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RESUMEN (en español) 

 
La presente Tesis Doctoral se centra en el desarrollo y uso de una novedosa metodología 
basada en el Análisis Complejo de sistemas guiados. Para tal fin, se han propuesto algunas 
definiciones basadas en el uso de expresiones complejas para su posterior aplicación al 
estudio de Líneas de Transmisión (LdT). 
En este sentido, la Teoría de Líneas Transmisión (en inglés, Transmission Line Theory, TLT) 
ha tenido que ser reinterpretada desde el punto de vista del Análisis Complejo, y en concreto 
en el uso de representaciones en planos complejos –en lugar de expresiones complejas– así 
como transformaciones complejas entre ellos –en lugar de funciones complejas o identidades 
complejas entre los parámetros bajo estudio. Tanto el cambio de concepto de análisis como la 
obtención de las interpretaciones físicas asociadas al mismo dan lugar a la Teoría Compleja de 
Líneas de Transmisión (en inglés, Complex Transmission Line Theory, CTLT). Esta CTLT va 
asociada a una versión de la TLT, la cual puede ser planteada entre (i) los diferentes modos 
que se propagan, (ii) las características del medio donde se propagan, y (iii) los diferentes 
dominios de estudio. Puesto que la CTLT está planteada como alternativa a la usual (y 
particular) TLT, su análisis puede ser dividido en diferentes versiones, todas ellas orientadas a 
ser analizadas con técnicas en variable compleja. 
 
En concreto, la Teoría de Líneas de Transmisión con Pérdidas (en inglés, Lossy Transmission 
Line Theory, LTLT), ha sido estudiada de forma rigurosa en el Cap. 2 empleando coordenadas 
generalizadas. Esta LTLT plantea el estudio de (i) ondas planas harmónicas (en inglés, 
harmonic plane waves, HPW) en (ii) medios conductivos y dispersivos reales, analizados en (iii) 
el dominio de la frecuencia. Esta última clasificación permite el uso del Análisis Complejo en la 
versión de la CTLT asociada a la LTLT, analizada en el Cap. 4. 
En este caso, los parámetros de línea se obtienen integrando los campos en el transverso del 
sistema de coordenadas generalizadas propuesto, generalizando así la geometría del sistema 
bajo estudio. A partir de los parámetros de línea, los parámetros básicos y de onda se analizan 
gráfica y geométricamente en los planos complejos asociados en la llamada caracterización 
directa de la CTLT. 
 
No obstante, teniendo en cuenta que lo que se desea es un estudio generalizado de la TLT, 
una versión generalizada de la misma (en inglés, Generalized Transmision Line Theory, GTLT-
v1) se plantea en el Cap. 3 con el propósito de abarcar el análisis de diferentes modos. Para 
ello, se considera que los parámetros básicos son los mismos que describen a cada modo, 
para ser luego “mapeados” en parametrizaciones complejas de los parámetros de línea usados 
en el consiguiente análisis en la CTLT. Esa forma de caracterizar los parámetros es llamada 
caracterización inversa (de los parámetros básicos a los parámetros de línea). 
A continuación, la GTLT-v1 se particulariza al estudio de HPWs dando lugar a las mismas 
parametrizaciones que predecía la LTLT, pero facilitando en gran medida el proceso de 
obtención de éstas. 
 
 



                                                                

 
 

 

En la definición de estas caracterizaciones, un “espacio algebraico de parametrizaciones” 
aparece naturalmente en el análisis. Las transformaciones desde/hasta este “espacio” son las 
que dan lugar a las caracterizaciones directa/inversa en la CTLT bajo estudio. Los análisis que 
se llevan a cabo muestran que este “espacio de parametrizaciones” alberga todas aquellas 
parametrizaciones (vistas como diferentes curvas) que caracterizan la GTLT-v1 estudiada en el 
contexto de CTLT. 
Además, ambas caracterizaciones son necesarias para completar los análisis en función de las 
pérdidas/frecuencia y a lo largo de la línea, presentados como ejemplos de uso del análisis 
complejo de LdTs en el Cap. 5. 
 
La metodología sobre la que se sustenta la CTLT es propicia para el análisis de más modos 
obtenidos a partir de la GTLT-v1 y futuras versiones de la TLT. 

 
RESUMEN (en Inglés) 

 
The present Doctoral Thesis is focused on the development and use of a novel methodology of 
analysis of EM guided waves based on Complex Analysis. For this purpose, those required 
analytical resources are expressly defined and rigorously described within the scope of complex 
numbers applied to the analysis of equivalent Transmission Lines (TL). 
Thus, the Transmission Line Theory (TLT) is conveniently reinterpreted so that it is 
characterized from the Complex Analysis point of view by means of complex graphs –instead of 
closed-form complex expressions– as well as complex transformations between planes –
instead of complex functions or simply complex identities between the parameters in use. Both 
the change on the mindset this analysis supposes and the obtaining of the related physical 
interpretations leads to define the Complex Transmission Line Theory (CTLT). This CTLT 
should be associated to a specifically defined TLT, which may be posed among (i) different 
mode solutions, existing in (ii) different lossy media, which may be studied in (iii) different 
domains. Due to the capabilities of the CTLT as alternative analysis of the usual (and 
particularly defined) TLT, the “General TLT” may be split into different versions oriented to the 
complex analysis in the associated version of the CTLT. 
 
In particular, the Lossy Transmission Line Theory (LTLT) has been rigorously studied in Chpt. 2 
using a generic orthogonal coordinate system. This LTLT is posed for describing the behavior of 
(i) harmonic plane waves (HPW), which propagate in (ii) conductive and dispersive media, 
analyzed in (iii) the frequency domain. It is this latter assumption the one which allows for using 
the complex analysis in the associated CTLT (denoted as CTLT-v1) presented in Chpt. 4. 
In this case, the line parameters are obtained integrating the fields on the transverse of the 
generic coordinate system, so the geometry of the guided system is addressed generalized in 
the equivalent TL. From these line parameters, the basic and wave parameters are graphically 
and geometrically analyzed as complex transformations in their respective complex planes in 
the so called direct characterization of the CTLT. 
 
