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Abstract The aim of Recommender Systems is to sug-

gest items (products) to satisfy each user’s particular

taste. Representation strategies play a very important

role in these systems, as an adequate codification of

users and items is expected to ease the induction of

a model which synthesizes their tastes and make bet-

ter recommendations. However, in addition to gathering

information about users’ tastes, there is an additional

aspect that can be relevant for a proper codification

strategy, namely the order in which the user interacted

with the items. In this paper, several encoding strate-

gies based on neural networks are analyzed and applied

to solve two different recommendation tasks in the con-

text of music playlists. The results show that the or-

der in which the musical pieces were listened to is rele-

vant for the codification of items (songs). We also find

that the encoding of user profiles should use a differ-

ent amount of historical data depending on the learn-

ing task to be solved. In other words, we do not always

have to use all the available data; sometimes it is better

to discard old information, as tastes change over time.
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1 Introduction

Most of the digital resources we use today make rec-

ommendations to their users using Recommender Sys-

tems; see [21,22]. This happens, for example, when we

enter the site of a digital newspaper. The order in which

news is placed is already, in some way, a reading rec-

ommendation. The ordered lists of news that appear in

the margins (“most read news” or “most commented”)

also constitute a recommendation based, in this case,

on the interaction of other users with the digital pub-

lication. Another example of recommendation can be

found within the articles, in the form of links to other

news, constituting recommendations of the type “re-

lated news”.

Recommender Systems have found a very important
field of application in online stores, with the aim of in-

creasing customer satisfaction and thereby promoting

an increase in sales. In this case, products are recom-

mended with suggestions like “customers who saw this

product also saw . . . ” and “frequently bought together”.

Customers are offered rankings of products based on

the number of sales or buyer reviews. We can also find

recommendations on platforms for streaming multime-

dia content, for example, Netflix or Spotify, on websites

dedicated to organizing reviews of hotels and restau-

rants, such as TripAdvisor, Yelp, etc., as well as for

movies [11], news items in digital publications [7] and

web services [4], among others.

Some of the aforementioned examples are elemen-

tary, non-personalized recommendations, based simply

on the behavior (or taste) of the majority of customers:

if many people watch a movie which, in addition, has

very good ratings, then it is quite likely to be recom-

mended to users who have not yet watched it.
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There are other systems that make their recom-

mendations taking into account additional information

present in the context. One of the most basic systems,

already mentioned above, considers the item that a user

is viewing and recommends other items similar to it, or

products that were purchased together with it. These

systems take into account the product that is being

viewed to make a more focused recommendation.

Other recommenders store a profile for each user

related to their history of consumption. This profile is

intended to encode their tastes or preferences to some

extent [7]. Subsequently, these profiles can be used to

make personalized recommendations, which will hope-

fully achieve greater user satisfaction. The way in which

this profile is computed may be more or less elaborate.

One way to take the consumption profile into ac-

count is to represent each user by a vector which en-

codes the information related to their interaction with

the products involved. Throughout this article, we use

the word interaction to refer to any form of product

consumption: the purchasing of an item, listening to

a song, viewing a product in an online store, reading

a news item in a digital publication, and so on. This

vector encoding can be achieved by, for example, the

construction of embeddings using matrix factorization

[15]. Similarly, products can also be represented by vec-

tors that summarize the interaction in which they were

involved.

In this paper, which is based on a previous publica-

tion [19], we will explore the benefits to be obtained by

using two techniques based on neural networks, word2vec

[16] and doc2vec [14] (also known as Paragraph Vector),

for encoding users and products. These algorithms were
originally designed to encode words and documents in

processes that require representing texts for learning

tasks. The codification obtained for each word is based

on its context (surrounding words) in each document.

The consumption of certain types of products is also

related to the temporal context, for example, the repro-

duction of a sequence of songs (playlist), so we can use

these techniques, assuming that a song is more likely to

be played, depending on the songs played in the near

past (i.e. the temporal surroundings).

In order to show the importance of this sequential

order, in this paper we compare the codification ob-

tained by these techniques with another one obtained

by constructing an embedding from a one-hot encod-

ing, in which the order of consumption is not taken

into account in any way whatsoever.

