
On Computing the Union of MUSes ?

Carlos Mencı́a1, Oliver Kullmann2, Alexey Ignatiev3,4, and Joao Marques-Silva3

1 University of Oviedo, Gijón, Spain menciacarlos@uniovi.es
2 Swansea University, Swansea, UK o.kullmann@swansea.ac.uk

3 Faculty of Science, University of Lisbon, Portugal
{aignatiev,jpms}@ciencias.ulisboa.pt

4 ISDCT SB RAS, Irkutsk, Russia

Abstract. This paper considers unsatisfiable CNF formulas and addresses the
problem of computing the union of the clauses included in some minimally un-
satisfiable subformula (MUS). The union of MUSes represents a useful notion
in infeasibility analysis since it summarizes all the causes for the unsatisfiability
of a given formula. The paper proposes a novel algorithm for this problem, de-
veloping a refined recursive enumeration of MUSes based on powerful pruning
techniques. Experimental results indicate the practical suitability of the approach.

1 Introduction

A growing number of practical applications of Boolean Satisfiability (SAT) solvers
is related to the analysis of overconstrained formulas, with different instantiations of
model-based diagnosis (MBD) representing one of the most visible classes of appli-
cations. Examples of diagnosis problems include software fault localization [11,12],
spreadsheet debugging [8,9], design debugging [28,31], type error debugging [32], and
axiom pinpointing [29], among others. In most settings, the core reasoning services
used in the analysis of overconstrained formulas include extraction and enumeration
of minimally unsatisfiable subformulas (MUSes), and also minimal correction subsets
(MCSes). Tightly related with these core services, there is also interest in smallest (or
minimum cost) MCSes (i.e. the maximum satisfiability (MaxSAT) problem) and, in
some settings, the smallest MUS problem (SMUS). It is well-known that the SMUS
problem is hard for the second level of the polynomial hierarchy (ΣP

2). Similarly, MCS
and MUS membership problems are hard for ΣP

2 , and the specification of preferences
of clauses to include in MUSes and MCSes are also hard for ΣP

2 [18].
Practical evidence suggests that complete enumeration of MUSes and MCSes is

often beyond the reach of existing technologies, and a practical solution is the partial
enumeration of either MUSes or MCSes [1,6,19,24,25,26]. A possible drawback of
these approaches is that there is no guarantee that the actual sources of inconsistency
in the given context are reported. An alternative solution is to compute the union of all
? This research is supported by the Spanish Government under project TIN2016-79190-R

and by the Principality of Asturias under grant IDI/2018/000176. This work is also
supported by FCT grants ABSOLV (PTDC/CCI-COM/28986/2017), FaultLocker
(PTDC/CCI-COM/29300/2017), SAFETY (SFRH/BPD/120315/2016), and SAMPLE
(CEECIND/04549/2017), and by EPSRC grant EP/S015523/1.

mailto:menciacarlos@uniovi.es
mailto:o.kullmann@swansea.ac.uk
mailto:aignatiev@ciencias.ulisboa.pt
mailto:jpms@ciencias.ulisboa.pt

2 Mencı́a et al.

sources of inconsistency, i.e. the union of all MUSes (UMU). Information about UMU can
restrict the number of clauses (or components in MBD) to analyze, with the guarantee
that the source of inconsistency is present in the reported set.

Since MCS or MUS membership queries can be answered with a ΣP
2 oracle [10],

the union of MUSes or MCSes can be obtained with a linear (but still large) number
of calls to that oracle. However, it is often unrealistic in practice to call a ΣP

2 oracle
say tens of thousands of times or more. Yet another approach consists in computing
the intersection of all maximal satisfiable subsets (MSSes) and, from this compute the
union of MUSes [14]. However, as hinted above, it is often unrealistic to enumerate
all MCSes (and so MSSes). In contrast, this paper describes a novel algorithm for the
direct computation of the union of MUSes. The experimental results provide evidence
that the proposed algorithm offers a viable alternative to existing approaches.

2 Preliminaries

We consider propositional formulas in conjunctive normal form (CNF), defined as a
conjunction, or set, of clauses F = {c1, c2, ..., cm} over a set of variables V (F) =
{x1, x2, ..., xn}, where a clause is a disjunction of literals, and a literal is a variable x
or its negation ¬x.

