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Abstract

We present a probabilistic framework for brittle fracture that builds upon

Weibull statistics and strain gradient plasticity. The constitutive response

is given by the mechanism-based strain gradient plasticity theory, aiming to

accurately characterize crack tip stresses by accounting for the role of plastic

strain gradients in elevating local strengthening ahead of cracks. It is shown

that gradients of plastic strain elevate the Weibull stress and the probability

of failure for a given choice of the threshold stress and the Weibull parameters.

The statistical framework presented is used to estimate failure probabilities

across temperatures in ferritic steels. The framework has the capability to

estimate the three statistical parameters present in the Weibull-type model

without any prior assumptions. The calibration against experimental data

shows important differences in the values obtained for strain gradient plas-

ticity and conventional J2 plasticity. Moreover, local probability maps show

that potential damage initiation sites are much closer to the crack tip in the
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case of gradient-enhanced plasticity. Finally, the fracture response across the

ductile-to-brittle regime is investigated by computing the cleavage resistance

curves with increasing temperature. Gradient plasticity predictions appear

to show a better agreement with the experiments.
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1. Introduction

Macroscopic fracturing in metallic materials depends sensitively on prop-

erties that pertain to the micro and atomic scales. Not surprisingly, a con-

siderable effort has been made to link scales in fracture mechanics, with the

ultimate goal of quantitatively predicting the strength, durability, and relia-

bility of structural components (Suo et al., 1993; Hutchinson, 1997). These

endeavours aim at spanning the wide range of scales at stake by enriching

continuum theories to properly characterize behaviour at the small scales

involved in crack tip deformation.

The deficiencies intrinsic to conventional plasticity theory provide a strong

motivation for developing mechanistically-based models. Namely, unrealisti-

cally low stresses are predicted ahead of the crack tip, with toughness being

unbounded for cohesive strengths of approximately 3 times the yield stress

in a perfectly plastic material (σ̂/σY → 4 in a mild hardened solid, see Tver-

gaard and Hutchinson, 1992). Opening stresses on the order of 3-5 times

the initial tensile yield stress fail to explain decohesion at the atomic scale.
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Cleavage fracture in the presence of significant plastic flow has been ex-

perimentally observed in numerous material systems (Elssner et al., 1994;

Bagchi and Evans, 1996; Korn et al., 2002). Since atomic separation re-

quires traction levels on the order of the theoretical lattice strength (10σY

or larger), classic continuum theories would appear to rule out a fracture

mechanism based on atomic decohesion whenever plasticity develops in the

vicinity of the crack. Moreover, conventional plasticity predictions reveal

important discrepancies with separation strengths calculated from first prin-

ciples (Raynolds et al., 1996), and toughness bounds attained by discrete

dislocation dynamics (Cleveringa et al., 2000; Irani et al., 2017), highlighting

the need to bridge the gap between macroscopic modelling of cracking and

the microstructural and atomistic mechanisms of fracture.

Small scale experiments have consistently shown that conventional plas-

ticity theory is unable to characterize the material response of metals at the

micro level. Fostered by growing interest in microtechnology, a wide range of

mechanical tests on micro-sized specimens have revealed that metallic mate-

rials display strong size effects when deformed non-uniformly into the plastic

range. Experiments such as indentation (Nix and Gao, 1998), torsion (Fleck

et al., 1994), or bending (Stölken and Evans, 1998) predict a 3-fold increase

in the effective flow stress by reducing specimen size (smaller is stronger).

This size effect is attributed to gradients of plastic strain that require a defi-

nite density of dislocations to accommodate lattice curvature (Ashby, 1970).

These geometrically necessary dislocations (GNDs) are not accounted for in

conventional theories of plasticity, neglecting the length scale dependency
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intrinsically associated with plastic flow. A large theoretical literature has

appeared seeking to extend plasticity theory to small scales by the devel-

opment of isotropic strain gradient plasticity (SGP) formulations (Aifantis,

1984; Gao et al., 1999; Fleck and Hutchinson, 2001; Anand et al., 2005).

