylenedicar- 110 boxylate 5a to deliver the pyrano[2,3,4-ij]isoquinolines 6 . 111

Compounds 6 are the final products of the process when 112 equimolecular quantities of the reactants are used. However, 113 when an excess of dimethyl acetylenedicarboxylate $5 \mathbf{5}$ is 114 employed, the pyrano[2,3,4-ij]isoquinolines 6 may further 115

Scheme 3. Mechanistic Proposal

116 react with alkyne 5a through a formal [2 + 2] cycloaddition 117 reaction to obtain the cyclobutene derivatives 10. A 118 subsequent formal electrocyclic ring opening of the cyclo119 butene results in the formation of the new tricyclic 120 intermediates 11. These chromeno[4,5-bc]azocine derivatives 12111 may evolve through another ring-opening process of the 122 eight-membered ring to give the bicyclic intermediates $\mathbf{1 2}$.

Finally, a formal electrocyclic ring-closing process on these 123 highly conjugated molecules would explain the formation of 124 benzo[de]chromene derivatives 7 .

It should be noted that the proposed sequence from 126 isoquinolinone 2 to the final product 7 consists of five 127 consecutive and different formal pericyclic reactions. This 128 proposal offers an attractive opportunity for computational 129 studies. Thus, density functional theory (DFT) calculations [at 130 the b3lyp/6-31G* and M06-2X/6-311++G** levels (PCM/ 131 THF)] were performed. A summary of the results of this 132 investigation is shown in Figure 1 (see Supporting Information 133 fl for details).

We initially investigated the [4+2] cycloaddition reaction 135 between the model 8 -isoquinolinone $\mathbf{2 b}(\mathrm{Ar}=\mathrm{Ph} ; \mathrm{R}=\mathrm{Me}) 136$ and dimethyl acetylenedicarboxylate 5a to give the pyrano- 137 [2,3,4-ij]isoquinoline 6ab. As shown, this reaction was 138 characterized as a highly asynchronous concerted process, as 139 deduced from the comparison of the forming $\mathrm{C}-\mathrm{C}$ bonds at 140 the transition state TS1 (1.78 and $2.82 \AA$). Although the 141 process is exergonic, it features a relatively high activation 142 energy (28.6 or $27.1 \mathrm{kcal} \mathrm{mol}^{-1}$ depending on the level of 143 theory used) typical of highly ordered transition states of 144 concerted cycloaddition reactions.

Next, we computationally studied the $[2+2]$ carbocycliza- 146 tion reaction of the previously formed pyrano[2,3,4-ij]- 147 isoquinoline 6ab and dimethyl acetylenedicarboxylate 5a to 148 give the corresponding cyclobutene derivative 10ab. This 149 reaction was characterized as a stepwise process, proceeding 150 via the zwitterionic intermediate $\mathbf{1 3}$ formed by addition of the 151 nucleophilic enaminic β-carbon of $\mathbf{6 a b}$ to one of the highly 152 electrophilic carbons of alkyne $\mathbf{5 a}$. An activation energy of 26.3153 $\mathrm{kcal} \mathrm{mol}^{-1}$ to reach transition state TS2 was found for this 154

Figure 1. Energy profile for the reaction of isoquinolinone $\mathbf{2 b}$ and dimethyl acetylenedicarboxylate $\mathbf{5 a}$ at the b3lyp/6-31G* level (PCM/THF).
in its simple structure a heterodiene that participates in formal 217 $[4+2]$ cycloadditions and an alkene that participates in [2 +218 2] cycloaddition processes.

- EXPERIMENTAL SECTION

General Experimental Methods. All reactions were conducted 221 in dried glassware under an inert atmosphere of argon. Solvents were 222 dried with a PureSolv column system before use. Starting materials 223 were prepared according to methods reported in the literature. 224 Purification of the final products was performed by column 225 chromatography employing silica gel 60 (230-240 mesh, Aldrich) 226 as the stationary phase. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker 227 AV-400 (400 MHz) and Bruker AV-300 (300 MHz). Chemical shifts 228 are reported in ppm from tetramethylsilane with the residual solvent 229 resonance as the internal standard $\left(\mathrm{CHCl}_{3}: \delta=7.26 \mathrm{ppm}\right)$. Data are 230 reported as follows: chemical shift, multiplicity: (app) =apparent, (s) 231 $=$ singlet, $(\mathrm{d})=$ doublet, $(\mathrm{t})=$ triplet, $(\mathrm{m})=$ multiplet, $(\mathrm{bs})=$ broad 232 singlet, $(\mathrm{td})=$ triplet of doublets, $(\mathrm{dd})=$ doublet of doublets, $(\mathrm{ddd})=233$ doublet doublet of doublets; coupling constants (J in Hz), integration 234 and assignment. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AV-400 235 (100 MHz) or Bruker AV-300 (75 MHz) with complete proton 236 decoupling. Chemical shifts are reported in ppm from tetramethylsi- 237 lane with the solvent resonance as internal standard $\left(\mathrm{CDCl}_{3}: \delta=238\right.$ 77.16 ppm). High-resolution mass spectrometry was carried out on a 239 Micromass AutoSpec device employing electrospray ionization 240 methods (ESI). Melting points have been measured in a Gallenkamp 241 device and have not been corrected.

