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ABSTRACT 

Strength of ceramic components is determined by processing, therefore, test methods 

that allow analysing their actual mechanical behaviour are needed. The miniature 

mechanical tests ball three balls (B3B) and small punch (SPT) are compared using 

commercial lead zirconate titanate (PZT) piezo-ceramic discs. The Weibull distributions 

of strength were obtained and the fracture surfaces were observed by scanning electron 

microscopy. The different approaches for the calculation of strength values are 

discussed.  

The adequacy of the small punch test for the determination of strength is demonstrated. 

Results for SPT and B3B tests are comparable considering the effective volumes 

calculated using the Weibull relationships. 

The Timoshenko equation for strength is proposed for the calculus of strength due to its 

simplicity and the fact that the calculated values for B3B and SPT geometries are not 

dependent on the radius of the uniform loading central area.  

 

KEYWORDS: Miniature strength tests, SPT, B3B, PZT, Weibull   

 

1. Introduction 

Nowadays, materials based on Pb(ZrxTi1-x)O3, PZT, are the most important 

commercial piezo-ceramics because their piezoeletric performance is better than that 

of any other material. PZT´s are the constituents of a large number of components with 
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a wide variety of shapes and sizes: monolithic devices, multilayer actuators, integrated 

microelectromechanical systems (MEMS) … etc. The piezoeletric properties strongly 

depend, not only on the microstructure of the materials, but also on the specific device 

geometry required to fit the application needs [1,2]. For instance, it is well known that, 

among other parameters, final geometry of piezoceramic devices is fundamental in the 

material ageing process. Microstructure and geometry are determined by the specific 

processing procedure. 

The failure behavior of piezoelectric ceramics under combined mechanical and 

electrical loads is complex. Electrical loading might lead to high energy dissipation during 

crack propagation due to an electrical ‘‘plastic deformation,’’ such as electric discharge 

and domain switching. However, the fracture mode of piezoelectric ceramics under pure 

mechanical loading, is brittle, and the most used property to characterize their fracture 

behavior is strength [3,4]. 

Piezo-ceramic materials are prone to aging due to the high mechanical stresses 

originated by the electric domain switching during the poling process and under working 

conditions. Computer models and simulations might help to understand and eventually 

predict ageing and material failure. In this regard, for accurate simulations it is necessary 

to count with precise data of the material response. In this sense, the characterization 

of real parts is sought to describe the polarised material behaviour. According to this, it 

would be possible to achieve a great advance in this field, if the mechanical response of 

PZT´s could be characterized by experimental procedures that allow employing real 

industrial component as test specimens.  

This is the case of the “Ball-on-three-balls” (B3B) test, especially developed for the 

determination of the fracture stress of miniature ceramic components [5]. This test 

system, barely sensitive to geometric imprecision [6], was designed in order to test “as 

sintered” discs without the necessity of machining.  

Figure 1 shows a schema of the B3B jig [6]. It consists of a four ball system, where 

three balls act as supports for the disc shaped specimen and a fourth ball applies the 

load on the opposite face of the specimen. The three supporting balls are in contact with 

each other forming an equally sided triangle of support points. During the test, the 
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specimen is free to move and no friction occurs. A more detailed description of this test 

can be found elsewhere [5–9]. 

It has been demonstrated that the B3B test gives accurate strength values for 

different ceramic materials [5–9], being its main weakness the difficulty of handling the 

four small balls. 

For homogeneous and isotropic materials, fracture will start from the zone of 

maximum tensile stress. Assuming lineal elastic behaviour, the stress distribution 

analysis of the B3B test [5–10]shows that the maximum tensile stress is located in the 

central part of the face of the disc subjected to tension (upper face of the disc in Fig. 1a).  

