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Abstract  35 

Early-life exposure to inorganic arsenic (iAs) may adversely impact health later in life. To 36 

date, evidence of iAs adverse effects on children’s neurodevelopment comes mainly from 37 

populations highly exposed to contaminated water with conflicting results. Little is known 38 

about those effects among populations with low iAs exposure from food intake. We 39 

investigated the cross-sectional association between exposure to iAs and 40 

neurodevelopment scores among children living in Spain whose main route of exposure 41 

was diet. Arsenic species concentrations in urine from 400 children was determined, and 42 

the sum of urinary iAs, dimethylarsinic acid, and monomethylarsonic acid was used to 43 

estimate iAs exposure. The McCarthy Scales of Children’s Abilities was used to assess 44 

children’s neuropsychological development at about 4-5 years of age. The median 45 

(interquartile range) of children’s sum of urinary iAs, MMA, and DMA was 4.85 (2.74 - 46 

7.54) μg/L, and in adjusted linear regression analyses the natural logarithm transformed 47 

concentrations showed an inverse association with children’s motor functions (β, [95% 48 

confidence interval]; global scores (-2.29, [-3.95, -0.63]), gross scores (-1.92, [-3.52, -49 

0.31]) and fine scores (-1.54, [-3.06, -0.03]). In stratified analyses by sex, negative 50 

associations were observed with the scores in the quantitative index (-2.59, [-5.36, 0.17]) 51 

and working memory function (-2.56, [-5.36, 0.24]) only in boys. Our study suggests that 52 

relatively low iAs exposure may impair children’s neuropsychological development and 53 

that sex-related differences may be present in susceptibility to iAs related effects; however, 54 

our findings should be interpreted with caution given the possibility of residual 55 

confounding.  56 

 57 

Keywords: urinary arsenic species, inorganic arsenic, children, neuropsychological 58 
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 61 

1. Introduction 62 

Arsenic is a ubiquitous element in the environment that occurs in different oxidation states 63 

(−3, 0, +3, +5) in both organic and inorganic forms that constitute total arsenic (referred to 64 

as “arsenic” in this study) (WHO, 2001). Intake of inorganic arsenic (iAs), including 65 

arsenite (AsIII) and arsenate (AsV), is an established cause of cancer of the lung, skin, and 66 

bladder and a possible cause of others, with accumulating evidence of effects on non-cancer 67 

health outcomes such as neurological, cardiovascular, respiratory and metabolic diseases 68 

(IARC, 2012; Nachman et al., 2017; Sanchez et al., 2016; Tsuji et al., 2015). The 69 

metabolism of iAs involves a series of reduction and oxidative methylation processes 70 

catalyzed by the enzyme arsenic-methyltransferase with S-adenosylmethionine as the 71 

methyl group donor that results in the formation of the pentavalent monomethylarsonic 72 

acid (MMA) and dimethylarsinic acid (DMA) that are primarily excreted in the urine 73 

(Antonelli et al., 2014; Jansen et al., 2016; Tseng, 2009). The trivalent forms of iAs, MMA, 74 
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and DMA are considered to be more toxic forms with MMAIII having the highest toxicity 75 

followed by iAsIII (Tseng, 2009). Direct ingestion of DMA and MMA in the pentavalent 76 

form may be excreted in the urine unchanged potentially posing less toxic effects (Buchet 77 

et al., 1981; Cohen et al., 2006; Meharg et al., 2014; Molin et al., 2015; Tseng, 2009). The 78 

sum of urinary iAs and methylated arsenic species concentrations (i.e. MMA and DMA) is 79 

considered a reliable biomarker of short-term exposure to iAs from all sources, and it also 80 

appears to be a reliable source of long-term exposure among individuals with consistent 81 

patterns of exposure such as child populations whose diet is generally of lower food 82 

diversity (EFSA, 2009; Kile et al., 2009; Marchiset-Ferlay et al., 2012; Navas-Acien et al., 83 

2009; Signes-Pastor et al., 2017b). Oxidative stress is considered to be a potential 84 

mechanism of iAs toxicity, and increasing evidence suggests that this mechanism may be 85 

responsible for iAs related neurotoxicity and impaired neurodevelopment (Grandjean and 86 

Landrigan, 2014; Tolins et al., 2014). 87 

 88 

A growing number of epidemiologic studies suggest that children’s iAs exposure adversely 89 

impacts health later in life, including neurodevelopment (EFSA, 2009; Freire et al., 2018; 90 

Grandjean and Landrigan, 2014; Nachman et al., 2017; Tolins et al., 2014; Tsuji et al., 91 

2015; Wasserman et al., 2014); however, the consistency and generalizability of these 92 

findings has not been established yet, especially among populations whose main exposure 93 

source is diet. This includes the Spanish population for whom ingested iAs and organic 94 

arsenic is likely to be associated with rice and marine product consumption, respectively 95 

(Cubadda et al., 2016; EFSA, 2009; Kurzius-Spencer et al., 2014, 2013; Navas-Acien et 96 

al., 2009; Signes-Pastor et al., 2017b). Among populations whose main exposure route to 97 

iAs is from food intake, consumption of fish/seafood products needs to be carefully taken 98 

into account. These contain high concentrations of arsenobetaine (AsB), a putative non-99 

toxic organic form excreted in urine unchanged, which may cause exposure 100 

misclassification of iAs if total urinary arsenic is used as a biomarker of exposure (Forns 101 

et al., 2014; Molin et al., 2015; Navas-Acien et al., 2011). Biotransformation of other 102 

fish/seafood organosenicals excreted in urine as DMA or direct ingestion of DMA or MMA 103 

similarly can be problematic in the assessment of iAs intake (Jones et al., 2016; Meharg et 104 

al., 2014; Molin et al., 2015). Currently there is a lack of information regarding the 105 

association between early-life neuropsychological development and iAs exposure based on 106 

urinary arsenic speciation among populations with access to arsenic drinking water lower 107 

than the WHO guideline value of 10 μg/L (Forns et al., 2014; WHO, 2011). In water, 108 

arsenic is mostly present as iAs, and relatively low levels of arsenic drinking water have 109 

been negatively associated with school-age children’s full intelligence quotient (IQ) in the 110 

U.S. (Wasserman et al., 2014; WHO, 2011). In water arsenic-contaminated areas of 111 

Bangladesh, India and Mexico inverse associations were reported between iAs exposure, 112 

assessed using arsenic concentrations in water, urine and blood, and children’s cognitive 113 

function (Hamadani et al., 2011; Mst. Nasrin Nahar et al., 2014; Parvez et al., 2011; Rosado 114 
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et al., 2007; Wasserman et al., 2011; WHO, 2011). However, other studies in Bangladesh 115 

focused on areas with arsenic-contaminated water have not found evidence of child 116 

neuropsychological development in relation to urinary arsenic (Hamadani et al., 2010; 117 