242
Synthesis of Compounds 6. $4 \AA$ Molecular sieves $(50 \mathrm{mg})$ and 243 the corresponding ortho-alkynylsalicylaldehyde $3(0.15 \mathrm{mmol})$ and 244 aniline $4(0.15 \mathrm{mmol})$ were suspended in tetrahydrofuran $(1 \mathrm{~mL})$ in a 245 glass reaction tube equipped with a magnetic stirring bar under an 246 argon atmosphere. The mixture was stirred at room temperature for 5247 h , and then alkyne 5a $(0.15 \mathrm{mmol})$ and silver triflate $(5 \mathrm{~mol} \%)$ were 248 added. The mixture was heated at $65^{\circ} \mathrm{C}$ for 3 h . Then, the reaction 249 was filtered through a path of Celite, the solvent was removed in 250 vacuo, and the resulting crude was purified by flash column 251 chromatography on silica gel using mixtures of hexane and ethyl 252 acetate as eluent to give the corresponding pure products 6 . 253

Dimethyl 5-Butyl-4-(p-tolyl)-3a,4-dihydropyrano[2,3,4-ij]- 254 isoquinoline-2,3-dicarboxylate (6a). Brown solid ($40 \mathrm{mg}, 62 \%$). $R_{f} 255$ $=0.23$ (hexane/ethyl acetate 5:1). Melting point: 77-79 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} 256$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.21(\mathrm{appt} \mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.95257$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{dd}, J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 258$ $1 \mathrm{H}), 6.62(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 3.83$ and 259 $3.75(2 \mathrm{~s}, 6 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.14-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.48(\mathrm{~m}, 2 \mathrm{H}), 260$ $1.43-1.22(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(75261$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 166.1,162.9,153.7,150.9,146.5,139.1,262$ 136.6, 135.8, 130.1, 129.2, 128.4, 118.5, 112.4, 108.0, 107.7, 105.7, 263 53.0, 52.0, 51.8, 33.6, 30.9, 22.2, 21.0, 13.4. HMRS (ESI): calculated 264 for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$434.1961, found 434.1949.

Dimethyl 5-Butyl-4-(4-chlorophenyl)-3a,4-dihydropyrano[2,3,4- 266 ijjlisoquinoline-2,3-dicarboxylate (6b). Orange solid (38 mg , 56%). 267 $R_{f}=0.44$ (hexane/ethyl acetate 5:1). Melting point: $79-81^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} 268$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.21(\mathrm{app} \mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.10269$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 270$ $6.63(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 3.84$ and $3.76(2271$ $\mathrm{s}, 6 \mathrm{H}), 2.12-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.22(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 272$ $3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 166.0,162.8,153.3,273$ 151.4, 146.5, 140.5, 135.4, 132.5, 131.2, 128.8, 128.6, 118.9, 113.0, 274 109.6, 107.8, 105.3, 53.1, 52.2, 52.0, 33.5, 30.8, 22.2, 13.9. HMRS 275 (ESI): calculated for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{ClNO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$454.1415, found 276 454.1410 .