Using SGP theories to provide an implicit multi-scale characterization of

the mechanical response ahead of a crack appears imperative as, indepen-

dently of the size of the specimen, the plastic zone adjacent to the crack

tip is physically small and contains strong spatial gradients of deformation

(Mart́ınez-Pañeda and Betegón, 2015). The investigation of stationary crack

tip fields has shown that plastic strain gradients promote local strain harden-

ing and lead to much higher stresses relative to classic plasticity predictions

(Jiang et al., 2001; Wei, 2006; Komaragiri et al., 2008; Mart́ınez-Pañeda

et al., 2017b). Accurately capturing crack tip stresses has proven to be

fundamental in predicting fatigue damage (Gil-Sevillano, 2001; Brinckmann

and Siegmund, 2008; Pribe et al., 2019), notch fracture mechanics (Mart́ınez-

Pañeda et al., 2017a), microvoid cracking (Tvergaard and Niordson, 2008),

and hydrogen assisted failure (Mart́ınez-Pañeda et al., 2016a,b). Since plas-

tic strain gradients can alter crack tip stresses over several tens of µm, it is

expected that strain gradient plasticity models will also play an important

role in the modelling of cleavage fracture and the ductile-to-brittle transition

(Mart́ınez-Pañeda et al., 2019; Qian et al., 2011).

Cleavage fracture models are grounded on the concept of microcracks nu-

cleating from defects, such as inclusions or second-phase particles (Pineau

et al., 2016). The location of these defects is statistical by nature and, conse-
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quently, modelling efforts rely mainly on probabilistic analysis. The seminal

work by the Beremin group (Beremin, 1983) established the fundamental

framework on which most cleavage models stand; Weibull statistics and the

weakest link model are employed to estimate the probability of failure Pf ,

where Pf equals the probability of sampling (at least) one critical fracture-

triggering particle. In these models the stress level is the driving force for

fracture and, consequently, local strengthening due to plastic strain gradients

will influence failure probability predictions.

In this work we make use of a mechanism-based strain gradient plasticity

formulation to accurately characterize crack tip stresses. The constitutive

description is coupled with a probabilistic framework capable of obtaining

all the statistical parameters of the model without any prior assumptions.

The capabilities of the present mechanism-based scheme for probabilistic

analysis of brittle fracture are benchmarked against experimental data from

the Euro toughness project (Heerens and Hellmann, 2002). Experiments are

reproduced over a wide range of temperatures, so as to span the ductile-

to-brittle regime. Strain gradient plasticity predictions are compared with

results from conventional plasticity and insight is gained into the role of the

stress elevation due to strain gradients in assessing cleavage.

2. Numerical model

The implicitly multi-scale statistical framework for brittle fracture pre-

sented stands on a Taylor-based strain gradient plasticity formulation (Sec-

tion 2.1), and a three-parametric Weibull type statistical model (Section 2.2).
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The implementation is carried out by coupling a general purpose finite ele-

ment program with the statistical tools of Matlab, see Section 2.3. A experi-

mental campaign employing Compact Tension specimens will be reproduced

to highlight the capabilities of the model (Section 2.4).

2.1. Mechanism-based Strain Gradient Plasticity

We model strain gradient effects by means of the so-called mechanism-

based strain gradient (MSG) plasticity theory (Gao et al., 1999; Qiu et al.,

2003). MSG plasticity is grounded on Taylor’s dislocation model. Accord-

ingly, the shear flow stress τ is formulated in terms of the dislocation density

ρ as

τ = αµb
√
ρ (1)

where µ is the shear modulus, b is the magnitude of the Burgers vector and

α is an empirical coefficient that is taken to be equal to 0.5. The dislocation

density is additively composed of the density ρS for statistically stored dis-

locations (SSDs) and the density ρG for geometrically necessary dislocations

(GNDs),

ρ = ρS + ρG (2)

The GND density ρG is related to the effective plastic strain gradient ηp

by

ρG = r
ηp

b
(3)

where r is the Nye-factor which is assumed to be 1.90 for face-centered-cubic

(fcc) polycrystals. Gao et al. (1999) used three quadratic invariants of the

plastic strain gradient tensor to represent the effective plastic strain gradient
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ηp as

ηp =
√
c1η

p
iikη

p
jjk + c2η

p
ijkη

p
ijk + c3η

p
ijkη

p
kji (4)

The coefficients were determined to be equal to c1 = 0, c2 = 1/4 and

c3 = 0 from three dislocation models for bending, torsion and void growth.

