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Abstract

Introducing intelligent safety devices in the roads would lead to enhance both
the time of reaction and the traffic safety. Nevertheless, these intelligent
devices are expensive, so choosing their location should be done carefully.
This research is focused a decision support system to decide the placement
of a specific safety device designed in a research project. This approach
includes a feature selection stage, a model learning stage and the deployment
stage. Decision models learn from real datasets with information related with
accidents, classifying the samples as Fatal, Severe or Slight injury. Also, a
case based risk index is proposed, so samples within the same label can
be sorted. Therefore, in the deployment stage, each possible location is
ranked and the user gets a feedback of the suitability of each of them to
be considered for placing the intelligent safety device. The experimentation
shows the proposal is valid provided the dataset for training includes enough
granularity. However, it is shown that specific risk index should be designed
for each road type and fork.
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1. Introduction1

This study focuses on the design of a decision support tool for the assess-2

ment where safety intelligent road barriers should be located. These intelli-3

∗Corresponding author: José R. Villar, villarjose@uniovi.es
Email addresses: UO230790@uniovi.es (Noelia Rico), sirene@uniovi.es (Irene
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Figure 1: An impact attenuator. These type of guardrail is placed at
diversions in relatively high speed roads and motorways. Image source:
http://www.hiasa.com/es/cargarFichaProducto.do?identificador=79

gent road barriers include sensory systems, on-crash video recording among4

them, so they are complex and expensive; its location must be decided with5

some sensibility. The focused road barriers -Fig. 1- are specifically designed6

for intersections and diversions, and are usually known as impact attenua-7

tors. Nevertheless, the solution to the problem was focused on a more generic8

way, aiming to develop a tool that could propose the most interesting spots9

for each type of road geometry.10

The design of roads and the location of safety devices are two important11

factors in reducing the accident rate in the network. As stated in [1, 2], a12

safety focused road design leads to better performances in terms of traffic13

security without high impact in the total budget. Concerning the safety14

devices, the problem of deciding the correct spot to locate them is two-fold:15

there are decisions to be made at design time and at the road exploiting time16

[3, 4], when accident blackspots are found. In this latter case, the decision17

is made based on the available traffic data; therefore, the examples of traffic18

and crash data should be ranked and, somehow, a decision must be draw.19

For sure, all these interventions and the decisions need to be evaluated [5, 6].20

Ranking indexes have been widely use either in the design of guardrails21

and their evaluation [7], in the design of road segments, the identification of22

accident blackspots [8] or in the selection of road safety decisions. Some stud-23

ies focus on the maintenance point of view, that is, the data from the road24

maintenance companies; some others based their studies on crash experimen-25

tal data, while other studies focuses on the data available from the National26

Traffic Agency (NTA). Therefore, the ranking indexes vary enormously ac-27

cording to the specific sub-field of interest. For instance, data coming from28

crash experiments include physical variables, which are the basis for the in-29
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dexes [7]: the occupant impact velocity, the acceleration severity index or30

the maximum change in the vehicle velocity, among others. These indexes31

could be reused in other areas if there is mapping from other measures to32

those physical variables. As an example, in those cases where the driver was33

able to break marks on the asphalt can be used to estimate those physical34

variables. However, these marks are not always measurable; therefore, this35

type of indexes cannot be used as general measurements of the severity of an36

accident.37

The research on suitable ranking indexes shows that the most suitable38

rank measurement directly relies on the available data. And each collection39

may or not include a severity index. For instance, the KABCO injury sever-40

ity scale is used by the police in the United States to classify each accident41

as one of the five defined labels since 1966 [9]. However, the interpretation42

of each label varies from one state to another [10]. Different indexes based43

on the accident records were proposed in [5]. Chen et al. [11] proposed the44

Road Safety Risk Index as a merged index of qualitative and quantitative45

variables, including data from either the travellers, the roads, the vehicles,46

the environment, the traffic fines, and the traffic accidents. These variables47

were aggregated to obtain a single value that somehow reflects the risk of each48

