
International Journal of Computational Intelligence Systems
Vol. 12(2), 2019, pp. 833–841

DOI: https://doi.org/10.2991/ijcis.d.190724.001; ISSN: 1875-6891; eISSN: 1875-6883
https://www.atlantis-press.com/journals/ijcis/

An Algorithmic Approach for Computing Unions and
Intersections Between Fuzzy Multisets

Ángel Riesgo1, Pedro Alonso2, Irene Díaz3, Susana Montes1,*

1Department of Statistics and O.R., University of Oviedo, Federico García Lorca, Oviedo, Asturias 33007, Spain
2Department of Mathematics, University of Oviedo, Federico García Lorca, Oviedo, Asturias 33007, Spain
3Computer Science Department, University of Oviedo, Jesús Arias de Velasco, Oviedo, Asturias 33005, Spain

ART I C L E I N FO
Article History

Received 05 Oct 2018
Accepted 20 Jul 2019

Keywords

Fuzzy sets
Fuzzy multisets
Aggregate union
Aggregate intersection

ABSTRACT
Fuzzymultisets represent a particularly challenging generalization of the concept of fuzzy sets. Themembership degrees of fuzzy
multisets are given by multisets in [0, 1] rather than single values. Mathematically, they can be also seen as a generalization
of the hesitant fuzzy sets. But in this general setting, the information about repetition is not lost with fuzzy multisets; and so,
the opinions given by the experts are more reliably accounted for. The definitions of the complement, union, and intersection
operations for these sets and their relation with other extensions of fuzzy sets, however, is not straightforward. Aggregate unions
and intersections have been shown to be equivalent to the standard definitions of union and intersection for the typical hesitant
fuzzy sets. But computing them is not simple because the definitions of the aggregate operations as multiset unions of sequences
based on permutations can potentially result in a huge number of operations. In this paper, we propose a new formulation for
the aggregate union and intersection of fuzzy multisets that is computationally less intensive, thereby providing two algorithms
amenable to computer-based calculations.

© 2019 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

The theory of fuzzy sets, originally introduced by L. A. Zadeh [1],
has been amply studied over the last few decades. Alongside the
original formulation, there have appeared a number of extensions
of the theory where the role of numbers in the real unit interval
[0, 1] as membership values is taken over by more sophisticated
mathematical objects such as intervals (interval-based fuzzy sets
[2]) and functions (type-2 fuzzy sets [2]). Most of these general-
izations seek to account for the imprecision in determining mem-
bership by representing a tolerance around an ideal central value.
But there are also some generalizations that rely on a set of pos-
sible values, even widely differing ones, as the fuzzy membership
of an element. The fuzzy multisets [3] and the hesitant fuzzy sets
[4] are two such approaches. Both are very similar in terms of their
semantics, a fact already acknowledged in the original article where
the hesitant fuzzy sets were introduced [4]. The difference between
these two concepts is that hesitant fuzzy sets use crisp sets as their
membership grades whereas fuzzy multisets rely on crisp multi-
sets for this. A crisp multiset is an extension of the idea of a set
where elements may appear repeated. So, a crisp set like {0.1, 0.2}
is a valid membership grade for a hesitant fuzzy set and a crisp
multiset like ⟨0.1, 0.2, 0.2⟩ can be a membership grade for a fuzzy

*Corresponding author. E-mail: montes@uniovi.es

multiset. Both fuzzymultisets and hesitant fuzzy sets have garnered
widespread recognition and further extensions of these concepts are
being actively researched at present [5,6].

But the basic operations of intersection and union were defined
differently for either type of fuzzy sets and the two theories are
consequently different. In a recent article [7], we have argued that
by using definitions of intersection and union for the fuzzy multi-
sets that differ from the conventional ones due to S. Miyamoto [3],
the gap between the two theories can be bridged. We have called
these operations the aggregate intersection and aggregate union and
they are also suitable as definitions formultiset-based hesitant fuzzy
sets, which were already brought up in the original article about
hesitant fuzzy sets, where the idea is discussed. But all the subse-
quent research in hesitant fuzzy sets, which has been summarized
in detail by Z. Xu in a recent book [8], has focused on the set-based
concept. Oddly enough, the multiset extension has mostly been
neglected in the related literature. Nevertheless, the formal defini-
tion of the aggregate intersection and union does not lead to an
optimal workable algorithm as it depends on a cumbersome oper-
ation. In this operation, all the possible permutations of ordered
sequences of membership values for each one of the two operands
must be joined through amultiset-style union. The number of steps
involved explodes with large cardinalities as such an algorithm has
a time complexity 𝒪 (n! ). In this paper, we work out two compu-
tationally simpler algorithms, with time complexity 𝒪 (n), for the
aggregate intersection and union.

Pdf_Folio:833

https://doi.org/10.2991/ijcis.d.190724.001
https://www.atlantis-press.com/journals/ijcis/
http://creativecommons.org/licenses/by-nc/4.0/


834 Á. Riesgo et al. / International Journal of Computational Intelligence Systems 12(2) 833–841

This paper is organized as follows: Section 2 introduces the
fundamental results of the fuzzy multisets and hesitant fuzzy sets,
including the aggregate intersection and unionwhich generalize the
hesitant operations for the fuzzy multisets. In Section 3, explicit
formulas for the aggregate intersection and union are given, fol-
lowed by an analysis of an important particular case in Section 4.
In Section 5, we present the algorithmic flowcharts for both opera-
tions. In Section 6, we check that the improved algorithmic perfor-
mance matches our expectations. Finally, in Section 7, we sum up
the conclusions of our research.

2. PRELIMINARY CONCEPTS

2.1. Fuzzy Sets and Multisets

In this paper, we will assume that the basic definitions and results
of ordinary fuzzy sets are known and understood by the reader.
Given a reference set (the universe) X, an ordinary fuzzy set is a
function A ∶ X → [0, 1] and the family of all the ordinary fuzzy
sets over X,ℱ (X), is called the ordinary fuzzy power set over X [2].
For an element x ∈ X, its image byA is called its membership value.