Even though the B3B test is quite commonly used in the ceramic community, the 

calculation of the maximum stress, 𝜎𝑐, is still under controversy. It is accepted the 

general relationship between 𝜎𝑐 and the fracture load, Pc, and the specimen thickness, 

t, given by Eq. (1):  

 𝜎𝑐 = 𝑓 ∙
𝑃𝑐

𝑡2 
(1) 

However, there are different proposals to obtain the value of the proportionality 

factor, f, which depends on different geometrical parameters -specimen radius, R; radius 

of the loading ball, Rb; support radius, Ra; specimen thickness, t; and radius of the central 

loaded area, which is assumed subjected to a constant stress value, b-, as well as on 

material factors -Poisson’s coefficient and Young’s modulus of both, balls ( b, Eb) and 

tested material ( , E)-. 

By applying the linear-elastic theory to thin plates subjected to a central constant 

stress acting on a circular area with radius b, different authors reach different analytical 

expressions for the proportionality factor, f: Eq. (2), by Xiong et al. [11]; Eq. (3), by 

Soltysiak et al. [12]; Eq. (4), by Timoshenko et al. [13]; and Eq. (5), by Shetty et al. [14].  

𝑓 =
3
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𝑓 = (1 + 𝜈) [0.485 ln (
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) + 0.52] + 0.48 
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(5) 

 

Except of Eq. (4), all expressions require knowing the value of the uniformly loaded 

central area, b, for which different proposals are found in the scientific literature, as 

shown in Table 1.  

For Shetty et al. [14], b only depends on the thickness of the specimen, while 

Westergard [15] includes the contact radius between the loading ball and the specimen, 

, which can be approximated by [16]: 

𝜁 = (
3𝑃𝑅𝑏

4𝐸′
)

1/3

 (6) 

Being P de applied load and E’, the reduced Young´s modulus: 

1

𝐸′
=

(1 − 𝜈𝑏
2)

𝐸𝑏
+

(1 − 𝜈2)

𝐸
 (7) 

 

The numeric approach by Börger et al. [5] to calculate the parameter f, based in 

finite element modelling (FEM), gives the relationship of equation (8) in which the values 

of the seven coefficients (c0, c1, c2, c3, c4, c5, c6) depend on the Poisson's coefficient of the 

analysed material.  

𝑓 = 𝑐0 +
(𝑐1+𝑐2

𝑡

𝑅
+𝑐3(

𝑡

𝑅
)

2
+𝑐4(

𝑡

𝑅
)

3

1+𝑐5
𝑡

𝑅

(1 + 𝑐6
𝑅𝑎

𝑅
) 

(8) 

The “Small punch test” (SPT) is a miniature biaxial test as the B3B that was initially 

designed for testing irradiated steel samples [17]. Figure 2.a) shows the SPT 

configuration used for steel testing [18]. A disc shaped specimen (usually 10 mm 

diameter and 0.5 mm thickness) is clamped between two rings and deformed by the 

action of a hemispherical punch that forces the specimen to deform through the internal 
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hole of the supporting ring. This test configuration is widely accepted for the mechanical 

characterization of steel and other metallic alloys [18–21] and its applicability has been 

extended to other types of materials like polymers [22,23].  

Unlike the B3B test, the SPT is barely used by the ceramic community. Little 

information is available in the literature [8,11,12] and the experimental details –sizes of 

the specimens and supports and specimen clamping– vary widely. In addition, different 

ways of fracture stress calculation are reported. Most researchers agree that for the 

characterization of brittle materials it is advantageous not to clamp the specimen to 

prevent initial stresses due to small geometrical misalignments between the specimen 

and the bearing [8,12]. Figure 2.b) shows schematically this type of configuration in 

which the specimen is simply supported on the supporting ring.  

As equations (2-5) refer to thin plates subjected to uniform stresses acting on 

circular areas, they are also adequate to determine strength in the case of testing small 

discs using the SPT. In addition, the SPT allows estimating other material properties such 

as yield stress and Young’s modulus [18,19,21,24]. 