road; the entropy was proposed for determining the weights of each aggrega-49

tion. Therefore, there are almost as many risk indexes different approaches50

as contributions to the literature; each of them is valid for the specific focused51

problem.52

Data coming from NTA have been analyzed in several studies. For in-53

stance, [12] proposed to cluster the data from the Indian NTA and to use54

Association Rule Mining. This study shows the typical rules that can be55

extracted due to the inherent categorical type of the provided variables and56

its relatively reduced granularity and cardinality. What the studies in the57

literature clearly remark is the need of more detailed data, so better data58

mining can be performed on the given collections [8, 12]. Additionally, the59

merge of datasets coming from the NTA with the datasets coming from other60

sources -like the road maintenance agencies- can improve the benefits of ap-61

plying these methods. Similar studies can be analysed from the literature62

[13, 14].63

Al-Badairi et al analysed the relationships between the input features of64

the dataset from the Oregon Department of Traffic and the casualties of the65

big truck crashes in run-off the road accidents [15]. They proposed ordered66

probit models to try to find out the relevant knowledge. Basically, the main67
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factors were mainly due to the familiarity of the drivers with the network, but68

no real hint concerning safety devices were found. Similarly, Mussone et al69

studied the relationships among the variables in the urban traffic in the city70

of Turin (Italy) [16] using traffic and weather data. After a pre-processing71

and feature selection process based on correlations and SOM clustering, PCA72

was performed to extract up to 8 features to a cumulative representation of73

93%; the most linked original features were then chosen as the input variables74

for the second stage. This second step made use of Artificial Neural Networks75

to predict the level of severity of an accident.76

From both analysis -design of ranking indexes and learning and deploying77

the decision models-, it is clear that the most important thing is to obtain78

high quality data. As stated in [17], ’The most serious data quality issues79

appear to be: inaccuracies in crash location and time, difficulties in data80

linkage (e.g. with traffic data) due to inconsistencies in databases, severity81

misclassification, inaccuracies and incompleteness of involved users demo-82

graphics and inaccurate identification of crash contributory factors.’ With83

all these lacks in the available data, obtaining suitable decision models to84

locate safety devices becomes a real challenge.85

This work was initially inspired in [13], where the Andalusia Region86

database of Susceptible Elements of Improvement were used together with87

the database of accidents from the Spanish Traffic National Agency (DGT88

[18], Dirección General de Tráfico) to extract rules in order to find relation-89

ships between the crashes and those Susceptible Elements of Improvement.90

The authors proposed several machine learning methods for that task. How-91

ever, no results were reported, mainly because there are no correspondences92

between the data from both databases.93

This research tackles with a decision support system to assess the loca-94

tion of intelligent barriers and safety devices. A method is proposed to learn95

models able to classify and sort the traffic locations according to the pre-96

dicted risk of accidents and their severity if data is provided with the enough97

granularity. The study proposes a generalized solution for the problem, al-98

though it has to be adapted to the specific data available for each case. To99

our knowledge, this is the first hybridized solution for this type of problems.100

Therefore, the safety devices -the impact attenuators among them- loca-101

tions can be sorted, so an assessment in the maintenance investment can be102

delivered. To do so, a four stage process is detailed, including the database103

generation, the modeling stage, the ranking of the locations stage and the104

final deployment. The current implementation has been developed for the105
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available datasets from the DGT. Results show that, despite having datasets106

with a very poor granularity, the models can perform properly and that the107

suggested rank function fits to those constrains.108

This paper is organized as follows. Next section details the four stage109

method, including the theoretical backgrounds and the specific adaptations110

to the available data. In Section 3 details the experimentation and the pa-111

rameter setting, discussing the obtained results as well. Finally, conclusions112

are drawn.113

2. Materials and Methods114

This solution hybridizes two different artificial intelligent techniques. On115

the one hand, a C5.0 decision tree is performed to label new location can-116

didates with the more suitable crash severity label. On the other hand, a117

risk index, computed using a retrieval and a reuse stages from Case Based118

Reasoning (CBR), is proposed to sort the location candidates as a function119

of the similar spots in the historical database.120

Besides, the performance of the final solution completely relies on the121

data quality. Thus, the first subsection describes the available dataset and122

its main features. The design of the classifier is detailed in subsection 2.2,123