A truth assignment, or interpretation, is a mapping µ : V (F)→ {0, 1}. If µ satisfies
a formula F , µ is referred to as a model of F . Given two formulas F and G, F entails G
(writtenF �G) iff all the models ofF are models of G. A formulaF is satisfiable (writ-
ten F 2⊥) iff there exists a model for it, and unsatisfiable (written F �⊥) otherwise.
SAT is the NP-complete problem [4] of deciding the satisfiability of a formula.

The following definitions characterize two dual notions in the analysis of unsatisfi-
able CNF formulas:

Definition 1 (MUS). M ⊆ F is a minimally unsatisfiable subformula (MUS) if and
only ifM�⊥ and for allM′ (M,M′ 2⊥.

Definition 2 (MCS). C ⊆ F is a minimal correction subset (MCS) if and only if (F \
C)2⊥ and for all C′ (C, (F \ C′)�⊥.

MUSes represent minimal explanations of unsatisfiability, while MCSes represent
irreducible subsets of clauses whose removal renders F satisfiable. Every MUS (resp.
MCS) is a minimal hitting set of the set of all MCSes (resp. MUSes) [3,27]. There can
be a worst-case exponential number of MUSes and MCSes [20].

Among the clauses in the MUSes of F , a special case is that of necessary clauses.
A clause c is necessary for (the unsatisfiability of) F iff (F \ {c})2⊥. Necessary
clauses belong to all the MUSes of a formula. In a broader sense, a clause is said to be
potentially necessary [15] (pn-clause in short) iff it belongs to some MUS of F , since
it can become necessary after the removal of other clauses. The problem of deciding
whether a given clause is potentially necessary is known to be ΣP

2-complete (as the
proof of Theorem 4 in [18] shows).

This paper addresses the computation of the set of all pn-clauses of an unsatisfiable
formulaF , i.e., the union of its MUSes, denoted UMU(F). By the aforementioned hitting
set duality relationship, the union of all MCSes of F is the same as UMU(F).

On Computing the Union of MUSes 3

Input: F0 an unsatisfiable CNF formula
Output: CUMU, the union of MUSes of F0

1 F0 ← LeanKernel(F0)
2 M← ComputeMUS(F0, ∅)
3 CUMU←M
4 nec← ComputeNecessaryClauses(F0,M)
5 if nec 6=M then
6 F0 ← F0 \ {c ∈ (F0 \ nec); nec�{c}}
7 UMU rec(F0, nec, nec)

8 end
9 return CUMU

Algorithm 1: Main procedure

A useful notion for efficiently over-approximating UMU(F) is the lean kernel of F ,
defined as the set of clauses used in some resolution refutation of F , or, equivalently,
those clauses which are not touched by any autarky (see [13] for the background, and
see [16] for a recent paper on computing the lean kernel). A set of variables A ⊆ V (F)
is an autarky (or an autarky varset) iff there exists a truth assignment to the variables
in A that satisfies all the clauses in F containing literals in the variables of A. There
exists a unique largest autarky (varset), since the union of autarky (varsets) is again an
autarky (varset). The lean kernel of F is obtained by removing the clauses containing
some literal in the variables of the largest autarky of F . In [15], the clauses in the lean
kernel of F are referred to as useful clauses. Although some of these might not belong
to UMU(F), they can participate in short extended-resolution refutations of F .

Example 1. ConsiderFex = {c1: (x1), c2: (¬x1), c3: (¬x2), c4: (¬x1∨x2), c5: (¬x2∨
x1), c6: (¬x3 ∨ x4), c7: (¬x4 ∨ x3)}. The largest autarky is A = {x3, x4}, so the lean
kernel of Fex is the clause-set {c1, ..., c5}. Fex has the two MUSes M1 = {c1, c2},
M2 = {c1, c3, c4}; and the three MCSes C1 = {c1}, C2 = {c2, c3}, C3 = {c2, c4}. The
union of MUSes is UMU(Fex) = {c1, c2, c3, c4}.

3 Computing the Union of MUSes

Consider an unsatisfiable formula F0. The main procedure for computing UMU(F0) is
shown in Algorithm 1. The core of our algorithm is recursive, with the initial recursive
call in Line 7, and the recursive function UMU rec given in Algorithm 2. Our approach
develops a recursive enumeration of MUSes, keeping track of all the clauses found to be
in UMU(F0) along the search in the global under-approximation CUMU ⊆ UMU(F0). Vari-
able CUMU is always a subset of UMU(F0), and equality holds upon termination (which is
guaranteed). Each node of the recursion tree is characterized by a subformula F ⊆ F0,
from which an MUS M ⊆ F is extracted. The MUS M is then used for splitting,
removing one clause ci ∈M from F in each new branch. So, along any path of the re-
cursion tree, the current F is shrinking, by removing clauses, while CUMU ⊆ UMU(F0) is
growing, over the whole search. So at any point we can abort the computation (say, due
to a time limit), and can use the current CUMU as an under-approximation of UMU(F0).

