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Abstract. We investigate the problem of approximating a coherent
lower probability on a finite space by a 2-monotone capacity that is at
the same time as close as possible while not including additional informa-
tion. We show that this can be tackled by means of a linear program-
ming problem, and investigate the features of the set of undominated
solutions. While our approach is based on a distance proposed by Baroni
and Vicig, we also discuss a number of alternatives. Finally, we show that
our work applies to the more general problem of approximating coherent
lower previsions.
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1 Introduction

Among the many models of imprecise probabilities [1], one of the most general is
that of coherent lower previsions [2], that can be regarded as sets of expectations
with respect to a convex family of finitely additive probability measures. In
addition to its generality, it also has a clear behavioural interpretation in terms
of acceptable betting rates, as well as the epistemic interpretation in terms of
sets of probability measures. Nevertheless, coherent lower previsions (or their
restrictions to events, called coherent lower probabilities) also have a number
of drawbacks that hinder their use in practice: for instance, they have no easy
representation in terms of their extreme points in general, and they lack some
attractive mathematical properties possessed by more specific models.

One alternative that somewhat solves these issues is to work with 2-monotone
capacities, which can be easily determined by means of a finite number of ex-
treme points [3] and that still include as particular cases many of the imprecise
probability models from the literature, such as probability intervals [4], belief
functions [5] or possibility measures [6]. It is therefore interesting to determine
if we can approximate a coherent lower probability by a 2-monotone one with a
minimal loss of information. This is the problem we are tackling in this paper.



After giving some preliminary concepts in Section 2, in Section 3 we study
the problem of finding undominated outer approximations that minimize the
distance to the original model, in the sense proposed by Baroni and Vicig in
[7]. In Section 4, we focus on outer approximations by means of some particular
subfamilies of 2-monotone capacities and prove that this problem has a unique
solution. A comparison with some alternative approches is given in Section 5.
Finally, in Section 6 we show that our results allow us to solve the problem of
outer approximating coherent lower previsions. Some additional comments are
provided in Section 7. Due to the space limitations, proofs of the results have
been omitted.

2 Preliminary concepts

Let X be a finite space with cardinality n, and consider a lower probability
P : P(X )→ [0, 1]. Its associated credal set is given by:

M(P ) = {P probability | P (A) ≥ P (A) ∀A ⊆ X},

Under an epistemic interpretation of uncertainty, we may regard P as a model
for the imprecise knowledge of a probability measure P , and then M(P ) would
be the set of candidates for this unknown probability measure. The notion of
coherence means that the bounds P gives for the probabilities of the different
events are tight:

Definition 1. [2] A lower probability P : P(X )→ [0, 1] is called coherent when
M(P ) 6= ∅ and P (A) = min{P (A) : P ∈M(P )} for every A ⊆ X .

The conjugate of a coherent lower probability, given by P (A) = 1 − P (Ac) for
every A ⊆ X , is called coherent upper probability.

Coherent lower probabilities include as particular cases most of the models
of non-additive measures in the literature; they correspond moreover to balanced
games within game theory [8]. One particular case of coherent lower probabilities
are the 2-monotone capacities.

Definition 2. [9] A coherent lower probability P : P(X ) → [0, 1] is called 2-
monotone if for every A,B ⊆ X it satisfies:

P (A ∪B) + P (A ∩B) ≥ P (A) + P (B). (1)

2-monotone capacities are sometimes called convex in the literature. They pos-
sess a number of interesting properties that are not always shared with coherent
lower probabilities: the extreme points of their credal set can be easily deter-
mined using the permutations of the possibility space [3]; moreover, they have
a unique extension as an expectation operator that preserves 2-monotonicity:
their Choquet integral [10].

For all these reasons, it becomes interesting in practice to approximate a
coherent lower probability P by a 2-monotone capacity Q that at the same time



(a) does not introduce new information; and (b) is as close as possible to the
original model.

The first constraint is modelled by requiring that the credal set determined
by Q includes that of P , or in other words, that Q(E) ≤ P (E) for every E ⊆ X .
In that case, we shall say that Q is an outer approximation of P .