followed by the CBR based index computation. Finally, the integration of124

both solutions is explained.125

2.1. A description of the DGT dataset126

From the study published in [13], we contacted the DGT, which is the127

Spanish Agency for guaranteeing the traffic security. The DGT publishes128

every year a report of the accidents in the Spanish roads; these data sets129

are publicly available at [18]. In this work we have considered the data of130

accidents in Spain from 2008 to 2013 (both included), Table 1 shows the131

number of accidents per year.132

Year 2008 2009 2010 2011 2012 2013
Number of Accidents 93161 88251 85503 83027 83115 89519

Table 1: Accidents per year, from the DGT data set.

There are 36 features included in the main DGT dataset, plus 10 features133

related with the vehicles involved in the crash and 26 features related with134
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the injuries. The main part of these features are categorical, that is, there135

are just a finite set of values allowed for each of them. The road location136

is barely identified; although there keep a field for the council, it is rarely137

filled: the location of the crash is identified by the road and the province138

in the vast majority of the examples. Of course, there are also numerical139

values: the number of vehicles involved or the number of fatal injuries are140

clear examples. Table 2 describes the most important variables.141

Table 2: Description of the variables in the datasets.

Variable Values

Hour 1 h periods from a day

Week day Monday(1) to Sunday(7)

Province 52 Spanish provinces

Region 18 Spanish regions

Area Road(1), Urban Area (2), Side Street (3),Detour (4)

Grouped area Intercity road(1),City road (2)

Road Road identifier

Road owner National(1),Regional(2),Provincial(3),Municipal(4),Other(5)

Road kind Motorway(1),Highway(2),Motored-vehicle road(3)
Road with slow lane(4),Road without slow lane(5)
Byway(5), Side road(7), Road fork(8), other(9)

Road elements No available data(0), Nothing remarkable(1),
Zebra-cross or island(3),
Middle road island(4),Central stop lane(5),
Left-turn traffic circle(6),Other (7)

Priority No available data(0), Traffic officer(1), Traffic Lights(2),
STOP sign(3), GIVE WAY sign(4),
Road markings only(5), Zebra-crossing sign(6),
Other signalization(7), Other(8)

Roadbed Conditions Dry and Clean(1), Shaded(2), Damped(3), Frozen(4),
Snowed(5), Muddy(6), Loose gravel(7),Oily (8), Other(9)

Road Stretch Straight line(1), Soft curves(2),
Strong curves without traffic signs(3)

Luminosity Day light(1), Twilight(2), Night: good lighting(3),
Night: bad lighting (4), Night: No lighting (5)

Traffic volume Low(1), High(2), Congested(3), None(4)

Continued on next page
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Table 2 – continued from previous page

Variable Values

Special action Reversible lane(1), Roadside set up(2),
Other measure(3), None (4)

Sidewalk No, Yes
Additional context 14 different contexts
Atmospheric conditions Good weather(1), Dripping fog(2), Fog(3), Rain(4),

Strong rain(5), Snowing(6), Strong wind(7)

Restricted visibility Buildings(1), Layout of nature(2), Vegetation(3),
Blinding(5), Dust or smoke(6),
A different constraint(7), No restriction(8)

142

After analyzing the data, it was found several irrelevant variables with143

respect to the accident rate or the security device needed. Nevertheless, the144

worst result was that the dataset itself was rather incomplete and suffering145

from granularity. Consequently, the dataset was filtered, keeping only those146

features for which there was no evidence of being irrelevant.147

As this research is focused on learning the severity of a location, the148

locations provided by variable Road fork kind are considered. Thus, the goal149

of this learning process is to study the severity for each road fork identified150

by the variable Road fork kind (See Table 3).151

Road fork type

T or Y shape
X or + shape
Acceleration lane
Diverting lane
Roundabout

Table 3: Different road forks considered in the dataset.