Tofail et al., 2009). Further, although a few studies have suggested sex-related differences 118 

in iAs-associated neurodevelopmental outcomes, this has not always been observed, and 119 

thus further investigations are needed (Hamadani et al., 2011; Llop et al., 2013; Rosado et 120 

al., 2007; Sanchez et al., 2016).  121 

 122 

In populations with access to low arsenic drinking water, i.e. < 10 μg/L, food is considered 123 

to be the major source of iAs exposure (Cubadda et al., 2016; EFSA, 2009; Kurzius-124 

Spencer et al., 2014, 2013), and yet little is known regarding the potential association 125 

between dietary iAs exposure and childhood neuropsychological development. In this 126 

study, we investigated whether early-life exposure to dietary iAs levels adversely affects 127 

children’s neuropsychological development. We focused on a population of children of 128 

approximately 4-5 years of age living in Spain for whom diet is expected to be the major 129 

iAs exposure source (Signes-Pastor et al., 2017b, 2017a). We further explored the 130 

possibility of sex-related differences in susceptibility to iAs related neuropsychological 131 

outcomes. 132 

 133 

2. Material and methods 134 

 135 

2.1. Study population. The study population was derived from the mother-child pair 136 

participants in the INMA – INfancia y Medio Ambiente - Environment and Childhood 137 

project, a prospective population-based birth cohort study conducted in multiple regions 138 

around Spain (www.proyectoinma.org). The general design of INMA has been previously 139 

described in detail (Guxens et al., 2012). Briefly, women participants of the INMA project 140 

were recruited at the beginning of their pregnancy (2003 - 2006) at their reference primary 141 

health care centers or public hospitals and were followed-up until delivery (n = 2,625). All 142 

women met the inclusion criteria of ≥ 16 years old, singleton pregnancy, non-assisted 143 

conception and delivery scheduled at the reference hospital. Their children were enrolled 144 

at birth and were followed-up during infancy and childhood. Informed consent was 145 

obtained from all participants in each phase, and the hospitals ethics committees in the 146 

participating regions approved the study. For the present study, 100 children, evenly 147 

distributed between boys and girls, were randomly selected to provide a urine sample from 148 

each sub-cohort located in the Spanish regions of Asturias, Gipuzkoa, Sabadell, and 149 

Valencia (overall n = 400) (Signes-Pastor et al., 2017b, 2017a). To date a total of 400 150 

INMA 4-year-old children have had urinary arsenic species concentrations analyzed. 151 

 152 

2.2. Neuropsychological assessment. Overall, children’s neuropsychological 153 

development was assessed at the median age of 4.5 years (standard deviation of 0.6 years) 154 
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with a standardized version of the McCarthy Scales of Children’s Abilities (MSCA) 155 

adapted to the Spanish population (McCarthy, 2009). The MSCA was selected because of 156 

its reliability and validity, and wide use in research related to environmental health and 157 

neurodevelopment including prior studies by INMA (Andiarena et al., 2017; Forns et al., 158 

2012; Nagle, 1979). For children from the sub-cohorts of Asturias, Gipuzkoa and Sabadell 159 

(n = 300) the MSCA test was performed at the same time urine samples were collected, 160 

along with children’s weight and height measured and a food frequency questionnaire 161 

(FFQ) at a median age of 4.4 years (standard deviation of 0.2 years); for the Valencian 162 

children (n = 100) the neuropsychological assessment was carried out at the median age of 163 

5.8 years (standard deviation of 0.1 years). The urine samples, children’s weight and height, 164 

and the FFQ for the Valencian children were collected at a median age of 4.4 years 165 

(standard deviation of 0.1 years). Trained psychologists administered the MSCA test. The 166 

MSCA test included a battery of 18 subtests (i.e. construction with cubes, puzzle, pictorial 167 

memory, vocabulary, calculation, beating sequence, verbal memory, right-left orientation, 168 

leg coordination, arm coordination, imitative action, copying of drawings, drawing of a 169 

child, numerical memory, verbal fluency, counting and distribution, opposites, and concept 170 

formation). The MSCA subtests were grouped into the original function scales of general 171 

cognitive, verbal, perceptive-performance, quantitative index, memory, and motor 172 

function. With further classification of the MSCA subtests, we obtained the new function 173 

scales of executive, working memory, visual and verbal span, verbal memory, gross motor, 174 

fine motor, and cognitive function of the posterior cortex as described in detail previously 175 

(Julvez et al., 2011). We previously calculated and reported high intraclass coefficients for 176 

the original function scales (> 0.78), and reasonably high Cronbach’s alpha coefficients (≥ 177 

0.70) with the new function scales. Further details appear in the prior INMA publication 178 

(Valera-Gran et al., 2017). 179 

 180 

2.3. Sample preparation and chemical analyses. Arsenic speciation analyses were 181 

carried out in spot urine samples (Signes-Pastor et al., 2017a). Urine samples were 182 

collected in 100 mL polypropylene containers and immediately stored at or below -20ºC, 183 

then a 5 mL aliquot from each child in the study were shipped on dry ice to the Institute 184 

for Global Food Security at Queen’s University Belfast (QUB), Northern Ireland, for 185 

arsenic speciation analyses including AsB, DMA, MMA, and iAs. Before speciation, urine 186 

samples were centrifuged, and analytical grade hydrogen peroxide was added to convert 187 

any arsenite to arsenate to facilitate subsequent chromatographic detection by ion 188 

chromatography (IC) with inductively coupled plasma mass spectrometry (ICP-MS). In 189 

each analytic batch, blank and replicate samples of the urine lyophilized material 190 

ClinChek® - Control level I (Recipe Chemicals + Instruments GmbH in Munich, Germany) 191 

were included for quality control. Urine samples were normalized for urine dilution using 192 

specific gravity measured with a clinical refractometer. The average recovery percentages 193 

and standard deviations of the arsenic species based on several replicate samples of the 194 
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urine lyophilized material ClinChek®- Control level I (n = 33) were 115 ± 2% for i-As, 97 195 

± 2% for MMA, 94 ± 2% for DMA, and 90 ± 2% for AsB. The mean and range 196 

concentrations of the arsenic species reference values in the urine lyophilized material 197 

ClinChek® - Control level I are as follows: 4.55 (2.73 - 6.37) μg/L for i-As, 2.50 (1.50 - 198 

3.50) μg/L for MMA, 9.8 (5.88 - 13.7) μg/L for DMA, and 16.8 (12.6 - 21.0) μg/L for AsB. 199 

The limit of detection (LOD) for arsenic speciation, calculated from DMA calibration, was 200 

0.011 μg/L (Signes-Pastor et al., 2017a).  201 

 202 

2.4. Questionnaire. In the 1st trimester of pregnancy a maternal questionnaire was 203 

administered to gather information regarding parental sociodemographic and 204 

socioeconomic characteristics such as the number of previous live births (i.e. 0, 1, 2, or 3), 205 

maternal age at conception (years), maternal highest attained level of education (i.e. 206 

primary, secondary, or university), and social class according to the International Standard 207 

