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Abstract  

The atypical proliferation of algae is a consequence of eutrophication, a phenomenon 

responsible for the deterioration of reservoirs and lakes. Its growth over the last few 

decades forced different administrations to adopt different solutions, including 

forecasting and management, with the help of mathematical models. This article 

presents a model of eutrophication of reservoirs based on a new methodology called 

multiscale Mexican Hat wavelet as the kernel function for the support vector regression 

(SVR) method and differential evolution (DE) optimization technique to estimate the 

abnormal proliferation of algae from physicochemical and biological variables. The 

present method implies the optimization of the SVR hyperparameters during the 

training process. In addition, five other SVR models with different nuclei (linear, 

quadratic, cubic, sigmoid and radial base function) and random forests (RF) were 

adjusted to experimental data for purposes of comparison. In addition to successfully 

predicting atypical algae growth (determination coefficients equal to 0.88 and 0.93), the 
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model shown here can establish the importance of each biological and physicochemical 

parameter of improved algae growth. Finally, the main conclusions of this research 

work are presented. 

 

Keywords: Support vector regression (SVR); Wavelet kernel; Differential evolution 

(DE); Random forests (RF); Eutrophication prediction in reservoirs; Regression analysis 

  

1. Introduction 

The atypical growth of algae, a symptom of eutrophication, remains a global 

environmental problem. It has serious consequences for water quality [1–5]. The 

fertilization of water has as a consequence a reduction in the percentage of oxygen 

present in it, the appearance of toxic blooms, eutrophication and finally death of some 

organisms, which means a reduction in biodiversity [6–9]. 

 

The presence of chlorophyll a (Chl-a) is a clear indicator of water eutrophication. Please 

note that in existing literature the presence of Chl-a is reported as a common way to 

track the growth of algae [10]. Phosphorus, nitrogen and chlorophyll are commonly 

used as indicators in reservoirs and other bodies of water [3,11]. Many of these  form 

the basis of the classical approach to classifying trophic status [12], which is considered 

in the implementation of the Water Framework Directive (WFD) [13,14]. However, 

biovolumes must be calculated in order to assess this issue more reliably [15]. Please 

also note that other variables, such as water temperature, pH, dissolved oxygen, Secchi 

depth, ammonium and nitrogen also have an important role in the growth of algae [16]. 

Therefore, the development of strategies to prevent algae blooms requires a multivariate 
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analysis of all the variables detailed above. Any systematic research in this field needs a 

complete set of data with all these indicators [17]. 

 

All around the world, regardless of many other factors, algal atypical growth is a matter 

of great concern. In small ecosystems such as La Barca reservoir (see Figs. 1(a) and 

1(b)) the threat is particularly worrying due to its location and size. In this case, the 

main threat is due to eutrophication [18–20] that causes the consumption of dissolved 

oxygen. Indeed, the algal explosion that accompanies the first phase of eutrophication 

causes a cloudiness that prevents light from penetrating at the bottom of the ecosystem. 

Consequently, at this bottom, photosynthesis (main producer of free oxygen) is 

impossible, while at the same time the oxygen-consuming metabolic activity (aerobic 

respiration) of decomposers is increased, which begin to receive surplus organic matter 

produced near the surface. In this way, at the bottom of the body of water, oxygen is 

soon depleted by aerobic activity and the environment soon becomes anoxic. The 

radical alteration of the environment due to these changes makes unfeasible the 

existence of most of the species that previously formed the ecosystem [3,19,20]. 

 

In this study, a new methodology has been applied using a wavelet kernel SVM–based 

method combined with the evolutionary optimization method termed Differential 

Evolution (DE) [21–24], as well as the random forests (RF) technique [25–27] to 

forecast the growth of phytoplankton atypical in the aforementioned reservoir. All the 

results obtained are contrasted and compared. 

 

Fig. 1. (a) Large and (b) short scale aerial photographs of the reservoir. 
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SVR techniques are a new class of methods designed to predict values based on 

statistical learning from very different fields [27–31], and present high accuracy for 

almost any multivariate function [27,31,32]. 

 

Furthermore, in order to optimize SVR hyperparameters during training the differential 

evolution (DE) was employed. Differential evolution (SD) is an evolutionary method of 

global metaheuristics, gleaned from genetic algorithms (GA), and can solve problems to 

do with continuous variables in multidimensional optimization operations. Similar to 

other evolutionary computing algorithms, for example particle swarm optimization 

(PSO) [33–35] or the ant colony optimization [34], DE is an algorithm based on 

biological processes that makes use of mutation, recombination and selection, among 

other commonly-used operations [21,22,37,38]. SVR has been used to predict values in 

many fields, particularly in environmental problems like forest modeling [39], solar 

radiation prediction [40,41] and air and water quality estimation, to give some examples 

[42–45]. 

 

Random forests (RF) were introduced by Breiman [26] and are used here for purposes 

of comparison. The RF algorithm presents several advantages [25–27] that are 

considered of interest to the present research. First of all, it is able to compute large 

amounts of information, it presents good behaviour in noise situations and it has a 

relative low number of parameters to set when compared with other algorithms. 

 

In conclusion, several hybrid models based on SVR based on SVR (DE/SVR) were 

applied with different nuclei [37,38,46] and random forests (RF) in order to model the 

eutrophication at the reservoir under study. The best model for predicting the 
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eutrophication of the La Barca reservoir was the hybrid DE model, optimized by the 

wavelet kernel based on the SVR model. 