Accordingly,

ηp =

√
1

4
ηpijkη

p
ijk (5)

where the components of the strain gradient tensor are obtained from

ηpijk = εpik,j + εpjk,i − ε
p
ij,k (6)

The tensile flow stress σflow is related to the shear flow stress τ by

σflow = Mτ (7)

with M denoting the Taylor factor, which equals 3.06 for fcc metals. Rear-

ranging (1-3) and substituting into (7) renders

σflow = Mαµb

√
ρS + r

ηp

b
(8)

The SSD density ρS can be readily determined from (8) knowing the

relation in uniaxial tension between the flow stress and the material stress-

strain curve,

ρS = [σreff(εp)/(Mαµb)]2 (9)

Here, σref is a reference stress and f is a non-dimensional function of the

plastic strain εp, as given by the uniaxial stress-strain curve. Substituting

into (8), the flow stress σflow reads

σflow = σref
√
f 2(εp) + `ηp (10)
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where ` is the intrinsic material length parameter that enters the constitutive

equation for dimensional consistency. The value of ` can be obtained by

fitting micro-scale experiments and typically ranges between 1 and 10 µm.

The model recovers the conventional plasticity solution when ` = 0.

2.2. Weibull three-parametric

We present a statistical framework that has the capability of predicting

brittle and ductile failure and requires no prior assumptions (Muñiz-Calvente

et al., 2015; Papazafeiropoulos et al., 2017). First, for a given Weibull stress

σw and a threshold stress for crack growth σth, the cumulative probability of

failure Pf is given by

Pf = 1− exp

[
−
(
σw − σth

σu

)m]
(11)

where σu and m respectively denote the scaling parameter and the modulus.

Equation (11) is defined in (Beremin, 1983) without σth but stresses smaller

than the yield stress were considered innocuous, implying the assumption of

σth = σY . A global Weibull stress is defined based on weakest link consider-

ations

σw = σth +

[
ne∑
i=1

(
σi1 − σth

)m
(Vi/V0)

](1/m)

(12)

Here V0 is a reference volume, Vi is the volume of the ith material unit in the

fracture process zone experiencing a maximum principal stress σi1, and ne

is the number of finite elements/material units in the fracture process zone.

The parameter σth is needed due to the fact that cracks do not propagate

below a certain threshold energy value. However, the concurrent estimation

of the threshold, modulus and shape parameters remains a complicated task;
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a common approach lies in assuming a value for σth and estimating m and

σu from a set of experiments by means of the maximum likelihood method

(Muniz-Calvente et al., 2016). Here, all three parameters (σth, m and σu)

will be obtained by means of the following procedure: (see Fig. 1)

1) First, the probability of failure is computed for all the experiments con-

ducted at a given temperature. The Pf versus load curve, where the load is

expressed in terms of the J-integral, is computed by means of

Pf =
j − 0.3

nj + 0.4
(13)

where nj denotes the number of experiments for a given temperature and j

is the rank number.

2) A finite element analysis is conducted, and the values of σi1 and Vi are

computed at each element for the set of critical Ji at which failure has been

reported in the experiments. The domain integral method is used to compute

the value of Ji in each load increment.

3) The least squares method is employed to fit the Weibull distribution by

using cumulative probabilities. Since the threshold parameter σth is also an

unknown, the procedure requires iterating over the following steps:

3.1) The Weibull stress σw is first computed according to (12) from the

information provided by the finite element model (Step 2). In (12), m and

σth correspond to the values of the previous iteration (or an initial estimate,
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in the case of the first iteration).

3.2) The Weibull stress σw is introduced in (11) and the values of σu, m

and σth in the current iteration are computed by fitting a univariate distri-

bution using least squares estimates of the cumulative distribution functions.

Namely, the cumulative probability of failure (11) is written as,

log (σu) + log (− log (1− Pf ))
1

m
= log (σw − σth) (14)

introducing a linear relationship between log (− log (1− Pf )) and log (σw − σth).

From the Pf assigned to each load (Step 1) and the Weibull stress computed

for each of those loads (Step 2), we make use of least squares to fit this

straight line on the transformed scale. The slope and intercept of the line

provide with the values of m and σu for a given σth. The quality of the fit

will be given by the choice of σth; we find the optimum by maximizing the

coefficient of determination R2 over all possible threshold values. The opti-

mum value of σth is specific to the current iteration and associated values of

m and σu.