Classification of Occupants (ISCO88) (i.e. upper - I+II, middle - III, or lower - IV+V) 208 

(International Labor Office (ILO), 2012). Trained staff measured children’s weight (kg) 209 

and height (m) at the same time the urine samples were collected following standard 210 

protocols to calculate the body mass index (BMI) in kg/m2. At the same time, parents 211 

reported children’s diet including consumption of rice and fish/seafood with a validated 212 

FFQ (Signes-Pastor et al., 2017b; Vioque et al., 2016). All the aforementioned covariates 213 

were among those considered while identifying potential confounders (see Supplemental 214 

Material, Figure S1, for further details) 215 

 216 

2.5. Statistical analyses. For all statistical analyses, observations with missing data for at 217 

least one covariate were excluded in addition to children who did not complete the 218 

neuropsychological development test. Summary statistics were calculated for each 219 

variable: median (range and interquartile range) for continuous variables and n (%) of each 220 

level for categorical variables. We calculated the sum of iAs (i.e. arsenite and arsenate), 221 

DMA and MMA (referred to as “sum of urinary arsenic” in this study) as a biomarker of 222 

iAs exposure. The distribution of children’s urinary arsenic species concentrations and sum 223 

of urinary arsenic were right skewed, so they were natural logarithm transformed (ln-224 

transformed) before statistical analysis. All scores from the neuropsychological MSCA 225 

function scales were standardized to a mean of 100 points with a standard deviation of 15.  226 

 227 

The association between children’s sum of urinary arsenic concentrations ln-transformed 228 

(continuous) and neuropsychological function scores was firstly assessed using univariate 229 

linear regression models (Model 0 in Supplemental Material, Table S1). Then, multiple 230 

linear regression models adjusted for potential confounders were computed (Model 1 in 231 

Table 3 and in Supplemental Material, Table S1). The potential confounders were 232 

identified using the directed acyclic graph (Textor et al., 2017), and the selected minimally 233 

sufficient adjustment set contained: maternal highest attained level of education (i.e. 234 
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primary, secondary, or university), child’s sex (i.e. girls or boys), BMI (continuous), age 235 

at MSCA testing (continuous) and calorie adjusted consumption of rice and fish/seafood 236 

(continuous) (Supplemental Material, Figure S1). The adjusted models were also used to 237 

explore the association between children’s sum of urinary arsenic concentrations and the 238 

neuropsychological scores according to sex in stratified analysis and by including the main 239 

effects along with the interaction term (i.e. ln-transformed sum of urinary arsenic 240 

concentrations * sex). We carried out multiple sensitivity analyses in the models: i) 241 

children’s sum of urinary arsenic concentrations were calibrated for fish/seafood 242 

consumption using a mathematical method previously described that uses AsB as a 243 

biomarker of fish/seafood intake (Model 2 in Supplemental Material, Table S1) (Jones et 244 

al., 2016), ii) influential points identified with the Bonferroni outlier test of the “car” 245 

package were excluded (Fox and Weisberg, 2011), iii) children’s hair mercury 246 

concentrations analyzed at 4 years were added in the core models as potential confounder 247 

(Model 3 in Supplemental Material, Table S1), iv) analysis restricted to children with low 248 

urinary AsB (i.e. < 1 μg/L) as an indicator of exclusion of fish/seafood consumption (Model 249 

4 in Supplemental Material, Table S1) (Jones et al., 2016), vi) and finally, we explored the 250 

association between children’s ln-transformed sum of urinary arsenic concentrations and 251 

the neuropsychological scores adjusting for sub-cohort location (i.e. Asturias, Gipuzkoa, 252 

or Sabadell) in addition to the potential confounders described in the core models 253 

(Supplemental Material, Table S2). Children from Valencia were excluded in the sub-254 

cohort adjusted models to circumvent collinearity between sub-cohort location and age at 255 

MSCA test. All analyses were carried out with the R software for statistical computing 256 

version 3.5.1 (R Core Team, 2014). A threshold of p-value < 0.05 was used to define 257 

associations as statistically significant.  258 

 259 

3. Results 260 

 261 

Of the 400 children evaluated, 361 (90%) were ultimately included in the analyses because 262 

they did not contain missing values in neither neuropsychological development test nor 263 

other covariates. Our study sample contained 185 (51%) girls and 176 (49%) boys. 264 

Children’s median (interquartile range) sum of urinary arsenic concentrations was 4.85 265 

(2.74 - 7.54) μg/L overall, and 4.76 (2.36 - 7.48) μg/L and 4.96 (3.09 - 7.60) μg/L for the 266 

girls and boys, respectively. Almost all children reported school attendance at 4 years 267 

across all sub-cohort locations. Refer to Table 1 for further details.  268 

 269 

We also assessed characteristics of the study population stratified by the median 270 

concentration of 4.85 μg/L of the sum of urinary arsenic. Children with ≥ 4.85 μg/L also 271 

had higher concentrations of urinary AsB with a median of 15.95 μg/L versus 5.41 μg/L (p 272 

< 0.001). We did not observe statistically significant differences with other characteristics 273 

of the study population (Table 2).  274 
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 275 

We observed a negative linear association between ln-transformed sum of urinary arsenic 276 

concentrations and the scores from the original global motor function (β = -2.29, 95% 277 

confidence interval (CI) = [-3.95, -0.63], p = 0.007), the derived gross motor function (β = 278 

-1.92, 95% CI = [-3.52, -0.31], p = 0.020) and fine motor function (β = -1.54, 95% CI = [-279 

3.06, -0.03], p = 0.046) after adjustment for maternal highest attained level of education, 280 

child’s sex, BMI, age at MSCA testing, and calorie adjusted consumption of rice and 281 

fish/seafood (Table 3). We did not observe any clear association with the remaining MSCA 282 

function scores and children’s ln-transformed sum of urinary arsenic concentrations (Table 283 

3).  284 

 285 

In the stratified analyses by sex, we found negative trends between boy’s ln-transformed 286 

sum of urinary arsenic concentrations and the scores of quantitative index and with the 287 

derived working memory function (β = -2.59, 95% CI = [-5.36, 0.17], p = 0.066, and β = -288 

2.56, 95% CI = [-5.36, 0.24], p = 0.073, respectively), which were supported by low p-289 

values in the interaction term ln-transformed sum of urinary arsenic concentrations and sex 290 

in the core models (p = 0.065 and p = 0.052, respectively). Further, we observed a stronger 291 

negative trend with an average of 5-fold higher regression coefficient between ln-292 

transformed sum of urinary arsenic concentrations and the remaining neuropsychological 293 

function scores in boys compared to girls, but they did not achieve statistical significance 294 