To analyze the severity associated to each road fork we must identify the152

variable associated to severity. According to [19], it is possible to classify153

accidents as slight injury, serious injury and fatal injury. Fatal injury in-154

cludes the cases where death occurs in less than 30 days as a result of the155

accident. Serious injuries are those where either immediate or later detention156
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in hospital as an in-patient, was required. Data provided by DGT includes157

three variables related to accident severity: Number of deaths (D), Number158

of serious injured (SE), Number of slightly injured (SI).159

Using these three variables it is possible to construct a new variable called160

Accident severity in the following way.161

• Fatality: D > 0.162

• Serious injury: SE > 0 and D = 0.163

• Slight injury: SI > 0, SE = 0 and D = 0164

Accident severity restricted to each road fork, which takes the values165

{Fatality, Serious injury, Slight injury}, is the goal of this research.166

2.2. Learning the severity of a location167

At a first sight, the problem seemed to be easily addressable using frequent168

patterns and association rule mining (ASM). Therefore, the initial stage of169

this phase was performing ASM on the data [20]. This method produced a170

fairly vast amount of rules, typical for the ASM, that need further filtering171

and processing. However, either no suitable method for filtering and finding172

meaningful rules was found, or the set of rules included only elemental ones.173

Consequently, an alternative based on machine learning is proposed.174

The strategy followed to extract knowledge from the accident databases175

is based on first studying the main factors affecting accident severity at an176

intersection year by year. In a second step, the rules associated to each177

different intersection across the years are mined in order to obtain the most178

frequent rule sets using a voting strategy across years. The basic algorithm179

is described below.180

For each road fork181

For each year from 2008 to 2013182

Return the best classifier183

End for184

Return the most frequent rule set per road fork185

End for186
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2.2.1. Classifier selection187

The prediction of accident severity on crosses and intersections is modeled188

in this problem as a Machine Learning (ML) problem. As the final goal of the189

work is to provide an understandable output to be used by traffic analysts,190

we focus our attention on approaches based on tree models, due to their191

performance and great interpretability. At this concern, tree based models192

has been chosen to build classification trees.193

In general, tree-based ML models and algorithms work in the following194

procedure [21]. They grow a tree using forward selection using a top-down195

approach from root to leaves until some stopping condition is reached. At196

each step they find the best split according to some impurity measure. The197

node associated to the maximal impurity reduction is then selected. Finally,198

most method prune the tree back and obtain a rule per path from the root199

to each leaf.200

Different combinations of metrics, splits, stopping conditions and pruning201

methods lead to different approaches. In this work, considering both inter-202

pretability and performance, C5.0 ([22]), recursive partitioning (PART) and203

Random Forests ([23] are selected as classifiers. The performance of these204

classifiers is measured in terms of the well-known measures Precision, Recall,205

F1 and Accuracy [24]. Precision is the fraction of relevant examples among206

the retrieved instances. Recall is the fraction of relevant instances that have207

been retrieved over the total amount of relevant instances. F-score is the208

harmonic mean of Precision and Recall. It is a quite common measure used209

to weight the existing trade-off between Precision and Recall.210

2.3. Measuring road hazardousness211

Several different indexes have been proposed in the literature to rank212

the hazardousness of either roads or current driving conditions, etc. As an213

example, [25] proposed a ranking index of the segments of road in order to214

alert drivers about arising contingencies in the traffic or in the road.215

The problem of designing a ranking index was analyzed in [11], finding216

that they are problem specific and also data specific. This means that de-217

signing a generalizable ranking index is a real challenge, which should be218

kept open to fit the specificity of the problem and the data available. There219

are several reasons for this challenge. There is no clear relationship among220

the different factors involved in road hazardous indexes; for instance, it has221

been found that there is no clear relationship between the crash frequency222
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and the traffic flow [26]. Furthermore, there are differences in the relation-223