Given a fuzzy set A over a finite universe X, its cardinality |A|
is the real number defined as |A| ∶= ∑

x∈X
A (x) and its support,

Supp (A), is the set {x ∈ X|A (x) > 0}. Inclusion of fuzzy sets is
defined as a partial order relation ⊆ such that if A and B are fuzzy
sets, then A ⊆ B when A (x) ⩽ B (x) for all x ∈ X. Given two
fuzzy sets A and B, their standard intersection A ∩ B is the fuzzy
set defined by (A ∩ B) (x) = min {A (x) ,B (x)} and their standard
unionA∪B is the fuzzy set defined by (A∪B)(x) = max {A(x),B(x)}.
Similarly, we assume a basic knowledge of multisets. Given a refer-
ence setU, amultiset is a functionM ∶ U → ℕ (including zero) and
the family of all the multisets over U, ℕU, is called the power mul-
tiset overU. For an element u ∈ U, its image byM is called its mul-
tiplicity value.

Given a multiset M over a finite universe U, its cardinality |M| is
the natural number defined as |M| ∶= ∑

u∈U
M (u) and its support,

Supp (M), is the set {u ∈ U|M (u) > 0}. Inclusion of multisets is
defined as a partial order relation ⊆ such that if M and N are mul-
tisets, then M ⊆ N when M (u) ⩽ N (u) for all u ∈ U. Given two
multisetsM and N, their intersectionM ∩N is the multiset defined
by (M ∩ N) (u) = min {M (u) ,N (u)} and their union M ∪ N is the
multiset defined by (M ∪ N) (u) = max {M (u) ,N (u)} [3,9].
In terms of notational convention, just as a set S can be repre-
sented by listing its members S = {a, b, …}, a set-like notation
M = ⟨a, b, b, …⟩, with the elements repeated as many times as their
multiplicity value, is commonly used when the multiset M over a
universe U = {a, b, …} has a finite support for any u ∈ U. In order
to avoid confusion with sets, we will use angular brackets ⟨⟩ for
multisets.

2.2. Fuzzy Multisets

The two concepts of fuzzy sets and multisets can be combined into
the concept of a fuzzy multiset as a function X → ℕ[0,1], where the
membership values are multisets over [0, 1] rather than single real

numbers [3]. The family of all the fuzzy multisets over X, ℱℳ (X),
is called the fuzzy power multiset over X.

The first definitions of intersection and union were given by R. R.
Yager [10], but they did not work as an extension of the fuzzy set
operations. This was corrected by the definitions later proposed by
S. Miyamoto [3] and which have become the standard ones. In Sub-
section 2.6 below, we review these definitions.

2.3. Hesitant Fuzzy Sets

Hesitant fuzzy sets were proposed by V. Torra in [4] as yet another
generalization of the ordinary fuzzy sets [4]. A hesitant fuzzy set Ã
is a function Ã ∶ X → 𝒫 ([0, 1]), where𝒫 ([0, 1]) is the family of all
the subsets of the real closed interval [0, 1] [4]. For an element x ∈
X, its image by Ã is called its hesitant element [8]. The family of
all the hesitant fuzzy sets over X,ℱH (X), is called the hesitant fuzzy
power set over X. Those hesitant fuzzy sets such that their hesitant
elements are all finite are referred to as typical hesitant fuzzy sets
[4] and are the only ones that we will discuss.

Finding good definitions for the operations on hesitant fuzzy sets
is tricky. They should be defined in such a way that they general-
ize those of the ordinary fuzzy sets and also those of other fuzzy
set extensions, such as the interval-valued fuzzy sets, that appear as
special cases within the hesitant framework. In Subsection 2.7, we
sum up the definitions for the hesitant intersection and union.

2.4. Difference Between Fuzzy Multisets
and Hesitant Fuzzy Sets

Based on their definitions as functions, fuzzymultisets and hesitant
fuzzy sets differ in that the former support repeated membership
values. This is a limitation of hesitant fuzzy sets. In a common sit-
uation, the values come from a fixed number of criteria applied to
each element of the universe. For example, if three criteria are used,
the membership of an element may be evaluated as either a hesi-
tant element {0.1, 0.2, 0.3} or amultiset ⟨0.1, 0.2, 0.3⟩, with the same
information content. But if two of the criteria lead to the same value,
a multiset ⟨0.1, 0.2, 0.2⟩ would be matched by a hesitant element
{0.1, 0.2}, where the information that the second value was twice as
popular is lost. This limitation was mentioned in the original arti-
cle about hesitant fuzzy sets [4], and the alternative multiset-based
hesitant fuzzy sets were also proposed.

Butwhat is the difference betweenYager andMiyamoto’s fuzzymul-
tisets and Torra’s multiset-based hesitant fuzzy sets? If 𝒫 ([0, 1])
is replaced with ℕ[0,1] then the definition becomes the same. The
difference lies in the fact that both theories have evolved using dif-
ferent definitions for some of the common operations. Most impor-
tantly, the intersection and union as conventionally defined for
fuzzy multisets are not equivalent to the accepted definitions for
hesitant fuzzy sets. It is this difference in the operations that sets
the two theories apart. In our recent paper [7], we introduced some
general definitions of intersection and union where Miyamoto’s
definitions appear as particular cases, as well as the additional
multiset-based definitions that generalize the hesitant ones, which
are the focus of this paper. In Subsection 2.7 below, we review these
definitions.

Pdf_Folio:834



Á. Riesgo et al. / International Journal of Computational Intelligence Systems 12(2) 833–841 835

2.5. Sequences

Another basic concept that we will need is that of a finite sequence
of length n (∈ ℕ) or n-tuple, which for a universe U can be defined
as an element of Un. The elements in a set or a multiset of cardi-
nality n can always be arranged as a sequence. Given a finite subset
S ⊆ U or a multiset M ∈ ℕU, a function s ∶ {S ⊆ U||S| = n} → Un

or s ∶ {M ∈ ℕU||M| = n} → Un is called an ordering strategy, with
the family of all such functions being denoted by 𝒪𝒮 (S) and
𝒪𝒮 (M), respectively. The number of possible ordering strategies is
the number of permutations of n elements (with repetition in the
multiset case) and, when U is totally ordered, two common sort-
ing strategies are the ascending sort s↑ and the descending sort s↓,
where the elements are sorted in ascending or descending order,
respectively. We will use parentheses () for sequences; for example,
s↓ ({1, 2, 3}) = (3, 2, 1), s↓ (⟨1, 2, 2⟩) = (2, 2, 1).

2.6. Miyamoto’s Intersection and Union for
Fuzzy Multisets

Defining binary operations between fuzzy multisets is simpler
when the membership values have the same cardinality. To handle
this case, we will define subfamilies of the fuzzymultisets where the
cardinality is fixed for each member of the universe X.