(Table 3).  295 

 296 

We did not observe any major changes in the regression coefficients between models (i.e. 297 

unadjusted (Model 0), adjusted for confounders (Model 1), with calibrated children’s sum 298 

of urinary arsenic for consumption of fish/seafood (Model 2), and adjusted for children’s 299 

hair mercury concentrations (Model 3 in Supplemental Material, Table S1). The restrictive 300 

analysis including only children who did not consume fish/seafood also followed similar 301 

trends; however, wider confidence intervals were observed owing to the small dataset (n = 302 

49) (Model 4 in Supplemental Material, Table S1). The results from the adjusted sub-303 

cohort location models, excluding children from Valencia, followed the trend of our 304 

primary findings; however, the regression coefficients were attenuated (Supplemental 305 

Material, Table S2). The mathematically calibrated urinary arsenic species concentrations 306 

(i.e. iAs, DMA and MMA) and their sum removed any association with urinary AsB 307 

concentrations and had Pearson’s correlation coefficients (r) < 0.017, p > 0.745). Calibrated 308 

children’s ln-transformed sum of urinary arsenic concentrations did not appreciably alter 309 

the association with the scores in the original scale of global motor function (β = -2.11, 310 

95% CI = [-3.86, -0.36], p = 0.018) and strengthened the negative association between ln-311 

transformed sum of urinary arsenic concentrations and children’s scores on fine motor 312 

function (β = -1.82, 95% CI = [-3.41, -0.22], p = 0.026) (Model 2 in Supplemental Material, 313 

Table S1). In contrast, the regression coefficient between calibrated children’s ln-314 
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transformed sum of urinary arsenic concentrations and the scores in gross motor was 315 

modestly attenuated and lost statistical significance (β = -1.38, 95% CI = [-3.08, 0.32], p = 316 

0.112) (Model 2 in Supplemental Material, Table S1). Similar results were obtained when 317 

adjusting for children’s hair mercury concentrations (Model 3 in Supplemental Material, 318 

Table S1). We did not observe any major change in the sensitivity statistical analyses when 319 

excluding the identified outliers (n = 10) (data not shown). 320 

 321 

4. Discussion 322 

 323 

In this study, sum of urinary arsenic concentrations including iAs, MMA, and DMA were 324 

used as a biomarker of iAs exposure. We observed that the sum of urinary arsenic 325 

concentrations was negatively associated with the scores in the neuropsychological 326 

assessment of global, gross and fine motor function among children of approximately 4-5 327 

years of age living in Spain after adjusting for potential confounding factors. Our findings 328 

also suggest that boys may be more susceptible to iAs neurotoxicity. In particular, we found 329 

a stronger negative trend between ln-transformed sum of urinary arsenic concentrations 330 

and children’s scores in the neuropsychological quantitative and working memory function 331 

scales for boys compared to girls.  332 

 333 

In Spain, drinking water usually complies with the EU drinking water iAs regulation, set 334 

at 10 μg/L (The Council of the European Union, 1998) with a reported median level < 1 335 

μg/L (Espejo-Herrera et al., 2013; Palau Miguel and Guevara Alemany, 2011). Thus, diet 336 

is expected to be the main source of iAs exposure for our study population (Davis et al., 337 

2017; Signes-Pastor et al., 2017b). Spain is the second largest producer of rice in the EU 338 

and rice consumption is strongly rooted in the Spanish gastronomic culture (Comission, 339 

2015; Signes-Pastor et al., 2017b). Rice contains about 10-fold higher iAs compared to 340 

other cereals and the concentrations vary geographically (Meharg et al., 2009; Meharg and 341 

Zhao, 2012). We have previously reported that rice consumption in our study population 342 

was correlated with an increase of urinary iAs, and more weakly with the sum of urinary 343 

arsenic concentrations (Signes-Pastor et al., 2017b). Using the median cut point as in Table 344 

2, the difference was not statistically significant, which may be in part because the 345 

concentrations of arsenic in rice vary widely and in our previous work in Spain ranges from 346 

37 to 407 µg/kg (Signes-Pastor et al., 2016). Also, lack of associations or strong 347 

correlations may be related to misclassification of reporting of rice intake using a FFQ that 348 

asks about intake over the past year, and not the time period reflective of urinary excretion 349 

of arsenic (e.g., the past few days). Fish/seafood consumption is also an important part of 350 

the Spanish diet and it contributes to the ingestion of AsB, and tends to dominate exposure 351 

to organic arsenic from food intake in the Spanish and other populations with similar 352 

gastronomic cultures (Navarro Serrano et al., 2016; Taylor et al., 2016). In this study, the 353 

AsB concentrations contributed to over half of the sum of all urinary arsenic species 354 
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analyzed (i.e. median (interquartile range) of [AsB /(iAs + MMA + DMA + AsB) *100] 355 

equals 67.0% (41.4% - 86.8%)) and was correlated with children’s fish/seafood 356 

consumption (Signes-Pastor et al., 2017b), and thus, was critical to remove from our 357 

analysis of iAs exposure. 358 

 359 

Numerous studies have reported detrimental effects on neuropsychological development 360 

of children living in areas with arsenic-contaminated drinking water with urinary arsenic 361 

concentrations 1-2 orders of magnitude higher compared to the levels found in this study 362 

(Mst Nasrin Nahar et al., 2014; Mst. Nasrin Nahar et al., 2014; Parvez et al., 2011; von 363 

Ehrenstein et al., 2007; Wasserman et al., 2011; WHO, 2011). Although iAs exposure in 364 

our study population was low, we observed negative associations between iAs exposure 365 

and children’s scores in the neuropsychological motor function scales that involve skills 366 

such as playing with a ball and drawing. For each interquartile range increase in exposure 367 

we found a decrease of over 2 points in the scores for global motor and gross motor scores, 368 

and 1.5 points in the scores for the fine motor function.  369 

 370 

Only a few studies have been conducted in populations with low drinking water arsenic 371 

concentrations (Forns et al., 2014; Freire et al., 2018; Wasserman et al., 2014). In a cross-372 

sectional study from Maine, among ~10-year-old children, home tap water with arsenic ≥ 373 

5 μg/L was associated with reductions in full-scale IQ, and with all index scores, i.e. 374 

working memory, perceptual reasoning, and verbal comprehension (Wasserman et al., 375 

2014). A recent study from INMA has reported that arsenic levels in placenta were 376 

associated with decrements in global and verbal executive function and quantitative 377 

abilities, and could also be a risk factor for motor impairment in children of 4-5 years of 378 

age (Freire et al., 2018). Another prior study from INMA carried out in the sub-cohort of 379 

Sabadell did not find associations between maternal urinary arsenic concentrations during 380 

pregnancy and children’s neuropsychological development at the age of 4 years (Forns et 381 

al., 2014). However, total urinary arsenic concentrations including AsB was used leaving 382 

open the likelihood of exposure misclassification (Feldmann and Krupp, 2011; Jones et al., 383 