3.3) The procedure is repeated until convergence is achieved. We assume

that the solution has converged when the following criterion has been met

| (m)t − (m)t−1 |
(m)t

+
| (σth)t − (σth)t−1 |

(σth)t
< 0.0001 (15)

where (m)t denotes the value of m in the current increment while the sub-

script t− 1 represents its value in the previous increment. Consequently, the

outcome of the analysis is the threshold value below which cracking will not

occur σth, along with the two Weibull parameters m and σu. A stress level of
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σth+σu will denote a 63% failure probability in a given material unit element.
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Compute     from a 
set of experiments

Finite element computation
of     and     at each element   

for each critical    
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Calculate the Weibull stress 
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Figure 1: Flowchart describing the combined experimental-computational-statistical pro-

cedure for estimating the three Weibull parameters σth, m, and σth.
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2.3. Numerical implementation

The framework presented in Sections 2.1 and 2.2 is numerically imple-

mented by exploiting Abaqus2Matlab (Papazafeiropoulos et al., 2017). Hence,

we run the commercial finite element package Abaqus within the mathemat-

ical software Matlab to take advantage of Matlab’s in-built capabilities for

fitting univariate distributions by means of the least squares method.

We implement MSG plasticity in the commercial finite element package

Abaqus by means of a user material subroutine (UMAT). For numerical rea-

sons, we make use of the lower order version of MSG plasticity, commonly

referred as the conventional mechanism based strain gradient (CMSG) plas-

ticity theory (Huang et al., 2004). As shown in (Mart́ınez-Pañeda and Niord-

son, 2016) and discussed in (Shi et al., 2001), the lower and higher order

versions of MSG plasticity predict identical results except for a boundary

layer of size roughly 10 nm. This boundary layer falls outside of the domain

of physical validity of continuum theories; strain gradient plasticity models

a collective behaviour of dislocations and it is therefore applicable at a scale

much larger than the dislocation spacing. Fortran modules are used to store

the plastic strain components across Gauss integration points, and the plastic

strain gradient is computed by numerical differentiation within the element.

First, the plastic strain increment is interpolated through its values at the

Gauss points in the isoparametric space, and afterwards the increment in the

plastic strain gradient is calculated by differentiation of the shape functions.

The reader is referred to (Mart́ınez-Pañeda et al., 2017a) for more details.
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2.4. Boundary value problem

We employ our framework to assess brittle failure in ferritic steels. Nu-

merical predictions are compared to experimental results from the Euro

toughness project on DIN 22NiMoCr37 steel (Heerens and Hellmann, 2002).

The Euro toughness project is frequently chosen as paradigmatic benchmark

for cleavage models due to the richness of its data set. Experiments are

conducted at 7 temperatures, from −154◦C to 20◦C, spanning the entire

transition from brittle to ductile fracture.

Mimicking the experimental campaign, we model a compact tension spec-

imen of width W = 100 mm, distance between pins F = 75 mm and initial

notch length D = 51 mm, referred to as size 2T in (Heerens and Hellmann,

2002). The finite element model includes the compact tension specimen and

the pins. The load is prescribed by imposing a displacement on the pins,

and we model contact between the pins and the specimen by using a sur-

face to surface contact algorithm with finite sliding. The path independent

J-integral is computed outside of the plastic zone by means of the domain

integral method at each load increment. An initial blunting radius of 2 µm

is defined at the crack tip. After a mesh sensitivity analysis, the specimen

is discretized with 9800 quadrilateral quadratic plane strain elements. As

shown in Fig. 2, a very refined mesh is used near the crack tip so as to

accurately capture the influence of plastic strain gradients.
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Figure 2: General and detailed representation of the finite element mesh employed.

3. Results

We begin our analysis by investigating the stress elevation of strain gradi-

ent plasticity and its influence on the Weibull stress distribution (Section 3.1).

Then, we calibrate the Weibull parameters for each temperature and assess

the probability of failure due to cleavage with both conventional and MSG

plasticity theories (Section 3.2). Section 3.3 explores the response across

temperatures aiming to gain insight into the role of plastic strain gradients

in the ductile-to-brittle transition.

First, we define our uniaxial stress-strain hardening law as

σ = σY

(
1 +

εp

σY

)N
(16)

where N is the strain hardening exponent. Thus, in (10), the reference stress

equals σref = σY

(
E
σY

)N
and f (εp) =

(
εp + σY

E

)N
. Here, Young’s modulus

takes the value E = 200 GPa, and Poisson’s ratio equals ν = 0.3. We proceed

to calibrate N and σY with the uniaxial stress-strain data available as part

of the Euro toughness data set (Heerens and Hellmann, 2002). The values of
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yield stress σY and strain hardening exponent N obtained at each temper-

ature are listed in Table 1. A representative fit is shown in Fig. 3a for the

case of a temperature of T = −40◦C. As shown in Table 1, both σY and N

decrease with increasing temperature, in agreement with expectations. One

should note that the length scale parameter of MSG plasticity has shown a

negligible sensitivity to changes in temperature, as measured by Qian et al.