A decision that must be adopted to codify the con-

sumption profiles of users is how far we will go back

in the temporal sequence to build and encode such a

profile. In this paper, we compare the results obtained

using a codification of the recent consumption history

with another one using a long-term consumption his-

tory. Notice that, in certain situations, it could be useful

to keep both the long-term and the short-term profiles,

especially when the sales of the products for which you

wish to make recommendations are seasonal in behav-

ior. For example, if we intend to make food recommen-

dations, we could take into account the fact that, in

some regions, certain dishes are usually consumed dur-

ing winter, while others are more frequently consumed

in the summer.

Recommender systems can be classified into two

major groups. On the one hand, we can build collab-

orative filters [11], in which only the information we

have about the interaction between users and products

is used, and this behavior can give us an idea of their

preferences. On the other hand, we have content based

recommender systems [17], which use additional infor-

mation on users, such as their location, gender, age,

etc., and on the products, for example, genre and re-

lease date, if they are movies.

In this paper, we only use collaborative filters, as

we wish to study the impact of the ordering of interac-

tions between users and products. Including informa-

tion based on content could distort the study, although

it is likely that this may well improve the results in

terms of precision in the recommendation, because we

would have more information at our disposal.

The paper is organized as follows. In the next sec-

tion, we present a brief review of previous papers related

to the elaboration of profiles. Section 3 is devoted to de-

tailing how profiles can be encoded using word2vec and

doc2vec, which will be used to encode and compare two

types of profiles for each user, one long-term (consol-

idated profile) and another short-term (recent profile).

Then, in Section 4, we pose two recommendation tasks

that will be used to test the performance of these pro-

files. In Section 5, we discuss the results obtained in

the two recommendation tasks mentioned above, com-

paring the scores obtained using the different codifi-

cation approaches. Finally, we present our conclusions

and point to a future line of research.

2 Related Work

There are several papers that address the codification

of users and items using matrix factorization.

In [24], the authors present an algorithm to project

artists and songs in a vectorial space using matrix fac-

torization. The learning tasks addressed in their study

are related to guessing the artist who performs a given

song, predicting the songs performed by a given artist,
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and predicting similar artists (respectively, songs) with

respect to a given one. These questions are, in fact, rec-

ommendation tasks and the projections of artists and

songs can be considered as profiles.

Something similar occurs in [5], a paper in which the

projections of users and songs are calculated in order

to generate playlists to the user’s liking.

The T-RECSYS system [8], a hybrid tune recom-

mender that analyzes the user’s history and the char-

acteristics of songs, has been presented recently. The

main difference with respect to our approach is that

it uses a fixed representation for users and songs. The

system describes songs by genre, artist type, artist era,

mood, tempo, and release year, and users are described

by the last nine songs they have heard. In contrast, our

system learns the representation (in the form of embed-

dings) during the training.

Matrix factorization has also been used to condense

people’s tastes regarding food products. In [15], the

authors obtained useful consumer profiles to ascertain

their preferences regarding the consumption of meat

with different maturation periods.

In [7], the authors present a news recommendation

system applicable in the context of digital newspapers.

Both the news and the readers were represented by one-

hot vectors, from which an embedding is computed in

order to obtain a better representation. In their paper,

the best results were obtained when the readers are

represented via the concatenation of the vectors repre-

senting the last two read news items, i.e. taking into

account the order of reading. The cited study led to a

slightly different approach, presented in [6], in which

the authors show that it is possible to improve the nov-

elty and diversity of recommendations with only a small

penalization in accuracy.

Regarding encoding using word2vec / doc2vec, our

study is not the first to use these approaches in a field

other than text processing. For instance, word2vec has

been successfully used in several algorithms for net-

work embedding tasks. The first one was DeepWalk

[18]. DeepWalk learns latent representations of the ver-

tices of a network which encode social relations in a

vector. Inspired by DeepWalk, LINE [23] and node2vec

[9] were developed to address the same problem. An

interesting theoretical study of the performance of all

these algorithms can be found in [20]. In our paper, we

also use word2vec, but we adapt it to the task of recom-

mendation. Moreover, we go one step further, applying

doc2vec to codify user profiles.