2016; Molin et al., 2015, 2014, 2012; Signes-Pastor et al., 2017b). In this study, iAs 384 

exposure was estimated with sum of urinary iAs, MMA, and DMA. We have previously 385 

reported lack of correlation between fish/seafood consumption and urinary iAs, MMA, and 386 

DMA concentrations (Signes-Pastor et al., 2017b). However, urinary DMA from 387 

biotransformation of organosenicals from marine product consumption (i.e. arsenosugars 388 

and arsenolipids) may still overestimate iAs. Thus, we adjusted for fish and seafood 389 

consumption and performed several sensitivity analyses (Jones et al., 2016; Molin et al., 390 

2015, 2014, 2012; Signes-Pastor et al., 2017b). Indeed, to address the potential for 391 

overestimation of exposure from fish/seafood consumption (Signes-Pastor et al., 2017b), 392 

we calibrated children’s urinary arsenic species concentrations using a residual-based 393 

method (Jones et al., 2016). Nevertheless, our analyses using adjusted or calibrated sum of 394 
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urinary arsenic concentrations for fish/seafood consumption generally did not result in 395 

appreciable changes in our findings. Similar results were observed when adjusting for 396 

children’s hair mercury concentrations as a biomarker of fish/seafood intake (Elhamri et 397 

al., 2007). Also, similar findings were obtained when we restricted our analysis to only 398 

children without fish/seafood consumption (i.e. urinary AsB < 1 μg/L), which despite the 399 

small sample size (n = 49) produced an inverse trend between exposure to iAs and 400 

children’s scores in global and fine motor function. Rice contains iAs but also DMA and 401 

potentially traces of MMA (Meharg and Zhao, 2012) that may be excreted in the urine 402 

unchanged raising concerns of potential iAs exposure misclassification, and therefore we 403 

adjusted the regression models for rice intake. Cadmium exposure has been associated with 404 

impaired child development (Forns et al., 2014; Freire et al., 2018; Kippler et al., 2012), 405 

and thus we analyzed cadmium concentrations in rice from Spain as a potential exposure 406 

source; however, we found levels almost undetectable owing to its cultivation under 407 

flooded conditions (Arao et al., 2009; Signes-Pastor et al., 2016). Information on children’s 408 

cadmium level of exposure in our study population is not available yet; however, we would 409 

expect levels to be lower than those of children from an industrial and mining region in 410 

southwestern Spain and possibly more similar to that reported in children of 6-8 years in 411 

Germany or 6-11 years in the U.S. (Rodríguez-Barranco et al., 2014). A preliminary 412 

analysis of 5-year-old children from the New Hampshire Birth Cohort Study do not suggest 413 

a strong correlation between the children’s urinary iAs and cadmium concentrations (n = 414 

389; Spearman r = 0.2) (personal communication). In order to address residual confounding 415 

from mercury exposure as a risk factor (Freire et al., 2018), we adjusted our core models 416 

for children’s hair mercury concentrations. Children’s diet differed by sub-cohort location 417 

(Supplemental Material, Table S3) along with their urinary AsB, MMA, and iAs 418 

concentrations, but not DMA (Signes-Pastor et al., 2017a). However, they did not differ in 419 

their sum of urinary arsenic concentrations (Supplemental Material, Table S3). In order to 420 

account for geographical differences in metal exposure (Freire et al., 2018), we adjusted 421 

for sub-cohort location excluding children from Valencia because of collinearity between 422 

sub-cohort location and age at MSCA test and the results followed the trend of our main 423 

findings, but the strength of the associations were attenuated. We did not consider exposure 424 

to lead and manganese as risk factors (Freire et al., 2018), and that is a limitation of our 425 

study since they could result in residual confounding if they were strongly associated with 426 

iAs exposures; however, we do not expect that to be the case. 427 

 428 

Our sex-stratified analyses are based on relatively small sample sizes, and therefore caution 429 

must be taken in the interpretation of the results. Our findings suggest that boys may be 430 

more susceptible to iAs neurotoxicity compared to girls particularly for cognitive tasks 431 

related to numerical function, and temporarily storing and managing information. For each 432 

interquartile range increase in exposure we found a decrease of 2.6 points in the scores for 433 

the quantitative index and working memory among boys. In contrast, in a study from 434 
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Bangladesh, pre- and post-natal exposure to iAs was inversely associated with verbal and 435 

full scale IQ in girls of 5 years of age (Hamadani et al., 2011). In an industrial polluted area 436 

in Mexico, an inverse association was identified between urinary arsenic concentrations 437 

and problem solving, vocabulary and attention scores among boys, and with memory 438 

among girls at the age ranging from 6 to 8 years (Rosado et al., 2007). Sex-related 439 

differences in susceptibility to metals toxicity have been associated with differences in 440 

patterns of exposure, gastrointestinal absorption, metabolism and detoxification (Llop et 441 

al., 2013; Tseng, 2009); however, information regarding early-life gender differences in 442 

susceptibility to iAs neurotoxicity is scarce and will require further investigation (Llop et 443 

al., 2013). 444 

 445 

This study is among the first to assess the association between iAs exposure, mainly from 446 

diet, and neuropsychological development of children taking part in a well-designed cohort 447 

(Gascon et al., 2017), and despite the relatively small size of the study population and 448 

relatively low level of iAs exposure, we observed associations between children’s iAs 449 

exposure and the scores in various neuropsychological function scales. Our results should 450 

be interpreted cautiously given the cross-sectional design of the study that precludes us 451 

from determining temporality and thus limits any inferences about causality. We adjusted 452 

for several potential confounding factors, but the effect of unknown factors such as other 453 

environmental/dietary factors or residual confounding remains a possibility. A particularly 454 

small sample size was used in the sex-stratified analyses with limited statistical power. 455 

Children’s daily rice and fish/seafood consumption were measured in personal interviews 456 

with parents using a validated FFQ (Vioque et al., 2016). The FFQ is considered a reliable 457 

method to assess usual diet in epidemiologic studies (Willett, 2012). In this study, the 458 

validity of the FFQ was examined by comparing the nutrient values from FFQ with the 459 

average nutrient values of three 24 hour dietary recalls, and with the concentrations in 460 

blood specimens for several vitamins (i.e. carotenoids, folate, vitamin B12, vitamin C and 461 

α-tocopherol) (Vioque et al., 2016). A mathematical method independent to the data 462 

recorded on the FFQ was applied to calibrate children’s sum of urinary arsenic 463 

concentrations for fish/seafood intake. Further, we carried out analysis adjusting for 464 

children’s hair mercury concentrations, sub-cohort location, and analysis including only 465 

children without fish/seafood consumption. In general, sensitivity analyses supported our 466 

primary findings, with some attenuation with adjustment for sub-cohort location possibly 467 

due the reduced statistical power. Further, multiple testing could have led to false positive 468 

results, and therefore our finding should be interpreted with caution and be explored if they 469 

persist in further follow-up assessments (Blakesley et al., 2009; Rothman, 1990).  470 

 471 

In conclusion, our study focused on a population with low arsenic in drinking water but 472 

who consume iAs in their diet, exposure to iAs was related to certain domains of 473 

neuropsychological function scores, in particular motor development. Our findings, along 474 
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with others, support the reduction of iAs exposure particularly during critical 475 

developmental windows early in life. 476 
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Table 1: Selected characteristics of the study population for the entire dataset and stratified by sex (minimum; interquartile rage; 

maximum) for continuous and n (%) for categorical variables. 