(2014) through nanoindentation. Hence, we consider an intermediate value

of ` = 5 µm for all temperatures (Mart́ınez-Pañeda and Niordson, 2016).
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Figure 3: Calibration of material properties: (a) Uniaxial stress-strain response, and (b)

force versus displacement curve in a CT specimen. The case of temperature T = −40◦C

is chosen as representative.
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Table 1: Material properties.

Temperature (◦C) -154 -91 -60 -40 -20 0 20

Yield stress σY (MPa) 570 490 470 450 440 430 425

Strain hardening exponent N 0.14 0.14 0.13 0.13 0.13 0.12 0.12

The computation of the force versus displacement curves from the cali-

brated values of σY and N shows a good agreement with the experimental

data. The results obtained for the representative case of T = −40◦C are

shown in Fig. 3b. The influence of the plastic strain gradients is restricted to

a small region next to the crack tip and, consequently, the macroscopic force

versus displacement curve is almost insensitive to ` in the absence of damage.

Locally, crack tip stresses are however very sensitive to local strengthening

due to gradients of plastic strain.

3.1. Gradient effects on crack tip stresses

We examine first the tensile stress distribution ahead of the crack for a

representative case, T = −40◦C, and a specific load level that falls within the

range of critical loads reported in the experiments, J = 290 N/mm. Results

are shown in Fig. 4 for both conventional and MSG plasticity with ` = 5

µm. The tensile stress is normalized by the yield strength of the material

at T = −40◦C, and the distance ahead of the crack is shown in logarithmic

scale to highlight the different responses given by MSG and conventional

plasticity theories. As shown in the figure, far away from the crack tip

both MSG plasticity and conventional J2 plasticity agree but differences

start at about 20-30 µm ahead of the crack. This distance is sufficiently
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large to engulf the critical length of various damage mechanisms, including

cleavage in ferritic steels. The stress elevation due to plastic strain gradients

is associated to large geometrically necessary dislocation (GND) densities

that act as obstacles to the motion of statistically stored dislocations and

elevate local strength.

10
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10
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10
0

0
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20
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Figure 4: Tensile stress along the extended crack plane (x2 = 0) for both MSG plasticity

and conventional plasticity at J = 290 N/mm. The distance ahead of the crack tip is given

in logarithmic scale. The case of temperature T = −40◦C is chosen as representative.

The stress elevation associated with large gradients of plastic strain in

the vicinity of a crack influences cleavage models by elevating the Weibull

stress σw. We illustrate this by assuming m = 3 and σth = 2.5σY and

computing the Weibull stress through (12) as a function of the remote load.
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Results are shown in Fig. 5 for two representative values of the length scale

parameter ` = 5 µm and ` = 10 µm, as well as for conventional plasticity.

As shown in the figure, the Weibull stress σw increases with increasing `

and differences increase with the remote load. As we shall show below,

differences are sensitive to the values of m and σth, and the gradient-enhanced

σw elevation can be substantial. Note that, following (11), strain gradient

plasticity elevates the local probability of failure for a fixed value of σu, σth

and m.
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Figure 5: Weibull stress dependence on the remote load for both MSG plasticity, with ` = 5

µm and ` = 10 µm, and conventional plasticity. The case of temperature T = −40◦C is

chosen as representative.

3.2. Statistical analysis of cleavage

The statistical framework outlined in Section 2 is now employed to esti-

mate the probability of failure as a function of the remote load, as quantified

by J . Fig. 6 shows the results obtained for 4 representative temperatures,

T = −154◦C, T = −91◦C, T = −60◦C and T = −40◦C. The figure shows the

experimental predictions, as given by (13), along with the results for MSG
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plasticity with ` = 5 µm and conventional J2 plasticity. Both conventional

and MSG plasticity predictions exhibit good agreement with the experiments

for the calibrated Weibull parameters.
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Figure 6: Failure probability as a function of the external load. The figure includes the

experimental data for 22NiMoCr37 steel (Heerens and Hellmann, 2002) and the predictons

from the present statistical model for the values of σth, σu and m listed in Table 2.