With respect to the second, one preliminary idea would be to use the partial
order associated with the credal set inclusion and to requireQ to be undominated,

in the sense that there is no other 2-monotone capacity Q′ such that M(P ) ⊆
M(Q′) (M(Q). However, this requirement alone does not determine a unique
solution, nor does it provide us with a tool to determine the 2-monotone outer
approximations, either.

3 Approximations by linear programming

In order to overcome the above issues, in this paper we shall consider the outer
approximations Q of the coherent lower probability P that minimize the distance
proposed by Baroni and Vicig in [7], given by

d(P ,Q) :=
∑
E⊆X

(P (E)−Q(E)). (2)

If we interpret P (E) − Q(E) as the additional imprecision introduced on E
when replacing P (E) with Q(E), then d(P ,Q) can be understood as the total
imprecision added by the outer approximation Q.

To solve the minimization problem, we determine Q through its Möbius in-
verse mQ by means of the formula Q(E) =

∑
B⊆EmQ(B) for every E ⊆ X and

consider thus the following linear programming problem:

min d(P ,Q) (LP-2monot)

subject to:∑
E⊆X

mQ(E) = 1, mQ(∅) = 0. (LP-2monot.1)

∑
{xi,xj}⊆A⊆E

mQ(A) ≥ 0, ∀E ⊆ X , ∀xi, xj ∈ E, xi 6= xj . (LP-2monot.2)

mQ({xi}) ≥ 0, ∀xi ∈ X . (LP-2monot.3)∑
A⊆E

mQ(A) ≤ P (E) ∀E 6= ∅,X . (LP-2monot.4)

In fact, (LP-2monot.2) characterizes 2-monotonicity of Q via its Möbius in-
verse mQ [11], while (LP-2monot.1) and (LP-2monot.3) ensure that Q is also a

coherent lower probability. Finally, (LP-2monot.4) means that Q outer approxi-
mates P . It is not difficult to check that the number of constraints in this linear
programming problem is 2n + n+ 2n−2

(
n
2

)
.



The feasible region of this linear programming problem is non-empty: it suf-
fices to take into account that the vacuous lower probability, given by Q

v
(E) = 0

for every E that is not equal to X and Q
v
(X ) = 1, is a 2-monotone outer ap-

proximation of any coherent lower probability.
Moreover, the linear programming problem above has an optimal solution

by means of Weierstrass’ theorem [12]. To see this, note that (i) d(P ,Q) =∑
E⊆X (P (E) −

∑
B⊆EmQ(B)) is continuous on the variables mQ(B); (ii) the

feasible region is bounded, since by [13, Theorem 1] the values of mQ are bounded

when Q is 2-monotone; and (iii) it is closed, being a polyhedral set in R2n .
Given this, our first result tells us that any solution of the linear programming

problem is undominated:

Proposition 1. Let P be a coherent lower probability, and let Q be an opti-
mal solution of the linear programming problem (LP-2monot). Then, Q is an
undominated outer approximation of P .

Not surprisingly, (LP-2monot) may not have a unique solution:

Example 1. Consider X = {x1, x2, x3, x4} and let P be the coherent lower
probability that is the lower envelope of the probability mass functions P1 =
(0.5, 0.5, 0, 0), P2 = (0, 0, 0.5, 0.5). It is given by:

P (A) =


0 if |A| = 1 or A = {x1, x2}, {x3, x4}
1 if A = X
0.5 otherwise.

To see that P is not 2-monotone, note that, given A = {x1, x3} and B = {x2, x3},

P (A ∪B) + P (A ∩B) = 0.5 < 1 = P (A) + P (B).

To see that (LP-2monot) may have more than one solution, note that, if Q is a 2-
monotone outer approximation of P , it must satisfy Q({x1, x3})+Q({x2, x3}) ≤
Q({x1, x2, x3})+Q({x3}) ≤ 0.5, whence P ({x1, x3})+P ({x2, x3})−Q({x1, x3})−
Q({x2, x3}) ≥ 0.5; similarly, we obtain that P ({x1, x4})+P ({x2, x4})−Q({x1, x4})−
Q({x2, x4}) ≥ 0.5, and therefore d(P ,Q) ≥ 1 for any 2-monotone outer approx-
imation of P . This distance is attained by the 2-monotone capacities Q

1
, Q

2
given by

Q
1
(A) =


0 if |A| = 1 or A = {x1, x2}, {x3, x4}
0.5 if |A| = 3

1 if A = X
0.25 otherwise.

and

Q
2
(A) =



0 if |A| = 1 or A = {x1, x2}, {x3, x4}
0.5 if |A| = 3

1 if A = X
0.2 if A = {x1, x4}, {x2, x3}
0.3 otherwise.