Selected characteristics of the study population  All (n = 361)   Girls (n = 185) Boys (n = 176) p-value 

Children:       

Sum of urinary arsenic concentrations (μg/L)1   4.85 (0.12; 2.74 - 

7.54; 84.46) 
 4.76 (0.21; 2.36 - 

7.48; 84.46) 

4.96 (0.12; 3.09 - 

7.60; 47.65) 
0.393 

Urinary AsB (%)2  67.0 (3.4; 41.4 - 

86.8; 100) 
 67.8 (5.9; 44.4 - 

86.8; 100) 

66.5 (3.4; 37.4 - 

86.8; 100) 
0.493 

Rice consumption (g/day)  
27.2 (0.9; 27.2 – 

39.9; 155.2) 
 

26.1 (5.2; 16.2 – 

37.8; 142.2) 

28.5 (0.9; 18.9 – 

40.9; 155.2) 
0.373 

Fish/Seafood consumption (g/day)  39.9 (10.5; 31.7 - 

48.8; 102.3) 
 40.6 (10.5; 32.5 - 

49.3; 102.3) 

38.4 (11.2; 29.9 - 

48.6; 91.1) 
0.078 

Sub-cohort (n) 

Asturias 96 (27)  48 (26) 48 (27) 

0.932 
Gipuzkoa 90 (25)  47 (25) 43 (24) 

Sabadell 76 (21)  41 (22) 35 (20) 

Valencia 99 (27)  49 (26) 50 (28) 

BMI (kg/m2)  
16.0 (11.5; 15.2 – 

17.2; 25.0) 
 

16.0 (12.9; 15.2 – 

17.1; 23.5) 

15.9 (11.5; 15.3 – 

17.3; 25.0) 
0.578 

Maternal:       

Age at enrollment (years)  31 (21; 29 – 34; 43)  31 (21; 29 – 34; 43) 31 (21; 29 – 34; 42) 0.277 

Social class 
Upper - I+II 83 (23)  43 (23) 40 (23) 

0.483 Middle - III 106 (29)  59 (32) 47 (27) 

Lower - IV+V 172 (48)  83 (45) 89 (50) 

Highest attained level of education 

Primary 70 (19)  35 (18) 35 (20) 

0.929 Secondary 148 (41)  75 (41) 73 (41) 

University 143 (40)  75 (41) 68 (39) 

Number of previous live births 

0 198 (55)  103 (56) 95 (54) 

0.278 
1 141 (39)  68 (37) 73 (41) 

2 21 (6)  14 (7) 7 (4) 

3 1 (0)   0 (0) 1 (1) 

For test of differences by sex, we used Welch’s t-test or Wilconxon’s rank test for continuos variables, and Chi-square or Fisher’s exact test for categorical variables. BMI = Body 
mass index. 
1DMA + MMA + iAs.  
2AsB (%) = (AsB/(iAs + MMA + DMA + AsB)) *100.  
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Table 2: Selected characteristics of the study population stratified by the median of the sum of urinary arsenic species concentration 

(4.85 μg/L) (minimum; interquartile rage; maximum) for continuous and n (%) for categorical variables. 

Selected characteristics of the study population  < 4.85 μg/L (n = 180) ≥ 4.85 μg/L (n = 181) p-value 

Children:     

Sex 
Girls 96 (53) 89 (49) 

0.493 
Boys 84 (47) 92 (51) 

Rice consumption (g/day)  26.7 (0.1; 18.2 – 36.4; 155.2) 27.9 (0.9; 18.7 – 42.3; 96.8) 0.587 

Fish/Seafood consumption (g/day)  39 (10.5; 29.6 - 48.1; 88.5) 40.1 (14.9; 33.5 - 50.0; 102.3) 0.090 

Urinary arsenobetaine (μg/L)  5.41 (0.05; 1.24 - 17.47; 
3,569) 

15.95 (0.29; 5.90 - 59.00; 
1,098) 

< 0.001 

Sub-cohort 

Asturias (n) 49 (27) 47 (26) 

0.863 
Gipuzkoa (n) 45 (25) 45 (25) 

Sabadell (n) 40 (22) 36 (20) 

Valencia (n) 46 (26) 53 (29) 

BMI (kg/m2)  15.9 (11.5; 15.2 – 16.9; 25.0) 16.1 (12.9; 15.2 – 17.5; 21.0) 0.546 

Maternal:     

Enrollment  Age (years) 31.0 (21.0; 29.0 - 34.2; 43.0) 31.0 (24.0; 29.0 - 34.0; 42.0) 0.624 

Social class 

Upper - I+II 42 (23) 41 (23) 

0.807 Middle - III 50 (28) 56 (31) 

Lower - IV+V 88 (49) 84 (46) 

Highest attained level of education 

Primary 37 (21) 33 (18) 

0.583 Secondary 69 (38) 79 (44) 

University 74 (41) 69 (38) 

Number of previous live births 

0 91 (51) 107 (59) 

0.150 
1 74 (41) 67 (37) 

2 14 (8) 7 (4) 

3 1 (1) 0 (0) 

For test of differences by sex, we used Welch’s t-test or Wilconxon’s rank test for continuos variables, and Chi-square or Fisher’s exact test for categorical variables. BMI = Body 
mass index.  
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Table 3: Association between children’s sum of urinary arsenic concentrations (ln-transformed) and the McCarthy Scales of 

Children’s Ability scores standardized to a mean of 100 points with a standard deviation of 15 according to child sex. 