ships when data from different countries are analyzed [27]. Therefore, each224

problem would lead to the most suited set of factors and their corresponding225

aggregation [28].226

Examples of such indexes are those propose in [29, 13]. In [29], three dif-227

ferent indexes are proposed to evaluate the design and maintenance strategies228

of roads. One index is focused on density of crashes on each road segments,229

a second index focuses on the number of injuries in the road sections, while a230

third one deals with the number of fatalities occurred in the segments. These231

indexes were estimated for the design of the roads; however, they can also232

be obtained from historical data. With the density of crashes, injuries and233

fatalities for each section, and the length of the segment, the three indexes234

are computed for each road segment and -by means of aggregation- for the235

complete road.236

Similarly, Martin et al. [13] proposed two indexes -one referred to the237

number of crashes and the second referred to the number of injuries and238

fatalities- computed using historical data from i) 5 previous years, ii) last239

two years, iii) two years back and iv) last year. With all these indexes, the240

authors proposed a set of four rules to classify a road section as hazardous241

or not.242

In this study a different approach is proposed considering not the histor-243

ical data of the segment but from similar segments. The idea underneath is244

to apply similar retrieval concepts than those used in Case Based Reasoning245

(CBR) [30] to find those road segments that better match the current posi-246

tion, using these cases as the historical data for computing the hazardousness247

index. CBR typically includes four stages: Retrieval, Reuse, Revise and Re-248

tain. The retrieval is concerned with fining the most similar cases, assigning249

a similarity degree to each one. Reuse deals with the selection of the most250

interesting retrieved cases, even partially, to generate a new outcome. Revise251

makes use of reasoning to generate completely new proposals based on the252

retrieved and chosen information. Finally, Retain estimates when a new gen-253

erated case is found worth to be included in the case base for future reuse.254

For the extend of this study, only the first two stages are needed.255

Each segment must be described not only using the geometry design in-256

formation -like the slope, cant, radious, gps location, etc.- but also including257

the environmental factors -tar type, surrounding nature, etc.-. All these fac-258

tors must be assessed, that is, the implication of each factor in the similarity259

of the cases is fundamental to obtain good results. This assessment can be260
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implemented by means of weights, whose values can be fixed a priory [29, 13]261

or using any other method [11]. Actually, if variables related to the envi-262

ronmental factors are introduced then it may be interesting to cluster these263

factors and to define different set of weights to each cluster.264

Unfortunately, only the DGT statistical crash data collection was avail-265

able for this research. As mentioned before, this dataset has a very poor266

granularity, and there were no information concerning with the factors men-267

tioned above. The granularity was given in terms of road identification,268

crashing council and the type of segment where the crash took place -straight269

segment, Y or X intersection, etc.- Therefore, for experimentation purposes,270

similarity of the cases were restricted to these variables, assigning them the271

same weight. The reason for this weight selection is the poor granularity of272

the DGT dataset; a candidate is compared to all the accident cases for the273

same road, council and segment type. Nevertheless, these variables do not274

tell much about the similarities in the context of these spots, so there is no275

much reason to think a better set of weights can be set.276

Once the similar segments have been retrieved, then they are reused.277

Reusing cases means considering the factors that are found relevant in the278

severity of a crash. These factors are the number of fatalities (fn), the279

number of severe injured individuals (si), the number of lightly injured in-280

dividuals (li) and the number of involved vehicles (iv); all these factors are281

integer numbers. All of them have to be aggregated in order to obtain a282

single scalar ranking index, so we propose to scale each factor to the interval283

[0.0, 1.0] and then to aggregated them using a weighted sum.284

Each factor is lineally scaled from 0 to an upper limit, corresponding from285

0.0 to 1.0. However, the factors have no real upper limit, so the scaled factors286

may surpass the 1.0 scaled limit. To illustrate this problem, let’s focus on287

the number of fatalities; let’s say the upper limit is 2, so this factor is scaled288