Definition 1. LetX be a universe. Given a functionm ∶ X → ℕ, an
m-regular fuzzy multiset Â over the universe X is a fuzzy multiset
such that, for each element of the universe x ∈ X, |Â (x) | = m (x).
We call m a cardinality map. The family of all the m-regular fuzzy
multisets over X, ℱℳ |⋅|=m (X), is called the m-regular fuzzy power
multiset [7].

Miyamoto’s definitions of intersection and union are based on oper-
ating in a coordinate wise fashion on the ordered sequences that
result from picking the descending sort s↓ as the ordering strategy.

Definition 2. Let X be a universe and let m ∶ X → ℕ be a cardi-
nality map. Given two m-regular fuzzy multisets Â and B̂, for each
x ∈ X, s↓

(
Â (x)

)
and s↓

(
B̂ (x)

)
are the two ordered sequences of the

crisp multisets Â (x) and B̂ (x) with the values sorted in descending
order. For each element x ∈ X, two new ordered sequences 𝜇Â∩B̂ (x)
and 𝜇Â∪B̂ (x) can be built with the pairwise minima and maxima,
respectively (with i ∈ {1, … ,m (x)}) [3]:(

𝜇Â∩B̂ (x)
)
i
∶= min {

(
s↓
(
Â (x)

))
i
,
(
s↓
(
B̂ (x)

))
i
}(

𝜇Â∪B̂ (x)
)
i
∶= max {

(
s↓
(
Â (x)

))
i
,
(
s↓
(
B̂ (x)

))
i
} .

The m-regular intersection (or Miyamoto’s intersection) Â ∩ B̂ and
the m-regular union (Miyamoto’s union) Â ∪ B̂ are the m-regular
fuzzy multisets defined by(

Â ∩ B̂
)
(x) (t) = ||{i1⩽i⩽m(x),

(
𝜇Â∩B̂ (x)

)
i
= t}||(

Â ∪ B̂
)
(x) (t) = ||{i1⩽i⩽m(x),

(
𝜇Â∪B̂ (x)

)
i
= t}|| .

When the two fuzzy multisets Â and B̂ have different cardinali-
ties for an element x ∈ X, an additional step that equalizes the
length of the ordered sequences to the maximum of the two will be
required in order to apply Definition 2. We will refer to that opera-
tion as regularization [7]. The most common regularization strate-
gies consist in increasing the count of either the maximum or the

minimum membership value, which can be called the optimistic
and pessimistic strategies [8,11]. Note that the regularization step
involves the ordered sequences used in the calculation and not the
hesitant elements themselves which, being crisp sets, cannot have
repeated elements. Adding repeated values is the only option that
preserves the underlying hesitant element for the ordered sequence
(unlike the alternative of adding average values) and the pessimistic
and optimistic approaches behave like a lower and an upper bound
for all the possible repetitions of values. This mechanism extends
the validity of Definition 2 to those cases where the cardinalities do
not match.

2.7. Aggregate Intersection and Union for
Fuzzy Multisets

Miyamoto’s definitions of intersection and union are based on the
pairwise minima and maxima after sorting the values in descend-
ing order. As the same approach can be replicated with any sort-
ing strategy, it is possible to establish a more general definition
parametrized with the sorting strategy as follows:

Definition 3. Let X be a universe and let m ∶ X → ℕ be a
cardinality map. Given two m-regular fuzzy multisets Â and B̂ and
two ordering strategies sA and sB, for each element x ∈ X, two new
sequences 𝜇Â∩(sA,sB)B̂

(x) and 𝜇Â∪(sA,sB)B̂
(x) can be built with the

pairwise minima and maxima (with i ∈ {1, … ,m (x)})(
𝜇Â ∩(sA,sB) B̂

(x)
)

i
∶= min {

(
sA

(
Â (x)

))
i
,
(
sB
(
B̂ (x)

))
i
}

(
𝜇Â ∪(sA,sB) B̂

(x)
)

i
∶= max {

(
sA

(
Â (x)

))
i
,
(
sB
(
B̂ (x)

))
i
} .

The m-regular (sA, sB)-ordered intersection Â ∩(sA,sB) B̂ and the
m-regular (sA, sB)-ordered union Â∪(sA,sB) B̂ are the twom-regular
fuzzy multisets defined by((

Â ∩
(sA,sB)

B̂
)
(x)

)
(t) ∶=

|
|
|{
i1⩽i⩽m(x),

(
𝜇Â ∩(sA,sB) B̂

(x)
)

i
= t}

|
|
|

((
Â ∪
(sA,sB)

B̂
)
(x)

)
(t) ∶=

|
|
|{
i1⩽i⩽m(x),

(
𝜇Â ∪(sA,sB) B̂

(x)
)

i
= t}

|
|
|
.

For example, in a single-element universe X = {x}, we can define
two 3-regular fuzzy multisets Â and B̂ as Â (x) = ⟨0.1, 0.6, 0.6⟩
and B̂ (x) = ⟨0.2, 0.2, 0.4⟩. If we use a common ascending sorting
strategy s↑ such that s↑ (⟨0.1, 0.6, 0.6⟩) = (0.1, 0.6, 0.6) and
s↑ (⟨0.2, 0.2, 0.4⟩) = (0.2, 0.2, 0.4), then their s↑-ordered inter-
section is the fuzzy multiset given by the membership function(
Â ∩(

s↑,s↑
) B̂

)
(x) = ⟨0.1, 0.2, 0.4⟩ and the union is given by(

Â ∩(
s↑,s↑

) B̂
)
(x) = ⟨0.2, 0.6, 0.6⟩ .

These definitions can be extended to fuzzy multisets with mis-
matched cardinalities through an initial regularization step [7].

Miyamoto’s definitions are now the particular case when both sort-
ing strategies are chosen as sA = sB = s↓. It can easily be proved that

Pdf_Folio:835



836 Á. Riesgo et al. / International Journal of Computational Intelligence Systems 12(2) 833–841

choosing sA = sB = s↑ yields the same results for the operations, so
sorting in either descending or ascending order is just a matter of
convention. But other sorting strategies lead to different results, so
the choice of sA and sB does affect the behavior of the operations.