McCarthy Scales of Children's Abilities 
Model 1 (n = 361)a 

  
Girls (n = 185)c   Boys (n = 176)c 

  Interaction 

(n = 

361)b,d 
 

 

β 95% CI p-value 
 

β 95% CI p-value   β 95% CI p-value   p-value  

Original functions 

General cognition -0.86 -2.43 0.71 0.281 
 

-0.08 -2.00 1.84 0.937  -1.87 -4.58 0.84 0.176  0.213 

Verbal -0.20 -1.88 1.49 0.819 
 

0.71 -1.37 2.79 0.502  -1.54 -4.43 1.34 0.293 
 

0.208 

Perceptual-performance -1.30 -2.79 0.20 0.090 
 

-0.94 -2.78 0.90 0.313  -1.56 -4.14 1.03 0.236 
 

0.539 

Quantitative index -0.91 -2.58 0.77 0.288 
 

0.28 -1.84 2.39 0.796  -2.59 -5.36 0.17 0.066 
 

0.065 

Memory  -0.75 -2.39 0.88 0.367 
 

0.00 -2.16 2.17 0.997  -1.63 -4.20 0.94 0.212 
 

0.224 

Global motor -2.29 -3.95 -0.63 0.007 
 

-1.85 -3.84 0.15 0.069   -3.00 -5.93 -0.07 0.045   0.533 

New functions 

Executive -0.28 -1.86 1.30 0.727 
 

0.54 -1.33 2.41 0.570  -1.56 -4.35 1.23 0.270  0.188 

Visual executive -0.53 -2.10 1.04 0.508 
 

-0.56 -2.49 1.38 0.571  -0.43 -3.08 2.22 0.751 
 

0.971 

Verbal executive  -0.16 -1.82 1.50 0.850 
 

1.00 -0.92 2.92 0.307  -2.00 -5.00 0.99 0.189 
 

0.085 

Visual and verbal span  -0.50 -2.16 1.16 0.557 
 

-0.36 -2.63 1.92 0.757  -0.64 -3.11 1.84 0.611 
 

0.754 

Working memory  -0.67 -2.37 1.04 0.442 
 

0.61 -1.57 2.79 0.581  -2.56 -5.36 0.24 0.073 
 

0.052 

Verbal memory  -0.58 -2.26 1.11 0.501 
 

0.00 -2.11 2.12 0.999  -1.03 -3.85 1.79 0.471 
 

0.446 

Gross motor  -1.92 -3.52 -0.31 0.020 
 

-1.86 -3.67 -0.04 0.045  -2.27 -5.24 0.69 0.132 
 

0.931 

Fine motor -1.54 -3.06 -0.03 0.046 
 

-0.98 -2.95 0.98 0.326  -2.18 -4.66 0.30 0.085 
 

0.394 

Cognitive function of 

posterior cortex 
-1.18 -2.80 0.45 0.156   -0.24 -2.28 1.79 0.813   -2.23 -4.97 0.52 0.111   0.177 

a,bMultiple linear regression models adjusted for maternal highest attained level of education (i.e. primary, secondary, or university), and children’s sex (i.e. girls or boys), BMI (kg/m2), age at MSCA 

(years) and calorie adjusted consumption of rice and fish/seafood (g/day). 
cMultiple linear regression models adjusted for maternal highest attained level of education (i.e. primary, secondary, or university), and children’s BMI (kg/m2), age at MSCA (years) and calorie adjusted 

consumption of rice and fish/seafood (g/day). 
dInteraction between children’s sum of urinary arsenic species concentrations (ln-transformed) and sex. 
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Table S1: Association between children’s sum of urinary arsenic concentrations (ln-transformed) and the McCarthy Scales of 

Children’s Ability scores  

McCarthy Scales of Children's Abilities 

Model 0    Model 1   Model 2* 
  

Model 3# 
  

Model 4 

(n = 361)  (n = 361)  (n = 361) 
 

(n = 234) 
 

(n = 49) 

β 95% CI p-value  β 95% CI p-value  β 95% CI p-value 
 

β 95% CI p-value 
 

β 95% CI p-value 

Original functions 

General cognitive -0.74 -2.37 0.90 0.376  -0.86 -2.43 0.71 0.281  -0.80 -2.46 0.85 0.340 
 

0.48 -1.46 2.41 0.629 
 

-1.87 -7.41 3.67 0.499 

Verbal -0.07 -1.79 1.64 0.933  -0.20 -1.88 1.49 0.819  -0.01 -1.79 1.77 0.991 
 

1.45 -0.68 3.57 0.182 
 

-0.66 -6.02 4.71 0.806 

Perceptual performance -1.25 -2.80 0.30 0.113  -1.30 -2.79 0.20 0.090  -1.31 -2.88 0.27 0.104 
 

-1.01 -2.87 0.85 0.285 
 

-3.32 -8.15 1.51 0.173 

Quantitative index -0.79 -2.48 0.91 0.362  -0.91 -2.58 0.77 0.288  -0.99 -2.75 0.77 0.270 
 

0.63 -1.33 2.59 0.527 
 

-0.28 -6.12 5.56 0.922 

Memory  -0.54 -2.21 1.13 0.523  -0.75 -2.39 0.88 0.367  -0.88 -2.61 0.85 0.316 
 

0.48 -1.53 2.49 0.640 
 

2.37 -3.07 7.81 0.383 

Global motor -2.16 -3.82 -0.50 0.011  -2.29 -3.95 -0.63 0.007  -2.11 -3.86 -0.36 0.018 
 

-2.12 -4.22 -0.02 0.048 
 

-4.77 -10.03 0.49 0.074 

New functions 

Executive -0.12 -1.74 1.49 0.882  -0.28 -1.86 1.30 0.727  -0.10 -1.76 1.56 0.903 
 

1.06 -0.90 3.02 0.286 
 

-2.13 -7.77 3.50 0.449 

Visual executive -0.42 -2.01 1.17 0.601  -0.53 -2.10 1.04 0.508  -0.39 -2.04 1.26 0.641 
 

0.06 -1.92 2.05 0.950 
 

-0.51 -6.06 5.03 0.852 

Verbal executive  -0.01 -1.69 1.67 0.991  -0.16 -1.82 1.50 0.850  0.00 -1.74 1.75 0.997 
 

1.29 -0.81 3.39 0.227 
 

-2.39 -7.98 3.20 0.393 

Visual and verbal span  -0.35 -2.02 1.33 0.685  -0.50 -2.16 1.16 0.557  -0.49 -2.24 1.26 0.585 
 

0.52 -1.47 2.51 0.609 
 

3.75 -2.02 9.51 0.197 

Working memory  -0.48 -2.19 1.23 0.582  -0.67 -2.37 1.04 0.442  -0.69 -2.48 1.11 0.454 
 

0.43 -1.63 2.48 0.683 
 

-0.21 -6.79 6.36 0.948 

Verbal memory  -0.42 -2.12 1.28 0.625  -0.58 -2.26 1.11 0.501  -0.75 -2.53 1.03 0.410 
 

0.42 -1.64 2.49 0.686 
 

0.43 -4.85 5.70 0.871 

Gross motor  -1.68 -3.32 -0.04 0.045  -1.92 -3.52 -0.31 0.020  -1.38 -3.08 0.32 0.112 
 

-1.31 -3.33 0.70 0.201 
 

-2.52 -7.71 2.67 0.332 

Fine motor -1.59 -3.16 -0.02 0.047  -1.54 -3.06 -0.03 0.046  -1.82 -3.41 -0.22 0.026 
 

-1.79 -3.67 0.09 0.062 
 

-4.77 -10.20 0.67 0.084 

Cognitive function of posterior cortex -1.14 -2.82 0.55 0.186   -1.18 -2.80 0.45 0.156   -1.18 -2.90 0.53 0.176 
  

0.09 -1.93 2.11 0.928 
  

-1.40 -6.68 3.89 0.596 

Model 0: Univariant models. Model 1: Models adjusted for maternal highest attained level of education (i.e. primary, secondary, or university), children’s sex 

(i.e. girls or boys), BMI (kg/m2), age at MSCA test (years) and calorie adjusted consumption of rice and fish/seafood (g/day). Model 2: The sum of urinary 

arsenic species concentrations were calibrated following a mathematical method previously described (Jones et al. 2016) and the confounders were those 

included in Model 1 excluding consumption of fish/seafood. Model 3: In addition to the potential confounding factors included in Model 1 we added children’s 

hair mercury concentrations analyzed at 4 years. Model 4: Analyses were restricted to children with low urinary AsB (i.e. < 1 μg/L) as an indicator of exclusion 

of fish/seafood consumption and the models were adjusted for the potential confounding factors included in Model 1. 