4 Mencı́a et al.

Global: CUMU, under-approximation of the union of MUSes
F0, initial formula (for early termination checks)

Input: F , nec, forced, clause sets
Output: Boolean value, indicating if CUMU = F0

1 F ← LeanKernel(F)
2 if (F ⊆ CUMU) or (forced 6⊆ F) then return false
3 M← ComputeMUS(F , nec)
4 CUMU← CUMU ∪M
5 if CUMU = F0 then return true
6 if (M = F) or (F ⊆ CUMU) then return false
7 for c ∈ (M\ forced) do
8 if SAT(F \ {c}) then
9 nec← (nec ∪ {c})

10 else
11 if UMU rec(F \ {c}, nec, forced) then return true
12 if F ⊆ CUMU then return false

13 end
14 forced← (forced ∪ {c})
15 if not SAT(forced) then return false

16 end
17 return false

Algorithm 2: Recursive function UMU rec

Some preprocessing steps are taken in Algorithm 1. In Line 1 the input formula F0

is reduced to its lean kernel, potentially removing a number of clauses not in UMU(F0).
Then in Line 2 an MUS M ⊆ F0 is extracted, which serves to initialize CUMU, and
to compute the set nec of all necessary clauses of F0 in Line 4 (note nec ⊆ M).
If nec = M then the algorithm terminates, since F0 only contains one MUS (due
to different MUSes being incomparable regarding set-inclusion). Otherwise, clauses in
F0 \ nec entailed by nec are removed in Line 6 (no MUS of F0 contains such a clause,
since it must contain nec as well), and the recursive procedure is invoked (parameters
are passed by value). Note that CUMU can be initialized with better under-approximations
of UMU(F0) than a single MUS (e.g. the union of some MCSes or MUSes known).

Now we come to UMU rec (Algorithm 2). First we need to explain the structure of
the splitting (the loop from Line 7 to Line 16). We split on any MUSM⊆ F , computed
in Line 3, where nec is now (only) some set of necessary clauses ofF , possibly missing
some (only at the root we spend the effort to compute all). We add the clauses inM to
CUMU (Line 4), and return (i.e., abort this branch of the recursion tree) if CUMU is all of
the original F0 (Line 5; here indeed everything is finished), or when F cannot possibly
contain any new clauses for CUMU (Line 6). LetM = {c1, . . . , ck}; the basic splitting
idea is that branch i excludes clause ci for any MUS considered in that branch — no
MUS yielding some new clause, other than what we got fromM, can contain all ofM.
Now we make the branches possibly disjoint (“morally” one might say), by possibly
including in branch i the clauses c1, . . . , ci−1. We note that the search is complete:
Consider another MUSM′ of F which contributes a new clause to CUMU. So there is
some i with ci /∈M′, and for the smallest such i we have c1, . . . , ci−1 ∈M′.

On Computing the Union of MUSes 5

The exclusion is lazily noted by adding the excluded clause to clause-set forced.
We say “possibly exclude”, which means the following: The branch can be aborted, if
it is determined (by some incomplete, but correct argument — we prune “as good as
we can”) that every MUSM⊆ F with forced ⊂M fulfilsM⊆ CUMU. On the other
side, we can include into CUMU in Line 4 whatever we want (as long as it belongs to
UMU(F0)), the algorithm will always be correct.

The clause-set forced is the third argument of function UMU rec, set in the original
invocation to nec (Algorithm 1, Line 7), and updated in Line 14 of Algorithm 2. The
second argument is the current value of nec, which is updated in Line 9: if F without
c is satisfiable, then c is a necessary clause for F , and considering the branch without c
(Line 11 and Line 12) is useless.

It remains to discuss the remaining simplifications and shortcuts. In Line 1, F is
reduced to its lean kernel (recall that no clause satisfied by some autarky can be element
of any MUS). If F cannot contribute new clauses, or falls outside of forced, then we
return (Line 2). The return value true of UMU rec means that we are done completely,
since all of F0 (the lean kernel of the original formula minus clauses entailed by the
necessary clauses) has been covered by CUMU.