Aswe argued in our recentwork [7], sincewe areworkingwith finite
sets we can make a definition that is independent of any particular
sorting strategy by taking the multiset union of the ordered inter-
sections and unions (see Definition 3) resulting from all the combi-
nations of possible sorting strategies (sA, sB). This idea leads to the
following definitions:

Definition 4. Let X be a universe and let Â, B̂ ∈ ℱℳ (X) be two
fuzzy multisets. The aggregate intersection and the aggregate union
of Â and B̂ are the two fuzzy multisets Â ∩a B̂ and Â ∪a B̂ such
that, for any element x ∈ X, Â ∩a B̂ (x) is the multiset union of the
(sA, sB)-ordered intersections and A ∪a B (x) is the multiset union
of the (sA, sB)-ordered unions for all the possible pairs of ordering
strategies (sA, sB):

Â ∩a B̂ (x) = ∪
sA ∈ 𝒪𝒮

(
Â
)

sB ∈ 𝒪𝒮 (B̂)

Â ∩
(sA,sB)

B̂ (x) x ∈ X

Â ∪a B̂ (x) = ∪
sA ∈ 𝒪𝒮

(
Â
)

sB ∈ 𝒪𝒮 (B̂)

Â ∪
(sA,sB)

B̂ (x) x ∈ X.

Using the same example as for the ordered operations above,
the fact that all permutations must be taken into account means
that now we can get not only ⟨0.1, 0.2, 0.4⟩ for the intersection
at x, but also ⟨0.1, 0.2, 0.2⟩ if we pair the values 0.4 and 0.6
together, so the aggregate intersection will be

(
Â ∩a B̂

)
(x) =

⟨0.1, 0.2, 0.2, 0.4⟩ . Similarly, the aggregate union is given by(
Â ∩a B̂

)
(x) = ⟨0.2, 0.4, 0.6, 0.6⟩ .

All these forms of intersection and union that we have defined are
consistent with the definitions for the ordinary fuzzy sets. But this
aggregate form of intersection and union is in addition also consis-
tent with the definitions for the typical hesitant fuzzy sets, which we
review now.

Definition 5. Let X be the universe and let Ã and B̃ ∈ ℱH (X) be
two hesitant fuzzy sets. The hesitant intersection and the hesitant
union of Ã and B̃ are the two hesitant fuzzy sets Ã ∩h B̃ and Ã ∪h B̃
defined, respectively, as follows [4, p. 534]:(

Ã ∩h B̃
)
(x) = {𝛼 ∈ Ã (x) ∪ B̃ (x)} ,

with 𝛼 ⩽ min {max {Ã (x)} ,max {B̃ (x)}}.(
Ã ∪h B̃

)
(x) = {𝛼 ∈ Ã (x) ∪ B̃ (x)} ,

with 𝛼 ⩾ max {min {Ã (x)} ,min {B̃ (x)}}.
These definitions for the intersection and the union are consistent
with the requirement that they should reduce to the ordinary fuzzy
definitions with single-valued hesitant elements and, when hesitant
fuzzy sets are regarded as a formof type-2 fuzzy sets (in their general
form, without any convexity assumptions), can also be shown to be
consistent with the type-2 definitions [12]. As we show in the next
proposition, they are also consistent with the aggregate operations
for multisets. But we need an additional formal definition first:

Definition 6. Let X be the universe and let Â ∈ ℱℳ (X) be a
fuzzy multiset. Its hesitant fuzzy set support Supph

(
Â
)
is the hes-

itant fuzzy set such that, for any element x ∈ X, Supph
(
Â
)
(x) =

Supp
(
Â (x)

)
, where Supp is the support in the multiset sense, the

set of values with nonzero multiplicity.

The function Supph that maps a fuzzy multiset to its hesitant fuzzy
set support is obviously injective. If we restrict the fuzzy multisets
to those that only havemultiplicity values of 0 or 1, then it is a bijec-
tion andwe can similarly define an equivalent fuzzymultiset for any
given hesitant fuzzy set. It is this equivalence that allows us to iden-
tify the aggregate intersection and union for fuzzy multisets with
the hesitant intersection and union, an intuitive result that can be
formalized through the next proposition.

Proposition 1. Let X be the universe and let Â and B̂ ∈ ℱℳ (X) be
two fuzzy multisets. Then the following relations hold:

Supph
(
Â ∩a B̂

)
= Supph

(
Â
)
∩h Supph

(
B̂
)

Supph
(
Â ∪a B̂

)
= Supph

(
Â
)
∪h Supph

(
B̂
)
.

(1)

Proof. In order to prove the first equality, given an element x ∈ X,
we need to prove that

Supph
(
Â ∩a B̂

)
(x) =

(
Supph

(
Â
)
∩h Supph

(
B̂
))

(x) .

Let t ∈ [0, 1] and let us consider three possible cases.

Case 1. If Â (x) (t) = 0 and B̂ (x) (t) = 0, t is not in the support
of either fuzzy multiset and, by definition, t ∉ Supph

(
Â
)
(x) and

t ∉ Supph
(
B̂
)
(x) and, since the hesitant intersection is defined as

a subset of the union of the hesitant elements then

t ∉
(
Supph

(
Â
)
∩h Supph

(
B̂
))

(x) .

On the other hand, t cannot appear in either of the sequences
sA

(
Â (x)

)
and sB

(
B̂ (x)

)
used for the ordered intersection in

Definition 3 for any ordering strategy whatsoever, and so(
Â ∩a B̂

)
(x) (t) = 0 or, equivalently,

t ∉ Supp
((
Â ∩a B̂

)
(x)

)
,

and then

t ∉
(
Supph

(
Â ∩a B̂

))
(x) .

Case 2. Let us consider Â (x) (t) > 0 such that there is no t′ ∈
[0, 1] with t ⩽ t′ such that B̂ (x)

(
t′
)
> 0; i.e. t > max {u ∈

[0, 1]|B̂(x)(u) > 0}.
As t is part of the support of Â (x), t ∈

(
Supph

(
Â
))

(x) and it will
be in the union

(
Supph

(
Â
))

(x)∪
(
Supph

(
B̂
))

(x) but, as t is larger
than the maximum of the hesitant element

(
Supph

(
B̂
))

(x) then

t ∉
(
Supph

(
Â
)
∩h Supph

(
B̂
))

(x) .

On the other hand, t will appear in the sequences sA
(
Â (x)

)
but all

the values in sB
(
B̂ (x)

)
are smaller, so it will not make it into the

aggregate intersection,

t ∉ Supp
((
Â ∩a B̂

)
(x)

)
.