3 Building profiles from the interaction

between users and items

Let us assume a set of users, U , and a set of products,

P. In addition, we know the interactions each user has

had with the products and in what order these inter-

actions have occurred. Thus, for each user we have an

ordered list of products (items) with which the user has

interacted over time:

D = {(u, pu1 , pu2 , . . .) : u ∈ U , puj ∈ P}. (1)

Sets U and P contain only identifiers of users and

products, respectively. A common representation for

the elements of these sets is to use one-hot vectors.

A one-hot vector representing the i-th element of the

set has a 1 in its i-th component and the rest are all

equal to 0. Therefore, the dimension of these one-hot

vectors must be equal to the cardinality of the set of el-

ements they represent. The word2vec and doc2vec will

be in charge of computing the corresponding embed-

dings to project users and items (in one-hot codifica-

tion) in a different space. The approach used by these

algorithms, which we will briefly describe below, takes

into account the order in the sequence of consumed

products. Hence, we will compare the performance of

a recommender system using this codification with the

simpler one-hot representation, which does not consider

the order in the sequence at all.

3.1 Item encoding

Word2vec [16] is an algorithm designed to encode the

words of a corpus by means of vectors, in such a way

that they are arranged in space according to how they

are related in the texts of the corpus. Words with close

representations usually have a strong semantic relation-

ship. For example, the authors explain in [16] that we

can expect to obtain a vector close to the one repre-

senting the word “Paris” if we subtract the vector of

“Spain” from the one of “Madrid” and then we add the

vector of “France”.

Word2vec encoding is achieved by processing a given

text, defining a window which is moved along the en-

tire sequence of (ordered) words. Using this window of

words, the authors propose two possible approaches,

which yield the following learning tasks:

– Continuous Bag of Words (CBOW): the learning

task consists in predicting the central word of the

window from its context.

– Skip-gram: the words of the context are predicted

using the central word as input (Figure 1).
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Figure 1 Architecture of word2vec using skip-gram with a
window size of 1 (number of words before and after the input
word). The input is a word and the output is its context,
represented as the sum of the one-hot vectors corresponding
to the words in the surroundings of the input word

In both cases, the context is defined by a window

size which determines the number of words before and

after a given one, and it is represented as the sum of

their corresponding one-hot vectors. Figure 1 shows a

schema of word2vec using skip-gram, in which the word

p3 is used as input, and its context as the desired out-

put. In this illustration, the context are the words p2

and p4 or, more specifically, the sum of the vectors that

represent these words. There is a hidden layer between

the input and the output layers in which we will ob-

tain the representation for each word after the training

process.

In their paper, the authors claim that the skip-gram

strategy offers better results and therefore we will use

this strategy to codify the items in our recommender

system. Thus, to learn the codification of each item, we

will process the ordered lists of interactions with items

collected in (1) as if they were sequences of words in a

text. That is, for a given window size, we will learn to

predict the context of items with which there has been

interaction before and after the interaction with a given

item.

3.2 User encoding

Once we have codified the items, we can build a pro-

file for each user taking into account each one’s specific

interaction sequence. To do so, we propose to use the

doc2vec algorithm [14], which has been designed to en-

code documents or paragraphs from words previously

encoded by word2vec. In their paper, the authors claim

that the codification of documents obtained by this al-

gorithm improves the performance in information re-

trieval tasks with respect to the popular bag of words.

To obtain the codification of documents, the authors

also suggest two possible frameworks:

– A Distributed Memory version of Paragraph Vector

(PV-DM): the codification of documents is given

by an embedding computed as follows. The input

is the concatenation of the vector representing the

document with a sequence (sliding window) of words

(previously encoded using word2vec) in said docu-

ment; the desired output is the word following the

sequence of input words. The embedding used to

encode the words remains fixed during the learn-

ing process, modifying only the embedding of doc-

uments to minimize the prediction error.

– A Distributed Bag of Words version of Paragraph

Vector (PV-DBOW): a document is taken and a few

words are chosen randomly from its content. Start-

ing from the vector that represents the document,

its embedding is learned in order to predict the pres-

ence of the previously chosen words, regardless of

their order.

In both cases, the final goal is to modify the embed-

ding of documents during the training stage in order

to obtain a codification that minimizes the prediction

error. In [14], the authors show the good performance

of their proposals and recommend using the concatena-

tion of both, PV-DM and PV-DBOW. Note that PV-

DM takes into account the order of the words, while

PV-DBOW does not.