 

2. Materials and methods 

2.1. Experimental dataset 

The data used for DE/SVR and the analyses of random forests RF were collected over 

16 years (2001-2016), with 243 samples collected which contained quantitative 

information on abundance of phytoplankton. Samples were taken at least once every 30 

days beginning on 16th January 2001 so that the last sample analysed corresponds to 20th 

December 2016. Specifically, this reservoir was sampled following the sampling 

protocols for lakes and reservoirs of the Spanish Ministry of Agriculture, Food and 

Environment, which are consistent with the guidelines established by the European 

Union and international agencies dealing with these issues [47–49]. The samples were 

taken with a Niskin hydrographic bottle. The Niskin bottle is a development of the 

Nansen bottle. Instead of a metal bottle sealed at one end, the bottle is a tube, usually 

plastic to minimize contamination of the sample, and open to the water at both ends. 

Each end is equipped with a cap which is either spring-loaded or tensioned by an elastic 

rope (see Fig. 2(a)) at different depths in the zone corresponding to the depth of the 

water in the reservoir that is exposed to sufficient sunlight for photosynthesis to occur 

called the euphotic zone [50]. This zone is determined from the Secchi depth which is 

the depth at which the pattern on the Secchi disk (see Fig. 2(b)) is no longer visible and 

it is taken as a measure of the transparency of the water in lakes, reservoirs and oceans. 

The values of phytoplankton and Chlorophyll were determined from a sample 
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composed of five homogeneous subsamples obtained with the hydrographic bottle at 

various equidistant depths in the euphotic zone [3,51,52]. 

 

Fig. 2. (a) An example of a Niskin bottle; and (b) Secchi disks. 

 

In this research work, physical–chemical parameters normally used in limnological 

studies have been measured [3,51–53]. The physical–chemical parameters were 

analyzed by an ISO 17025 accredited laboratory, following the corresponding methods 

in the Standard Methods for the Examination of Water and Wastewater [54]. A quality 

assessment program including internal laboratory control (use of standards, blanks and 

replicates during analysis) as well as analysis of blanks, replicates and blind samples 

collected in La Barca reservoir was applied. During the sampling procedure, field 

blanks were also collected. A total of 10% of samples were replicated to assess 

variability. Furthermore, analyses of Chlorophyll have been carried out to study the 

phytoplankton. 

 

The objective of this work was to establish a methodology for estimating abnormal 

algae growth indicators from easily-measurable variable values. The seven models 

constructed (six models based on DE/SVR and one based on DE/RF) all use the same 

input variables. The output variables are chlorophyll in (µg / L) and total phosphorus 

(mg P / L). 
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The presence of phytoplankton determines the presence of chlorophyll in the water [54], 

something which is linked with photosynthesis. The total phosphorus content is 

obtained as the sum of organically-bound condensed phosphates, phosphates and 

orthophosphates, taking into account both suspended and dissolved forms. 

 

Predictive models must take into account both biological and physical-chemical 

variables. In the case of biological variables, the most relevant are Cyanobacteria, 

Diatoms, Euglenophytes, Dinophlagellata, Chrysophytes and Cryptophytes. In our 

research, all of them are expressed in mm3/L. Fig. 3 (a) shows an example of 

Cyanobacteria, while Diatoms are presented in Fig. 3 (b). Euglenophytes are a kind of 

autotrophic organism that are capable of producing their own food. An example is 

shown in Fig. 3 (c). Fig. 4 (d) shows Dinophlagellata, while Chrysophytes are presented 

in Fig. 3 (e), and Cryptophytes in Fig. 3 (g). 

 

Fig. 3. Biological variables used for this research: (a) Cyanobacteria; (b) Diatoms; (c) 

Euglenophytes; (d) Dinophlagella; (e) Chrysophytes; (f) Clorophytes; and (g) 

Chryptophytes. 

 

The physical-chemical variables employed are [3]: water temperature (ºC); turbidity, 

expressed in Nephelometric Turbidity Units (NTU), which determines the opacity of 

water due to suspended solids [55,56]; nitrate concentration (mg 3NO /L), pH (defined 
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as the decimal logarithm of the reciprocal of the hydrogen ion activity,
H

a  , in a 

solution); conductivity (S/cm) and concentration of dissolved oxygen  (mg O2/L). 

 

This study builds machine learning models of eutrophication for the La Barca reservoir 

from the experimental set of data. For comparison purposes, two different techniques 

have been constructed: support vector regression with optimization of DE parameters 

(six DE/SVR models) and also random forests with DE parameter optimization (a 

DE/RF model). 

 

2.2. Computational procedure 

2.2.1. Support vector machine (SVM) for regression  

Support vector machine (SVM) is a machine learning methodology developed by 

Vapnik and his colleagues [57,58]. Our training data consists of N 

pairs  1 1x , y ,  2 2x , y ,…,  x ,N Ny , with x p

i  and y . Firstly, we discuss the 

linear regression model: 

  0x x,β βf  

 

(1) 

where .,. means the scalar product in p . Later we will deal with non-linear 

generalizations of this technique. In order to determineβ , we carry out the minimization 

of the functional: 

    
2

0

1

β,β x β
2

N

i i

i

H V y f




  
 

(2) 

where β means the norm of vector β (i.e., β β,β ) and 
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 Eq. (3) describes a function which is an  insensitive error measure, that is, one which 

ignores errors smaller than . Therefore, it is in some ways similar to support vector 

machines for classification, wherein points to the right of the decision boundary and 

those a long distance from it are not taken into account when optimization occurs. As 

regards regression, small residuals are symptomatic of these low error points.  Eq. (3) 

produces a support vector error measurement which also presents a linear behavior 

(beyond ), but furthermore it equalizes the contributions from any points with small 

residuals. 

 

If β̂ and 0β̂ are the optimal values that minimized the functional H, the solution function 

can be shown to have the form: 

 *

1

ˆ ˆ ˆβ x
N

i i i

i

 


 
 

(4) 

   *

0

1

ˆ ˆx x, x β
N

i i i

i

f  


    
(5) 

where ˆ
i , *ˆ

i are positive Lagrange multipliers. Next, the search for a solution of the 

following expression is required. Please note that it is a quadratic programming 

problem, 

      
*

* * * *

,
1 1 , 1

1
min x , x

2i i

N N N

i i i i i i i j j i j
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(6) 
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taking into account the following conditions: 
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(7) 

Keeping in mind the nature of these constraints, it is possible to observe that usually 

only a subset of the solution values  *ˆ ˆ
i i  are non-zero. In the same way as the 

classification problem, the solution relies on the input values only through the scalar 

product x , xi j . 