Pdf_Folio:836



Á. Riesgo et al. / International Journal of Computational Intelligence Systems 12(2) 833–841 837

Consequently,

t ∉
(
Supph

(
Â ∩a B̂

))
(x) .

Case 3. Let us consider Â (x) (t) > 0 such that there is
t′ ∈ [0, 1] with t ⩽ t′ and B̂ (x)

(
t′
)

> 0; i.e. t ⩽
max {u ∈ [0, 1] |B̂ (x) (u) > 0}. As t is part of the support of Â (x),
t ∈

(
Supph

(
Â
))

(x) whereas t′ is in the support of B̂ (x), so t′ ∈(
Supph(B̂)

)
(x) and then,

t ∈
(
Supph

(
Â
)
∩h Supph

(
B̂
))

(x) .

On the other hand, t will appear in the sequences sA
(
Â (x)

)
and t′

will appear in the sequences sB
(
B̂ (x)

)
in the ordered intersections.

As we need to take a multiset union of all the possible combina-
tions of the ordered intersections, there will be at least a combina-
tion where t gets paired with t′ and, as t is the minimum of the two,(
Â ∩a B̂

)
(x) (t) > 0. This,

t ∈ Supp
((
Â ∩a B̂

)
(x)

)
.

Consequently,

t ∈
(
Supph

(
Â ∩a B̂

))
(x) .

For the union, the proof is completely analogous, with Case 2 using
a t value that is less than the minimum of all the values in the sup-
port of B̂ (x) and Case 3 using a t value not less than that minimum.

We have thus proved that the aggregate intersection and union are
more general operations that reduce to the hesitant intersection and
union as particular cases. However, unlike the elegant definitions
of the latter (see Definition 5), the way we have defined the aggre-
gate operations is unwieldy for actual use as it involves taking all
the possible combinations of all the permuted sequences made up
of the membership values in each multiset, an operation with time
complexity 𝒪 (n! ). In the next section, we work out an expression
for the aggregate operations that generalizes Definition 5 through a
simple formula with time complexity 𝒪 (n).

3. THE EXPLICIT FORM OF THE
AGGREGATE OPERATIONS

In order to write an explicit form for the aggregate intersection and
union, we will need the concept of 𝛼-cuts for multisets first. Besides
the normal “upper” version that zeroes out those membership val-
ues below 𝛼 [3], we will also define a custom lower version that
zeroes out the values above 𝛼.
Definition 7. Let X be the universe. For a fuzzy multiset Â ∈
ℱℳ (X) and a real number 𝛼 ∈ [0, 1], the strong (upper) 𝛼-cut of
Â is the crispmultiset [Â]>𝛼 ∈ ℕX where themultiplicity values for
each element x ∈ X are given by the cardinality of the submultiset
of Â (x) restricted to those values strictly greater than 𝛼:

[Â]>𝛼 (x) ∶= ∑
∈Supp(Â(x))
r>𝛼

Â (x) (t) .

And, similarly, the lower version of the 𝛼-cut:

Definition 8. Let X be the universe. For a fuzzy multiset Â ∈
ℱℳ (X) and a real number 𝛼 ∈ [0, 1], the strong lower 𝛼-cut of Â
is the crisp multiset [Â]<𝛼 ∈ ℕX, where the multiplicity values for
each element x ∈ X are given by the cardinality of the submultiset
of Â (x) restricted to the values strictly less than 𝛼:

[Â]<𝛼 (x) ∶= ∑
∈Supp(Â(x))
t<𝛼

Â (x) (t) .

We need these definitions of the strong 𝛼-cuts for the next pair of
propositions, which are the most important contributions of this
paper:

Proposition 2. The aggregate intersection of two fuzzy multisets Â
and B̂ over a universe X can be expressed explicitly as a function as
follows: ((

Â ∩a B̂
)
(x)

)
(t) = min {Â (x) (t) , [B̂]>t (x)}

+min {B̂ (x) (t) , [Â]>t (x)}
+max {0,min {Ĉ (x) (t)} ,

for t ∈ [0, 1], with

Ĉ (x) (t) = Â (x) (t) – [B̂]>t (x) , B̂ (x) (t) – [Â]>t (x)} .

Proof. In order to prove this equality, we will consider a fixed x ∈ X
and analyze the different possible cases for the fuzzy membership
parameter t ∈ [0, 1] separately.
Case 1. Let t be such that both Â (x) (t) = 0 and B̂ (x) (t) = 0. As t
does not appear in either fuzzy multiset, the result of((
Â ∩a B̂

)
(x)

)
(t) according to Definition 4 must be 0. And the

above formula yields 0 as a result too.

Case 2. Let t be such that Â (x) (t) > 0 and B̂ (x) (t) = 0.
Now t appears in one of the fuzzy multisets, and the result of((
Â ∩a B̂

)
(x)

)
(t) according to Definition 4 will be the maximum

number of possible pairings between the Â (x) (t) occurrences of t
in the sequences sA

(
Â (x)

)
and those values in B̂ (x) that are greater

than t. That number is obviously min {Â (x) (t) , [B̂]>t (x)}. As we
have B̂ (x) (t) = 0, the other two terms evaluate to zero and the
equality holds in this case too.

Case 3. Let t be such that Â (x) (t) = 0 and B̂ (x) (t) > 0. This is the
same as Case 2, with the roles of the two operands swapped,
so the aggregate intersection will be given by the second term
min {B̂ (x) (t) , [Â]>t (x)}, with the other terms being zero.

Case 4. Let t be such that Â (x) (t) > 0 and B̂ (x) (t) > 0. This is the
nontrivial case where the three terms contribute to the result. As the
aggregate definition is based on taking the maximum possible mul-
tiplicity among all the permutations of sequences, we have to iden-
tify the most favorable situations. The Â (x) (t) occurrences of t in
the sequences sA

(
Â (x)

)
will make it into the aggregate intersection

if they can be paired with values in sB
(
B̂ (x)

)
that are greater than

t and the maximum number of such pairings is obviously [B̂]>t (x).
We have thus accounted for min {Â (x) (t) , [B̂]>t (x)} contributions.