0 to 2 to the interval [0.0, 1.0]. Sadly, in an accident there can be more than289

two fatalities, meaning the scaled factor surpasses the value of 1.0.290

The weights, for this research, have been manually chosen according to291

the relevance we think each one has. For instance, the number of fatalities has292

the higher weight (wfn = 0.4), then the number of severe injuries (wsi = 0.3);293

the remaining weights are wli = 0.1 and wiv = 0.2 for the light injuries and294

the number of involved vehicles, respectively. The weight selection must be295

carefully defined according to the problem to solve and the data quality.296

The index is computed in three steps. Firstly, compute the risk index for297

each of the retrieved cases; let NC be the number of retrieved cases. Each298
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case includes four mentioned factors. These factors represent the information299

the dataset from the DGT includes for each crash sample. Each of these300

feature values is mapped to the [0.0, 1.0] interval using linear functions, a 0.0301

in each feature value was assigned to a 0.0 in the mapping. An upper limit302

(UL) was fixed to each feature, so this UL was mapped to a 1.0. The UL for303

fn, si, li and iv were set to ULfn = 2, ULsi = 2, ULli = 5 and ULiv = 3.0.304

In the case of iv an extra linearity segment was introduced, so a value of 2.0305

for iv was mapped to 0.75. Finally, an aggregation of the scaled factors is306

obtained as a weighted sum with a-priori fixed weights.307

Secondly, the maximum (MAX) and the mean ((MN) values of this308

index among all the retrieved cases should be calculated. Thirdly, in order309

to shift the final index to the worst scenario, the average of MAX and MN310

is powered to 1
NC

. This last computed value is the risk index of the current311

sample based on the most similar cases in the database.312

2.4. Ranking the locations and deployment313

Finally, the two approaches need to be merged so the analyzed locations314

could be sorted. In this approach we perform the classification and the315

ranking independently. Then, the calculated risk index is assigned to each316

classified sample. Finally, the examples are sorted by the class severity and317

then by the risk index.318

3. Experiments and Results319

3.1. Selection of the classifier and parameter tuning320

Before starting with parameter tuning, it is necessary to focus on the321

distribution of Accident severity variable. As Figure 2 shows, this variable is322

extremely imbalanced. In fact the number of slight injuries is almost 9 times323

of the total amount of serious injuries and this is 10 times the number of fatal324

accidents (independently on the year and road fork kind considered). That325

makes the problem difficult to solve so that different re-sampling as well as326

learning strategies have been tested.327

Thus, the default configuration of the algorithms selected in Section 2.2.1328

was considered to select the most suitable learning strategy among multi-329

category, one to all and one to one learning strategy. In addition, given330

that the dataset is quite unbalanced, resampling must be considered. Under-331

sampling, Over-sampling, SMOTE and ROSE strategies were also tested332

and compared to no resampling. Thus, each classifier was trained using cross333
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Figure 2: Box-plot graph for the different classes of accident severity

validation with k folds for each learning strategy and resampling technique,334

obtaining that the best combination in terms of F1 is one to one as learning335

strategy and ROSE ([31]) as resampling strategy. ROSE provides a unified336

framework to deal simultaneously with the problem of model estimation and337

accuracy evaluation in imbalanced learning. It builds on the generation of338

new artificial examples from the classes, according to a smoothed bootstrap339

approach.340

Once the learning (one to one) and resampling (ROSE) strategies are341

set, each classifier is optimized via parameter tuning. In particular, the342

parameters analyzed are detailed below.343

• Random forests: Number of predictors sampled for splitting at each344

node (ranging from 1 to 6).345

• C5.0. In this case several parameters have been studied: Feature346

selection, number of boosting iterations (trials), ranging in the set347

{1, 2, 5, 10} and output model (tree or a rule set).348

• Recursive partitioning: Complexity parameter (ranging from 1 to 10).349

Again, the learning process is tested using cross validation with 10 folds.350

R version 3.3.3 as well as the caret package [32] were the tools used to perform351

these experiments.352
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Table 4 shows the method that obtains the best F-score. Each value353

represents the percentage of experiments the method obtained the best F-354

score. As it can be seen, C5.0 is the method performing better most of times.355

Thus, it is the one selected for predicting accident severity.356

Road Fork
Serious vs Slight Fatality vs Slight Fatality vs Serious

T or Y C5.0 (100%) C5.0 (100%) C5.0 (100%)
X or + C5.0 (100%) C5.0 (100%) C5.0 (100%)
Acceleration lane C5.0 (100%) rf (50%) rf (68%)