Nevertheless, keeping the idea of generalizing the study of the TLT, “A Generalized version of 
the Transmission Line Theory” (denoted as GTLT-v1) is posed in Chpt. 3 in order to analyze (i) 
different types of waves/modes (not only HPWs) under the same frame, while (ii) considering 
arbitrary losses in (iii) the frequency domain. This characterization starts considering that the 
basic parameters are known (they are the same as those for each of the mode solutions) to be 
then “mapped” into complex parameterizations of line parameters resulting useful for the 
subsequent analysis in the CTLT. Since the way of analyzing the TL parameters is reverse 
(from the basic parameters to the line parameters), the corresponding analysis is called the 
inverse characterization of the CTLT. 
Then, the GTLT is particularized to the study of HPWs leading to the same parameterizations of 
the LTLT and so proving the usefulness of the GTLT for characterizing specific cases, whose 
analysis are much more straightforward than the those in the LTLT.  
 
As a consequence of these characterizations, an algebraic “space of parameterizations” 
naturally appears. The transformations from/to this “space” lead to the direct/inverse 
characterizations of the CTLT. The subsequent analysis show that this “space” contains all the 
parameterizations (seen as curves) that completely characterize the GTLT-v1 in both directions 
–direct and inverse– in the context of the CTLT. 
In addition, both characterizations are required to finally complete the analysis of HPWs in 
terms of losses/frequency and along the TL, presented as examples of use of the complex 



                                                                

 
 

 

analysis in Chpt. 5. 
 
The methodology underlying the CTLT is adequate for analyzing more mode solutions 
characterized by the GTLT-v1 and future versions of the TLT. 
 
 
SR. PRESIDENTE DE LA COMISIÓN ACADÉMICA DEL PROGRAMA DE DOCTORADO  
EN Tecnologías de la Información y Comunicaciones en Redes Móviles 
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Resumen

La Teoŕıa de Ĺıneas de Transmisión (en inglés, Transmission Line Theory) desempeña un papel
fundamental tanto en el ámbito académico como en ámbito profesional dentro de la Ingeniŕıa
de microondas y radiofrecuencia (RF) para el análisis e interpretación de las caracteŕısticas de
propagación de ondas electromagnéticas (EM) en sistemas guiados. Aunque el objetivo de la TLT
sea caracterizar el comportamiento de ondas ondas equivalentes de tensión y corriente en modelos
de Ĺıneas de Transmisión (en inglés, Transmission Lines, TLs), son muchos los autores que evitan
analizar la TLT de manera rigurosa en medios con pérdidas arbitarias, aśı como generalizar su
estudio a diferentes modos EM en el mismo marco de análisis. Sin duda, evitar el análisis de las
pérdidas y particularizar el análisis a una solución simplifica el análisis general, pero ello también
limita la descripción y aplicación de la TLT, llevando en todo caso a analizar casos particulares y
aproximaciones en lugar de plantear el análisis de forma rigurosa y general desde el principio.

La Teoŕıa Compleja de Ĺıneas de Transmisión (en inglés, Complex Transmission Line Theory,
CTLT) surge como alternativa al conocido análisis de TLs con el fin de superar las limitaciones de
la clásica TLT. La CTLT está basada en el Análisis Complejo, del cual toma las definiciones de
números complejos y la representación en planos complejos, que se asocian a los parámetros bajo
estudio en la TLT. Esto permite: (i) una representación directa de los parámetros de la TL cuando
éstos se caracterizan por medio de las parametrizaciones de interés (p. ej., las parametrizaciones
de pérdidas, la asociada a la longitud de la TL, etc.); y (ii) el consiguiente análisis geométrico de
las curvas planas bajo estudio. Además, debido a que los parámetros de la TL están relacionados
por medio de expresiones y funciones complejas, diferentes transformaciones complejas (mappins)
entre los planos con las curvas parametrizadas están caracterizadas en la CTLT.

La presente Tesis se centra en el desarrollo de todos los posibles análisis en la CTLT que permitan
generalizar el estudio de ondas guiadas analizadas en una versión de la TLT que la acompaña.
Para tal fin: (i) la Teoŕıa de Ĺıneas de Transmisión con Pérdidas (en inglés, Lossy Transmission
Line Theory, LTLT) para el estudio de ondas planas harmónicas (en inglés, harmonic plane waves,
HPWs) ha sido planteada de forma rigurosa desde el principio. Para ello ha sido necesario obtener
las ecuaciones del telegrafista directamente desde las ecuaciones de Maxwell (este proceso se ha de-
nominado ”caracterización directa”) parametrizando la influencia de las pérdidas y las condiciones
de contorno de estructuras que soportan este tipo de soluciones en la TL equivalente; (ii) puesto
que este proceso no es eficiente por implicar el desarrollo un equivalente circuital particularizando
a un solo tipo de modos (HPWs), se define la Teoŕıa Generalizada de Ĺıneas de Transmisión (en
inglés, Generalized Transmission Line Theory, GTLT) con el objetivo de aunar todas las posibles
soluciones de un sistema guiado estudiado en el dominio de la frecuencia bajo el mismo marco de
análisis teórico. En este sentido, no se trata de parametrizar en una TL cada posible modo en una
teoŕıa independiente sino utilizar una expresión (compleja) común para los parámetros básicos de
la TL equivalente que implique unos prámetros de ĺınea (también complejos) sobre los cuales se
pueda mapear cualquier modo que se propague (este proceso es denomiado como ”caracterización
inversa”). Esta caracterización inversa se ha utilizado para esudiar el caso de HPWs como en la
LTLT, con el fin de poder probar su validez para el análisis complejo posterior; y (iii) las carac-
terizaciones directa e inversa de la LTLT se interpretan en el contexto del análisis comlejo de TLs
con pérdidas, dando lugar a su completa caracterización para pasar a establecer la primera versión
de la CTLT (CTLT-v1).

Como consecuencia de los análisis realizados, la CTLT, lejos de resultar ser una teoŕıa cerrada para
estudiar un tipo particular de modos guiados, se contempla como una metodoloǵıa de análisis para
cualquier tipo de modos dentro de un mismo marco. Con ello, aunque el proósito de la CTLT
es el mismo que el de la TLT que la acompaña, el concepto de análisis cambia completamente, y
como consecuencia las interpretaciones f́ısicas asociadas y los posibles usos prácticos de ésta última
aparecen de forma intuitiva en la CTLT asociada gracias a los análisis de tipo gráfico y geométrico.