We always maintain the invariants nec ⊆ forced, and that forced is satisfiable
(while irredundancy holds initially, but may be lost along a path — experimentation
showed the irredundancy test to be rather expensive). We conclude by summarizing the
argumentation of the section:

Theorem 1. Algorithm 1 correctly computes UMU(F0) and terminates for all inputsF0.

3.1 Additional Procedures

Each node in the search tree defined by Algorithm 2 involves a number of computations
requiring SAT oracles, besides the tests in Line 8 and Line 15.

The procedure ComputeMUS(F , nec) computes an MUSM ⊆ F , where nec is a
subset of the necessary clauses of F . It follows a deletion-based approach with clause-
set refinement [2]. In short, the procedure maintains two sets of clauses:M, initialized
with the clauses in nec, and R, a reference set of clauses initially set to F \ nec. As
an invariant, (M∪R)�⊥. Iteratively, it tests the satisfiability of (M∪R \ {c}), for
some c ∈ R. If satisfiable, c is moved toM. Otherwise, R is updated to C \M, with
C an unsatisfiable core produced by the SAT solver. The procedure terminates when R
becomes empty, returning the MUSM, requiring |F|−|nec| satisfiability tests at most.

Given an MUSM⊆ F , the procedure ComputeNecessaryClauses(F ,M) iden-
tifies all the necessary clauses of F . For each clause c ∈ M it tests the satisfiability of
F \ {c}. The clause c is necessary iff the latter formula is satisfiable. This procedure
is only used in Algorithm 1 before the invocation to the recursive procedure, where
(some) necessary clauses along a path are identified by a call to the SAT solver in the
splitting step (Line 8 in Algorithm 2).

On the other hand, the procedure LeanKernel(F) computes the lean kernel of F
by first computing its largest autarky following the approach in [21]. Since this step
is performed at every node (on different subsets of F0) we use a dedicated instantia-
tion of a SAT solver for this task, which operates on an extension of the encoding Γ3

6 Mencı́a et al.

proposed in [21] for representing largest autarkies. The encoding is extended with a
selector variable si for each clause ci ∈ F , so that subformulas of F can be activated
via assumptions, enabling reusing the encoding across the computation of the lean ker-
nel of different subformulas. Initially, a formula referred to as Faut is built from F0.
Each variable xi ∈ V (F0) results in two variables x0i , x

1
i ∈ V (Faut). Then, for each

clause ci ∈ F0 the following clauses are added, where P (ci) (resp. N(ci)) denotes
the positive (resp. negative) literals in ci: (i) each xj ∈ P (ci) results in the clause
si→(x0j→

∨
xk∈P (ci)\{xj} x

1
k ∨

∨
xk∈N(ci)

x0k); (ii) each xj ∈ N(ci) results in the
clause si→(x1j→

∨
xk∈P (ci)

x1k∨
∨

xk∈N(ci)\{xj} x
0
k). Finally, AtMost1 constraints of

the form (¬x0i ∨ ¬x1i) for all xi ∈ V (F0) are added to Faut. The resulting encoding
has 2n +m variables and L + n clauses, where n is the number of variables, m is the
number of clauses and L is the number of literals in F .

Then, the computation of the largest autarky of any given F ⊆ F0 amounts to
computing a model of the formula Faut ∧

∧
{ci∈F} si that maximizes the number of

variables x0i and x1i set to true. This model is unique, so it corresponds to a maximal
model (w.r.t. variables x0i and x1i), that can be computed by reducing the problem to the
extraction of an MCS of a formula considering the clauses inFaut∧

∧
{ci∈F} si as hard

and a soft unit clause for each variable x0i and x1i . For this purpose, we use the Clause
D algorithm, as proposed in [21]. The set of variables appearing in the complement of
the computed MCS corresponds to the largest autarky of F . The lean kernel of F is
obtained by removing all the clauses containing a variable in the computed autarky.

4 Experimental Results

This section presents an experimental assessment of the proposed approach to comput-
ing the union of MUSes, UMU(F), of an unsatisfiable formula F . The experiments were
performed on a Linux machine (Intel Xeon 2.26GHz, 128GByte). The time limit for
each process was set to 900s and the memory limit to 4GByte.