Now if Â (x) (t) ⩽ [B̂]>t (x) we have exhausted the t values in
Â (x), but if that is not the case there will be a positive numberPdf_Folio:837



838 Á. Riesgo et al. / International Journal of Computational Intelligence Systems 12(2) 833–841

Â (x) (t) – [B̂]>t (x) of occurrences of t that can still be paired with
the t values in B̂ (x) in the final step. Before that, we repeat the
same reasoning for the B̂ (x) (t) occurrences of t in the sequences
sB
(
B̂ (x)

)
and, again, a maximum of [Â]>t (x) will find their way

into the aggregate intersection, independently of the ones in Â (x),
which results in the min {B̂ (x) (t) , [Â]>t (x)} contribution. Finally,
if both Â (x) (t) > [B̂]>t (x) and B̂ (x) (t) > [Â]>t (x), there remains a
number of t values, the minimum of the two subtractions, that have
not been paired with any greater values but which can, in the most
favorable sequence combination, be paired with each other, leading
to the third term in the equality.

And similarly, for the union.

Proposition 3. The aggregate union of two fuzzy multisets Â and B̂
over a universe X can be expressed explicitly as a function as follows:((

Â ∪a B̂
)
(x)

)
(t) = min {Â (x) (t) , [B̂]<t (x)}

+min {B̂ (x) (t) , [Â]<t (x)}
+max {0,min {Ĉ (x) (t)} ,

for t ∈ [0, 1], with

Ĉ (x) (t) = Â (x) (t) – [B̂]<t (x) , B̂ (x) (t) – [Â]<t (x)} .

Proof.The proof is completely analogous to the one for the aggregate
intersection (see proof of Proposition 2).

4. THE EFFECT OF OVERLAPPING RANGES

It should be remarked that the aggregate operations do not pre-
serve the cardinality of the operands, unlike the ordered opera-
tions. For example, if we have two fuzzy multisets Â (x) = ⟨0.1, 0.4⟩
and B̂ (x) = ⟨0.2, 0.4⟩ in a single-element universe X = {x}, their
aggregate intersection is Â ∩a B̂ (x) = ⟨0.1, 0.2, 0.4⟩. But it can be
proved that this behavior only occurs when the involved multi-
sets have overlapping ranges of values. In the most usual cases
when using fuzzy multisets, we may have membership multisets
like ⟨0.1, 0.2, 0.2⟩ or ⟨0.8, 0.8, 0.9⟩ but a membership multiset like
⟨0.1, 0.5, 0.9⟩ would be hard to justify. This means that the opera-
tional differences between the ordered and the aggregate operations
are more theoretical than practical in nature. The following propo-
sition formalizes this observation.

Proposition 4. Let X be the universe and let Â and B̂ ∈ ℱℳ (X)
be two fuzzy multisets. For an element x ∈ X, if Â (x) and B̂ (x)
span ranges of values that do not overlap; that is,max Supp

(
Â(x)

)
⩽

min Supp
(
B̂(x)

)
ormax Supp

(
B̂ (x)

)
⩽ min Supp

(
Â (x)

)
, then the

result of the (sA, sB)-ordered intersection and (sA, sB)-ordered union is
independent of the choice of sA and sB:((

Â ∩(sA,sB) B̂
)
(x)

)
=
((

Â ∩(
s′A,s

′
B

) B̂
)
(x)

)
((

Â ∪(sA,sB) B̂
)
(x)

)
=
((

Â ∪(
s′A,s

′
B

) B̂
)
(x)

)
(2)

∀sA, sB, s′A, s′B ∈ 𝒪𝒮 (X) .

Proof. Let us assume, without loss of generality, that Â (x) is
the fuzzy multiset with the lower values, max Supp

(
Â (x)

)
⩽

min Supp
(
B̂ (x)

)
. Then for any pair of ordering strategies sA and

sB, if Â = ⟨a1, a2, …⟩ and B̂ = ⟨b1, b2, …⟩ we will get the sequences(
a𝜍A(1), a𝜍A(2), …

)
and

(
b𝜍B(1), b𝜍B(2), …

)
, 𝜎A and 𝜎B being the per-

mutations on the index space caused by the ordering strategies
sA and sB.

As none of the ai values are greater than any of the bj values for any
pair of indices i, j, we have((

Â ∩(sA,sB) B̂
)
(x)

)
= Â (x)

and ((
Â ∪(sA,sB) B̂

)
(x)

)
= B̂ (x) ,

regardless of the ordering strategies.

We have proved this for a fixed element x ∈ X. If the condition
of nonoverlapping ranges holds for any element, then the indepen-
dence of the sorting strategy applies to the whole fuzzy multisets,
and not just to the particular multisets evaluated at x. We conclude
with the following corollary:

Corollary 5. Let X be the universe and let Â and B̂ ∈ ℱℳ (X)
be two fuzzy multisets such that they span ranges of values that
do not overlap for any element, that is, either max Supp

(
Â(x)

)
⩽

min Supp
(
B̂(x)

)
or max Supp

(
B̂ (x)

)
⩽ min Supp

(
Â (x)

)
for all

x ∈ X, then the aggregate intersection is the same as Miyamoto’s
intersection (or any other (sA, sB)-ordered intersection) and the aggre-
gate union is the same as Miyamoto’s union (or any other (sA, sB)-
ordered union).

5. THE ALGORITHMS

The computation of aggregate intersection and union for a fixed
element x ∈ X is not straightforward. Thus, in this section we pro-
pose an algorithm to compute them in an effcient way. It is assumed
that there is a data structure that represents a multiset together with
related operations for element insertion and look-up (like, e.g., the
std::multiset class in the C++ standard library) and a similar data
structure for sets (a std::set in C++). As the algorithm (see Algo-
rithm 1) involves an iteration over the elements of the multisets, its
time complexity is 𝒪 (n) in terms of the size of the input multisets.

In both algorithms (see Algorithms 2 and 3), we can improve the
efficiency by handling some special cases separately. If the value
ranges do not overlap, we can rely on Proposition 4 to skip formu-
las defined in Propositions 2 and 3 and assign the result directly in
an 𝒪 (1) operation. This optimization is handled by the first two if
statements in the algorithm. When that is not the case, the pseu-
docode in the second nested else block implements the hesitant def-
initions (see Definition 5).