The aim of this study is to compare the B3B and the SPT tests for the 

characterisation of strength of PZT materials in order to evaluate the adequacy of the 

later for testing ceramic components. Special care has been taken to analyse the 

different approaches for the calculation of strength values (Eqs. 2-5 and 8) in order to 

identify the most adequate equations for the calculation of B3B and SPT strength values.  

 

2. Experimental 

2.1 Material and mechanical tests  

Test specimens were commercial discs of soft PZT (NCE 51, Noliac, Czech Republic) 

of 12.66 mm diameter and 1 mm thickness. This geometry is the typical of small 

monolithic sensors/actuators for different circuit applications. According to the 

literature, properties of this kind of piezo-ceramics are expected to be in the following 

ranges: Poisson’s coefficient,  ≈ 0.3 [25], Young’s modulus , E = 70-100 GPa [26,27], and 

four-point bending Weibull characteristic strength values, σ0=80-115 MPa [28–30]. 
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The B3B tests were performed using a special device developed by the University of 

Leoben (Austria) [5,6] installed in a static testing machine (INSTRON 4443, Great Britain) 

of 1 KN load capacity, using a load cell of 500N maximum capacity and a recording 

sampling frequency of 10 Hz.  The balls, made of martensitic stainless steel (  = 0.33 

and E = 200 GPa), have a radius of Rb = 4.25 mm. As the support points set up an equally 

sided triangle, the loading radius, Ra, is 4.91 mm (Ra =
2√3

3
Rb).  

The SPT tests were performed using a device specially designed by the 

SIMUMECAMAT research group (University of Oviedo, Spain) [18] installed in a static 

testing machine (MTS SMT3-166) with 10KN of load capacity  and using a load cell of 

5KN and recording sampling frequency of 20 Hz. The supporting ring, made of high 

strength steel, has an internal diameter of 4 mm. The punch, with a diameter of 2.5 mm, 

is made of martensitic stainless steel (  = 0.33 and E = 200 GPa). SP tests were done 

using the unclamped configuration (Fig. 2.b), as suggested by most researchers for 

brittle materials.  

24 specimens were tested in each test configuration, with the positive polarized 

side in tension, and using a constant displacement rate of 0.1 mm/min. The failure loads, 

Pc, were extracted from the load-displacement curves recorded during the tests and the 

strength values, C, were determined from the failure loads (Eq. 1) using the different 

expressions for the factor, f, for comparative purposes (Eqs. 2-5, 8). “As fractured” 

surfaces were observed by scanning electron microscopy (SEM, Hitachi TM-1000, 

Japan). 

The Weibull distributions of the simplified strength values, σ =Pc/t2, for both series 

of specimens were calculated according to the European standard EN 843-5 (2006) [31]. 

This standard considers a two-parameters Weibull distribution [32] in which the 

probability of failure, Pf, for a given stress, σ, is given by equation (9):  

𝑃𝑓(𝜎) = 1 − 𝑒𝑥𝑝 (− (
𝜎

𝜎0
)

𝑚

) 
(9) 

 

To determine the characteristic strength, 0 (stress for a failure probability of 

63.2%), and the Weibull modulus, m, the experimental values of strength are arranged 
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in ascending order and a failure probability given by Eq. (10) is associated to each 

experimental 𝜎𝑖  value, where N is the total number of specimens tested and, i, is the 

order number of the strength. 

𝑃𝑓(𝜎𝑖 ) =  
𝑖 − 0.5

𝑁
 (10) 

Then, 0 = (Pc/t2)0 and m are determined analytically using the maximum likelihood 

principle. The upper and lower limits for the 90% confidence intervals of 0 = (Pc/t2)0 and 

m were calculated using the UNE-EN 843-5:2006 proposed method [31]. 

 

2.2 Comparison between strength results for SPT and B3B  

Results of different strength tests can only be directly compared when stress states 

are similar and the volumes of specimen under the maximum tensile stresses (i.e: 

effective volumes) are coincident [33]. Using the parameters of the c distributions, the 

effective volumes for both considered tests were calculated using Eq. (11): 

Where Veff is the effective volume and V0 is a normalising factor named reference 

volume [34]. 