Temperatures (a) T = −154◦C, (b) T = −91◦C, (c) T = −60◦C and (d) T = −40◦C are

chosen as representative.
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The calibrated values of the modulus m, the threshold stress for crack

growth σth, and the scaling parameter σu are shown in Table 2. Results are

shown for 7 temperatures and both strain gradient and conventional plastic-

ity. Considering the effect of plastic strain gradients leads to very significant

differences in the values of the calibrated Weibull parameters. Differences

between conventional and MSG plasticity are particularly notable in regards

to the stress threshold for crack growth σth; much larger stresses are needed

to propagate micro-cracks if the influence of GNDs is accounted for. Further-

more, qualitative differences are observed in the dependence of the threshold

stress with temperature. While the strain gradient plasticity-based prediction

exhibits the natural trend of decreasing σth with decreasing T (the material

anticipates a reduced barrier to cleavage), this is not the case for conven-

tional plasticity. A plausible explanation behind the scatter observed lies on

the fact that the maximum tensile stress is load-independent in conventional

plasticity (McMeeking, 1977); for lower temperatures, a higher stress level is

attained for the same J as σY is larger. Contrarily, in strain gradient plas-

ticity, crack tip stresses scale with the remote load (Mart́ınez-Pañeda and

Fleck, 2019).

In addition, the conventional plasticity results show noticeably high pre-

dictions for m at temperatures -60◦C and -40◦C. For these two temperatures,

there is a clear change in the shape of the Pf versus J curve for values of Pf

close to 0.75. Reducing the tolerance of the convergence criterion or changing

the initial estimations of m and σth did not have any influence in the outcome

of the statistical fitting procedure. Moreover, very similar results were ob-
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tained when repeating the procedure with specimens of different geometry;

referred to as 0.5T and 1T in (Heerens and Hellmann, 2002). The unique-

ness of the Weibull parameters (see, e.g., Ruggieri et al., 2000) is addressed

by repeating the analysis for four different geometries (0.5, 1T, 2T and 4T)

and two temperatures (-91◦C and -20◦C). Computations reveal very similar

values of m, σth and σu to those shown in Table 2 for both conventional

and strain gradient plasticity. Differences are largest with geometry 4T but

remain below 10% in all cases.

Table 2: Calibration of Weibull parameters for MSG plasticity and conventional plasticity

as a function of the temperature.

MSG plasticity

Temperature (◦C) -154 -91 -60 -40 -20 0 20

σu (MPa) 23.6 46.9 632.3 611.7 1060.4 183.0 16948.0

σth (MPa) 5489.3 7295.1 7670.6 8136.7 8295.9 19888.0 13516.0

m 2.0 1.9 2.9 3.1 3.2 1.7 12.71

Conventional plasticity

Temperature (◦C) -154 -91 -60 -40 -20 0 20

σu (MPa) 9.2 14.9 1380.4 911.3 146.0 46.11 1731.7

σth (MPa) 2251.7 2459.0 1015.7 1477.5 2289.1 2205.0 1474.7

m 1.9 1.8 13.5 12.8 3.2 0.78 19.87

More insight into the influence of plastic strain gradients on local failure

probability can be gained by means of a hazard map. In a hazard map, the

local probability of failure is shown over the entire engineering component,

highlighting the areas that are vulnerable to a specific type of failure (Muñiz-
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Calvente et al., 2016). The local probability of failure is computed as P i
f in

each material unit i from a local σiw. The results obtained are shown in log

scale in Fig. 7 for both conventional and strain gradient plasticity. Important

differences can be readily observed. While the local Pf only becomes mean-

ingful close to the crack tip in both cases, the potential damage initiation

sites are identified to be much more localized for the case of strain gradient

plasticity. In other words, only defects within tens of microns, as opposed to

several mm, are identified as fracture-triggering particles when plastic strain

gradients are accounted for. The critical distance for cleavage fracture in

steels is considered to be significantly smaller than 1 mm (Watanabe et al.,

1987).
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Figure 7: Hazard map, showing the local probability of failure in log scale at each material

unit for the case of T = −40◦C and J = 282.2 N/mm.
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3.3. The ductile to brittle transition

We then proceed to examine the ductile-to-brittle transition by computing

the resistance curves for Pf = 0.1, 0.5 and 1 across the temperature versus

load map. For each value of Pf three curves are shown, the experimental data

and the numerically computed results for MSG plasticity and conventional

J2 plasticity; see Fig. 8. The results show how the load at which failure is

predicted, Pf = 0.5, increases with the temperature - ductility is enhanced.