In our study we will consider the list of items with

which a user has interacted, (1), as the equivalent of a

document; there will hence be one document for each

user. We can then use doc2vec to encode each user.

In other words, we will identify a user’s profile by the

sequence of products with which they interacted.

3.3 Long-term and short-term profiles

In order to make some kinds of recommendations, in-

formation regarding consumption a long time ago may

be useless, or even detrimental to the prediction. Con-

sider, for example, the evolution of a person’s musical

tastes over the years. It is not unusual to find people

who enjoy musical genres which they did not use to lis-

ten to when they were younger. The very same applies

to tastes related to food consumption.

For this reason, we will codify two different user

profiles: a long-term and a short-term profile. The long-

term profile is expected to collect the tastes of a user

over a long period of time, while the short-term profile

is devised to gather the tastes expressed more recently

by the user.

Essentially, the procedure to obtain these profiles

will be the same for both, the difference residing in

the data used to train the doc2vec algorithm. Thus,

in order to obtain a long-term profile, we will use all

available information about a user’s interactions with

the products, regardless of the moment each interaction
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occurred. On the other hand, the short-term profile will

be obtained using only the most recent interactions. In

general, the threshold to determine which interactions

are considered recent will depend on the type of items

we are dealing with.

4 Recommendation tasks

With the aim of testing the relevance of the order in the

interaction with items, we will pose two recommenda-

tion tasks that will be approached using different cod-

ing strategies for the items and for the users. Some of

these strategies take into account the order (word2vec

and the codification of user profiles with doc2vec) and

they will be compared with the embeddings obtained

during the learning task from one-hot vectors, which is

a codification that does not consider the order in the in-

teractions. The results obtained in these two tasks with

these variations in the codification of users and items

are discussed in Section 5.

4.1 Task 1: Will the user interact with a specific

product?

To solve this task, we have a training set whose exam-

ples are triplets that contain a user, a product and a

label to indicate whether that user has interacted or

not with said product. In the rest of the paper, we will

use u and p to denote the vectors which encode a user

and an item, respectively. Thus,

D1 = {(u,p, z) : u ∈ U ,p ∈ P, z ∈ {+1,−1}}. (2)

We will solve this learning task by estimating the

following probability:

Pr(z|u,p,W ,V ) = σ(z · g(u,p,W ,V )),

where σ(x) =
1

1 + e−x
,

(3)

where W and V are parameters that must be found

using the Maximum a Posteriori Probability (MAP) es-

timate, and g is a compatibility function between users

and products, defined as the following scalar product:

g(u,p,W ,V ) = 〈Wu,V p〉. (4)

To enhance the expressiveness of the learned model, we

will add a bias.

The loss function to be minimized, in this case, is

− log
∏

(u,p,z)

Pr(z|u,p,W ,V ))=log
(
1+e−z〈Wu,V p〉

)
, (5)

also known as softplus.

4.2 Task 2: What will be the next product?

The second task to solve is to try to anticipate the user’s

immediate next interaction. In this case, the training

set will consist of triplets containing the user, u, and

two products with which the user has interacted con-

secutively, first with pi and then with pj ,

D2 = {(u,pi,pj) : u ∈ U ,pi,pj ∈ P}. (6)

To solve this task, we will learn the following func-

tion:

Pr(y = j|u,pi, θ) =
evj∑
k e

vk
= softmax(v)j (7)

where j is the identifier of product pj , k is the identifier

of any product, θ is the set of parameters (weights of a

neural network, for example) that must be learned, and

v is the output value of the network whose input is the

concatenation of the vectors representing the user and

the product.

The usual loss function to be minimized in learning

tasks of this kind is cross entropy. However, when the

number of classes is high, which is common in recom-

mendation tasks, the calculation of softmax(v) is very

expensive. Therefore, it is common to resort to esti-

mation strategies, such as noise-contrastive estimation

(NCE) [10], which we have used in this paper.

5 Experimental results

In this section, we describe and analyze the experimen-

tal results we have obtained using different codification

schemas for users and items. More specifically, we ana-

lyze the performance of 7 codifications to represent the

user profiles and 2 for the items.