Conclusiones

La Teoŕıa Compleja de Ĺıneas de Transmisión (CTLT) ha sido presentada en esta Tesis como una
eficaz metodoloǵıa de análisis alternativa a la descripción en la clásica Teoŕıa de Ĺıneas de Trans-
misión (TLT), al mismo tiempo que ha sido provista de aquellas definiciones basadas en el análisis
complejo útiles para extender la caracterización a cualquier versión que se obtenga la misma. En
concreto, se ha ejemplificado el uso de los análisis complejos y de todos aquellos recursos definidos
de forma general en la primera versión de la CTLT (CTLT-v1), la cual ha sido planteada para rein-
terpretar las soluciones en la Teoŕıa de Ĺıneas de Transmisión con Pérdidas (LTLT) y analizarlas
en profundidad poniendo especial énfasis a su sentido f́ısico.
Tal y como se dice y se ha presentado en la Tesis, la CTLT no debe quedar relegada a estudiar un
tipo concreto de soluciones y por lo tanto aplicada a una TLT en particular, sino que ésta debe
poder ser aplicada para estudiar cualquier tipo de sistema EM, tanto propuesto de forma teórica
desde el principo como modelado de forma teórica a partir de un sistema EM real. Ésto, sin duda,
supone un objetivo ambicioso –sujeto a la capacidad de analizar cada una de las posibles soluciones
e interpretarlas f́ısicamente– pero alcanzable en las práctica con las definiciones que en la Tesis se
han dado.

La correcta interpretación de la CTLT requiere un ”cambio de mentalidad” a la hora de abordar
los análisis. Para explicar este nuevo punto de vista, en la Tesis se detallan las definiciones, se
recurre a gráficos y esquemas, se presentan ejemplos de uso y se resalta cada una de las partes que
implican un cambio en la perspectiva de análisis. Entre los cambios a la hora de abordar el análisis
se destaca que:

(i) Las soluciones en forma de ondas de tensión y corriente equivalentes en la Ĺınea de Trans-
missión (TL) vienen completamente determinadas de forma única en términos de los paráme-
tros de la misma. Por ello, los parámetros que definen la TL se convierten en el prin-
cipal objeto de estudio. Esto trae consigo la importante e intŕınseca ventaja de estudiar los
ĺımites en la definición de estos parámetros, algo que no se ve directamente en las expresiones
matemáticas de las ondas equivalentes.

(ii) Con esta idea de caracterizar los parámetros de la TL en lugar de ofrecer sencillamente las
soluciones, se hace necesario un análisis simultáneo de todos estos parámetros con el objetivo
de ver su comportamiento en conjunto, previo a ser analizados en su sentido f́ısico. Este
hecho introduce inherentemente la idea de observar las transformaciones entre los parámetros
involucrados en el análisis. Por ello, la CTLT se centra en el estudio de las transformaciones
entre los parametros de la TL.
Cada una de las versiones que surgen de la CTLT se considera completamente caracterizada
de forma análitica cuando todas las transformaciones entre los parámetros de la TL están
analizadas. Estas transformaciones pueden ser vistas:

(ii.1) anaĺıticamente como transformaciones complejas;

(ii.2) gráficamente entre los planos asociados a cada parámetros; y

(iii.3) geométricamente como curvas planas parametrizadas de igual forma (p. ej. las curvas
parametrizadas por la parte real y la parte imaginaria de la impededancia de onda en su
plano asociado y las curvas parametrizadas de la misma forma en el plano del coeficiente
de reflexión, es decir la Carta de Smith Generalizada)

Para el propósito de definir todas las transfromaciones desde estos tres puntos de vista, es
necesario disponer de los dominios o espacios de parámetros donde tales transformaciones
operan. Hay dos formas de tratar esta problemática:

a. usando los planos complejos asociados a los parametros que aparecen naturalmente
cuando se trabaja con expresiones complejas de los mismos (p. ej. el plano complejo
asociado a la impedancia caracteŕıstica), o



b. definiendo de forma adecuada nuevos dominios o espacios de parámetros de forma
anaĺıtica (con el álgbra asociado), gráfica y geométrica (p. ej. el plano rg que con-
tiene las parametrizaciones asociadas a los parámetros de ĺınea).

(iii) A parte de la definción anaĺıtica de las transformaciones entre los planos asociados a los
parámetros y su estudio de forma simultánea, las interpretaciones f́ısicas de los análisis quedan
en este punto aún pendientes. Por este motivo, La CTLT se considera únicamente
completa cuando se seleccionan las curvas con un significado f́ısico espećıfico en
el plano de parametrizaciones (el plano rg) para ser luego transformadas al resto
de planos asociaados al resto de los parámetros de la TL. La selección de estos
parámetros atiende a dos motivos fundamentales:

(iii.1) describir los parámetros de la TL f́ısicamente, es decir, estudiar su comportamiento en
función de los parámetros f́ısicos del sistema guiado que la TL parametriza (p. ej. las
pérdidas de la gúıa, dimensiones de la misma, etc.), y

(iii.2) describir las soluciones en términos de las variables de estudio: tiempo1 y longitud en
la dirección de propagación; de alguna forma por medio de los parámetros en uso.

En muchas ocasiones, estas caracterizaciones pueden llevarse a cabo de forma simultánea (p.
ej. el análisis a lo largo de la TL y términos de las pérdidas o la frecuencia pueden ser tratados
a la vez por medio de las parametrizaciones de los ángulos de los parámetros básicos).

(iv) Con el objeto de usar parametrizaciones complejas, en planos complejos, en curvas planas,
la adecuadas normalizaciones de los parámetros de la TL han sido escogidos dependiendo
del tipo de análisis que se lleve a cabo (p. ej. para el análisis de los parámetros en
función de las pérdidas, las normalizaciones se escogen con respecto a caso sin pérdidas).
De este modo, las normalizaciones llevan a ”universalizar el comportamiento de
los parámetros, lo que significa agrupar los parámetros en función de las parametrizaciones
usadas (análiticamente esto significa definir clases de equivalencia), representando todos los
posibles valores de un parámetro en un mismo punto, y utilizando parametrizaciones para
representar las curvas ”universales” que describen cada parámetro en el plano.