As the load and the temperature increase, ductile crack growth is observed,

with the largest temperatures showing several cases where crack extension

equals ∆a = 2 mm, the limit value for ductile growth tests (Heerens and

Hellmann, 2002). In addition, the gradient-enhanced prediction appears to

follow more precisely the experimental trend.
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Figure 8: Cleavage resistance curves (Pf = 0.5) and scatter bands (Pf = 0.1 and Pf = 0.9)

for the experimental data, MSG plasticity with ` = 5 µm and conventional plasticity.

3.4. Influence of crack tip constraint conditions

Lastly, we investigate the influence of crack tip constraint conditions by

imposing a non-zero elastic T-stress (Betegón and Hancock, 1991). This

is achieved by means of the so-called modified boundary layer formulation.
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Consider a crack plane aligned with the negative x1 axis of the Cartesian

reference frame (x1, x2). For a crack tip placed at the origin and a given

T value, we choose to prescribe a remote mode I load, KI , by defining the

nodal displacements in the outer periphery of the mesh as

u1(r, θ) = KI
1 + ν

E

√
r

2π
cos

(
θ

2

)
(3− 4ν − cosθ) + T

(
1− ν2

E

)
rcosθ (17)

u2(r, θ) = KI
1 + ν

E

√
r

2π
sin

(
θ

2

)
(3−4ν−cosθ)−T

(
ν(1 + ν)

E

)
rsinθ (18)

where r and θ are polar coordinates centred at the crack tip. As shown in Fig.

9, upon exploiting symmetry about the crack plane, only half of the model

is analysed. We introduce an initial blunting radius that is 105 times smaller

than the outer radius. The modified boundary layer model is discretized by

means of 6422 quadrilateral quadratic plane strain elements.

Figure 9: Sketch of the modified boundary layer model employed to assess the role of crack

tip constraint conditions.

The results obtained, in terms of Weibull stress σw versus remote load

KI are shown in Fig. 10. As in Fig. 5, we consider a temperature of

T = 40◦C and assume m = 3 and σth = 2.5σY . A range of 3 values of the
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T-stress is considered: T/σY = −0.5, T/σY = 0,and T/σY = 0.5. The same

qualitative trends are obtained for both conventional plasticity and strain

gradient plasticity; for a given remote load KI , the Weibull stress increases

with increasing T. However, conventional plasticity predictions of σw appear

to exhibit a higher sensitivity to crack tip constraint conditions for the values

of m and σth assumed.

4 5 6 7 8 9 10

2.5

2.51

2.52

2.53

2.54

2.55

Figure 10: Weibull stress dependence on the remote load as a function of the elastic

T-stress for conventional plasticity and MSG plasticity, with ` = 5 µm.
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4. Conclusions

We have presented a 3-parameter statistical framework for cleavage that

incorporates the role of large plastic strain gradients in the characteriza-

tion of crack tip stresses. The model enables to accurately compute Weibull

stresses and calibrate - without any prior assumptions - the three statisti-

cal parameters: threshold stress σth, scaling parameter σu and modulus m.

Finite element analysis is used in combination with Weibull statistics to in-

vestigate cleavage in ferritic steels with both conventional J2 plasticity and

the mechanism-based strain gradient (MSG) plasticity theory. The main

findings are:

i) For given values of σth, σu and m, strain gradient plasticity effects elevate

the Weibull stress and the probability of failure.

ii) The calibrated Weibull parameters for MSG plasticity show significant dif-

ferences with the values obtained with conventional plasticity. The threshold

stress required to trigger cracking in the gradient-enhanced case is 2-8 times

larger than its conventional plasticity counterpart.

iii) Hazard maps, where the probability of failure is shown in each material

unit, show that defects susceptible of initiating cracking are confined in a

much smaller region next to the crack tip in the strain gradient plasticity

case.

iv) The probability of failure is computed across the ductile-to-brittle transi-
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tion, with strain gradient plasticity predictions showing a better agreement

with experiments.
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knowledges financial support from Wolfson College Cambridge (Junior Re-

search Fellowship) and from the Royal Commission for the 1851 Exhibition

through their Research Fellowship programme (RF496/2018).

References

Aifantis, E.C., 1984. On the Microstructural Origin of Certain Inelas-

tic Models. Journal of Engineering Materials and Technology 106, 326.

doi:10.1115/1.3225725.