 

One may note immediately that we have two parameters and connected to the 

criterion given by Eq. (2). These parameters have quite different functions, namely, that 

 is a parameter of the loss functionV , while  1C   is a regularization parameter 

(sometimes also called a penalty parameter or cost parameter).By means of cross-

validation, it is possible to estimate its value. 

        

Where there is a nonlinear behavior of the training dataset, it is possible to convert the 

SVR approach to this case using a kernel function in order to map the data from the 

input space to a high-dimensional space (termed feature space) so that we can tackle a 

problem in linear form [58,59]: 

        
*

* * * *

,
1 1 , 1

1
min x , x

2i i

N N N

i i i i i i i j j i j

i i i j

y K
 

        
  

         
(8) 
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subject to the same constraints indicated by expression (7). In Eq. (8),  x , xi jK  is the 

support vector kernel. The support vector kernel used is a kernel of dot-product type in a 

feature space and it must satisfy the Mercer's condition [59]. The resulting regression 

estimates are linear. The fitting function obtained is given via: 

     *

0

1

ˆ ˆx x, x β
N

i i i

i

f K 


    
(9) 

According to previous research, several different kernel functions have been used whose 

description can be found in earlier bibliographic studies [27–32,69]. Furthermore, the 

performance of a SVM model is directly connected to the kernel selected for each 

problem: 

 Radial basis function (RBF kernel): 

 
2

, i j

i jK e
 


x x

x x                                                (10) 

 Polynomial kernel: 

   ,
b

i j i jK a  x x x x                                                (11) 

 Sigmoid kernel: 

   , tanhi j i jK a  x x x x                                                (12) 

being a, b and   kernel parameters. 

 

Fig. 4. Sketch of the SVM regression model with  insensitive tube for a one 

dimensional problem. 
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2.2.2. Wavelet procedure 

Wavelets are a useful methodology for obtaining information from signals like audio 

signals or images. They are widely used in geophysics and signal processing. From a 

mathematical point of view, there will be a correlation of the signal with the wavelet if 

information of a similar frequency appears in the signal. Indeed, the signal analysed is 

generated from a set of functions obtained as translations and dilations of the so-called 

mother wavelet or function [69–73]: 

  






 




a

cx
axca  2

1

,                                                (13) 

where c is the translation and a is the dilation factor [37]. Thus, the wavelet transform 

of a function     2Lxf is given via [70–73]: 

     xxffW caca ,, ,                                                (14) 

,  is the dot product in  2L . and Eq. (13) is a function  xf  decomposition on the 

wavelet basis  xca, . The mother wavelet  x  must meet the condition [72–75]: 

 
 





0

2





 d

H
W                                                (15) 

where  H is the Fourier transform of  x . Then  xf can be reconstructed as [72–75]: 

       2

, ,

0

1
/a c a cf x W f x da a dc

W


 



                                                  (16) 

Accordingly, if we take the finite terms of Eq. (14), the approximated  xf̂ can be 

expressed as [70–75]:  
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ii

1

,
ˆ                                                 (17) 

In the case of a common multidimensional wavelet function , N

j x x , one– 

dimensional (1–D) wavelet functions produce: 

   
1

N

j

j

 


x x                                                (18) 

In this respect, for an in–depth wavelet analysis and theory readers can consult Zhang et 

al. [72], Daubechies [74] and Zhang and Benveniste [75]. 

 

2.2.3. Wavelet kernel and wavelet SVMs 

Wavelet kernel SVMs is a particular case involving SVM where the kernel is 

constructed starting with dot product based on a wavelet [76].  Let  ,a c x  be a mother 

wavelet and , Nx x , then the dot-product wavelet kernel is given as [70–72]: 

 
1

,
N

j j j j

j

c c
K

a a
 



     
     

   


x x
x x                                                (19) 

The translation invariant wavelet kernel can be expressed as follows [70–75]: 

  
1

,
N

j j

j

K
a




 
   

 


x x
x x                                                (20) 

A translation invariant wavelet kernel, a so-called Mexican hat wavelet kernel, is given 

via [70–75]:  

   
2

2

4

2
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Taking into account the previous expression [74,75]: 

 
   

2 2

2 24
1

2
, 1 exp

29
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x x x x

x x        (22) 

The decision function of wavelet SVMs for regression can be expressed as [70,74,75]: 

   *

1 1

Nl
j ij

i i

i j

f b
a

  
 

 
   

 
 

x x
x                                                (23) 

Specifically, the multiscale Mexican hat wavelet kernel has been used in this study with 

success due to its ability to capture abrupt changes of radically-changing functions such 

as those due to eutrophication. It is obtained subtracting two Gaussian radial basis 

functions and it is called multiscale Mexican Hat wavelet because it behaves in a similar 

way to the Mexican Hat wavelet. Indeed, it is defined as [77,78]: 

     2 2

2 2 1 1, exp expK g g        x x x x x x        (24) 

where  1 1 1 2/g      and  2 2 2 1/g     . This function is shown below in Fig. 

5.  

Fig. 5. Multiscale Mexican Hat wavelet function. 