6. NUMERICAL RESULTS

With the aim of checking that the improved algorithmic perfor-
mance matches our expectations, we have run a test in C++ con-
sisting in carrying out some aggregate intersections of pairs of input
multisets with a growing length.Pdf_Folio:838



Á. Riesgo et al. / International Journal of Computational Intelligence Systems 12(2) 833–841 839

Algorithm 1: Algorithm for computing aggregate intersection and union
based on Definition 4
1: function Intersection (a, b) ▷ Input arguments: two multisets
a and b
2: result ← create_multiset() ▷ Empty initialization of a new
multiset
3: b_array ← multiset_to_sorted_array (b)
4: size ← size (a) ▷ Must equal size(b) and size(b_array)
5: first_permutation ← true
6: permutations_remain ← true
7: while permutations_remain do
8: current_iteration ← create_multiset()
9: for i = 0, i < size, i + + do
10: multiset_insert

(
current_iteration,min

(
a [i] , b_array [i]

))
▷

For Intersection
11: multiset_insert

(
current_iteration,max

(
a [i] , b_array [i]

))
▷

For Union
12: end for
13: if first_permutation then
14: result ← current_iteration
15: first_permutation ← false
16: else
17: result ← crisp_multiset_union (result, current_iteration)
18: end if
19: permutations_remain ← next_permutation

(
b_array

)
20: end while
21: return result
22: end function

Algorithm 2:Algorithm for computing the aggregate intersection based on
Proposition 2
1: function Intersection(a, b) ▷ Input arguments: two multisets
a and b
2: result ← create_multiset() ▷ Empty initialization of a new
multiset
3: a_max ← multiset_max (a)
4: b_min ← multiset_min (b)
5: if a_max ⩽ b_min then
6: result ← a
7: else
8: a_min ← multiset_min (a)
9: b_max ← multiset_max (b)
10: if b_max ⩽ a_min then
11: result ← b
12: else
13: a_support ← multiset_support (a)
14: b_support ← multiset_support (b)
15: if a_max ≠ b_max then
16: if a_max < b_max then ▷ Ignore values > min(a_max, b_max)
17: b_support ← multiset_lower_bound

(
b_support, a_max

)
18: else
19: a_support ← multiset_lower_bound

(
a_support, b_max

)
20: end if
21: end if
22: support ← set_union

(
a_support, b_support

)

23: for all t ∈ support do
24: a_upper_bound ← multiset_strict_upper_bound (a, t)
25: a_up_length ← multiset_length

(
a_upper_bound

)
▷ This is

[Â]>t
26: b_upper_bound ← multiset_strict_upper_bound (b, t)
27: b_up_length ← multiset_length

(
b_upper_bound

)
▷ This is

[B̂]>t
28: t_a_count ← multiset_element_count (a, t)
29: t_b_count ← multiset_element_count (b, t)
30: t_count ← min

(
t_a_count, b_up_length

)
+min (t_b_count,

a_up_length
)

31: if t_a_count ⩾ b_up_length AND t_b_count ⩾ a_up_length
then
32: t_count+ = min

(
t_a_count – b_up_length, t_b_count–

a_up_length
)

33: end if
34: multiset_insert (result, t, t_count)▷ Inserts t t_count times
35: end for
36: end if
37: end if
38: return result
39: end function

For our timing test, and considering that the optimized algorithm
is trivial in the case of nonoverlapping ranges, we will require the
input multisets to have overlapping ranges. This is something that
can be done by starting off with twomultisets a = ⟨0.1, 0.2⟩ and b =
⟨0.2, 0.3⟩ for the first iteration and then inserting additional over-
lapped values between 0.2 and 0.3. We will add the n values 0.2 +
(i/ (n + 1))×0.1with i = 1,… , n to the firstmultiset and then values
0.2+ (2i – 1/ (2n + 2))×0.1with i = 1,… , n to the secondmultiset.
This will give the multisets ⟨0.1, 0.2, 0.25⟩ and ⟨0.2, 0.225, 0.3⟩ for
n = 1, ⟨0.1, 0.2, 0.233, 0.266⟩ and ⟨0.2, 0.2166, 0.25, 0.3⟩ for n = 2,
and so on.

In a loop for growing values of n = 0, 1, 2, …, the test builds the two
inputmultisets of length n+2 andmeasures the elapsed time. These
timing results, inmicroseconds, are finally dumped to a text file and
are displayed here in Table 1. The test has been compiled and run
usingMicrosoft Visual Studio 2017 and it leaves no doubt that there
is an enormous gap in performance between the two algorithms.

The difference between the two algorithms, even for relatively small
input lengths, is so glaring that it has not been deemed necessary to
attempt repeated tests.With an input length of 10, the permutation-
based algorithm for one single intersection takes a whopping 20

Table 1 Timing test for aggregate intersection.

Input Length Algorithm 1
(
𝜇s

)
Algorithm 2

(
𝜇s

)
2 8 0
3 12 4
4 59 6
5 393 9
6 3,455 17
7 22,213 12
8 185,912 16
9 1,896,988 19
10 19,972,942 21

Pdf_Folio:839



840 Á. Riesgo et al. / International Journal of Computational Intelligence Systems 12(2) 833–841

Algorithm 3: Algorithm for computing the aggregate union based on
Proposition 3
1: function Union(a, b)▷ Input arguments: two multisets a and b
2: result ← create_multiset()▷ Empty initialization of a new multi-
set
3: a_max ← multiset_max (a)
4: b_min ← multiset_min (b)
5: if a_max ⩽ b_min then
6: result ← b
7: else
8: a_min ← multiset_min (a)
9: b_max ← multiset_max (b)
10: if b_max ⩽ a_min then
11: result ← a
12: else
13: a_support ← multiset_support (a)
14: b_support ← multiset_support (b)
15: if a_min ≠ b_min then
16: if a_min < b_min then▷ Ignore values < max(a_min, b_min)
17: a_support ← multiset_upper_bound

(
a_support, b_min

)
18: else
19: b_support ← multiset_upper_bound

(
b_support, a_min

)
20: end if
21: end if
22: support ← set_union

(
a_support, b_support

)
23: for all t ∈ support do
24: a_lower_bound ← multiset_strict_lower_bound (a, t)
25: a_low_length ← multiset_length (a_lower_bound)▷ This is
[A]<t
26: b_lower_bound ← multiset_strict_lower_bound (b, t)
27: b_low_length ← multiset_length (b_lower_bound)▷ This is
[B]<t
28: t_a_count ← multiset_element_count (a, t)
29: t_b_count ← multiset_element_count (b, t)
30: t_count ← min

(
t_a_count, b_low_length

)
+min (t_b_count,

a_low_length
)

31: if t_a_count ⩾ b_low_length AND t_b_count ⩾ a_low_length
then
32: t_count+ = min

(
t_a_count – b_low_length, t_b_count –

a_low_length
)

33: end if
34: multiset_insert (result, t, t_count)▷ Inserts t t_count times
35: end for
36: end if
37: end if
38: return result
39: end function

seconds to complete in release mode, whereas the new and more
efficient algorithm for the same input length stays in the vicinity of
20 𝜇s, a million times faster. Further optimizations may be worth
exploring if the concept of these aggregate operations on fuzzymul-
tisets turns out to be useful. At this time, the only existing defini-
tions for the aggregate operations are those of the original article
[7] and the formulas we have presented in the previous section, so
only these two approaches can be compared.