Dimethyl 5-Butyl-4-(4-methoxyphenyl)-3a,4-dihydropyrano- 278 [2,3,4-ij]isoquinoline-2,3-dicarboxylate (6c). Brown solid ($42 \mathrm{mg}, 279$ $62 \%) . R_{f}=0.27$ (hexane/ethyl acetate 5:1). Melting point: $80-82^{\circ} \mathrm{C} .280$ ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.19(\mathrm{app} \mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 281$ $6.89(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\operatorname{app~s}, 4 \mathrm{H}), 282$ $6.10(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 3.81,3.73$, and $3.72(3 \mathrm{~s}, 9 \mathrm{H}), 2.15-1.92283$ $(\mathrm{m}, 2 \mathrm{H}), 1.56-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.22(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 284$ 352 pyrano[2,3,4-ij]isoquinoline-2,3-dicarboxylate (6h). Orange solid $353(43 \mathrm{mg}, 57 \%) . R_{f}=0.34$ (hexane/ethyl acetate $4: 1$). Melting point: $354205-207^{\circ} \mathrm{C}$. Rotamers mixture (2.6:1). Only representative signals
are listed: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.27-7.11(\mathrm{~m}, 5 \mathrm{H})$, 355 6.99 (app $\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.79(\mathrm{~m}, 5 \mathrm{H}), 6.50(\mathrm{dd}, J=7.7,1.2356$ $\mathrm{Hz}, 1 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 3.82357$ and $3.45(2 \mathrm{~s}, 6 \mathrm{H}), 3.80$ and $3.55(2 \mathrm{~s}, 6 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 358$ $3 H), 2.07-1.80(\mathrm{~m}, 4 \mathrm{H}), 1.45-1.14(\mathrm{~m}, 8 \mathrm{H}), 0.86-0.72(\mathrm{~m}, 6 \mathrm{H}) .359$ ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 166.4,165.7,162.7,162.2,360$ 153.6, 150.2, 148.8, 146.5, 145.8, 141.5, 139.9, 139.7, 139.2, 137.0, 361 136.2, 134.5, 131.0, 130.4, 130.2, 130.0, 128.7, 128.0, 127.4, 125.8, 362 117.9, 117.5, 112.2, 111.0, 108.7, 106.7, 106.6, 105.0, 104.5, 101.3, 363 52.9, 52.8, 52.2, 51.7, 51.7, 33.2, 32.5, 31.1, 30.2, 24.2, 22.4, 22.3, 364 13.8. HMRS (ESI): calculated for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{BrNO}_{6}[\mathrm{M}+\mathrm{OH}]^{+} 365$ 528.1016, found 528.1017.

Dimethyl 5-Cyclopentyl-4-(p-tolyl)-3a,4-dihydropyrano[2,3,4-ij]- 367 isoquinoline-2,3-dicarboxylate (6i). Brown solid ($37 \mathrm{mg}, 55 \%$). $R_{f}=368$ 0.4 (hexane/ethyl acetate 5:1). Melting point: $93-95{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR 369 $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.19($ app $\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.90370$ $(\mathrm{m}, 3 \mathrm{H}), 6.84(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.26(\mathrm{~s}, 371$ 1 H), $5.25(\mathrm{~s}, 1 \mathrm{H}), 3.81$ and $3.78(2 \mathrm{~s}, 6 \mathrm{H}), 2.39$ (quint, $J=7.9 \mathrm{~Hz}, 372$ $1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.60-373$ $1.43(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ 166.2, ${ }^{374}$ 163.0, 157.9, 151.1, 146.5, 139.5, 136.5, 135.8, 129.9, 129.2, 128.3, 375 118.9, 112.6, 108.1, 106.3, 105.7, 53.0, 52.3, 51.9, 43.4, 33.5, 30.9, 376 25.1, 24.9, 21.0. HMRS (ESI): calculated for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{OH}]^{+} 377$ 462.1911, found 462.1910.

Dimethyl 4-([1,1'-Biphenyl]-2-yl)-5-cyclopentyl-3a,4-dihydro- 379 pyrano[2,3,4-ij]isoquinoline-2,3-dicarboxylate (6j). Orange solid 380 ($44 \mathrm{mg}, 58 \%$). $R_{f}=0.31$ (hexane/ethyl acetate $4: 1$). Melting point: 381 $188-190{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.46-7.39(\mathrm{~m}, 382$ $1 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.02-6.84(\mathrm{~m}, 6 \mathrm{H}), 6.66(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 383$ $1 \mathrm{H}), 6.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 3.83$ and 384 $3.45(2 \mathrm{~s}, 6 \mathrm{H}), 2.84-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.46385$ $(\mathrm{m}, 7 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ 166.1, 162.9, 386 154.2, 150.1, 144.9, 144.5, 139.3, 138.6, 136.7, 136.3, 131.4, 128.5, 387 127.8, 127.2, 127.2, 127.0, 126.7, 117.2, 111.1, 106.0, 104.7, 97.3, 388 52.9, 51.8, 51.6, 42.2, 33.8, 32.3, 25.4, 25.1. HMRS (ESI): calculated 389 for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$508.2118, found 508.2114. 390