5.1 Dataset description

For the experimentation, we used a publicly available

dataset downloaded from the www.last.fm website, which

has been previously published in Chapter 3 of the book

[3] 1. The set contains a log of music reproductions of

992 users over approximately 5 years. The log contains

more than 19 million reproductions on a set of one and

a half million songs. It also includes the exact date and

time of each reproduction, so it is straightforward to

extract an ordered list for each user, as defined in (1).

1 http://www.dtic.upf.edu/∼ocelma/
MusicRecommendationDataset/lastfm-1K.html
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Figure 2 Method used for splitting each user’s playlist into
training, validation and test sets

5.2 Experimental setting

We filtered the data, identifying songs logged with dif-

ferent names, removing those that were heard less than

10 times, and users who listened to less than 100 songs.

This filtering reduced the original dataset down to 958

users and 312,895 songs.

We proceeded as follows to build the corresponding

training, validation and test sets:

– Each playlist associated with a user was split into

two parts, one part was used to obtain the codifica-

tion of the user profile (75%) while the other to train

the recommender system in the tasks described in

4.1 and 4.2 (25%), see Figure 2. It is important to

separate the data used for testing the performance

of the profiles from the data used to build them.

Otherwise, the results in the learning tasks could

be biased, as we will be testing with data already

seen in the construction of the profiles, and the re-

sults would be optimistic.

– Each of these two parts was in turn split into train-

ing/validation/test sets, using the training and val-

idation parts to search for hyper-parameters with

better performance in the corresponding optimiza-

tion tasks (the encoding of users/songs, and the
learning tasks).

The results shown in Tables 1 and 2 were obtained

with the models trained with the most promising hyper-

parameters, evaluating their performance on the test

sets.

All the algorithms used in this article were imple-

mented in Python using the TensorFlow [1] library, and

the SGD-Adam [13] optimizer with early stopping [2].

5.3 Encoding songs and users

As explained in Section 3.1, we used word2vec to encode

the songs. We used a window size of 2 to obtain vec-

tors in a 64-dimensional space; i.e. each one-hot vector

representing a song in a space with 312895 dimensions

(the cardinality of the set of songs) is encoded in a new

vector with 64 dimensions. These values for the window

size and the encoding dimensionality showed the best

results on the validation set.

Figure 3 Network designed for learning task 1 (Section 5.4).
The vectors that encode the user profile (dark gray) and
the song (light gray) can be precalculated by doc2vec and
word2vec, respectively, or they can be learned ad-hoc to solve
the task, starting from the one-hot representation and opti-
mizing the parameters M and Q

Once the songs were encoded, we obtained the long-

term and short-term user profiles by means of the two

doc2vec frameworks, PV-DM and PV-DBOW. This yielded

3 different encodings for the long-term profile of each

user: using PV-DM (Ldm), using PV-DBOW (Ldbow),

and using both codifications concatenated (L), as sug-

gested by the authors of the doc2vec algorithm. The

same encodings were obtained for the short-term pro-

files, i.e. Sdm, Sdbow and S.

We used a 64-dimensional space for both frame-

works, so the encoding of L and S projects users into

a space with 128 dimensions. We used a window size

of 2 songs when using PV-DM. For the PV-DBOW en-

codings, we used the whole list of songs listened to by

each user (the original approach uses a sample of words

belonging to a document, but in our case, the list of

songs is short enough to be used without sampling).

Long-term profiles were obtained using all the avail-

able data, i.e. the whole list of songs for each user in

the training data set, while short-term profiles were en-

coded with the songs included in the training set during

the last month logged for each user.

Finally, we also obtained an encoding in which the

vectors of the users and products, in one-hot format,

are projected in a space of 64 dimensions for songs

and 128 dimensions for users. We used the same space

dimensionalities as those of the profiles obtained with

word2vec and doc2vec to guarantee that the spaces have

the same encoding capacity in order to ensure a fair

comparison. The projection is made via an embedding

resulting from the learning process of each recommen-

dation task, i.e. the computation of two matrices, M

and Q (see Figures 3 and 4).