Bajo estas consideraciones, la CTLT-v1 ha sido planteada de forma satisfactoria en la Tesis. Re-
specto a esta versión, detacan las siguientes conclusiones:

(i) La LTLT sobre la que se apoya la CTLT-v1 permite obtener los paramétros bajo estudio y
cómo estos están conectados. No obstante, se ha apercibido que la manera más eficiente de
obtener las relaciones para el análisis complejo de los parámetros de la TL no es utiliando
el orden t́ıpicamente empleado: (desde los) parámetros de ĺınea → parámetros básicos →
(hasta los) parámetros de onda (la llamada ”caracterización directa”); incluso para la que
se supone la caracterización más sencilla (HPWs, dentro de los modos TEM); ni tampoco
resulta ser la de caracterizar los parámetros de forma inversa: (hasta los) parámetros de ĺınea
← parámetros básicos ← parámetros de onda (la llamada ”caracterización inversa”). Esta
última forma de caracterizar los parámetros, aunque resulta útil para analizar un sólo modo
(p. ej. HPW), no resulta eficiente para obtener los parámetros asociados a un conjunto de
soluciones.
La manera más eficiente de obtener los parámetros de la TL para su análisis complejo con-
siste en combinar las caracterizaciones directa e inversa de la siguiente forma: parámetros
de ĺınea (generalizados) ← parámetros básicos → parámetros de onda2. De esta forma,
cada modo es mapeado de forma inversa sobre los parámetros de ĺınea (generalizados), para
aśı proceder con la caracterización directa hasta obtener los parámetros de onda. Aśı, no

1La forma de parametrizar el tiempo es, de forma indirecta,por medio de la frecuencia, caracterizando los
parámetros de la TL equivalente en el llamado ”análisis a frecuecia variable”

2El procedimiento completo seŕıa:

parámetros de ĺınea (generalizados) ← parámetros básicos (desde funciones potenciales)
↓

parámetros de ĺınea (particularizados) → parámetors básicos → parámetros de onda.



solo los parámetros constitutivos sino también las condiciones de contorno se in-
cluyen como parte de los parámetros de ĺınea (generalizados), y por eso el análisis
en términos de las parametrizaciones de las pérdidas cobra espacial relavancia en la Tesis
para su posterior uso en nuevas versiones de la CTLT.
Y además, las parametrizaciones de la CTLT adquieren una importancia aún mayor
al poder tratar las variables bajo estudio como parte de éstas de dos formas difer-
entes:

(i.1) limitando el análisis a dominios espećıficos de trabajo, lo cual implica operar en el
subespacio que forman los coeficientes que expanden las soluciones en cierta base (p.
ej. la expresiones en el dominio de la frecuencia pertenecen al conjunto de coeficientes
cuando las funciones exponenciales del tiempo, ejωt, son seleccionadas para formar un
conjunto base); y/o

(i.2) complexificando y/o geometrizando el problema bajo estudio (p. ej. el ángulo de la
constante de propgación, ϕγ , determina la variación de los parámetros a lo largo de
la ĺınea, por lo que el módulo de este parámetro puede utilizarse para referenciar la
longitud de la misma).

Teniendo en cuenta este análisis combinado de caracterizaciones, la primera versión de la
Teoŕıa Generalizada de Ĺıneas de Transmissión (GTLT-v1) surge como la teoŕıa más eficiente
a la hora de apoyar los análisis complejos en la CTLT. Esta GTLT no trata de resolver las
ecuaciones originales sino exclusivamente caracterizar los parámetros básicos que describen
las soluciones en función de las pérdidas, condiciones de contorno, etc. En particular las
HPWs han sido el objeto de estudio de la GTLT-v1, probando que la caracterización inversa
resulta igualmente efectiva a la carcterización directa de este tipo de soluciones en la LTLT.
Además, esta caracterización inversa ha demostrado ser especialemente útil a la hora de
encontrar parametrizaciones de las pérdidas basadas en el uso de la fase de los parámetros
básicos.

(ii) Las curvas en el plano rg (que no es Eucĺıdeo), y en general el ”espacio de parametrizaciones”
definido y explicado de forma algebraica, gráfica y geométrica, definen por completo aquellas
transformaciones de interés en la CTLT:

(ii.1) Las curvas de r y g constantes en el plano rg3 definen las parametrizaciones de pérdidas
en el análisis a frecuencia fija.

(ii.2) Las curvas con módulo (ωn) constante en el plano rg y las curvas con fase (θc) constante
en este mismo plano definen las parametrizaciones utilizadas en el análisis en frecuencia
variable.

(ii.3) Diferentes conjuntos de hipérbolas en el plano rg definen las parametrizaciones complejas
(partes real e imaginaria y módulo y fase) de los parámetros básicos.

Como consecuencia de este análisis, el plano rg reune todas las parametrizaciones de
interés en la CTLT para la descripción completa de los parámetros de la TL a
caracterizar.
Es importante notar que las parametrizaciones complejas son tratadas como una única en
lugar de dos divididas en su parte real e imaginaria o su módulo y fase. Esto es aśı porque
siempre existe un parámetro f́ısico en los análisis en la CTLT que relacione estas a priori sep-
aradas parametrizaciones (p. ej. las parametrizaiones complejas en el plano del coeficiente
de reflexión están relacionadas por medio de la longitud de la TL para equellos análisis a lo
largo de su extensión).

Un importante resultado final sobre los análisis de las transformaciones es que las fases de
los parámetros básicos, ϕZ0 y ϕγ, determinan por completo el comportamiento
de los parámetros de la TL en términos de las pérdidas/frecuencia y a lo largo de

3Puesto que el plano rg es no Eucĺıdeo, estas curvas no se representan como paralelas en el ”espacio de
parametrizaciones”.



la longitud de la misma, respectivamente, siempre que las normalizaciones apropiadas
hayan sido escogidas dependiendo del tipo de análisis que se lleve a cabo. Esto es debido a
que los ángulos ”sobreviven” a las normalizaciones de los parámetros de la TL, que se hacen
con respecto a valores reales.