A prototype implementing the proposed algorithm was written in C++ on top of the
known caching MCS enumerator mcscache proposed in [25]. In the following, the pro-
totype is referred to as umuser. Among the existing alternative state-of-the-art MCS and
MUS enumerators [6,24,25,26], we opted to compare the prototype against mcscache
as they share the same code base and the interface to a SAT solver. The underlying SAT
solver used in both tools is MiniSat 2.2 [5]. Additionally and following the ideas of
Section 3, we considered a combination of both tools connected in the following setup:
(i) first, mcscache was used to enumerate MCSes within 3 minutes and (ii) second,
umuser was bootstrapped with the clauses in these MCSes as an initial approximation
of UMU(F). This approach is referred to as umuser?.

The considered benchmark suite includes two sets of instances. The first one is
derived from the MUS track of the SAT competition 20115. These benchmarks were
widely used in prior work on MUS and MCS computation and enumeration [2,19,22,23].
Since computing all clauses participating in an MUS/MCS is computationally hard, for
our evaluation purposes, we took only instances with at most 20000 clauses from this

5 https://satcompetition.org/2011/

https://satcompetition.org/2011/

On Computing the Union of MUSes 7

101 102 103 104 105

mcscache

101

102

103

104

105

um
us

er

(a) umuser vs. mcscache

101 102 103 104 105

mcscache

101

102

103

104

105

um
us

er
?

(b) umuser? vs. mcscache

Fig. 1: The number of clauses in UMU(F) computed within 900 seconds.

benchmark set. The second set of instances comprises the benchmarks previously stud-
ied in a number of settings, including MCS [22] and SMUS (smallest MUS) [7] com-
putation. These include automotive product configuration benchmarks [30] and circuit
diagnosis. The total number of benchmark instances considered in both sets is 427.

First of all, it should be noted that mcscache terminates for 98 instances while the
default setup of umuser can finish only for 41 of them by the time limit. This does not
come as a surprise provided that the recursive procedure of umuser is computationally
more expensive than simple MCS enumeration. In general, when targeting instances
with few MCSes, an MCS enumerator may be the best approach to use, while umuser
should be reasonable to apply when exhaustive enumeration of MCSes or MUSes is
infeasible. Also note that the combined variant umuser? terminates for 94 benchmark
instances, several of them solved during the MCS enumeration phase. Similar results
were observed with a longer time limit of 30 min, with only 7 more instances solved.

To illustrate the power of the proposed approach w.r.t. under-approximations of
UMU(F), the second and the most important part of the experiment is to evaluate the
number of clauses reported to participate in UMU(F). Figure 1 shows the comparison
between umuser/umuser? and mcscache in terms of the number of clauses in UMU(F)
found within 900 seconds. As can be seen in Figure 1a, apart from a number of outliers
that can be exhaustively solved by mcscache, the basic version of umuser tends to com-
pute more clauses than what can be achieved by mcscache, indicating its effectiveness
at conducting the search towards new clauses in UMU(F). Furthermore, as shown in
Figure 1b, umuser? strengthens the approach more, which enables it to find even more
clauses. Concretely, the average number of clauses in UMU(F) per instance computed by
mcscache within 900 seconds is 2089.58, while umuser and umuser? compute 2421.87
and 2623.14, respectively. A more detailed comparison between umuser? and mcscache
is shown in Figure 2, where the two considered benchmark sets are analyzed separately.

8 Mencı́a et al.

101 102 103 104 105

mcscache

101

102

103

104

105

um
us

er
?

(a) Benchmark set 1

101 102 103 104

mcscache

101

102

103

104

um
us

er
?

(b) Benchmark set 2

Fig. 2: The number of clauses in UMU(F) computed for the two benchmark sets.

Both Figure 2a and Figure 2b confirm that umuser? has an advantage over mcscache in
terms of the number of clauses identified to belong to UMU(F).

Computing lean kernels allows the identification of clauses not in UMU(F). At the
root of the recursion tree, on average 242 such clauses were identified, with an average
reduction of 15.9% w.r.t. the number of clauses of the formula. The extent of this reduc-
tion depends on each instance, ranging from 0% (62 instances) to 97.32%, and a median
value of 3.32%. These results encourage future research on strategies for activating and
deactivating the computation of lean kernels on demand, depending on its effectiveness.