Dimethyl 5-Phenyl-4-(p-tolyl)-3a,4-dihydropyrano[2,3,4-ij]- 391 isoquinoline-2,3-dicarboxylate (6k). Brown solid ($42 \mathrm{mg}, 62 \%$). $R_{f} 392$ $=0.19$ (hexane/ethyl acetate 5:1). Melting point: $90-92{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} 393$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.74(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 394$ $7.34-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.16(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 395$ $1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 396$ $5.42(\mathrm{~s}, 1 \mathrm{H}), 3.98$ and $3.87(2 \mathrm{~s}, 6 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR 397 $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 166.4,163.0,152.2,151.6,147.0,139.1,398$ 136.7, 135.9, 135.7, 129.2, 128.8, 128.5, 128.4, 128.2, 119.9, 113.8, 399 111.5, 109.4, 105.1, 53.1, 52.8, 52.2, 20.9. HMRS (ESI): calculated for 400 $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+} 454.1648$, found 454.1650 .

Dimethyl 4-(4-Chlorophenyl)-5-(p-tolyl)-3a,4-dihydropyrano- 402 [2,3,4-ij]isoquinoline-2,3-dicarboxylate (6I). Brown solid ($42 \mathrm{mg}, 403$ 58%). $R_{f}=0.38$ (hexane/ethyl acetate 4:1). Melting point: 199-201 404 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.60(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 405$ 7.30 (app t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.0406$ $\mathrm{Hz}, 2 \mathrm{H}), 7.00-6.91(\mathrm{~m}, 4 \mathrm{H}), 6.57(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 407$ 3.98 and $3.89(2 \mathrm{~s}, 6 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(75 \mathrm{MHz}, 408$ $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 166.3,162.9,152.6,151.2,146.9,140.6,139.1,409$ 135.5, 133.4, 131.6, 129.5, 129.1, 128.7, 128.1, 120.0, 113.9, 111.6, 410 109.2, 104.8, 53.1, 52.8, 52.3, 21.3. HMRS (ESI): calculated for 411 $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{ClNO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$488.1259, found 488.1251.

Dimethyl 4,5-Di-p-tolyl-3a,4-dihydropyrano[2,3,4-ij]- 413 isoquinoline-2,3-dicarboxylate (6 m). Brown solid ($39 \mathrm{mg}, 56 \%$). 414 $R_{f}=0.38$ (hexane/ethyl acetate 5:1). Melting point: $92-94{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} 415$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27416$ (app t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 417$ $2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 418$ $6.51(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 3.89$ and $3.87(2 \mathrm{~s}, 6 \mathrm{H}), 2.29419$ and $2.13(2 \mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 420$ 166.4, 163.1, 152.2, 151.7, 147.0, 139.2, 138.8, 135.9, 135.8, 133.9, 421 129.2, 129.0, 128.5, 128.3, 128.3, 119.7, 113.6, 110.8, 109.4, 105.2, 422 53.1, 52.7, 52.1, 21.2, 20.9. HMRS (ESI): calculated for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{NO}_{5} 423$ $[\mathrm{M}+\mathrm{H}]^{+} 468.1805$, found 468.1810 . 493 chromatography on silica gel using mixtures of hexane and ethyl 494 acetate as eluent to give the corresponding pure products 7 .

Tetramethyl (3aS*,4R*)-4-[(E)-1-(p-Tolylimino)pentyl]-3a,4-495 dihydrobenzo[de]chromene-2,3,4,5-tetracarboxylate (7a). Yellow 496 solid ($36 \mathrm{mg}, 42 \%$). $R_{f}=0.32$ (hexane/ethyl acetate $2: 1$). Melting 497 point: $142-145{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.52(\mathrm{~s}, 498$ $1 \mathrm{H}), 7.40-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 499$ $2 \mathrm{H}), 6.47(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 3.93,3.84,3.82$, and 3.58500 $(4 \mathrm{~s}, 12 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.27-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.88(\mathrm{~m}, 1 \mathrm{H}), 501$ $0.95-0.63(\mathrm{~m}, 4 \mathrm{H}), 0.41(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(100502$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 170.7,168.1,166.2,165.5,162.1,149.1,503$ $147.8,145.4,133.3,133.0,132.1,131.6,129.8,129.2,125.4,118.4,504$ 118.0, 115.7, 113.1, 53.1, 52.4, 52.2, 52.0, 49.3, 44.7, 29.2, 28.9, 22.7, 505 20.8, 13.0. HMRS (ESI): calculated for $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{NO}_{9}[\mathrm{M}+\mathrm{H}]^{+} 506$ 576.2225, found 576.2214.