Their 2-monotonicity can easily be verified by means of Eq. (1). �

Obviously, if our initial model P is not 2-monotone, any undominated 2-
monotone capacity that outer approximates P will not agree with Q on some
event A. Interestingly, it can be checked that both models always agree on sin-
gletons:

Proposition 2. Let P be a coherent lower probability. If Q is an undominated
2-monotone capacity that outer approximates P , then Q({x}) = P ({x}) for every
x ∈ X .

As a consequence, both of them induce the same order on X . It can be checked
that this property does not extend to some particular subfamilies of 2-monotone
capacities, such as belief functions.

4 Particular cases

In this section, we investigate the outer approximations of a coherent lower prob-
ability in some subfamilies of 2-monotone capacities associated with distortion
models. With the term distortion model we refer to a model where an initial
probability measure P0 is modified in some sense.

4.1 Pari-mutuel models

We begin by considering the Pari Mutuel Model [2,14,15] (PMM, for short). This
is a betting scheme originated in horse racing. It is determined by two elements:
a probability measure P0 and a distortion factor δ > 0. For every event A of
P(X ), P0(A) is interpreted as a fair prize for a bet on A, and δ > 0 denotes the
loading of the house. They determine a coherent lower probability by:

P (A) = max{0, (1 + δ)P0(A)− δ} ∀A ⊆ X . (3)

The lower probability associated with a PMM is 2-monotone, as shown for
instance in [15, Section 2]. Moreover, in [14] it is proven that PMMs correspond
to particular instances of probability intervals [4].

Our next result gives the unique undominated outer approximation of a co-
herent lower probability in terms of pari mutuel models.

Proposition 3. Let P be a coherent lower probability with conjugate upper prob-
ability P . Define the constant value δ > 0 and the probability P0 by:

δ =

n∑
i=1

P ({xi})− 1, P0({xi}) =
P ({xi})

1 + δ
∀i = 1, . . . , n.

Denote by Q the coherent lower probability associated with the PMM (P0, δ) by
means of Eq. (3). Then, Q is the unique undominated pari mutuel model that
outer approximates P .



4.2 ε-contamination models

Another distortion model is the ε-contamination model, also called linear-vacuous
mixture in [2]. Given a probability measure P0 and ε ∈ (0, 1), they determine
the coherent lower probability

P (A) =

{
(1− ε)P0(A) if A 6= X .
1 if A = X .

(4)

Equivalently, P = (1 − ε)P0 + εQ
v
. The lower probability induced by such a

model is 2-monotone. This follows from the fact that it satisfies an even stronger
property: complete monotonicity, as can be deduced for instance from [10, The-
orems 5 and 11].

As with the PMM, we prove that there is only one undominated outer ap-
proximation for a coherent lower probability in terms of ε-contamination models.

Proposition 4. Let P be a coherent lower probability satisfying the condition∑n
j=1 P ({xj}) > 0. Define ε ∈ (0, 1) and the probability P0 by:

ε = 1−
n∑
j=1

P ({xj}), P0({xi}) =
P ({xi})∑n
j=1 P ({xj})

∀i = 1, . . . , n.

Denote by P ε the ε-contamination model they determine by means of Eq. (4).
Then, P ε is the unique undominated ε-contamination model that outer approxi-
mates P .

Note that the assumption
∑n
j=1 P ({xj}) > 0 in this proposition is necessary

for the existence of some outer approximation: if P ({xj}) = 0 for every xj ∈
X , any ε-contamination model that outer approximates P ε should also satisfy
P ε({xj}) = 0 for every xj ∈ X , whence

P ε({xj}) = (1− ε)P0({xj}) = 0 ∀xj ∈ X ,

where P0 is the precise probability in the ε-contamination model. However,
since ε ∈ (0, 1), it follows that P0({xj}) = 0 for every xj ∈ X and P0(X ) =∑n
j=1 P0({xj}) = 0, a contradiction.