 

2.3. Differential evolution (DE) algorithm 

The differential evolution (DE) method was initially discovered by Storn and Price [21] 

and it optimizes a problem iteratively by attemptng to improve a candidate solution 

concerning a well-known quality measurement. The total 

population  1 2, ,...,
T

MX x x x involves M individuals in such a way that the n-th 

individual is represented by an objective vector designating an individual’s position in 
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the search space. The objective vector pertaining to the n-th individual at the t-ith 

iteration of the optimization is expressed as [21,22]: 

     0 rand 0,1p p p p

nx L U L   

 

(25) 

The differential evolution (DE) technique requires five stages to be able to build the 

optimization algorithm; these are indicated as follows [21–24]: 

 Initialization 

Firstly, the initial objective vectors of M individuals are created (or produced) in the 

design space H. This task is carried out in a random way so that the initial objective 

vector (0-th iteration: corresponds to the initial location of the particle) of dimension p 

  1,...,p P is given via: 

     0 rand 0,1p p p p

nx L U L   

 

(26) 

so that  rand 0,1 represents a random number evenly distributed in the interval [0,1]. 

 Mutation 

A benefactor vector is produced using differences of scale among individuals for each 

individual of the population. The n-th benefactor vector is generated by means of the 

following mutation strategy, written as the expression: 

      
1 2 3n r r rt G t t  v x x x

 

(27) 

where
1r ,

2r and
3r are random integers evenly distributed in the interval  1, M  such that 

1 2 3r r r n   , and G is a scaling factor. 

 Crossover 
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In order to achieve diversity, the crossover stage must be carried out. Indeed, to 

generate a trial vector with guarantees, we will do the crossover of the individual 

elements from the objective vector and benefactor vector. In this study, we have used 

the binomial crossover to create the n-th trial vector in the p-th dimension governed by 

the expression: 

 

 

if rand 0,1 or

otherwise

p

n np

n p

n

v CR r p
u

x t

   
  
    

(28) 

where  0,1CR is a parameter called crossover probability and
nr is a random integer  

spread evenly in the interval  1, P . Consequently, elements of the trial vector are taken 

from the benefactor vector with a probability CR so that at least one element of the 

benefactor vector is accepted. 

 Selection 

Next, the trial vector is checked and the n-th objective vector is computed at the next 

iteration via: 

 
    

 

if
1

otherwise

n n n

n

n

f f t
t

t

  
   

  

u u x
x

x  

(29) 

Therefore, the objective vector is replaced by the trial vector if its performance is 

greater than or equal to the performance of the objective vector. 

 Stopping criterion 

This algorithm is stopped if the permitted maximum number of function evaluations is 

reached and after all M objective vectors have been upgraded. Otherwise, the above 

steps, from the second one to the fifth, are repeated. 
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The pseudocode of the DE algorithm can be written as: 

Random initialization of the individuals and calculate the objective 

while Current_number_of_function_evaluations < Max_function_evaluations do 

for n = 1:M do 

Carry out the mutation according to Eq. (27) 

Carry out the binomial crossover according to Eq. (28) 

Calculate the objective taking into account the constraints of the trial vector 

end for 

for n = 1:M do 

Upgrade the n-th objective vector according to Eq. (29) 

end for 

end while 

     

2.4. Random forest regression algorithm 

The random forest (RF) algorithm [79–82] presents a number of advantages that are 

considered of interest for the present research. Firstly, it is capable of computing large 

quantities of information, it behaves well in noisy situations and has a relatively low 

number of parameters to set when compared with other algorithms. 

 

Classification and regression trees are methods that satisfy both predictive and 

explanatory objectives. There are two cases in which these modeling techniques should 

be used: classification trees, which are useful for clarifying and predicting whether 
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individuals belong to categories based on quantitative and qualitative variables. Also, a 

regression tree can be employed to create an explanatory and predictive model for a 

quantitative dependent variable based on quantitative and qualitative explanatory 

variables. 

The regression tree-splitting criterion is based on choosing the input variable with the 

lowest Gini Index: 

     
2

1

1 ,
i i

m

G X x X x
j

I t f t j


   
(30) 

so that   ,
iX x

f t j is the proportion of samples from the leave j as node t with the 

value
ix [81,82]. In order to calculate the predicted value of an observation,  we then 

carried out an averaging over all the trees. To this end, two parameters must be 

optimized in the RF approach:  

 ntree: is the number of regression trees (its default value is 500 trees); and 

 mtry: is the number of input variables per node (its default value is 1/3 of the 

complete number of variables). 

 

2.5. The goodness–of–fit 

All the variables of the study are presented in Tables 1 and 2. Table 1 shows all the 

physical-chemical variables, while the biological variables are listed in Table 2 [3,83]. 

The number of predictors employed by the DE/SVM and RF models was 16. The 

estimated variables (Chl-a and Total phosphorus) units are g/L and mg P/L [83,84], 

respectively. 
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Table 1  

Biological variables employed in this research with their mean, median, standard 

deviation (STD) and mean absolute deviation (MAD). 

 

Table 2  

Physical-chemical variables employed in this research with their mean, median, 

standard deviation (STD) and mean absolute deviation (MAD). 

 

The variable importance order in this research has been determined with the help of the 

goodness-of-fit criterion [85,86]. This may be defined as a parameter by means of 

which any variation in the variable produced by the model can be quantified, as can the 

variability in the same variable across the set of data. That is to say, this variability is 

expressed thus: 

  



n

i

iierr ytSS
1

2
 

  



n

i

itot ttSS
1

2
 

where the average value of the n observed samples is defined as: 





n

i

it
n

t
1

1
 

(31) 

Then, the quantity R2, the coefficient of determination, is given as: 

2 1 err

tot

SS
R

SS
   

(32) 
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To fix ideas, it can be said that this coefficient gives us an idea about how well the 

regression values approximate the actual values. Please note that the closer its value to 

one, the better. 