Tetramethyl (3aS*,4R*)-4-\{(E)-1-([1,1'-Biphenyl]-2-ylimino)- 508 pentyl\}-3a,4-dihydrobenzo[de]chromene-2,3,4,5-tetracarboxylate 509 (7b). Yellow solid ($39 \mathrm{mg}, 41 \%$). $R_{f}=0.24$ (hexane/ethyl acetate 3:1). 510 Melting point: $85-87{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.73511$ $(\mathrm{s}, 1 \mathrm{H}), 7.32-6.96(\mathrm{~m}, 12 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 3.84,3.79,3.72$, and 3.60512 ($4 \mathrm{~s}, 12 \mathrm{H}$), 2.09 (dd, $J=13.4,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.86-0.69(\mathrm{~m}, 4 \mathrm{H}), 0.48513$ $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 171.9,514$ 167.5, 166.9, 165.8, 161.6, 148.6, 147.7, 140.5, 139.7, 138.0, 132.2, 515 $130.9,130.3,130.2,128.8,128.4,128.1,127.4,126.1,123.8,123.3,516$ 119.8, 118.5, 116.3, 61.4, 52.7, 52.3, 52.2, 40.8, 32.4, 28.0, 22.9, 13.1. 517 HMRS (ESI): calculated for $\mathrm{C}_{37} \mathrm{H}_{36} \mathrm{NO}_{9}[\mathrm{M}+\mathrm{H}]^{+} 638.2384$, found 518 638.2367.

Tetramethyl (3aS*,4R*)-4-[(E)-1-(o-Tolylimino)pentyl]-3a,4-520 dihydrobenzo[de]chromene-2,3,4,5-tetracarboxylate (7c). Orange 521 solid ($34 \mathrm{mg}, 40 \%$). $R_{f}=0.43$ (hexane/ethyl acetate $2: 1$). Melting 522 point: $96-98{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) \delta 7.82(\mathrm{~s}, 523$ $1 \mathrm{H}), 7.27(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-6.95(\mathrm{~m}, 524$ $3 \mathrm{H}), 6.86(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 525$ 3.83, 3.81, 3.79, $3.78(4 \mathrm{~s}, 12 \mathrm{H}), 2.49-2.30(\mathrm{~m}, 2 \mathrm{H}), 0.95-0.68(\mathrm{~m}, 526$ $4 \mathrm{H}), 0.52(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 527$ (ppm) 171.9, 167.3, 166.9, 166.0, 161.5, 148.9, 148.6, 139.1, 138.4, 528 $131.3,130.7,129.8,128.5,126.3,125.8,123.9,122.6,118.8,60.8,529$ $52.7,52.4,52.3,52.1,40.1,31.1,28.4,22.8,16.8,13.1$. HMRS (ESI): 530 calculated for $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{NO}_{9}[\mathrm{M}+\mathrm{H}]^{+}$576.2228, found 576.2218. 53

Tetramethyl (3aS*,4R*)-4-\{(E)-1-[(2-Bromophenyl)imino]pentyl\}- 532 3a,4 dihydrobenzo[de]chromene-2,3,4,5-tetracarboxylate (7d). 533 White solid ($40 \mathrm{mg}, 42 \%$). $R_{f}=0.34$ (hexane/ethyl acetate $3: 1$). 534 Melting point: $136-138{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 535$ $7.83(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 536$ 7.16 (app td, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J 537$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{app} \mathrm{td}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{dd}, J=7.9,1.5538$ $\mathrm{Hz}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 3.81,3.79,3.78$, and $3.76(4 \mathrm{~s}, 12 \mathrm{H}), 2.52-539$ $2.37(\mathrm{~m}, 2 \mathrm{H}), 0.97-0.79(\mathrm{~m}, 4 \mathrm{H}), 0.52(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-540$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 171.8,169.2,167.3,166.0,161.5,541$ 148.7, 148.7, 138.9, 132.4, 130.9, 130.1, 128.5, 127.6, 124.4, 123.8, 542 119.3, 119.2, 116.6, 116.4, 112.8, 60.4, 52.7, 52.5, 52.4, 52.1, 40.1, 543 31.3, 28.3, 22.9, 13.1. HMRS (ESI): calculated for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{BrNO}_{9}[\mathrm{M} 544$ $+\mathrm{H}]^{+}$640.1176, found 640.1158 .