*We calibrated children’s urinary arsenic species concentrations following a methodology 

previously described (Jones et al. 2016). This methodology takes advantage of the fact that 

urinary arsenobetaine (AsB), a putative non-toxic form of arsenic excreted unchanged 

rapidly in urine, is an adequate biomarker of fish/seafood intake. To proceed with the 

calibration, the original sum of urinary arsenic concentrations (i.e. iAs + MMA + DMA) 

were regressed by the urinary AsB and the model residuals were extracted. Then, we added 

the mean level of the urinary arsenic species concentrations of participants with low AsB 

(<1 μg/L; n = 49) to the residuals, assuming that iAs exposure levels not derived from fish 

and seafood are similar in participants with low and high AsB concentrations (Jones et al. 

2016). Finally, the calibrated children’s urinary arsenic concentrations were included as an 

independent variable in the multiple linear regression core models adjusted also for 

potential confounding factors to assess the association with children’s neuropsychological 

scores. 

 
#Among children included in our models only 234 had their hair mercury concentrations 

analyzed. 



Table S2: Association between children’s sum of urinary arsenic concentrations (ln-transformed) 

and the McCarthy Scales of Children’s Ability scores adjusted by sub-cohort location.  

 

McCarthy Scales of Children's Abilities 
Asturias, Gipuzkoa, and Sabadell (n = 262)a 

β 95% CI p-value 

Original functions 

General cognition -0.63 -2.42 1.16 0.487 

Verbal -0.13 -2.04 1.77 0.891 

Perceptual-performance -0.51 -2.22 1.20 0.558 

Quantitative index -1.35 -3.28 0.57 0.168 

Memory  -1.02 -2.89 0.85 0.285 

Global motor -1.75 -3.61 0.10 0.064 

New functions 

Executive -0.10 -1.88 1.68 0.911 

Visual executive 0.08 -1.75 1.91 0.929 

Verbal executive  -0.21 -2.04 1.62 0.818 

Visual and verbal span  -0.52 -2.43 1.40 0.595 

Working memory  -1.07 -3.00 0.86 0.275 

Verbal memory  -0.81 -2.79 1.17 0.420 

Gross motor  -1.48 -3.30 0.34 0.110 

Fine motor -1.16 -2.86 0.55 0.182 

Cognitive function of posterior cortex -1.06 -2.91 0.79 0.261 

Models adjusted for maternal highest attained level of education (i.e. primary, secondary, or university), children’s sex 

(i.e. girls or boys), BMI (kg/m2), age at MSCA test (years), sub-cohort location (i.e. Asturias, Gipuzkoa, or Sabadell), 
and calorie adjusted consumption of rice and fish/seafood (g/day). 



Table S3: Selected characteristics of the study population stratified by sub-cohort location (minimum; interquartile rage; maximum) 

for continuous and n (%) for categorical variables. 

Selected characteristics of the study population  Asturias (n = 96) Gipuzkoa (n = 90) Sabadell (n = 76) Valencia (n = 99) 
p-

value 

Children:       

Sex 
Girls 48 (50) 47 (52) 41 (54) 49 (49) 

0.932 
Boys 48 (50) 43 (48) 35 (46) 50 (51) 

Rice consumption (g/day)  26.5 (0.9; 11.2 – 37.5; 72.5) 22.2 (3.7; 9.9 – 34.1; 83.3) 
30.9 (7.2; 21.9 – 48.0; 

155.2) 

28.2 (0.9; 22.2 – 39.3; 

142.2) 
0.000 

Fish/Seafood consumption (g/day)  40.1 (14.7; 32.5 - 50.2; 

93.1) 

37.1 (18.2; 30.4 - 45.1; 

102.3) 

43.8 (21.1; 36.9 - 56.0; 

82.7) 

38.0 (10.5; 26.9 - 47.2; 

75.0) 
0.000 

Sum of urinary arsenic concentrations (μg/L)1  
 4.81 (0.31; 3.04 - 7.19; 

84.46) 

4.85 (0.12; 2.70 - 8.49; 

69.60) 

4.76 (0.22; 2.14 - 6.48; 

49.1) 

5.23 (0.37; 2.95 - 7.80; 

28.49) 
0.615 

BMI (kg/m2)  16.1 (11.5; 15.3 – 17.5; 

21.0) 

16.1 (13.2; 15.3 – 17.2; 

22.8) 

15.6 (12.9; 15.0 - 17.0; 

25.0) 

15.9 (12.6; 15.2 - 16.9; 

21.0) 
0.371 

Maternal:       

Enrollment  Age (years) 
32.0 (21.0; 29.0 - 35.0; 

42.0) 

32.0 (25.0; 29.0 - 35.0; 

43.0) 

30.5 (22.0; 28.8 - 34.0; 

40.0) 

30.3 (21.0; 27.0 - 33.0; 

42.0) 
0.004 

Social class 

Upper - I+II 18 (19) 33 (37) 14 (18) 18 (18) 

0.007 Middle - III 24 (25) 27 (30) 27 (36) 28 (28) 

Lower - 

IV+V 
54 (56) 30 (33) 35 (46) 53 (54) 

Highest attained level of education 

Primary 19 (20) 7 (8) 22 (29) 22 (22) 

0.000 Secondary 38 (40) 31 (34) 31 (41) 48 (48) 

University 39 (41) 52 (58) 23 (30) 29 (29) 

Number of previous live births 

0 59 (61) 46 (51) 40 (53) 53 (54) 

0.632 
1 30 (31) 39 (43) 31 (41) 41 (41) 

2 7 (7) 4 (4) 5 (7) 5 (5) 

3 0 (0) 1 (1) 0 (0) 0 (0) 

For test of differences by sex, we used Kruskal-Walis rank test for continuos variables, and Chi-square exact test for categorical variables. BMI = Body mass index. 
1DMA + MMA + iAs.  

 



Figure S1: Directed acyclic graph showing the minimal sufficient adjustment set (Textor et al. 

2017). 
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