5 Comparison with other approaches

In this section, we briefly explore other alternatives to the linear programming
approach we have considered so far, in order to justify better our choice.

5.1 Quadratic problems

As Example 1 shows, the linear programming problem (LP-2monot) may not
have a unique solution. One way to overcome this issue is to consider, instead of
the distance given by Eq. (2), the quadratic distance given by:

d̃(P ,Q) :=
∑
E⊆X

(P (E)−Q(E))2.



It is not difficult to prove that, for any coherent lower probability P : P(X ) →
[0, 1], there is a unique 2-monotone capacity Q ≤ P that minimizes d̃(P ,Q).
From this it follows that Q is therefore undominated in the family of outer
approximations of P by 2-monotone capacities. Note this outer approximation
need not be one of the solutions of the linear programming problem (LP-2monot).

In spite of this positive result, while in our view the distance of Baroni
and Vicig may be interpreted as the additional imprecision introduced by the
outer approximation, a similar interpretation of the quadratic distance is not
immediate; further, summing squares of differences in [0, 1] the solution of the
quadratic problem may seem closer to the original model than it actually is.

5.2 The total variation distance

Another possibility would be to consider an extension of the total variation
distance [16, Chapter 4.1] to the imprecise case. Recall that given two probability
measures P1 and P2, their total variation is defined as

||P1 − P2|| = max
E⊆X

|P1(E)− P2(E)|.

This definition can be equivalently expressed as:

||P1 − P2|| =
1

2

∑
x∈X
|P1({x})− P2({x})|.

In an imprecise framework, given two coherent lower probabilities P 1, P 2, we can
extend the definition above in a number of (not necessarily equivalent) ways:

d1(P 1, P 2) = max
E⊆X

|P 1(E)− P 2(E)|,

d2(P 1, P 2) =
1

2

∑
x∈X
|P 1({x})− P 2({x})|,

d3(P 1, P 2) = sup
P1∈M(P 1),P2∈M(P 2)

||P1 − P2||,

and we refer to [1, Section 11.4] for some comments on d1 in the context of
imprecise Markov chains.

However, all these extensions may lead to outer approximations that are
dominated, and therefore cannot be considered adequate for our problem, as the
next examples show.



Example 2. Consider a four element space and the lower probability P defined
in the following table:

A P (A) Q′
1
(A) Q′

2
(A)

{x1} 0.1 0.1 0.1
{x2} 0 0 0
{x3} 0 0 0
{x4} 0.1 0.1 0.1
{x1, x2} 0.4 0.3 0.3
{x1, x3} 0.4 0.3 0.3
{x1, x4} 0.4 0.4 0.3
{x2, x3} 0.2 0.2 0.2
{x2, x4} 0.4 0.3 0.3
{x3, x4} 0.4 0.3 0.3
{x1, x2, x3} 0.5 0.5 0.5
{x1, x2, x4} 0.6 0.6 0.6
{x1, x3, x4} 0.6 0.6 0.6
{x2, x3, x4} 0.5 0.5 0.5

X 1 1 1

Note that P is a coherent lower probability because it is the lower envelope of
the probability measures with mass functions

(0.4, 0, 0.2, 0.4), (0.3, 0.1, 0.1, 0.5), (0.3, 0.3, 0.3, 0.1), (0.1, 0.3, 0.3, 0.3)

(0.4, 0.2, 0, 0.4), (0.2, 0.2, 0.4, 0.2), (0.2, 0.4, 0.2, 0.2), (0.5, 0.1, 0.1, 0.3).

To see that it is not 2-monotone, note that, taking A = {x1, x2} andB = {x1, x3}
it holds that:

P ({x1, x2, x3}) + P ({x1}) = 0.6 < 0.8 = P ({x1, x2}) + P ({x1, x3}).

Therefore, any outer approximation Q in the class of 2-monotone lower proba-
bilities must satisfy:

Q({x1, x2}) +Q({x1, x3}) ≤ P ({x1, x2}) + P ({x1, x3})− 0.2.