Tetramethyl $\left(3 a S^{*}, 4 R^{*}\right)-4-\{(E)-1-[(2-B r o m o-3-m e t h y l p h e n y l)$ - 546 imino]pentyl\}-3a,4-dihydrobenzo[de]chromene-2,3,4,5-tetracar- 547 boxylate (7e). Yellow solid ($40 \mathrm{mg}, 41 \%$). $\mathrm{R}_{\mathrm{f}}=0.33$ (hexane/ethyl 548 acetate 5:1). Melting point: $67-69^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 549$ $\delta(\mathrm{ppm}) 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-6.99(\mathrm{~m}, 3 \mathrm{H}), 550$ $6.83(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 3.83,551$ $3.81,3.80$, and $3.78(4 \mathrm{~s}, 12 \mathrm{H}), 2.47(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 552$ 0.98-0.79 (m, 4H), $0.54(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(75553$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 171.9,168.7,167.4,166.0,161.5,149.1,554$ 148.7, 138.9, 138.3, 130.9, 128.4, 126.9, 124.6, 124.4, 119.3, 116.7, 555 $116.5,115.4,60.4,52.7,52.5,52.3,52.1,40.0,31.2,28.2,23.2,13.1 .556$ HMRS (ESI): calculated for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{BrNO}_{9}[\mathrm{M}+\mathrm{H}]^{+}$654.1333, 557 found 654.1315 .

Tetramethyl (3aS*,4R*)-4-\{(E)-[(2-Bromophenyl)imino](cyclo- 559 pentyl)methyl\}-3a,4-dihydrobenzo[de]chromene-2,3,4,5-tetracar- 560 boxylate (7f). Yellow solid ($47 \mathrm{mg}, 48 \%$). $\mathrm{R}_{\mathrm{f}}=0.40$ (hexane/ethyl 561 acetate 2:1). Melting point: $128-130{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, 562$ $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, 563$ $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-6.97(\mathrm{~m}, 3 \mathrm{H}), 6.71(\mathrm{app} \mathrm{td}, J=7.8,1.5 \mathrm{~Hz}, 564$ $1 \mathrm{H}), 6.43(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 12 \mathrm{H}), 3.33-3.17565$
${ }_{612}$ Carlos Valdés: 0000-0002-6246-2994
613 Félix Rodríguez: 0000-0003-2441-1325
Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

617 We acknowledge financial support from MINECO-Spain 618 (Grant CTQ2016-76794-P) and FICYT of Principado de 619 Asturias (Severo Ochoa predoctoral grant to P. F.).