C5.0 (33%) C5.0 (16%)
rpart (17%) rpart (16%)

Diverting lane C5.0 (100%) C5.0 (50%) rpart (50%)
rf (33%) rf (33%)
rpart (17%) C5.0 (17%)

Roundabout C5.0 (100%) C5.0 (50%) C5.0 (100%)
rf (33%)
rpart (17%)

Table 4: Methods obtaining the best performance for each combination of road fork and
crash severity. In brackets the percentage of times that each method was the best

3.2. Training and validation of the proposal357

Thus, C5.0 is selected as base classifier to predict accident severity. Ac-358

cording to preliminary experiments detailed in Section 3.3, the best configu-359

ration for C5.0 is winnowing and a tree based structure instead of rules. The360

number of boosting iterations depends on the data set. The performance of361

C5.0 measured in terms of F-score is shown in Table 5. F-score ranges from362

0.62 to 0.8. As it can be seen, the algorithm performance is quite similar363

across years and road forks kinds. F-score is about 0.7 in average. Although364

it is not so bad, it is a challenge to improve classifier efficiency.365

When studying accident severity at a certain road fork, the decision trees366

provided by C5.0 are different across years as the data sets are obviously367

different. However, it is interesting to check if there is any consistent rule368

to predict accident severity across the years. To do that, tree models are369

translated into rules, obtaining 6 different rule bases for each road fork. Thus,370

to obtain the final rule base, only rules occurring half of years are considered.371

Table 6 shows the number of rules obtained by road fork and accident severity.372
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Year T or Y X or + Accelerating lane Diverting lane Roundabout
2008 0.67 0.71 0.67 0.70 0.69
2009 0.67 0.74 0.73 0.73 0.73
2010 0.68 0.74 0.70 0.62 0.72
2011 0.66 0.71 0.74 0.65 0.75
2012 0.64 0.75 0.72 0.70 0.73
2013 0.65 0.76 0.80 0.65 0.77

Table 5: F-score obtained when accident severity is predicted with C5.0

The rule base associated to accident severity in roundabouts is shown in373

Table 7 as example. As it can be seen, accident severity depends on priority374

signs, existence of sidewalks, road luminosity, traffic volume and other road375

properties.376

Road fork type Fatal Serious injury Slight injury
T or Y shape 19 2 5
X or + shape 6 4 4
Acceleration lane 11 2 2
Diverting lane 1 0 6
Roundabout 6 6 7

Table 6: Number of rules occurring during at least 3 years.

3.3. Measuring risk377

As the final goal of this research is to predict where to place sensory378

Guardrail Locations, it is necessary to establish a priority among the different379

places or road profiles. Thus, once a test example is classified as fatal, serious380

injury or slight injury the risk index is computed and the examples are381

ranked according to it. As the risk factor is computed over the data set,382

we have checked the risk index for the different kinds of road forks studied383

in the classification problem. The obtained factor risks are shown in Figure384

3 where each risk value is the average of the factor risks obtained during the385

different years. As it can be seen, the riskiest forks are roundabouts while386

acceleration lanes are the least ones. Note that this is a measure independent387

of the accident severity classification.388
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Factors for predicting Slight injuries
{Roadbed conditions != Dry and clean, Luminosity !=Twilight, Sidewalk=No,

Traffic volume=Low}
{Road kind != Highway, Roadbed conditions = Dry and clean, Priority=Give Way sign,

Sidewalk=No, Traffic volume=Low}
{Priority=STOP sign, Traffic volume=Low}
{Luminosity=Night: No lighting, Traffic volume=Low}
{Restricted visibility != No restriction, Traffic volume=Low}
{Road kind != Motored-vehicle road, Priority= Other signals, Traffic volume=Low}
{Priority != Give way sign OR Other signals, Grouped area= City road,