En el mismo sentido, el coeficiente de reflexión, ρ, es el único parámetro que se
mantiene ”intacto” tras normalizar el resto. Por ello, ρ, es el parámetro que describe
los análisis en función de las pérdidas, la frecuencia y a lo largo de la ĺınea al mismo tiempo
sin re-escalarse. Esto hace a la Carta de Smith Generalizada (el plano ρ parametrizado por
las partes real eimaginaria de la impedancia/admitancia) y la Carta de Smith Generalizada
inversa (el plano ρ parametrizado por las partes real e imaginaria de la impedancia carac-
teŕıstica) las herramientas gráficas más útiles a la hora de tratar con la dualidad que supone
analizar la TL a lo largo de su longitud y en función de las pérdidas/frecuencia.

Importante. Los planos que universalmente describen todas las parametriazaciones
reunidas y que son verdaderamente útiles para el cometido de la CTLT de caracterizar
f́ısicamente la TL son el plano rg y el plano ρ.

En conclusión, la CTLT tal cual ha sido presentada y ejemplificada en la presente Tesis supone
una forma alternativa y novedosa de visualizar la TLT, aśı como para generalizar a la misma.
La metodoloǵıa de análisis basada en análisis complejos que usa la CTLT resulta verdaderamente
intuitiva una vez se ha cambiado la percepción del problema que aqúı se explica. Los análisis
gráficos apoyan esta nueva idea de análisis a la par que permiten explicar cómo resolver problemas
relacionados con ĺıneas.
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Abstract

The Transmission Line Theory (TLT) plays a fundamental role in both academia and the profes-
sional background of RF and microwave engineering for the analysis and interpretation of prop-
agative EM waves in guided systems. While the main objective of the TLT is to characterize the
propagative behavior of equivalent voltage and current waves in Transmission Lines (TLs), many
authors avoid dealing with a TLT that rigorously analyzes those waves in lossy mediums, as well
as generalizing the study to different EM modes under the same theoretical framework. Although
avoiding losses and studying different solutions one by one simplifies the general analysis, it clearly
limits the understanding and applications of the TLT to characterize specific modes which prop-
agate in lossless media, leading to use particular cases and approximations instead of posing the
problem rigorously and generalized from the beginning.

The Complex Transmission Line Theory (CTLT) arises out as the alternative for the TL analy-
sis with the purpose of overcoming the limitations in the usual TLT. The CTLT is based on the
widely-known Complex Analysis, from which it takes the complex number definitions and also
advantage of the representation of the parameters that characterize the TL in associated complex
planes. This leads to: (i) the intuitive graphical representation of the TL parameters when those
are characterized by the parameterizations which are interesting to be rigorously interpreted in
the TL analysis (e.g. lossy parameterizations, the length of the TL, etc.); and (ii) the subsequent
geometrical analysis of the parameterized plane curves. In addition, since the TL parameters are
mutually interconnected, the complex transformations (mappings) between them are defined from
complex parameterizations and characterized within the CTLT.

The present Thesis is focused on developing all the possible analysis within the CTLT that lead
to generalize the study of guided waves belonging to the underlying TLT. For this purpose: (i)
the Lossy Transmission Line Theory (LTLT) regarding harmonic plane waves (HPWs) has been
posed rigorously from the beginning, which means obtaining the equivalent telegraher’s equations
directly from the original Maxwell equations (this process is named as direct characterization) pa-
rameterizing the influence of losses and boundary conditions of the structures which support these
waves into the line parameters of the equivalent TL; (ii) since the direct characterization of the
equivalent TL is not efficient in the sense that it only accepts one type of solutions (HPWs), the
Generalized Transmission Line Theory (GTLT) is defined with the objective of gathering all the
possible solutions which may be complex parameterized in the frequency domain under the same
theoretical framework. In this sense, it is not about solving each possible mode which propagates
in a waveguide but obtaining a expression of the basic parameters of these solutions in terms of
constitutive parameters, frequency, etc. in order to be then parameterized into the line parameters
(this process is named as inverse characterization). This inverse characterization is particularized
to the case considered in the LTLT (involving HPWs); and (iii) both the direct and inverse char-
acterizations regarding the LTLT are interpreted within the context of the Complex Transmission
Line Analysis (CTLA) of lossy TLs, leading to the their complete characterization and so founding
the first version of the CTLT (CTLT-v1).

Far from being a closed theory, the CTLT just as it is introduced in the Thesis represents a
methodology of analysis to be expanded for studying different propagative solutions under the
same framework. Thus, while the purpose of the CTLT keeps the same as in the original TLT, the
concept of analysis completely changes. As a consequence, the physical interpretations and practi-
cal uses of the underlying TLT appear intuitively in the associated CTLT thanks to the graphical
and geometrical analysis.
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Notation

Lossy Transmission Line Theory

Variables

Length from the generator z
Length from the load l

Time t
Frequency4 ω

Functions

Time domain Frequency domain
Voltage waves v V
Current waves i I

Parameters

Line parameters
Resistance p.u.l.5 R

Conductance p.u.l. G
Inductance p.u.l. L
Capacitance p.u.l. C

Basic parameters
Lossy Lossless Non dispersive Low-losses

Characteristic impedance Z0 Z0,sp Z0,nd Z0,bp

Propagation constant γ γsp γnd γbp
Attenuation constant α αsp αnd αbp

Phase constant β βsp βnd βbp

Wave parameters
Wave impedance Z
Wave admittance Y

Reflection coefficient ρ

1Spectral variable.
2Per unit length.
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Generalized Transmission Line Theory

Variables

Longitudinal coordinate z
Time t

Frequency6 ω
Propagation constant3 γ
Transversal coordinate t ≡ [t1, t2]

Functions

Fields
Time domain Frequency domain ”Propagative” dom.

Electric (wave) E E Ea
Magnetic (wave) H H Ha

Elec. displ. (wave) D n.u./n.s.7 n.u./n.s.
Mag. flux dens. (wave) B n.u./n.s. n.u./n.s.