 

Two additional criteria considered in this study were the root mean square error 

(RMSE) and mean absolute error (MAE) [27,85,86]. These statistics are also used 

frequently to evaluate the forecasting capability of a mathematical model. Indeed, the 

root mean square error (RMSE) and mean absolute error (MAE) are given by the 

expressions [85,86]: 

 
2

1RMSE

n

i i

i

t y

n








 

(33) 

1MAE=

n

i i

i

t y

n




 

(34) 

If the root mean square error (RMSE) has a value of zero, it means that there is no 

difference between the predicted and observed data. Mean Absolute Error (MAE) is the 

average vertical distance between each point and the identity line. MAE is also the 

average horizontal distance between each point and the identity line. MAE has a clear 

interpretation as the average absolute difference between
it and

iy . 

 

Different models were constructed at this stage, (specifically in this study, six hybrid 

models DE/SVM and one RF model) with variables which predicted the variables Chl-a 

and Total phosphorus as well as the other sixteen biological and physical-chemical 
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parameters (input variables), by employing the determination coefficient as a criterion 

to assess whether each model was successful. 

 

In addition, as mentioned above, the success of SVM models depends to a large extent 

on their parameters. An adequate adjustment of these parameters is therefore essential. 

Therefore, the fitting process involves calculating the suitability of different models and 

is often the most demanding task from a computational point of view [25,27,31,32]. 

Completely different methods can be found in existing literature for the optimization of 

these parameters as random search, grid search, genetic algorithms, particle swarm 

optimization (PSO) and so on [29,31,59,70]. Usually, the traditional way of performing 

hyperparameter optimization in most computational codes has been grid search, or a 

parameter sweep, which is simply an exhaustive searching through a manually specified 

subset of the hyperparameter space of a learning algorithm. Indeed, the grid search is a 

brute force method and, as such, almost any optimization method improves its 

efficiency. Specifically, in the present research, DE optimization technique was chosen 

for the adjustment of SVM hyperparameters of the different kernels with success. At 

this point, the flow diagram of the best DE/SVM–based model used in this work can be 

seen in Fig. 6. 

 

Fig. 6. Flowchart of the new hybrid DE/SVM–based model with multiscale Mexican 

Hat wavelet kernel. 

 

It is to be noted that the coefficient of determination  2R  was computed by means of 

cross–validation [86,87]; to be precise, with a ten–fold cross–validation algorithm. 



22 

 

Specifically, the DE technique employed the coefficient of determination as the 

objective function for the optimization of the SVM hyperparameters. 

 

An important aspect of the current formulation is that the population is made up of xi 

vectors that are composed of the parameters of the kernel (e.g., in case of multiscale 

Mexican hat wavelet kernel function,  1 2, , ,i i i i iC   x ). Initially, we assume 20 

different random sets of four parameters (members of the population) within the search 

space. In other words, we look for the values of C in 10-6,104éë ùû, e  values in 

10 410 ,10   , and 
1  y 

2  in 10-6,104éë ùû. That is, the search space is the four-

dimensional space        6,4 10,4 6,4 6,4       . Accordingly, we look for the 

space of exponents as the SVR algorithm changes more significantly as the order of 

magnitude in turn changes. We begin by constructing a model with each of these sets of 

parameters and then its corresponding ten-fold cross-validation R2 is computed. With 

the help of mutation and recombination operators, a new population is created and the 

process is repeated.  When they are compared with those of the previous generation, the 

best individuals in the population survive. The procedure is repeated until either the 

iteration 200 is reached or until the fitness of one generation improves by less than 

810 when compared with the previous one. Finally, the best performing model is 

chosen. From a computational point of view, the SVM   regression has been carried 

out using the LIBSVM library [88] in combination with the DE function implemented 

in MATLAB code [89,90]. 
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3. Results and discussion 

The optimal parameters for models based on DE/SVM found with the differential 

evolution technique (DE) to total phosphorus and chlorophyll a, respectively, appear in 

Tables 3 and 4. 

 

Table 3  

Total phosphorus optimal hyperparameters obtained with the DE/SVM models. 

 

Table 4  

Chorophyll concentration optimal hyperparameters obtained with the DE/SVM models. 

 

In order to have a benchmark model, another model based on DE/RF has also been 

trained. This model uses total phosphorus and Chl-a [84] respectively as output 

variables and the physical-chemical parameters as the input ones. Table 5 shows the 

optimal parameters for the RF–based model found with the differential evolution (DE) 

technique for chlorophyll and Table 6 gives the same information for the total 

phosphorus variable. 

 

Table 5  

Optimal hyperparameters obtained with the DE/RF–based model for total phosphorus. 

 

Table 6  
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Optimal hyperparameters obtained with the DE/RF–based model for chorophyll 

concentration. 

 

In addition, the correlation and determination coefficients for DE/SVM and DE/RF 

based models for total phosphorus and chlorophyll a, respectively, are shown in Tables 

7 and 8. 

 

Table 7  

Cross–validation coefficients of determination ( 2R ) and correlation coefficient (r), and 

root mean square error (RMSE) and mean absolute error (MAE) for the DE/SVM–

based and DE/RF–based models for total phosphorus. 

 

Table 8  

Cross–validation coefficients of determination ( 2R ) and correlation coefficient (r), and 

root mean square error (RMSE) and mean absolute error (MAE) for the DE/SVM–

based and DE/RF–based models for the Chorophyll concentration. 

 

Taking into account the previous statistical calculations, the SVM–based technique with 

a wavelet kernel in combination with DE optimization is the best model for estimating 

total phosphorus and chlorophyll (specifically, using the multiscale Mexican hat 

wavelet kernel). Models relied on DE/SVM have determination coefficients equal to 

0.93 and 0.88, and correlation coefficients equal to 0.96 and 0.94, respectively. A 
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computer with a CPU Intel Core i7-4770 @ 3.40 GHz with eight cores and 15.5 GB 

RAM memory was used, taking 1,272 seconds (approximately 21 min)  to obtain the 

Chlorophyll model and 1,555 seconds (approximately 26 min)  for the Total phosphorus 

model. 