The results are also plotted in Figure 1.

Figure 1 Graph plotting the results of the timing test for
the aggregate intersection.

7. CONCLUSION

In this paper, we have reviewed the properties of the aggregate inter-
section and union for fuzzy multisets and their relation with the
equivalent operations for hesitant fuzzy sets and we have proposed
formulas for their efficient calculation. Furthermore, we have also
proved that the discrepancies between these operations vanish in
the typical situations where the multiple membership values for an
element remain in close proximity to one another and the member-
ship ranges for two elements do not overlap.We have also presented
the explicit algorithms for these operations. Finally, we have car-
ried out a test in C++ to verify that the new algorithms do indeed
execute much faster.

The basic operations of intersection and union are essential to any
extension of fuzzy sets. In this case, the proposed algorithm can be
used as an alternative to the sorted Miyamoto-style operations with
fuzzy multisets and also as a multiset-based extension of the hes-
itant fuzzy set operations. Further work will be needed to test the
merits of the aggregate operations in real use cases involving fuzzy
multisets and also with nonstandard t-norms and t-conorms and
with general membership grades other than [0, 1].

CONFLICT OF INTEREST

The authors confirm that all commercial affiliations, stock owner-
ship, equity interests, or patent licensing arrangements that could
be considered to pose a financial conflict of interest in connection
with the work have been disclosed.

Funding Statement

The authors confirm that all funding sources supporting the work
and all institutions or people who contributed to the work, but who
do not meet the criteria for authorship, are acknowledged.

ACKNOWLEDGMENTS

This work was supported by project TIN2017-87600-P from the Ministry
of Economy, Industry and Competitiveness of Spain, project PGC2018-
098623-B-I00 from the Ministry of Science, Innovation and Universities of
Spain and project IDI/2018/000176 from the Department of Employment,
Industry and Tourism of Asturias.Pdf_Folio:840



Á. Riesgo et al. / International Journal of Computational Intelligence Systems 12(2) 833–841 841

REFERENCES

[1] L.A. Zadeh, Fuzzy sets, Inf. Control. 8 (1965), 338–353.
[2] G.J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall PTR,

New Jersey, 1995.
[3] S. Miyamoto, Fuzzy Multisets and Their Generalizations, in:

C.S. Calude, G. Pǎfun, G. Rozenberg, A. Salomaa (Eds.), Multi-
set Processing, WMC 2000, Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg, 2235 (2000), 225–235.

[4] V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst. 25 (2010), 529–539.
[5] A.H. Dehmiry, M. Maschinchi, R. Mesiar, Hesitant L-fuzzy sets,

Int. J. Intell. Syst. 33 (2018), 1027–1042.
[6] S. Sebastian, R. John, Multi-fuzzy sets and their correspon-

dence to other sets, Ann. Fuzzy Math. Inf. 11 (2016), 341–348.
http://www.afmi.or.kr/papers/2016/Vol-11_No-02/PDF/AFMI-
11-2(341-348)-H-150506-2R2.pdf

[7] Á. Riesgo, P. Alonso, I. Díaz, S. Montes, Basic operations for fuzzy
multisets, Int. J. Approx. Reason. 101 (2018), 107–118.

[8] Z. Xu, Hesitant Fuzzy Sets Theory, Springer, Switzerland, 2014.
[9] A. Syropoulos, Mathematics of multisets, in: C.S Calude,

G. Pǎfun, G. Rozenberg, A. Salomaa (Eds.), Multiset Processing,
WMC 2000, Lecture Notes in Computer Science, Springer, Berlin,
Heidelberg, 2235 (2000), 347–358.

[10] R.R. Yager, On the theory of Bags, Int. J. Gen. Syst. 13 (1986),
23–37.

[11] Z. Xu, M. Xia, Distance and similarity measures for hesitant fuzzy
sets, Inf. Sci. 181 (2011), 2128–2138.

[12] M. Mizumoto, K. Tanaka, Some properties of fuzzy sets of type 2,
Inf. Control. 31 (1976), 312–340.

Pdf_Folio:841

https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1007/3-540-45523-X_11
https://doi.org/10.1007/3-540-45523-X_11
https://doi.org/10.1007/3-540-45523-X_11
https://doi.org/10.1007/3-540-45523-X_11
https://doi.org/10.1002/int.20418
https://doi.org/10.1002/int.21910
https://doi.org/10.1002/int.21910
https://doi.org/10.1016/j.ijar.2018.06.008
https://doi.org/10.1016/j.ijar.2018.06.008
https://doi.org/10.1007/978-3-319-04711-9
https://doi.org/10.1007/3-540-45523-X_17
https://doi.org/10.1007/3-540-45523-X_17
https://doi.org/10.1007/3-540-45523-X_17
https://doi.org/10.1007/3-540-45523-X_17
https://doi.org/10.1080/03081078608934952
https://doi.org/10.1080/03081078608934952
https://doi.org/10.1016/j.ins.2011.01.028
https://doi.org/10.1016/j.ins.2011.01.028
https://doi.org/10.1016/S0019-9958(76)80011-3
https://doi.org/10.1016/S0019-9958(76)80011-3

	An Algorithmic Approach for Computing Unions and Intersections Between Fuzzy Multisets
	1. INTRODUCTION
	2. PRELIMINARY CONCEPTS
	2.1. Fuzzy Sets and Multisets
	2.2. Fuzzy Multisets
	2.3. Hesitant Fuzzy Sets
	2.4. Difference Between Fuzzy Multisets and Hesitant Fuzzy Sets
	2.5. Sequences
	2.6. Miyamoto’s Intersection and Union for Fuzzy Multisets
	2.7. Aggregate Intersection and Union for Fuzzy Multisets

	3. THE EXPLICIT FORM OF THE AGGREGATE OPERATIONS
	4. THE EFFECT OF OVERLAPPING RANGES
	5. THE ALGORITHMS
	6. NUMERICAL RESULTS
	7. CONCLUSION