5 Conclusions

Identifying clauses that take part in the unsatisfiability of a formula represents a useful
task in infeasibility analysis. In this context, clauses might be classified in three levels
regarding their importance. The extreme cases are the set of necessary clauses, which
belong to all MUSes, and the lean kernel, containing all the clauses that can be used in a
resolution refutation. In the middle, the union of MUSes, UMU(F), constitutes a concise
(and accurate) explanation of all the causes of unsatisfiability. This paper addresses the
ΣP

2-hard problem of computing UMU(F) and proposes a novel algorithm for this task.
Based on a lazy splitting along MUSes (similar to splitting on a clause in SAT solving)
and a global collection of clauses found for UMU(F), the algorithm uses a variety of NP
oracles for powerful pruning techniques, obtaining a shortened implicit enumeration of
MUSes. These pruning steps can be relaxed or strengthened in various ways, giving rise
to a general framework for computing UMU(F), and opening a wide space of promising
possibilities for the future. Experimental results show that under a given time limit the
new algorithm produces (much) better approximations of UMU(F) than an approach
based on MCS enumeration. The results also reveal potential benefits of combining
both approaches, encouraging further research on alternative methods.

On Computing the Union of MUSes 9

References

1. Bacchus, F., Katsirelos, G.: Finding a collection of MUSes incrementally. In: Quimper,
C. (ed.) Integration of AI and OR Techniques in Constraint Programming - 13th Inter-
national Conference, CPAIOR 2016, Banff, AB, Canada, May 29 - June 1, 2016, Pro-
ceedings. Lecture Notes in Computer Science, vol. 9676, pp. 35–44. Springer (2016).
https://doi.org/10.1007/978-3-319-33954-2 3

2. Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extraction. AI Commun.
25(2), 97–116 (2012). https://doi.org/10.3233/AIC-2012-0523

3. Birnbaum, E., Lozinskii, E.L.: Consistent subsets of inconsistent systems:
structure and behaviour. J. Exp. Theor. Artif. Intell. 15(1), 25–46 (2003).
https://doi.org/10.1080/0952813021000026795

4. Cook, S.A.: The complexity of theorem-proving procedures. In: Harrison, M.A., Banerji,
R.B., Ullman, J.D. (eds.) Proceedings of the 3rd Annual ACM Symposium on Theory
of Computing, May 3-5, 1971, Shaker Heights, Ohio, USA. pp. 151–158. ACM (1971).
https://doi.org/10.1145/800157.805047

5. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
Theory and Applications of Satisfiability Testing, 6th International Conference, SAT 2003.
Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised Papers. Lecture Notes in
Computer Science, vol. 2919, pp. 502–518. Springer (2003). https://doi.org/10.1007/978-3-
540-24605-3 37

6. Grégoire, É., Izza, Y., Lagniez, J.: Boosting MCSes enumeration. In: Lang [17], pp. 1309–
1315. https://doi.org/10.24963/ijcai.2018/182

7. Ignatiev, A., Janota, M., Marques-Silva, J.: Quantified maximum satisfiability. Constraints
21(2), 277–302 (2016). https://doi.org/10.1007/s10601-015-9195-9

8. Jannach, D., Schmitz, T.: Model-based diagnosis of spreadsheet programs: a
constraint-based debugging approach. Autom. Softw. Eng. 23(1), 105–144 (2016).
https://doi.org/10.1007/s10515-014-0141-7

9. Jannach, D., Schmitz, T., Hofer, B., Schekotihin, K., Koch, P.W., Wotawa, F.:
Fragment-based spreadsheet debugging. Autom. Softw. Eng. 26(1), 203–239 (2019).
https://doi.org/10.1007/s10515-018-0250-9

10. Janota, M., Marques-Silva, J.: On deciding MUS membership with QBF. In: Lee, J.H. (ed.)
Principles and Practice of Constraint Programming - CP 2011 - 17th International Confer-
ence, CP 2011, Perugia, Italy, September 12-16, 2011. Proceedings. Lecture Notes in Com-
puter Science, vol. 6876, pp. 414–428. Springer (2011). https://doi.org/10.1007/978-3-642-
23786-7 32

11. Jose, M., Majumdar, R.: Bug-assist: Assisting fault localization in ANSI-C programs. In:
Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided Verification - 23rd International Con-
ference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings. Lecture Notes in
Computer Science, vol. 6806, pp. 504–509. Springer (2011). https://doi.org/10.1007/978-3-
642-22110-1 40

12. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum satisfiability.
In: Hall, M.W., Padua, D.A. (eds.) Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2011, San Jose, CA, USA, June
4-8, 2011. pp. 437–446. ACM (2011). https://doi.org/10.1145/1993498.1993550

13. Kleine Büning, H., Kullmann, O.: Minimal unsatisfiability and autarkies. In: Biere,
A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers
in Artificial Intelligence and Applications, vol. 185, pp. 339–401. IOS Press (2009).
https://doi.org/10.3233/978-1-58603-929-5-339

https://doi.org/10.1007/978-3-319-33954-2_3
https://doi.org/10.3233/AIC-2012-0523
https://doi.org/10.1080/0952813021000026795
https://doi.org/10.1145/800157.805047
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.24963/ijcai.2018/182
https://doi.org/10.1007/s10601-015-9195-9
https://doi.org/10.1007/s10515-014-0141-7
https://doi.org/10.1007/s10515-018-0250-9
https://doi.org/10.1007/978-3-642-23786-7_32
https://doi.org/10.1007/978-3-642-23786-7_32
https://doi.org/10.1007/978-3-642-22110-1_40
https://doi.org/10.1007/978-3-642-22110-1_40
https://doi.org/10.1145/1993498.1993550
https://doi.org/10.3233/978-1-58603-929-5-339

10 Mencı́a et al.

14. Kullmann, O.: An application of matroid theory to the SAT problem. In: Proceedings of
the 15th Annual IEEE Conference on Computational Complexity, Florence, Italy, July 4-7,
2000. p. 116. IEEE Computer Society (2000). https://doi.org/10.1109/CCC.2000.856741

15. Kullmann, O., Lynce, I., Marques-Silva, J.: Categorisation of clauses in conjunctive normal
forms: Minimally unsatisfiable sub-clause-sets and the lean kernel. In: Biere, A., Gomes, C.P.
(eds.) Theory and Applications of Satisfiability Testing - SAT 2006, 9th International Con-
ference, Seattle, WA, USA, August 12-15, 2006, Proceedings. Lecture Notes in Computer
Science, vol. 4121, pp. 22–35. Springer (2006). https://doi.org/10.1007/11814948 4

16. Kullmann, O., Marques-Silva, J.: Computing maximal autarkies with few and simple oracle
queries. In: Heule, M., Weaver, S. (eds.) Theory and Applications of Satisfiability Testing
- SAT 2015 - 18th International Conference, Austin, TX, USA, September 24-27, 2015,
Proceedings. Lecture Notes in Computer Science, vol. 9340, pp. 138–155. Springer (2015).
https://doi.org/10.1007/978-3-319-24318-4 11

17. Lang, J. (ed.): Proceedings of the Twenty-Seventh International Joint Conference on Artifi-
cial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden. ijcai.org (2018)

18. Liberatore, P.: Redundancy in logic I: CNF propositional formulae. Artif. Intell. 163(2), 203–
232 (2005). https://doi.org/10.1016/j.artint.2004.11.002

19. Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible MUS enumeration.
Constraints 21(2), 223–250 (2016). https://doi.org/10.1007/s10601-015-9183-0

20. Liffiton, M.H., Sakallah, K.A.: Searching for autarkies to trim unsatisfiable clause sets.
In: Büning, H.K., Zhao, X. (eds.) Theory and Applications of Satisfiability Testing - SAT
2008, 11th International Conference, SAT 2008, Guangzhou, China, May 12-15, 2008. Pro-
ceedings. Lecture Notes in Computer Science, vol. 4996, pp. 182–195. Springer (2008).
https://doi.org/10.1007/978-3-540-79719-7 18

21. Marques-Silva, J., Ignatiev, A., Morgado, A., Manquinho, V.M., Lynce, I.: Efficient au-
tarkies. In: Schaub, T., Friedrich, G., O’Sullivan, B. (eds.) ECAI 2014 - 21st Euro-
pean Conference on Artificial Intelligence, 18-22 August 2014, Prague, Czech Repub-
lic - Including Prestigious Applications of Intelligent Systems (PAIS 2014). Frontiers
in Artificial Intelligence and Applications, vol. 263, pp. 603–608. IOS Press (2014).
https://doi.org/10.3233/978-1-61499-419-0-603