 

The classification of significance of the biological and physical-chemical parameters 

(input variables), taking as dependent variables total phosphorus and chlorophyll (Chl-

a) (output variables), are shown in Tables 9 and 10, and Figs. 7 and 8, respectively. 

 

As a consequence, Secchi depth is the most significant variable in total phosphorus 

prediction for the SVM–based model of the optimized DE wavelet kernel., followed by 

turbidity, water temperature, dissolved oxygen concentration, cyanobacteria 

concentration, chlorophyll concentration, dinophlagellata concentration, ammonium 

concentration, chlorophytes concentration, chrysophytes concentration, nitrate 

concentration, pH, euglenophytes concentration, conductivity, chryptophytes 

concentration and finally, diatoms. 

 

Table 9  

Weights for the DE/SVM–based model for the Total phosphorus. 

 

Table 10  

Weights for the DE/SVM–based model for the Chlorophyll concentration. 

 

Fig. 7. Comparative significance of the predictor variables in the total phosphorus 

DE/SVM–based model. 
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Fig. 8. Comparative significance of the predictor variables in the Chlorophyll 

DE/SVM–based model. 

 

Secchi depth is the first most significant variable in the total phosphorus prediction. 

This parameter gives an idea of the turbidity of the water. Turbidity is the second most 

significant variable in the total phosphorus prediction. Indeed, turbidity increases with 

phytoplankton growth [3,56] affecting the eutrophication process. 

 

By virtue of their relevance, water temperature and dissolved oxygen are the following 

variables in the model. In the case of temperature, from our point of view this is due to 

its influence on the growth of phytoplankton, while in the case of oxygen it by dint of 

its importance over those organisms that live in the reservoir water. 

 

Furthermore, Cyanobacteria are one of the most common consequences of the 

abnormal algal blooms [52,91–93], causing a particularly serious problem for the water 

quality [7,50,52,94]. 

  

When the concentration of chlorophyll in water is high (eutrophic environment), 

cyanobacteria proliferate. Their concentration is the sixth most significant variable in 

the prediction of total phosphorus. The concentration of chlorophyll is related to the 

concentration of phytoplankton [54]. 

 

The concentration of Dinophlagellata is the seventh most important variable due to the 

photosynthetic nature of these organisms. 
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 The eighth most significant variable in total phosphorus prediction is the concentration 

of ammonium [3]., followed by the concentration of chlorophytes. This may be due to 

the fact that La Barca reservoir is notable for  chlorophytes being present in large 

numbers, as La Barca is a eutrophic ecosystem [6,95]. 

 

Concentrations of chrysophytes and nitrates come last among variables in the ranking of 

importance for total phosphorus prediction [96, 97]. 

 

The relatively low importance of nitrate concentration may be explained by the fact that 

although nitrates are sources of nitrogen, there are other sources, such as for example 

the atmosphere [98,99], which makes nitrogen a non-growth-limiting nutrient. 

  

In twelfth place, we find the pH of the water. This result could be due to the relationship 

of pH with the excessive growth of plants and algae. 

 

The concentration of Euglenophytes is the thirteenth most significant variable in the 

prediction of total phosphorus (output variable) because dammed waters are usually rich 

in Euglenophytes. 

 

Conductivity is the fourteenth most significant variable in importance in the prediction 

of total phosphorus, since ionic phosphate is the main component of total phosphorus in 

eutrophic environments. 

 

Cyanobacterial concentration is the most important input variable in predicting 

chlorophyll concentration. In fact, cyanobacteria are a group of photosynthetic bacteria, 
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some of which fix nitrogen, living in a wide variety of moist soils and water freely or in 

a symbiotic relationship with lichen-forming plants or fungi. 

 

In addition, there is a relationship between dissolved oxygen and chlorophyll-containing 

organisms present in water, as has been noted [100]. In fact, dissolved oxygen is the 

second most significant variable in Chl-a prediction. 

 

The fourth most significant variable for predicting chlorophyll is the concentration of 

Dinophlagellata. As is well known, this is related to the photosynthetic nature of these 

organisms. Many dinoflagellates are known to be photosynthetic, but a significant 

number of them are myxotrophic, combining photosynthesis with the ingestion of prey. 

 

The fifth most significant variable for predicting chlorophyll is conductivity [101], 

while the sixth is the depth of Secchi, which is used as an indicator of water turbidity. 

The eighth most significant variable for predicting chlorophyll is nitrate concentration. 

It should be noted that nitrate concentration is more important for predicting chlorophyll 

than for predicting total phosphorus. The concentration of chlorophyll a (Chl-a) was 

used here as an indicator of algal density. Excessive nitrate concentrations in reservoirs 

and lakes can cause accelerated eutrophication and loss of dissolved oxygen. In 

addition, high nitrate concentrations can cause severe algal blooms, creating a risk to 

humans and animals. 

 

The eleventh most significant variable for predicting chlorophyll is pH. There is a direct 

relationship between pH and excessive algae growth, due to high rates of 

photosynthesis. The next important variable is the concentration of chlorophytes. The 
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Barca is a eutrophic ecosystem, so the concentration of chlorophytes contributes 

significantly to this state. Similarly, the concentration of chrysophytes is the thirteenth 

most important variable when predicting the concentration of chlorophyll in this 

reservoir. Chrysophytes are characteristically golden brown, and have two types of 

chlorophyll largely masked by the fucoxanthin pigment. They are also termed golden-

brown alga. 

 

Ammonium concentration is the fourteenth most significant variable in the prediction of 

Chl-a . This significance may be owing to those processes which occur in water when 

photosynthetic organisms increase abundantly, given the fact that green algae and plants 

have photosynthetic activity. When these organisms grow too much in water, the 

concentration of dissolved oxygen nearest the surface consequent to this photosynthetic 

activity also increases significantly. At this stage, these plants sink as they begin to die, 

and the decomposition of microbes causes dissolved oxygen to deplete and thus, dead 

zones are formed [102]. 