5.4 Results in Task 1

For the task of learning a model to predict whether a

user will listen to a song in the future, we solve the

optimization problem posed in Section 4.1. The set D1,

defined in (2), is constructed using 25% of the data (see

Figure 2) as follows:



Title Suppressed Due to Excessive Length 7

Figure 4 Network designed for learning task 2 (Section 5.5).
The different encodings for users and songs are the same as
for task 1

Table 1 Scores achieved with different encoding strategies
in learning task 1. L denotes the codification of users by
concatenating the PV-DM and PV-DBOW encodings; i.e.
L = Ldm ⊕ Ldbow (respectively, S = Sdm ⊕ Sdbow)

Encoding
User Song Precision Recall F1

one-hot one-hot 77.5 73.8 75.6
one-hot word2vec 83.1 80.2 81.6

L one-hot 81.5 76.1 78.7
L word2vec 80.5 79.1 79.8

Ldm word2vec 77.9 76.7 77.3
Ldbow word2vec 79.9 78.5 79.2

S one-hot 79.4 73.3 76.3
S word2vec 77.5 74.5 76.0

Sdm word2vec 70.4 68.1 69.2
Sdbow word2vec 75.4 73.7 74.6

– We include a positive example (labeled with +1) for

each user-song pair, provided the song was listened

to by the user.

– We create a negative example (labeled with −1) for

each positive example, replacing the song with an-

other, randomly sampled from the data, and not
listened to by the user.

Table 1 shows the results, measured in terms of Pre-

cision, Recall, and their harmonic mean, F1. Note that

the best scores in all measures (in bold typeface) are

achieved when songs are encoded with word2vec and

users are encoded with an ad-hoc embedding.

The encoding of user profiles depending on the his-

tory of their interactions with songs is not especially

helpful in solving this task. Neither the long- nor the

short-term variations achieved the scores obtained by

the ad-hoc encoding. However, all the long-term profile

variations (L, Ldm, Ldbow) perform better than their

short-term counterparts (S, Sdm, Sdbow). This indicates

that predicting whether a song will be listened to in the

future is related more to the user’s tastes from a global

point of view, than to the tastes implicitly expressed in

the songs heard recently (in the last month).

In addition, it was found that taking into account

the order for the encoding of user profiles is not rel-

evant for this task, as both Ldbow and Sdbow perform

better than their corresponding PV-DM versions, Ldm

and Sdm (recall that the PV-DBOW framework does

not consider any order, while PV-DM does).

5.5 Results in Task 2

To solve the optimization problem in Section 4.2 (pre-

dict the next song to play), we will use a network with

the structure shown in Figure 4. This network will be

trained with the set D2, defined in (6), in which the con-

secutive pairs of reproduced songs are taken from the

part of the data reserved for learning tasks (25%), while

the rest is used to obtain the encodings with word2vec

and doc2vec, as we did in task 1.

To evaluate the performance of the different com-

binations of profiles, the precision at x (P@x) measure

was used, where x ∈ {5, 10, 20, 50, 100, 1000}. This mea-

sure indicate the percentage of times that the song that

we want to predict is among the x songs with the high-

est probability predicted by our learned model.

The results in Table 2 once again show that the use

of a precomputed encoding for songs (using word2vec)

improves performance considerably. For user profiles,

the best results are obtained with the embedding result-

ing from the one-hot input representation, calculated

ad-hoc during the learning of the task. If we compare

short-term vs. long-term profiles, we can see that the

short-term profile performs better. This makes sense,

given the nature of the task: predicting the next song

to be listened to is related more to recently heard songs

than to songs heard months ago.

It should be noted that the values of P@5 (below

25% in all cases) are due to the fact that the recommen-

dation task is very difficult: with only 5 recommenda-

tions, the system is asked to guess the next song among

312,895 possible alternatives. A random guess would

yield a score of P@5 = 1.6−3, much lower than the

worst of our results.

The last column in Table 2 shows the median of

the position of the correct song that we have to predict

(pj in Equation 6), considering the ranking of all songs

ordered by the probability given by our corresponding

models. The lower this value, the better the predictions.

Ideally, we would like to predict the correct song with

the highest probability, so that it would be in position

1. The best median result obtained is 366, quite good

considering that the full ranking exceeds three hundred

thousand songs.