Hence, d1(P ,Q) ≥ 0.1. Also, the previous inequality is indeed an equality, which

is attained, for example, by the 2-monotone capacities Q′
1
, Q′

2
in the table above.

Thus, both Q′
1
, Q′

2
are optimal outer approximations with respect to the distance

d1, even if Q′
2

is dominated by Q′
1
. �

Example 3. Consider again the coherent lower probability from Example 1. Any
2-monotone outer approximation Q of P , undominated or not, shall satisfy
Q({xj}) = 0 for every j, and as a consequence d2(P ,Q) = 0. As for d3,
since ||P1 − P2|| = 1 for the probability measures P1 = (0.5, 0.5, 0, 0) and
P2 = (0, 0, 0.5, 0.5) from M(P ), and by definition this is the maximum value
of the total variation, we deduce that d3(P1, P2) = 1. Because M(P ) ⊂ M(Q),
also d3(P ,Q) = 1 for any 2-monotone outer approximation Q of P , even for the
‘most dominated’ vacuous lower probability Q

v
. Thus, d2, d3 do not rule out the

undominated solutions, either. �



5.3 The Weber set

We have already mentioned that one of the advantages of 2-monotone capaci-
ties is the existence of a simple procedure to obtain the extreme points of the
associated credal set. Let P be a 2-monotone capacity, and for any permutation
σ of {1, . . . , n}, define the precise probability Pσ by means of the constraints

Pσ({xσ(1), . . . , xσ(k)}) = P ({xσ(1), . . . , xσ(k)}) (5)

for k = 2, . . . , n. It was first proven by Shapley [3] that, if Sn denotes the set
of permutations of {1, . . . , n}, it holds that ext(M(P )) = {Pσ | σ ∈ Sn}. In
general, even when P is not 2-monotone but only coherent, we can define the
set of probabilities:

W (P ) = {Pσ | σ ∈ Sn}, (6)

where Pσ is defined as in Eq. (5). This set is called the Weber set of P , and it
holds that [17] P is 2-monotone if and only if ext(M(P )) = W (P ). Otherwise,
M(P ) is a proper subset of conv(W (P )). This implies that the lower envelope
of conv(W (P )) is a coherent lower probability that outer approximates P .

In fact, in the case of cardinality four, the lower envelope of conv(W (P )) is
indeed 2-monotone:

Proposition 5. Let P : P(X ) → [0, 1] be a coherent lower probability, where
|X | ≤ 4, and denote by Q the coherent lower probability defined by Q(E) =
min{P (E) | P ∈ conv(W (P ))} for every E ⊆ X , where W (P ) is given by
Eq. (6). Then, Q is a 2-monotone outer approximation of P .

It can be checked that the lower envelope of the Weber set is not necessarily
2-monotone for cardinalities greater than four. Moreover, even in the case of
cardinality four the lower envelope of the Weber set is not in general an undom-
inated outer approximation:

Example 4. Consider a four-element space X = {x1, x2, x3, x4}, and the lower
probability P given in the following table:

A P (A) Q(A) Q′(A)

{x1} 0.1 0.1 0.1
{x2} 0 0 0
{x3} 0 0 0
{x4} 0.3 0.3 0.3
{x1, x2} 0.1 0.1 0.1
{x1, x3} 0.3 0.2 0.3
{x1, x4} 0.6 0.5 0.5
{x2, x3} 0.3 0.2 0.2
{x2, x4} 0.4 0.3 0.4
{x3, x4} 0.4 0.3 0.4
{x1, x2, x3} 0.5 0.5 0.5
{x1, x2, x4} 0.6 0.6 0.6
{x1, x3, x4} 0.7 0.7 0.7
{x2, x3, x4} 0.6 0.6 0.6

X 1 1 1



If we compute Q = min{P | P ∈ conv(W (P ))}, we obtain the values depicted
in the table above. However, this 2-monotone capacity is dominated by the 2-
monotone outer approximation Q′ given in the same table. �

6 Approximations of coherent lower previsions

The problem considered in this paper could be generalized from coherent lower
probabilities to the richer framework of coherent lower previsions [2]: if we de-
note by L(X ) the set of bounded real-valued functions on X , a coherent lower
prevision is a function P : L(X )→ R that satisfies

• P (f) ≥ inf f
• P (λf) = λP (f)
• P (f + g) ≥ P (f) + P (g)

for every f, g ∈ L(X ) and every λ > 0. Equivalently, P is coherent when it is
the lower envelope of a set of expectation operators with respect to a family of
probability measures on X .