 

The fifteenth most significant variable when predicting Chlorophyll concentration is 

turbidity. Turbidity is mainly due to waste of human, agricultural and industrial origin 

[55] and has a great influence on eutrophication [56]. The last important input variable 

in chlorophyll concentration prediction is the concentration of hryptophytes. These are 

mostly photosynthetic and able to live in low light conditions due to a combination of 

photosynthetic pigments. Therefore, they are found relatively deeply in the water 

column and can also survive under the ice during the winter, thereby taking advantage 

of the low light that filters through. 
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Finally, this research work makes it possible to predict the first dependent variable, total 

phosphorus. The results agree with the actual experimental values. Indeed, Fig. 9 

compares total phosphorus observed with predicted values, using DE/RF–based (see 

Fig. 9(a)) and DE/SVM–based (see Fig. 9(b)) models. The wavelet kernel DE/SVM–

based model shows a better agreement in the results. 

 

Fig. 9. Predicted vs. observed total phosphorus values with: (a) DE/RF–based model 

( 2 0.92R  ) and (b) Wavelet kernel DE/SVM–based model ( 2 0.93R  ). 

 

Similarly, Fig. 10 compares total phosphorus concentration observed and predicted 

values using the DE/RF and wavelet kernel DE/SVM models. Again, the wavelet kernel 

DE/SVM–based model obtains the best results. 

 

Fig. 10. Predicted vs. observed Chorophyll concentration values with: (a) DE/RF–based 

model ( 2 0.84R  ) and (b) Wavelet kernel DE/SVM–based model ( 2 0.88R  ). 

 

4. Conclusions 

It is possible to model the eutrophication in the reservoir under study by means of the 

new model proposed in the present work. A high coefficient of determination 

 2 0.93R   was achieved as this hybrid wavelet kernel DE/SVM–based model was 

trained and then checked with the experimental dataset corresponding to the total 

phosphorus. The estimated values for this model agree with the dataset values of 

chlorophyll observed (see Fig. 9). Similarly, this mixed model for the experimental 
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dataset of the concentration of chlorophyll-a also achieved a high coefficient of 

determination ( 2 0.88R  ). The predicted results for the algal untypical production 

coincide with the dataset of observed values of chlorophyll-a concentration (see Fig. 

10). 

 

This innovative method also makes it possible to classify the input variables involved in 

the forecasting of eutrophication. Furthermore, the Secchi depth is the most influential 

factor in the total phosphorus model, whilst the concentration of cyanobacteria is the 

one most closely connected to the concentration of chlorophyll. 

The wavelet kernel DE/SVM–based regression method improved the generalization 

ability of the SVR. From our point of view, it is important to mention that this wavelet 

DE/SVM–based model is data-driven. In other words, extrapolation for other conditions 

could lead to innovation. Therefore, an effective wavelet kernel DE/SVM–based model 

could be an attractive instrument for water management. 
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Table 1  

Biological variables employed in this research with their mean, median, standard 

deviation (STD) and mean absolute deviation (MAD). 

Biological input 

variables  

Name of the 

variable 

Mean Median STD MAD 

Cyanobacteria 

(mm3/L) 

Cyanobacteria 4.092 1.100 5.513 4.361 

Diatoms (mm3/L) Diatoms 1.099 1.071 0.584 0.352 

Euglenophytes 

(mm3/L) 

Euglenophytes 0.535 0.545 0.227 0.193 

Dinophlagellata 

(mm3/L) 

Dinophlagellata 0.139 0.047 0.176 0.144 

Chrysophytes (mm3/L) Chrysophytes 0.259 0.221 0.177 0.149 

Chlorophytes (mm3/L) Chlorophytes 0.120 0.112 0.091 0.072 

Chryptophytes 

(mm3/L) 

Chryptophytes 0.985 0.994 0.369 0.316 

 



 

 

Table 2  

Physical-chemical variables employed in this research with their mean, median, 

standard deviation (STD) and mean absolute deviation (MAD). 

Physical-chemical input 

variables  

Name of the 

variable 

Mean Median STD MAD 

Water temperature (ºC) Water_temp 17.057 17.000 4.103 3.252 

Turbidity (NTU) Turbidity 5.656 4.000 4.825 3.132 

Nitrate concentration 

(mg 3NO /L) 

Nitrate 0.832 0.7100 0.407 0.299 

Ammonium 

concentration (mg/L) 

Ammonium 0.118 0.110 0.059 0.077 

Dissolved oxygen 

concentration (mg 

O2/L) 

DOC 9.020 8.800 1.785 1.412 

Conductivity (S/cm) Conductivity 268.222 275.000 42.944 30.903 

pH values pH_values 7.779 8.000 0.406 0.327 

Secchi depth (m) Secchi_depth 2.018 1.900 0.962 0.874 

 

 



 

Table 3  

Total phosphorus optimal hyperparameters obtained with the DE/SVM models. 

Kernel Optimal hyperparameters 

Linear Regularization factor 11.5576 10C   , 24.1438 10    

Quadratic Regularization factor 12.0778 10C   , 24.6164 10   , 
11.5205 10   , 13.4586 10a   , 2b   

Cubic Regularization factor 101.0000 10C   , 25.3076 10   , 
28.2509 10   , 32.5900 10a   , 3b   

Sigmoid Regularization factor 41.0000 10C   , 24.3521 10   , 
51.6669 10   , 11.9239 10a    

RBF Regularization factor 18.9996 10C   , 
63.5670 10   , 18.6992 10    

Mult. Mexican Hat  Regularization factor 14.5890 10C   , 64.1286 10   , 
1

1 3.2224 10   , 1

2 9.7516 10    

 

 

Table 4 

Chorophyll concentration optimal hyperparameters obtained with the DE/SVM models. 