In order to calculate the effective volumes, the B3B and SPT tests were simulated 

by finite elements analysis (FEA) models. Then, the tool Abaqus2Matlab [35] was used 

to obtain the principal stresses and the volume of each element of the specimen at every 

single frame in the simulation. Knowing the value of these parameters, the total  

probability of failure,  𝑃𝑓_𝑔𝑙𝑜𝑏𝑎𝑙, can be calculated by [35,36]: 

𝑃𝑓_𝑔𝑙𝑜𝑏𝑎𝑙 =  1 − ∏(1 − 𝑃𝑓𝑒𝑙𝑒𝑚𝑒𝑛𝑡) 
(12) 

 

And the effective volume can be expressed as: 

   𝑃𝑓(𝜎) = 1 − 𝑒𝑥𝑝 (−
𝑉𝑒𝑓𝑓

𝑉0
(

𝜎

𝜎0
)

𝑚

)  
(11) 



8 
 

𝑉𝑒𝑓𝑓 =  
− ln(1 − 𝑃𝑓_𝑔𝑙𝑜𝑏𝑎𝑙) · 𝑉0

(𝜎 𝜎0)⁄ 𝑚  
(13) 

The tool Abaqus2Matlab [35] is most suitable when it is necessary to use finite 

elements with variable size to model the specimen. This is the case of the considered 

test configurations in which the biaxial loaded plates are subjected to large stress 

gradients. In order to accurately simulate the highly stressed central zone, the elements 

used for its modelling have to be smaller than for the rest of the specimen [5,18].  

With Abaqus2Matlab it is possible to extract the specific stress value and the 

volume of each element and frame from the FEA. The effective volume calculated for 

large stress gradients strongly depends on the size of these elements. Thus, elements of 

similar sizes must be used to model the specimens in the different tests in order to make 

a better comparison between the associated effective volumes.  

ABAQUS/Standard 6.12 commercial code was used for the FE analysis. Taking into 

account the geometrical configurations, a three-dimensional model is necessary for the 

analysis of stresses in the B3B specimen (Figure 3a) while a simpler two-dimensional 

axisymmetric model is adequate for the SPT one (Figure 3.b). In order to assure the 

similarity between the size of the elements in spite of the differences between the 

models, the same number of elements was used to fill the transversal section of the 

specimens in both tests (Fig. 3).  

The jig elements (punch and matrix for SPT and support and load balls for B3B) were 

modelled as rigid bodies, while the specimens were modelled as elastic bodies (E = 100 

GPa,   = 0.3) using four-node axisymmetric elements with reduced integration (CAX4R) 

in the case of the SPT and eight-node brick element with reduced integration (C3D8R) 

elements in the B3B model. A finer mesh was used to model the central zone in both 

cases in order to have more sensitivity in the results.  

Hard contact in the normal direction and frictionless contact in tangential directions 

between the supporting balls were defined. For both tests, the contact between the 

specimen and the supporting elements was defined as hard contact in the normal 

direction and penalty contact, using a friction coefficient of 0.1 [6], in tangential 

directions. 
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3. Results 

Characteristic load-displacement curves recorded during the tests are plotted in 

figure 4. In all SPT and B3B curves an initial low stiffness part corresponding to the 

adjustment of the supports on the specimen was observed for low loads (< 10N). Then, 

load increased linearly until the failure load, followed by a sharp load drop in B3B tests 

(Fig. 4.a). In the SPT curves (Fig. 4.b), the first load drop (P1) was followed by a load 

recovery up to a second load drop (P2) and, in some of the curves, a second recovery up 

to the failure load, Pu, occurred.  The slope of all the load-displacement curves decreased 

after P1 and P2, as corresponds to a decrease of the stiffness of the specimen. In order 

to identify the processes responsible for the different load drops, additional tests 

interrupted after P1 and P2 (4 tests for each load) were done and the tested specimens 

were analysed. As shown in figure 5, specimens were already divided in two parts after 

the first load drop, thus, P1 was taken as failure load, P1= PC.  