Potentials
Time domain Frequency/”propagative” domain

Scalar electric n.u./n.s. φe
Scalar magnetic n.u./n.s. φh
Vector electric n.u./n.s. Ae ≡ Aeẑ

Vector magnetic n.u./n.s. Ah ≡ Ahẑ

Parameters

Constitutive parameters
Time domain Frequency/”propagative” domain

Electric permittiviy n.u./n.s. εeq
Magnetic permeability n.u./n.s. µ

Line parameters
Complex resistance p.u.l. R̄

Complex conductance p.u.l. Ḡ
Complex inductance p.u.l. L̄
Complex capacitance p.u.l. C̄

Basic parameters
Characteristic impedance of ξ-mode8 Z0,ξ

Propagation constant of ξ-mode5 γξ

3Spectral variable.
4Non used/No sense.
5The version of the GTLT presented in the Thesis (GTLT-v1) refers to HPWs, so that ξ ≡ HPW.
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Complex Transmission Line Theory

Variables

Lenght from the load l
Frequency ω

Functions

Basic parameter funcs.
Charact. impedance (func.) Z0 ≡ Z0(ω)

Prop. constant (func.) γ ≡ γ(ω)
Reflec. coeff. at the load (func.) ρL ≡ ρL(ω)

Wave parameter funcs.
Wave impedance (func.) Z ≡ Z0(l)
Wave admittance (func.) Y ≡ Y (l)

Reflec. coeff. along the TL (func.) ρ ≡ ρ(l)

Parameters

Parameterizations
Fixed frequency analysis Variable frequency anlysis

Conductor losses r r′

Dielectric losses g g′

”Dispersivity” n.u./n.s. c
Normalized frequency n.u./n.s. ωn

Electrical length le n.u./n.s.
Normalized length n.u./n.s. ln

Basic parameters
Normalizations9: Lossless Non disp. Modulus Load

Characteristic impedance Z0n1 Z0n2 Z0n ≡ ejϕZ0 Z0nL

Propagation constant γn1 γn2 γn ≡ ejϕγ n.u./n.s.
Attenuation constant αn1 αn2 n.u./n.s. n.u./n.s.

Phase constant βn1 βn2 n.u./n.s. n.u./n.s.
Reflec. coeff. at the load ρL ρL ρL ρL

Wave parameters
Normalizations6: Modulus Charact. imp. (mod.) Charact. imp. (lossless)
Wave impedance Zn Zn0 Zn1

Wave admittance Yn Yn0 Yn1

Reflec. coeff. along the TL ρ ρ ρ

6In order to have an intuitive explanation of the use of the notation of normalizations in the CTLT see Appendix
4.E.
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Chapter 1

Introduction

1.1 General introduction

The present work is intended to pose, study and use an alternative version of the Transmission
Line Theory (abbreviated as TLT) for the complete characterization of real electromagnetic sys-
tems in which EM fields1 propagate in certain way.
The TLT as it is usually presented, [Mar51, Col90, Poz98], faces this study under specific physical
conditions, that is fixing the geometries and constitutive parameters (for example, waves that prop-
agate in multiply connected regions, [BC90], bounded by PECs2, and filled with lossless materials),
as well as several assumptions (for example, zero longitudinal field components for describing TEM
modes3).
This way to introduce the TLT is quite illustrative (it helps the conception of the problem under
study, posed in the context of the TLT just as it is usually presented) but it greatly reduces the
analayis to more or less particular cases given by the conditions imposed.

From this point, it is natural –under the author’s point of view– questioning whether a general-
ized study of the TLT is possible in certain way, more or less deep (that is studying more or less
cases under the same theory framework), which doubtlessly motivates the analysis presented in
this Thesis book (and it also justifies part of the title of the Thesis in which ”Generalized Study”
regarding the ”Transmission Line Theory” are keywords).
This will not be a study founded in nothing. The analysis developed from this point forward are
based of the TLT, combining (i) its well referenced basis (for example those presented in [Col90]),
(ii) the particular point of view regarding the TLT introduced in [Gag01], which serves as main
framework of the present work, and (iii) the new studies developed throughout the Thesis period,
based on the previous basis.
These basis serve to build up some of the pretended generalization on the study, going from par-
ticular cases to new general theory, something which is very interesting from the Thesis objectives
viewpoint.
This way of proceeding (from particular cases to general theory) clearly has inductive nature, and
therefore the general analysis adquire great importance in the context under which the Thesis has
been thought.

Getting into the concepts enclosed in the TLT, it may be said that the analysis presented under
this Theory suppose a generalization in themselves, as long as the TLT is framed in the appropriate
context (otherwise it would be interpreted as a specific ”solver”, setting aside the generalization it
supposes):

1ElectroMagnetic fields.
2Perfect Electric Conductor.
3Transversal ElectroMagnetic modes.

1
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(i) First of all, the TLT has to be seen as the way for transforming the EM fields related through
the Maxwell equations to equivalent voltage and current waves related by the (equivalent)
telegrapher’s equations, [Poz98].
This transformation is more or less complex depending on the ”conditions” under which the
study is posed. In particular, the case of characterizing the propagation of TEM modes,
which is usually studied to introduce the TLT, reduces the ”complixities” to the minimum,
and so the telegrapher’s equations result the easiest to be solved.
In any case, posing the (equivalent) telegrapher’s equations means reducing the vector EM
fields to scalar functions, which is always an important reduction in the ”complexity” of the
analysis and a crucial step towards the better understanding for the analysis of the underlying
physical problem of EM propagation4.