- REFERENCES

621
(1) Reviews: (a) Asao, N. Gold- and Copper-Catalyzed [4 + 2] 622 Benzannulations between Enynal or Enynone Units and 2π-Systems. 623 Synlett 2006, 2006, 1645-1656. (b) Sohel, S. M. A.; Liu, R.-S. 624 Carbocyclisation of Alkynes with External Nucleophiles Catalysed by 625 Gold, Platinum and other Electrophilic Metal. Chem. Soc. Rev. 2009, 626 38, 2269-2281. (c) Wang, H.; Kuang, Y.; Wu, J. 2-Alkynylbenzalde-
hyde: A Versatile Building Block for the Generation of Cyclic 627 Compounds. Asian J. Org. Chem. 2012, 1, 302-312. (d) Chen, L.; 628 Chen, K.; Zhu, S. Transition-Metal-Catalyzed Intramolecular 629 Nucleophilic Addition of Carbonyl Groups to Alkynes. Chem. 2018, 630 4, 1208-1262.
(2) Pioneer works: (a) Iwasawa, N.; Shido, M.; Kusama, H. 632 Generation and Reaction of Metal-Containing Carbonyl Ylides: 633 Tandem [3+2]-Cycloaddition-Carbene Insertion Leading to Novel 634 Polycyclic Compounds. J. Am. Chem. Soc. 2001, 123, 5814-5815. 635 (b) Asao, N.; Takahashi, K.; Lee, S.; Kasahara, T.; Yamamoto, Y. 636 AuCl_{3}-Catalyzed Benzannulation: Synthesis of Naphthyl Ketone 637 Derivatives from o-Alkynylbenzaldehydes with Alkynes. J. Am. 638 Chem. Soc. 2002, 124, 12650-12651. (c) Barluenga, J.; Vázquez- 639 Villa, H.; Ballesteros, A.; González, J. M. Regioselective Synthesis of 640 Substituted Naphthalenes: A Novel de Novo Approach Based on a 641 Metal-Free Protocol for Stepwise Cycloaddition of o-Alkynylbenzal- 642 dehyde Derivatives with Either Alkynes or Alkenes. Org. Lett. 2003, 5, 643 4121-4123. (d) Asao, N.; Nogami, T.; Lee, S.; Yamamoto, Y. Lewis 644 Acid-Catalyzed Benzannulation via Unprecedented [4 + 2] Cyclo- 645 addition of o-Alkynyl(oxo)benzenes and Enynals with Alkynes. J. Am. 646 Chem. Soc. 2003, 125, 10921-10925. (e) Yue, D.; Cá, N. D.; Larock, 647 R. C. Efficient Syntheses of Heterocycles and Carbocycles by 648 Electrophilic Cyclization of Acetylenic Aldehydes and Ketones. Org. 649 Lett. 2004, 6, 1581-1584. (f) Barluenga, J.; Vázquez-Villa, H.; 650 Merino, I.; Ballesteros, A.; González, J. M. The Reaction of o- 651 Alkynylarene and Heteroarene Carboxaldehyde Derivatives with 652 Iodonium Ions and Nucleophiles: A Versatile and Regioselective 653 Synthesis of $1 H$-Isochromene, Naphthalene, Indole, Benzofuran, and 654 Benzothiophene Compounds. Chem. - Eur. J. 2006, 12, 5790-5805. 655 (3) For some selected recent examples on the reactivity of ortho- 656 alkynylbenzaldehydes under different catalytic conditions, see: 657 (a) Bhunia, S.; Wang, K.-C.; Liu, R.-S. Pt ${ }^{\text {II-Catalyzed Synthesis of } 658}$ 9-Oxabicyclo[3.3.1]nona-2,6-dienes from 2-Alkynyl-1-carbonylben- 659 zenes and Allylsilanes by an Allylation/Annulation Cascade. Angew. 660 Chem., Int. Ed. 2008, 47, 5063-5066. (b) Hsu, Y.-C.; Ting, C.-M.; 661 Liu, R.-S. Stereocontrolled Synthesis of Complicated Oxacyclic 662 Compounds via Platinum-Catalyzed [4 + 2]-Cycloadditions and 663 Annulations of Enynals with Allylic Alcohols. J. Am. Chem. Soc. 2009, 664 131, 2090-2091. (c) Zheng, D.; Li, S.; Wu, J. An Unexpected Silver 665 Triflate Catalyzed Reaction of 2-Alkynylbenzaldehyde with 2-666 Isocyanoacetate. Org. Lett. 2012, 14, 2655-2657. (d) Malhotra, D.; 667 Liu, L.-P.; Mashuta, M. S.; Hammond, G. B. Gold-Catalyzed 668 Annulations of 2-Alkynyl Benzaldehydes with Vinyl Ethers: Synthesis 669 of Dihydronaphthalene, Isochromene, and Bicyclo[2.2.2]octane 670 Derivatives. Chem. - Eur. J. 2013, 19, 4043-4050. (e) Zhu, S.; 671 Zhang, Z.; Huang, X.; Jiang, H.; Guo, Z. Gold-Catalyzed Reactions of 672 Enynals/Enynones with Norbornenes: Generation and Trapping of 673 Cyclic o-Quinodimethanes (o-QDMs). Chem. - Eur. J. 2013, 19, 674 4695-4700. (f) Zhu, S.; Guo, Z.; Huang, Z.; Jiang, H. Bioinspired 675 Intramolecular Diels-Alder Reaction: A Rapid Access to the Highly- 676 Strained Cyclopropane-Fused Polycyclic Skeleton. Chem. - Eur. J. 677 2014, 20, 2425-2430. (g) Cao, Z.; Zhu, H.; Meng, X.; Tian, L.; Sun, 678 X.; Chen, G.; You, J. Gold-Catalyzed Reaction of ortho-Alkynylar- 679 ylaldehydes with Conjugated Dienes: An Efficient Access to Highly 680 Strained Tetracyclic Bridgehead Olefins. Chem. - Eur. J. 2016, 22, 681 9125-9129.
(4) For some selected representative examples of reactions involving 68 the cycloisomerization of imines derived from ortho-alkynylbenzalde- 684 hydes, see: (a) Huang, Q.; Larock, R. C. Synthesis of 4-(1-685 Alkenyl)isoquinolines by Palladium(II)-Catalyzed Cyclization/Olefi- 686 nation. J. Org. Chem. 2003, 68, 980-988. (b) Asao, N.; Yudha, S. S.; 687 Nogami, T.; Yamamoto, Y. Direct Mannich and Nitro-Mannich 688 Reactions with Non-Activated Imines: AgOTf-Catalyzed Addition of 689 Pronucleophiles to ortho-Alkynylaryl Aldimines Leading to 1,2-690 Dihydroisoquinolines. Angew. Chem., Int. Ed. 2005, 44, 5526-5528. 691 (c) Obika, S.; Kono, H.; Yasui, Y.; Yanada, R.; Takemoto, Y. Concise 692 Synthesis of 1,2-Dihydroisoquinolines and $1 H$-Isochromenes by 693 Carbophilic Lewis Acid-Catalyzed Tandem Nucleophilic Addition 694 and Cyclization of 2-(1-Alkynyl)arylaldimines and 2-(1-Alkynyl)- 695