22. Mencı́a, C., Ignatiev, A., Previti, A., Marques-Silva, J.: MCS extraction with sublinear or-
acle queries. In: Creignou, N., Berre, D.L. (eds.) Theory and Applications of Satisfiability
Testing - SAT 2016 - 19th International Conference, Bordeaux, France, July 5-8, 2016, Pro-
ceedings. Lecture Notes in Computer Science, vol. 9710, pp. 342–360. Springer (2016).
https://doi.org/10.1007/978-3-319-40970-2 21

23. Mencı́a, C., Previti, A., Marques-Silva, J.: Literal-based MCS extraction. In: Yang, Q.,
Wooldridge, M.J. (eds.) Proceedings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015. pp. 1973–
1979. AAAI Press (2015), http://ijcai.org/Abstract/15/280

24. Narodytska, N., Bjørner, N., Marinescu, M., Sagiv, M.: Core-guided minimal correction set
and core enumeration. In: Lang [17], pp. 1353–1361. https://doi.org/10.24963/ijcai.2018/188

25. Previti, A., Mencı́a, C., Järvisalo, M., Marques-Silva, J.: Improving MCS enumeration via
caching. In: Gaspers, S., Walsh, T. (eds.) Theory and Applications of Satisfiability Testing -
SAT 2017 - 20th International Conference, Melbourne, VIC, Australia, August 28 - Septem-
ber 1, 2017, Proceedings. Lecture Notes in Computer Science, vol. 10491, pp. 184–194.
Springer (2017). https://doi.org/10.1007/978-3-319-66263-3 12

26. Previti, A., Mencı́a, C., Järvisalo, M., Marques-Silva, J.: Premise set caching for enumerat-
ing minimal correction subsets. In: McIlraith, S.A., Weinberger, K.Q. (eds.) Proceedings of
the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th inno-
vative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on

https://doi.org/10.1109/CCC.2000.856741
https://doi.org/10.1007/11814948_4
https://doi.org/10.1007/978-3-319-24318-4_11
https://doi.org/10.1016/j.artint.2004.11.002
https://doi.org/10.1007/s10601-015-9183-0
https://doi.org/10.1007/978-3-540-79719-7_18
https://doi.org/10.3233/978-1-61499-419-0-603
https://doi.org/10.1007/978-3-319-40970-2_21
http://ijcai.org/Abstract/15/280
https://doi.org/10.24963/ijcai.2018/188
https://doi.org/10.1007/978-3-319-66263-3_12

On Computing the Union of MUSes 11

Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018. pp. 6633–6640. AAAI Press (2018), https://www.aaai.org/ocs/index.
php/AAAI/AAAI18/paper/view/17328

27. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987).
https://doi.org/10.1016/0004-3702(87)90062-2

28. Safarpour, S., Mangassarian, H., Veneris, A.G., Liffiton, M.H., Sakallah, K.A.: Im-
proved design debugging using maximum satisfiability. In: Formal Methods in Computer-
Aided Design, 7th International Conference, FMCAD 2007, Austin, Texas, USA,
November 11-14, 2007, Proceedings. pp. 13–19. IEEE Computer Society (2007).
https://doi.org/10.1109/FAMCAD.2007.26

29. Schlobach, S., Huang, Z., Cornet, R., van Harmelen, F.: Debugging incoherent terminologies.
J. Autom. Reasoning 39(3), 317–349 (2007). https://doi.org/10.1007/s10817-007-9076-z

30. Sinz, C., Kaiser, A., Küchlin, W.: Formal methods for the validation of
automotive product configuration data. AI EDAM 17(1), 75–97 (2003).
https://doi.org/10.1017/S0890060403171065

31. Smith, A., Veneris, A.G., Ali, M.F., Viglas, A.: Fault diagnosis and logic debugging using
Boolean satisfiability. IEEE Trans. on CAD of Integrated Circuits and Systems 24(10), 1606–
1621 (2005). https://doi.org/10.1109/TCAD.2005.852031

32. Stuckey, P.J., Sulzmann, M., Wazny, J.: Interactive type debugging in Haskell. In: Proceed-
ings of the ACM SIGPLAN Workshop on Haskell, Haskell 2003, Uppsala, Sweden, August
28, 2003. pp. 72–83. ACM (2003). https://doi.org/10.1145/871895.871903

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17328
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17328
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1109/FAMCAD.2007.26
https://doi.org/10.1007/s10817-007-9076-z
https://doi.org/10.1017/S0890060403171065
https://doi.org/10.1109/TCAD.2005.852031
https://doi.org/10.1145/871895.871903

	On Computing the Union of MUSes