(ii) Keeping in mind this close relation between a certain EM problem (conditioned in different
ways) and the equivalent problem which is posed throrugh the telegrapher’s equations, it is
neccesary to known what can (and thus what can not) solve the TLT. This is commonly
omitted when posing the telegrapher’s equations directly without explaining the origin of the
equivalent waves and also the parameters which appear on these equations.
The TLT is intended for (a) explaining the physical behavior of (b) ”almost uniquely
solvable” propagative waves5.
This general definition of the purpose of the TLT encloses some concepts which are crucial
for undersatanding the TLT and how the generalized versions have to be posed: in (a)
it is made clear that the physical interpretations regarding the analysis in the TLT are
essential. In this way, it is required to think about the ”TLT related to what”, instead of
an ”isolated TLT”6 without a physical problem in the background; and (b) makes reference
to an underlying PDE problem7, [Eva97, Zwi97], in which the spacial dependence of the
(individual) solutions representing non-static waves is the direction of propagation. It is also
said for these (individual) solutions that they need to be ”almost uniquely solvable”, which
means that there only exists a degree of freedom in the direction of propagation, besides
that one in the amplitude of the waves typical when dealing with linear PDEs8. The total
solutions are the sum of basic solutions, which concretize when the boundary conditions
(BCs) are imposed a posteriori along the direction of propagation. However, this solution
is given ”open”, in the sense that multiple solutions based on the combination of multiple
individual solutions are possible, so the problem uniqueness is partial (almost verified, or
quasi-uniqueness).
The description of both (a) the physical behavior and (b) all the possible solutions are the
main issues of every emerging generalized version of TLT.

(iii) The propagative solutions are well defined by means of different types of parameters which
have different depth in the context of the TLT. These parameters also characterize the under-
lying physical problem (for example, there are some parameters that characterize the losses
of the medium in which the EM waves propagate).
There are always three types of parameters to deal with: the line parameters, which charac-
terize the equivalent Transmission Line (TL). The TL is the way of representing the Teleg-
rapher’s equtions by means of a simplified circuit scheme that is defined differentially9; the

4Here a reference to the understanding of how the EM waves dinamically behave is outlined, which is one of the
main problems the TLT has to solve.

5Throughout this introductory section, these concepts: the physical interpretation and the solvavbility (denoted
with (a) and (b), respectively) are emphasized for founding the subsequent versions of the TLT.

6With this consideration it is assumed that there is not a ”General Theory” which can afford any EM problem
(in fact, this goes against the concept of reducing the original equations faced by the TLT), but some generalized
theories which let to explain a especific physical problem in a general way –so feel the difference between ”(The)
General Theory” and ”A Generalied Theory”.

7Partial Differential Equation problem.
8Maxwell equations are linear equations, so every equivalent telegrapher’s equtions also are. An interesting open

problem could be affordig non linear PDEs (for example the Navier-Stokes equations, [Zwi97]) through a generalized
version of the TLT.

9This point of view (the TL seen as an equivalent circuit) supposes one particular among the multiple possible
definitions of the concept of TL.
The most general conception of a TL is related with the definition of the TLT main objective: the TL is the physical
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basic parameters, which characterize each of the (individual) solutions of the TL, both stat-
ically and dynamically (cinematically)10; and the wave parameters, which parameterize the
way of obtaining the total waves circulating in the TL.
The study of these parameters is completely equivalent to solve the propagative waves in the
context of the TLT defined for one specific purpose, for example, and related to the lossy
parameters, describe (which entails studying (a) the physical behavior and (b) uniqueness)
the solutions in lossy TLs.

And that’s all. Every study that supposes any particularization concerning the original Maxwell
equations, the BCs imposed to solve them, the domain of study, any particular assumption as for
example zero longitudinal fields, etc. is a particular case within the most generalized theory which
is possible to be described11.
In any case, the points (i-iii) described above appear common to every particular theory which
may be stated, and those possible theories should be presented taking into account these premises,
apart from explaining them thoroughly.

Furthermore, it obvious that the issue of generalizing any theory requires the appropriate resources
to be well described. In other words, it is worthless to imagine a generalization if it is not possible
to be realized (and this means both (a) interpreting the solutions physically and (b) found them
according to the TLT (”almost uniqueness”) standars).
This suggests explaining a methodology which is capable of describing the proposed TLT as it re-
quired to (again, (a) explaining the physical interpretations and (b) contextualizing all the possible
solutions).
In this sense, there are few resources like (parameterized) functions to describe all the possible
solutions of a posed problem, for which each particularization of the parameters involved in the
expressions supposes a particular solution to the problem which is being studied. However, those
”spreaded” solutions described by functions lack of (a) the appropriate physical interpretations and
(b) the neccesary analysis of the allowed ones (a lot of times based on the physical interpretations,
which are met in Maxwell equations).

Example 1.1.1. It is very extended decoupling the EM fields in Maxwell equations by differenti-
ating them. As a result, a pair of parameterized solutions are found based on the coefficients and
assumptions on Maxwell equations. However, it is unknown (a) what does each of the solutions
physically mean, and (b) whether all the possible waves that follow the expression described by the
mathematical solutions are really possible.
These questions have to be answered by the (right) posed TLT.

These facts make clear that it is needed a new method which, accompanying the underlying expres-
sions that give the general solutions12, offers the appropriate physical and analytical interpretations.
In these sense, both the supposed method and the original expressions of the solutions would de-
scribe appropriately the TLT which is being presented, so they are part of the seeked methodology.
In fact, as it is suggested in the point (iii) itemized above, the characterization of the TL pa-
rameters13 suffices to characterize the solutions completely, since it is well known the role of each
parameter in the analytical expression of these solutions.

support for waves to propagate.
10The ”statical characterization” refers to the study of the behavior of the solutions at any fixed point along

the TL, which affects the characterization of the characteristic impedance of the individual solutions, whereas the
”dynamical characterization” (actually, ”cinematically”) refers to the study of the behavior of the solutions along
the TL with respect to the time (or any parameter that represents the time variation, e.g. the frequency), which
affects the characterization of the propagation constant of the individual solutions.

11In fact, this supposed ”General Theory” is not possible to be constructed and analyzed in itself and it would be
set up by means of different ”pieces” which represent more or less particularized theories

12It is not only about solving the particular solutions given by the BCs from a general solution, but also interpreting
them according to their physical meaning in the problem they model.

13The name ”TL parameters” refers to the three sets of parameters: line parameters, basic parameters, and wave
parameters; in general.
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Fig. 1.1: Scheme of different versions within the supposed ”General TLT”, which gathers every
possible TLT, including the GTLT-v1 (a particularization when considering time harmonic regime)
and the LTLT (a particularization when HPWs are supposed). The CTLT-v1 refers to the complex
analysis (CTLA) of HPWs in the frequency domain.