If we compare the user profiles encoded with the

approaches that take into account the order (Ldm and

Sdm) versus those that do not (Ldbow and Sdbow), it can
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Table 2 Scores achieved using different encoding strategies in learning task 2. P@x is the percentage of times the right song
is among the x most probable songs predicted. Median indicates the median position for the true song when ranking all songs
(312895) by their predicted probability (the lower the better)

Representation Precision
User Song P@5 P@10 P@20 P@50 P@100 P@1000 Median

one-hot one-hot 10.7 13.1 16.1 21.4 26.7 53.1 787
one-hot word2vec 24.0 28.3 32.5 37.5 41.4 58.3 366

L one-hot 1.1 2.2 3.9 7.9 12.8 44.8 1371
L word2vec 11.8 15.8 20.3 26.9 32.5 56.8 575

Ldm word2vec 13.5 17.6 22.1 28.4 33.9 57.7 522
Ldbow word2vec 13.8 18.0 22.3 28.4 33.7 56.7 566

S one-hot 5.1 7.1 10.0 15.4 21.2 50.0 1001
S word2vec 12.9 17.2 21.8 28.3 33.5 56.5 561

Sdm word2vec 17.3 21.6 26.0 31.9 37.0 58.5 447
Sdbow word2vec 11.9 16.1 20.9 27.6 33.1 56.3 577

be seen that the order in the creation of the user profile

seems to be relevant: Sdm clearly outperforms Sdbow in

all the measures, and Ldm yields a similar precision, but

with a better median. This makes sense, as this learning

task (predicting the next song) clearly depends on the

sequence of songs previously heard. Moreover, short-

term profiles outperform their corresponding long-term

versions in all the measures, indicating that recently

heard songs are more informative when predicting the

next one. The exception is for the PV-DBOW-based

profiles, which perform slightly better using long-term

profiles. This phenomenon is also reasonable and may

be interpreted as: “if order is not going to be considered,

then it is better to know as much as possible from the

user’s tastes”.

5.6 Discussion

The scores show that the performance of our approach

is improved when songs are encoded using word2vec.

This is an expected result, considering that word2vec

yields an encoding based on sequences, i.e. taking into

account (to some extent) the order in which songs are

heard.

We usually listen to lists of songs that have some re-

lation between them: they are either of the same genre,

or by the same artist, or they are included in the same

playlist (which, by the way, is usually made up of songs

with a similar style). Thus, a sequence of songs heard

by a user can be seen as a sequence of words in a sen-

tence in the sense that a given word appears in a text

depending on the surrounding words in order to form a

sentence with a given semantic meaning.

Word2vec gathers a kind of latent meaning of the

songs, which helps in describing (encoding) them. In

turn, this latent information helps in the prediction

tasks.

On the other hand, doc2vec did not perform very

well. It was not able to beat the scores obtained with the

one-hot encoding of users. We think that this is because

there was not enough data to model each user using

these techniques. Doc2vec needs a very high number of

examples in order to properly learn good user profiles.

6 Conclusions

Recommender Systems have taken on an important role

in our highly digitized society. Their success resides

mainly in the personalization that is being achieved

in their recommendations. This is why the creation of

product and user profiles is of paramount importance.

In this paper, we have evaluated the performance of

profiles encoded with the word2vec and doc2vec algo-

rithms, as well as with the embeddings obtained ad-hoc

for solving a specific learning task. The comparison was

made in the context of two different learning tasks: to

predict whether a song will be listen to in the future,

and to predict the next song to be heard.

The results show that the performance of a recom-

mender system is substantially improved when songs

are encoded using word2vec. However, the profile ob-

tained for users using doc2vec does not improve the

performance obtained with the ad-hoc embeddings ob-

tained from one-hot vectors. Note also that short-term

profiles perform better than long-term profiles when

the nature of the learning task is related to short-term

tastes (predicting the very next song). Conversely, long-

term profiles perform better in a learning task where the

outcome does not critically depend on recent interac-

tions.

Furthermore, we may also conclude that it is impor-

tant to take into account the order in the sequence of

interactions with items for user profile encoding. This

conclusion is supported by the fact that order-based
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encodings (Ldm and Sdm, both based on PV-DM) ob-

tained better results than other user profile encodings

(except for the ad-hoc embeddings, although this result

can be explained by the fact that ad-hoc embeddings

are especially learned to solve the corresponding task).

Our results suggest that it is worthwhile to continue

exploring the possibilities of these profiles. Moreover,

we belive LSTM [12] networks can constitute a promis-

ing alternative to doc2vec encoding due to their ability

to deal with sequences.
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