Kernel Optimal hyperparameters 

Linear Regularization factor 02.4054 10C   , 22.6940 10    

Quadratic Regularization factor 41.0000 10C   , 101.0000 10   , 
36.5403 10   , 61.0000 10a   , 2b   

Cubic Regularization factor 93.6585 10C   , 22.8255 10   , 
22.5188 10   , 62.3917 10a   , 3b   

Sigmoid Regularization factor 38.8941 10C   , 22.6798 10   , 
43.0068 10   , 32.9717 10a    

RBF Regularization factor 03.2195 10C   , 
21.5907 10   , 19.9853 10    

Mult. Mexican Hat  Regularization factor 01.4790 10C   , 21.2531 10   , 
1

1 4.2358 10   , 0

2 1.2483 10    

 

 

 

 



 

Table 5 

Optimal hyperparameters obtained with the DE/RF–based model for total phosphorus. 

Parameters Values 

Number of trees 111 

Number of variables tried at each split 7 

 

 

 

Table 6 

Optimal hyperparameters obtained with the DE/RF–based model for chorophyll 

concentration. 

Parameters Values 

Number of trees 37 

Number of variables tried at each split 6 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 7 

Cross–validation coefficients of determination ( 2R ) and correlation coefficient (r), and 

root mean square error (RMSE) and mean absolute error (MAE) for the DE/SVM–

based and DE/RF–based models for total phosphorus. 

Model Coeff.of 

det.(
2R ) 

Corr. Coeff. 

(r) 

RMSE MAE 

Linear–SVM 0.8215     0.9064 0.010960 0.008467 

Quadratic–SVM 0.8976     0.9474 0.005770 0.003513 

Cubic–SVM 0.8968     0.9470 0.005861 0.004821 

Sigmoid–SVM 0.8214     0.9063 0.010970 0.008468 

RBF–SVM 0.9239     0.9612 0.003462 0.001456 

Multiscale Mexican Hat  Wavelet–

SVM 

0.9255     0.9620 0.003436 0.001448 

Random Forest 0.9155     0.9568 0.008040 0.006017 

 

 

Table 8  

Cross–validation coefficients of determination (
2R ) and correlation coefficient (r), and 

root mean square error (RMSE) and mean absolute error (MAE) for the DE/SVM–

based and DE/RF–based models for the Chorophyll concentration. 

Model Coeff.of det.(
2R ) Corr. Coeff. (r) RMSE MAE 

Linear–SVM 0.7264     0.8523 5.997 4.596 

Quadratic–SVM 0.8356     0.9141 3.512 2.156 

Cubic–SVM 0.8523     0.9232 3.106 2.131 

Sigmoid–SVM 0.7263     0.8522 5.995 4.595 

RBF–SVM 0.8803     0.9382 1.197 0.888 

Multiscale Mexican Hat  Wavelet–SVM 0.8839     0.9402 1.047 0.741 

Random Forest 0.8418     0.9175 5.123 4.007 

 



 

 

 

 

 

Table 9 

Weights for the DE/SVM–based model for the Total phosphorus. 

Variables Weights 

SecchiDepth –1.2697 

Turbidity 1.0654 

Temperature 0.8112 

Oxygen –0.8068 

Cyanobacteria 0.5719 

Chlorophyll 0.5457 

Dinophlagellata 0.4719 

Ammonium 0.3878 

Chlorophytes –0.2297 

Chrysophytes 0.1878 

Nitrate 0.0754 

pH –0.0607 

Euglenophytes 0.0410 

Conductivity 0.0364 

Chryptophytes –0.0240 

Diatoms –0.0228 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Table 10 

Weights for the DE/SVM–based model for the Chlorophyll concentration. 

Variables Weights 

Cyanobacteria 2.1035 

Oxygen –1.0707 

Phosphorus 1.0084 

Dinophlagellata 0.9634 

Conductivity 0.5363 

SecchiDepth –0.4296 

Temperature 0.4008 

Nitrate 0.3773 

Diatoms 0.3591 

Euglenophytes 0.3483 

pH –0.2760 

Chlorophytes –0.1184 

Chrysophytes –0.1071 

Ammonium –0.0817 

Turbidity 0.0718 

Chryptophytes –0.0512 

 

 



 

(a) 

 

(b) 

Fig. 1. (a) Large and (b) short scale aerial photographs of the reservoir. 

 



 

(a) 

 

 

(b) 

Fig. 2. (a) An example of a Niskin bottle; and (b) Secchi disks. 

http://upload.wikimedia.org/wikipedia/commons/6/61/Secchi_disks.svg
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(g) 

 

Fig. 3. Biological variables used for this research: (a) Cyanobacteria; (b) Diatoms; (c) 

Euglenophytes; (d) Dinophlagella; (e) Chrysophytes; (f) Clorophytes; and (g) 

Chryptophytes. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 
Fig. 4. Sketch of the SVM regression model with  insensitive tube for a one 

dimensional problem. 

 

 

Fig. 5. Multiscale Mexican Hat wavelet function. 



 

 

 

 

 

Fig. 6. Flowchart of the new hybrid DE/SVM–based model with multiscale Mexican 

Hat wavelet kernel. 

 

 



 

 

 

 

Fig. 7. Comparative significance of the predictor variables in the total phosphorus 

DE/SVM–based model. 

 

 

 

 

 

 



 

 

 

 

Fig. 8. Comparative significance of the predictor variables in the Chlorophyll 

DE/SVM–based model. 

 



 

(a) 

 

(b) 

Fig. 9. Predicted vs. observed total phosphorus values with: (a) DE/RF–based model 

( 2 0.92R  ) and (b) Wavelet kernel DE/SVM–based model ( 2 0.93R  ). 

 



 

(a) 

 

(b) 

Fig. 10. Predicted vs. observed Chorophyll concentration values with: (a) DE/RF–based 

model ( 2 0.84R  ) and (b) Wavelet kernel DE/SVM–based model ( 2 0.88R  ). 