The fracture surfaces of B3B and SPT specimens had similar features, such as those 

shown in figure 6. Critical defects were agglomerates (Fig. 6a) and pores associated to 

differential sintering of agglomerates (Fig. 6b) and fracture was mostly transgranular.  

The parameters of the Weibull distributions of the values of Pc/t2 are shown in table 

2. Differences between the characteristic values, (Pc/t2)0, are statistically significant 

while the confidence intervals for the Weibull modulus, m, overlap. A value of m = 10, 

was used for subsequent calculations. 

The values of the characteristic strength, σ0, calculated from (Pc/t2)0 using the 

different authors proposals (Eqs. 2-5 and 8), together with the limits of the 90% 

confidence intervals are summarized in table 3. It is observed that σ0 values are 

independent of the method used to calculate b. 

For B3B there are no statistically significant differences between the values of 0 

calculated using the different approaches while SPT results for the equation of Shetty et 

al. (Eq. 5) are significantly lower than for the other three (Eqs. 2-4), for which the 

confidence intervals overlap.  

Figure 7 plots the Weibull distributions of the strengths computed from the values 

of Pc/t2 using the different proposals (Eqs. 2-5 and 8). The distributions calculated using 
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σ0 and m (continuous lines) together with the experimental values and the associated 

probabilities (Eq. 10, symbols) are shown.  

The effective volumes corresponding to the B3B and the SPT tests, calculated using 

the tool Abaqus2Matlab [35] described above are also included in table 3. Characteristic 

strength values of 93 and 77 MPa for B3B and SPT, respectively, and the same 

normalising factor, V0=1mm3, were used. The B3B effective volume is almost 86% lower 

than the SPT one. 

 

4. Discussion 

Differences between the geometry of the tests are responsible for different stress 

levels through the specimens for the same applied loads; thus, values of (Pc/t2)0
 for the 

two tests (table 2) are different. On the contrary, similar values of the Weibull modulus, 

m, have been found.  

The fracture mechanism of the studied material is brittle with strength values 

determined by microstructural defects, such as those shown in figure 6, subjected to 

biaxial stresses in B3B as well as SPT tests. Therefore, even though the actual strength 

values for each test are different, the critical defects and, consequently, the shapes of 

the strength distributions are the same, as revealed by the coincidence of m values.  

There are no significant differences between the characteristic strength values 

calculated using the different proposals for B3B (table 3) while the value calculated 

according to Shetty et al. [14] for SPT is lower than the rest. In order to identify the 

potential origin of such differences, the effect of the radius of the loading ball on the 

values of the strength calculated through the five analysed equations has been 

investigated. As shown in figure 8, there is a clear dependence of the calculated 

strengths with the ball radius. Values of the proposals of Xiong et al., Soltysiak et al. and 

Timoshenko et al. (Eqs. 2, 3 and 4) coincide through the whole considered interval of 

ball radius while those of Shetty et al. and Borger et al. (Eqs. 5 and 8) only coincide in 

the 3 to 5 mm interval and their values are lower than the others. For ball radii similar 

to that of the balls used in this work, around 5 mm, all the strength values are coincident.  
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The differences between the strength values obtained through the different 

proposals can be explained based in figure 8. Considering first the SPT results, the small 

radius of the punch (Rb = 1.25mm) leads to the largest differences between the low 

values for Shetty et al proposal (Eq. 5) and the other ones (Fig. 7 b); differences are 

enough as to be out of the confidence intervals for the characteristic strength (table 3). 

In the case of the B3B results, the use of a larger ball (Rb = 4.25 mm) leads to values 

calculated according to Shetty et al and Borger et al values (Eqs. 5 and 8) that are 

coincident and lower than the other three. In this case, differences are not enough as to 

give characteristic strength values out of the confidence limits of the different solutions 

(table 3). 