The notion of 2-monotonicity has also been extended to lower previsions: P
is a 2-monotone lower prevision if and only if

P (f ∧ g) + P (f ∨ g) ≥ P (f) + P (g) ∀f, g ∈ L(X ),

where ∧ and ∨ denote the pointwise minimum and maximum. In general, a
coherent lower probability P on P(X ) may have more than one extension as a
coherent lower prevision on L(X ); however, if P is 2-monotone, then it has a
unique extension to L(X ) as a 2-monotone lower prevision: its Choquet integral
[10], that is also its least-committal or natural extension [2].

Similarly to what we have done in the rest of the paper, we could study
the problem of outer approximating a coherent lower prevision by a 2-monotone
one. Interestingly, this problem turns out to be equivalent to the one we are
considering in this paper, as our next result shows:

Theorem 1. Let P : L(X ) → R be a coherent lower prevision, and let P ′ be
its restriction to events. Then, there is a one-to-one correspondence between the
sets

{Q : L(X )→ R 2-monotone undominated outer approximation of P}

and

{Q′ : P(X )→ [0, 1] 2-monotone undominated outer approx. of P ′}.

The key in this result is that if we want to outer approximate a coherent lower
prevision, we can simply consider its restriction to events, outer approximate it
and then apply the procedure of natural extension in [2]. Figure 1 illustrates the
procedure.

Therefore, it suffices to focus on outer approximations of coherent lower prob-
abilities instead of lower previsions.



P ′ coherent
lower probability

Q′ 2-monotone capacity

undominated outer
approximation

P coherent
lower prevision

Q 2-monotone prevision

undominated outer
approximation

P ′(A) = P (IA) Q′(A) = Q(IA)
Q(f) = (C)

∫
fdQ

′

Fig. 1. Correspondence between the 2-monotone outer approximations.

7 Conclusions

Our results allow us to conclude that we can find undominated outer approx-
imations of a coherent lower probability that are at the same time as close as
possible, in the sense of Baroni and Vicig, by means of a suitable linear program-
ming problem. Although the approximation is not unique in general, it is so if
we focus on some particular subfamilies of 2-monotone capacities, such as those
associated with distortion models. Moreover, the problem can be immediately
applied to the approximation of coherent lower previsions by 2-monotone ones.

While in our view the distance we have considered is the most meaningful
for the problem at hand and the results in Section 5 support this somewhat, we
should also make a more thorough comparison with other distances from the lit-
erature, and also with the related study made in [18] about outer approximations
with possibility measures.

As other future lines of research, we would like to study in more detail the loss
of information entailed by the outer approximations, as well as the elicitation
among them when there is more than one solution. In addition, we would also
like to investigate more deeply the features of the solutions obtained by means
of the quadratic approach. Finally, it may be interesting to consider the problem
of the inner approximations of a coherent lower probability, even if they entail
removing, perhaps unjustifiedly, some imprecision from our model.
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functions. Discrete Applied Mathematics 186 (2015) 7–12
14. Montes, I., Miranda, E., Destercke, S.: A study of the Pari-Mutuel Model from the

point of view of imprecise probabilities. In: Proceedings of the Tenth International
Symposium on Imprecise Probability: Theories and Applications (ISIPTA’2017).
(2017)

15. Pelessoni, R., Vicig, P., Zaffalon, M.: Inference and risk measurement with the
pari-mutuel model. International Journal of Approximate Reasoning 51 (2010)
1145–1158

16. Levin, D.A., Peres, Y., Wilmer, E.: Markov Chains and Mixing Times. American
Mathematical Society (2009)

17. Ichiishi, T.: Supermodularity: Applications to convex games and to the greedy
algorithm for LP. Journal of Economic Theory 25 (1981) 283–286

18. Dubois, D., Prade, H.: Consonant approximations of belief functions. International
Journal of Approximate Reasoning 4(5-6) (1990) 419–449