Anand, L., Gurtin, M.E., Lele, S.P., Gething, C., 2005. A one-dimensional

theory of strain-gradient plasticity: Formulation, analysis, numerical re-

sults. Journal of the Mechanics and Physics of Solids 53, 1789–1826.

doi:10.1016/j.jmps.2005.03.003.

Ashby, M.F., 1970. The deformation of plastically non-homogeneous materi-

als. Philosophical Magazine 21, 399–424. doi:10.1080/14786437008238426,

arXiv:9809069v1.

33



Bagchi, A., Evans, A.G., 1996. The Mechanics and Physics of Thin-Film

Decohesion and Its Measurement. Interface Science 3, 169–193.

Beremin, F.M., 1983. A local criterion for cleavage fracture of a nuclear

pressure vessel steel. Metallurgical Transactions A 14, 2277–2287.

Betegón, C., Hancock, J.W., 1991. Two-Parameter Characterization of

Elastic-Plastic Crack-Tip Fields. Journal of Applied Mechanics 58, 104–

110.

Brinckmann, S., Siegmund, T., 2008. Computations of fatigue crack growth

with strain gradient plasticity and an irreversible cohesive zone model.

Engineering Fracture Mechanics 75, 2276–2294.

Cleveringa, H., Van der Giessen, E., Needleman, A., 2000. A discrete dis-

location analysis of mode I crack growth. Journal of the Mechanics and

Physics of Solids 48, 1133–1157. doi:10.1016/S0022-5096(99)00076-9.

Elssner, G., Korn, D., Rühle, M., 1994. The influence of interface impu-

rities on fracture energy of UHV diffusion bonded metal-ceramic bicrys-

tals. Scripta Metallurgica et Materiala 31, 1037–1042. doi:10.1016/0956-

716X(94)90523-1.

Fleck, N.A., Hutchinson, J.W., 2001. A reformulation of strain gradient

plasticity. Journal of the Mechanics and Physics of Solids 49, 2245–2271.

Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W., 1994. Strain gra-

dient plasticity: Theory and Experiment. Acta Metallurgica et Materialia

42, 475–487.

34



Gao, H., Hang, Y., Nix, W.D., Hutchinson, J.W., 1999. Mechanism-based

strain gradient plasticity - I. Theory. Journal of the Mechanics and Physics

of Solids 47, 1239–1263.

Gil-Sevillano, J., 2001. The effective threshold for fatigue crack propagation:

A plastic size effect? Scripta Materialia 44, 2661–2665. doi:10.1016/S1359-

6462(01)00948-4.

Heerens, J., Hellmann, D., 2002. Development of the Euro fracture toughness

dataset. Engineering Fracture Mechanics 69, 421–449. doi:10.1016/S0013-

7944(01)00067-4.

Huang, Y., Qu, S., Hwang, K.C., Li, M., Gao, H., Huang, Y., Qu, S., Hwang,

K.C., Li, M., Gao, H., 2004. A conventional theory of mechanism-based

strain gradient plasticity. International Journal of Plasticity 20, 753–782.

Hutchinson, J.W., 1997. Linking scales in fracture mechanics. Advances

in Fracture Research, Proceedings of ICF10 , 1 – 14doi:10.1081/E-EEE2-

120046011.

Irani, N., Remmers, J.J.C., Deshpande, V.S., 2017. A discrete dislocation

analysis of hydrogen-assisted mode-I fracture. Mechanics of Materials 105,

67–79. doi:10.1016/j.mechmat.2016.11.008.

Jiang, H., Huang, Y., Zhuang, Z., Hwang, K.C., 2001. Fracture in

mechanism-based strain gradient plasticity. Journal of the Mechanics and

Physics of Solids 49, 979–993. doi:10.1016/S0022-5096(00)00070-3.

Komaragiri, U., Agnew, S.R., Gangloff, R.P., Begley, M.R., 2008. The

role of macroscopic hardening and individual length-scales on crack

35



tip stress elevation from phenomenological strain gradient plastic-

ity. Journal of the Mechanics and Physics of Solids 56, 3527–3540.

doi:10.1016/j.jmps.2008.08.007.

Korn, D., Elssner, G., Cannon, R.M., Ruhle, M., 2002. Fracture properties of

interfacially doped Nb-A12O3 bicrystals: I, fracture characteristics. Acta

Materialia 50, 3881–3901. doi:10.1016/S1359-6454(02)00193-3.
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