696 arylaldehydes. J. Org. Chem. 2007, 72, 4462-4468. (d) Ding, Q.; Wu, 697 J. Lewis Acid- and Organocatalyst-Cocatalyzed Multicomponent 698 Reactions of 2-Alkynylbenzaldehydes, Amines, and Ketones. Org. 699 Lett. 2007, 9, 4959-4962. (e) Patil, N. T.; Mutyala, A. K.; Lakshmi, P. 700 G. V. V.; Raju, P. V. K.; Sridhar, B. Facile Assembly of Fused 701 Isoquinolines by Gold(I)-Catalyzed Coupling-Cyclization Reactions 702 between o-Alkynylbenzaldehydes and Aromatic Amines Containing 703 Tethered Nucleophiles. Eur. J. Org. Chem. 2010, 2010, 1999-2007. 704 (f) Yu, X.; Wu, J. Synthesis of 1-(1H-Indol-3-yl)-1,2-dihydroisoquino705 lines via AgOTf-Catalyzed Three-Component Reactions of 2706 Alkynylbenzaldehydes, Amines, and Indoles. J. Comb. Chem. 2010, 707 12, 238-244. (g) Xiao, T.; Peng, P.; Xie, Y.; Wang, Z.; Zhou, L. $708 \mathrm{Ag}(\mathrm{I})$-Catalyzed Three-Component Reaction of 2-Alkynylbenzalde709 hydes, Amines, and Diazo Compounds. Org. Lett. 2015, 17, 43327104335.

711 (5) Fernández, P.; Fañanás, F. J.; Rodríguez, F. Nitrogenated 712 Azaphilone Derivatives through a Silver-Catalysed Reaction of Imines 713 from ortho-Alkynylbenzaldehydes. Chem. - Eur. J. 2017, 23, 30027143006.

715 (6) (a) For a related process where a similar heterodiene is implied 716 in a formal [4+2] cycloaddition reaction, see: Arto, T.; Fañanás, F. J.; 717 Rodríguez, F. Gold(I)-Catalyzed Generation of the Two Components 718 of a Formal [4 +2] Cycloaddition Reaction for the Synthesis of 719 Tetracyclic Pyrano[2,3,4-de]chromenes. Angew. Chem., Int. Ed. 2016, 720 55, 7218-7221. (b) For the participation of quinoline derivatives in $721[2+2]$ processes, see: Lehman, P. G. 1-Alkyl-1,6-dihydro-1722 benzazocine Derivatives through Ring Expansion of 1-Alkyl-1,4723 dihydroquinolines. Tetrahedron Lett. 1972, 13, 4863-4864.
724 (7) The CIF files have been deposited with the Cambridge 725 Crystallographic Data Centre as supplementary publication no. 726 CCDC 1559128 (61) and CCDC 1586982 (7d).
727 (8) Alajarín, M.; Cabrera, J.; Pastor, A.; Sánchez-Andrada, P.; 728 Bautista, D. On the [2 +2] Cycloaddition of 2-Aminothiazoles and 729 Dimethyl Acetylenedicarboxylate. Experimental and Computational 730 Evidence of a Thermal Disrotatory Ring Opening of Fused 731 Cyclobutenes. J. Org. Chem. 2006, 71, 5328-5339.

[^0]: Received: December 2, 2018
 Published: February 19, 2019