Luminosity= Night: good lighting, Traffic volume=Low}
Factors for predicting Serious injuries
{Luminosity =Night: good lighting, Sidewalk=Yes, Special action=None}
{Priority=Give Way sign, Traffic volume=Low}
{Priority!=Zebra-crossing sign, Traffic volume!=Low, Sidewalk=Yes}
{Roadbed conditions != Dry and clean, Traffic volume=Low}
{Sidewalk = No, Traffic volume!=Low}
{Sidewalk = No}
Factors for predicting Fatal injuries
{Priority != GIVE WAY sign Luminosity !=Night: good lighting,

Roadbed conditions = Dry and clean, Sidewalk=Yes}
{Luminosity!= Night: No lighting, Traffic volume!=Low}
{Priority != STOP or Give way signs or Zebra-crossing sign,

Roadbed conditions = Dry and clean}
{Priority != STOP sign, Road kind=Highway, Roadbed conditions = Dry and clean,

Traffic volume=Low, Sidewalk=No, Restricted visibility != No}
{Priority != STOP sign or or Zebra-crossing sign, Roadbed conditions = Dry and clean,

Traffic volume=Low, Sidewalk=Yes, Restricted visibility != No}
{Traffic volume!=Low, Sidewalk=No}

Table 7: Factors for predicting accident severity for a X or + Road Fork

As can be seen, the proposed risk index lacks in generalization as the389

values obtained clearly differs from one type of crossing to another. This390

problem is present in any ad-hoc risk index because the same set of variables391

are used in computing the risk index for all type of crash.392

For instance, the number of fatalities in accidents in a roundabout is393

higher because of the speed and the traffic density. However, the number394

16



Figure 3: Factor risk by Road Fork. Each bar represents the factor risk in average asso-
ciated to each road fork during the years under study (2008 to 2013)

of fatalities when diverting of a motorway is smaller because the font-lateral395

crashes might produce more injuries and less fatalities.396

The obtained results suggest that a different risk index should be devel-397

oped for each type of fork and road. Therefore, more research is needed in398

order to discriminate the most relevant features involved in the risk index399

calculation for each type of fork and road.400

4. Conclusions401

In this research, a proposal of a decision support system to help in choos-402

ing the location where to place an intelligent sensory guardrail among several403

candidates. The decision support system suggests an order of the candidates404

according to a label of the accident severity and a risk factor. The intelli-405

gent model use to classify the candidates is learned based on historical data406

from a accident database. Moreover, the risk index is also obtained based on407

similarly retrieved cases within the historical data, in a case-based reason-408

ing fashion. The experimentation carried out in this research made use the409

public accident dataset published by the DGT. This dataset includes plenty410

of nominal and discrete features. A study of the relationships and the most411

interesting features has been performed before the process of learning models412

for the classification.413
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A comparison of the performance of different models, C5.0 has been found414

the most interesting and robust model for each type of crossing type. To-415

gether with the risk index, the proposal has been found interesting and with416

a good performance on the data. However, one of the main problems found417

is the high data granularity. For instance, the risk index might be in compro-418

mise due to this reason: the available dataset does not include information419

about the kilometer, so the similarity is not as precise as it would be needed.420

Nevertheless, the whole solution allows the user to sort the candidates,421

producing labeled candidates together with the available risk index. If better422

data is provided, the procedure described in this research would allow to423

obtain finest models and a more precise risk index. A careful selection of the424

most suitable features should be performed in order to obtain a risk index425

for each road and crossing types.426

As future work we plan to perform a deeper study about risk factors and427

study if there is any relation between it and the accident severity that it is428

predicted by a classifier. In addition, it is also necessary to introduce more429

information to the system for representing forks in a more accurate way.430

On the other hand, feature selection techniques as well as other parameter431

settings (minimum number of examples per leaf or pruning level) can be432

deeper studied in order to improve the efficiency of the method.433
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