The coincidence of strength values calculated using the equations proposed by 

Xiong et al, Soltysiak et al and Timoshenko et al (Eqs. 2, 3 and 4) through the wide 

interval of ball radius considered (2-7 mm), gives these three proposals a universal 

character for miniature biaxial strength tests performed with spherical loading elements 

on small ceramic samples. Furthermore, given that the Timoshenko et al proposal (Eq. 

4) does not include the value of radius of the uniform loading central area, b, appears 

that the consideration of this area is not determinant for the calculus, and points out 

this proposal as the most adequate due to its simplicity. 

Taking into account the discussion above, σ0_B3B=93 and σ0_SPT=77 MPa can be 

identified as characteristic strength values for B3B and SPT, respectively. The large 

difference between these values (σ0B3B/σ0SPT ≈ 1.2) is coincident with what is predicted 

by the well-known Weibull relationship given by Eq. 14 and [34] for the effective 

volumes associated to the test configurations (table 3) and the Weibull modulus of the 

material, m.  

𝜎0_𝑆𝑃𝑇

𝜎0_𝐵3𝐵
=  (

V𝑒𝑓𝑓_𝐵3𝐵

𝑉𝑒𝑓𝑓_𝑆𝑃𝑇
)

1/𝑚

 (14) 
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5. Conclusions 

In this work the fracture behaviour of commercial discs of soft PZTs tested using 

two different biaxial miniature test configurations (B3B and SPT) has been analysed and 

the characteristic strength values of both tests have been calculated using different 

approaches. 

The validity of SPT for characterizing strength of PZT has been proved. Results are 

comparable to those obtained by B3B using the Weibull relationship for effective 

volumes. 

Timoshenko´s proposal (Eq. 4) has been identified as the most adequate for 

calculation the strength values in the case of miniature biaxial strength tests done with 

spherical loading elements of radius between 2 and 7 mm.  
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FIGURE CAPTIONS 

   

Figure 1: Scheme of the experimental set-up of the B3B test [6] 

 

Figure 2: Scheme of the SPT configuration: a) for metallic materials; b) for ceramic 

materials 

b) 
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Figure 3: FEA models and maximum principal stress on the tensile side of the discs 

(F=100N) of: a) B3B test and b) SPT 
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Figure 4: Typical experimental load-LPD curves: a) B3B test; b) SPT. The different 

load drops are indicated. 
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Figure 5: Appearance of two samples which tests were stopped just after the first 

load drop at P1. 
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Figure 6: Characteristic critical defects found in the fracture surfaces: a) 

Agglomerate; b) Pore associated to differential sintering of an agglomerate. 
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Figure 7: Weibull statistical distribution of strengths obtained using the indicated 

equations. Value of the b-parameter is calculated according to Shetty et al. [14]: a) B3B 

test; b) SPT. 



22 
 

 

Figure 8: Influence of the loading ball radius of the B3B test on the calculated 

tensile stress for different approximations. 
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TABLES 

Table 1. Proposals to calculate the radius of the central loaded area assumed subjected 
to a constant stress value, b. 

 b 

Shetty et al. [14] 
t/3                                                  For   ≥ 0 

Westergaard [15] t                                                    For   > 1.724t 

 
(1.6 2 +t2)1/2 - 0.675t                For 0 ≤  < 1.724t 

 
 
 
 
Table 2. Weibull modulus, m, and characteristic value, (Pc/t2)0, of the distributions of 
Pc/t2 values. The values between brackets are the lower and upper limits for 90% 
confidence limits. 
 

 Type of test 
Number of tested 

specimens (n) 
(Pc/t2)0 
(MPa) 

m 

B3B  24 
43.9 

[42-45.4] 
9.4 

[7-12] 

SPT 24 
48.6 

[47-50.1] 
11.8 

[9-15] 

 

 

 

 

 

 