For the issue of characterizing the TLT properly, the Complex Transmission Line Analysis
(CTLA), [Gag01], appears as the method which supports the analysis of the underlying TL equa-
tions.
This method of analysis is inspired on some of the resources of Complex Analysis, [BC90]; in
particular the graphical representation in complex planes associated to each (complex) parameter
under study adquires great importance in the TL analysis.
Assuming the TL parameters are complex is a relatively great particularization14 from the (sup-
posed and not realizable) ”General Analysis of the TLT”, although it is perfectly justified, also
from the physical and analytical points of view: the use of complex expressions (in the space of
complex functions of real variables) comes from considering the solutions associated with a fre-
quency (ω) which characterizes the time harmonic regime. This regime is, in turn, associated with
complex exponentials ejωt, which are eigenfunctions of time derivative operators in the space of
complex functions, so analytically their use makes sense for easing the representation of any wave
solution. Moreover, from the physical point of view, using time harmonic functions is also justified
if supposing ”infinite initial conditions”15, which guarantee the problem is invariant ”along the
time”.
In this sense, the analysis is in certain way particularized (the system is ”time invariant”). However,
this particularization is overcomed if accompanying the studies in the CTLA with the appropriate
spectral analysis, [Her14].
Under the assuption of working in time harmonic regime, the frequency, ω, plays the role of an
additional TL parameter. In particular, ω may be seen as a line parameter because its meaning
when characterizing the equivalent TL circuit.

The possibility of making the analysis graphical in the context of the CTLA supposes: (i) a huge
generalization in the parameterized analysis: each point of the complex planes represent at least
one parameterized solution, which supposes the ”universalization” of the analysis; (ii) an intuitive
way to analyze complex domains of the parameterized solutions, leading to the seeked (a) physi-
cal and the subsequent (b) analytical interpretations; and (iii) the possibility of using concepts of
both Complex Analysis, for example the complex transformations between planes, and Geometry,
[MP77], when studying the plane curves.
These three elements of the CTLA: the ”universalization” of the study, the complex and geometri-
cal analysis; are combined to explain (a) the physical interpretations and (b) the analytical results
of the TLT. Thus, the CTLA which is focused on explaining a particular TLT, establishes the

14This ”degree of particularization” is a priori unknown, because not a shadow of knowing more possible partic-
ularizations/generalizations for the comparison is found.

15These ”infinite initial conditions” posed on the ”time coordinate” are equivalent to the infinite boundary condi-
tions (IBC) posed on some problems in space, for example on the direction of propagation of those mediums which
are object of study when seeing them as a TL, or those problems analyzed in free space.
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Complex Transmission Line Theory (CTLT), which emerges to avoid the limitations in the
analysis that the underlying (analytical) TLT presents.

The CTLT uses the CTLA as the method of analysis. This method may be extended for being
applied to different versions of the TLT. Thus, the CTLT is not strictly a method of analysis but a
methodology which uses the CTLA (and thus its resources: ”universalizations”, different complex
analysis, and geometrical interpretations; together with the graphical analysis) for explaining the
associated TLT16.
The definition of (one of) the CTLT and the associated CTLA also motivates this thesis book (and
it justifies the mention ”Complex Transmission Line Theory” in the title). This defintion implies
some degree of the seeked ”Generalized Study”.

Finally, the analysis presented in the Thessis are intended to both explaining and being used to
characterize ”Real Electromagnetic Systems”. For this purpose, the parameterizations regarding
this specific version of the TLT (that one that considers ”harmonic plane waves” which propagate
in lossy media) are intended to characterize it (in this case, the analysis are parameterized by all
the possible sources of losses, frequency, and the TL’s length). As a result, each ”EM system”17

which verifies the assumptions in the associated TLT may be rigorously studied by means of these
analysis. The possible practical uses18 are outlined in separated paragraphs for each particular
analysis presented in the Thesis.

16For this reason, the CTLT is classified in different versions depending on the particular version of the TLT it
refers to. For example, the Lossy Transmission Line Theory (LTLT) is associated with the first version of the CTLT
(CTLT-v1). This is better explained better then when presenting the thesis structure and objectives

17The concept of ”EM system” may refer to: either a circuit –which could be lumped– if seeing the ”EM system”
and the equivalent TL –which could be studied at a fixed point– through its line parameters parameters; or a
waveguide in which EM fields for different realzations of basic parameters; or even an operator, if seeing the ”EM
system” in the context of EM Operators and EM Function Theory, [HY02].

18This paragraph section: ”practical uses”; is used throughout the thesis book together with those different
sections explained in the structure presented at the end of this introductory chapter.
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1.2 Thesis background and previous studies
(Where does everything come from? What really inspires the Thesis?
Which analyis are brought to the Thesis?)

In this section those studies which serve as frame for the Thesis, and that clearly inspire not only
the work developed throughout the Thesis period but also they settle the basis of the underlying
”philosophy of analysis” induced to the Thesis are presented together with the previous studies.
On its behalf, these previous studies are ”recycled” because either they need to be reinterpretated
within the context of the Thesis or they accompany new anaylsis to complete the methodology
described in the introduction before.
This section is also intended to introduce the ”way of thinking” of the author, and to see how and
where the ideas move through.

The section is splitted into: (i) the background of those previous studies which, despite they are
not directly related to the Thesis, they result ”inspiring” for it; and (ii) the analysis which had
been done prior to the beginning of the thesis period (and the author has embraced and analyzed
for their reinterpretation and extension).

1.2.1 Thesis background

It is well known that Complex Analysis is a helpful tool for the analysis of different problems in
Physics and Engineering, [BC90]. In particular, just an example of use of the complex expres-
sions mentioned in the introduction before, operating in the frequency domain makes inherit the
approach of using complex exponentials, and thus managing complex values, for example when
describing the parameters of the TL.
Nevertheless, related to this point, it is important to understand the difference between the use
of complex functions (of real variable), for example complex exponentials, and the study of one
specific problem making use of complex variable (which, in general, leads to define complex func-
tions). This latter case is not as common as the first one among the related disciplines, although
some specific examples which have been reported, for example those introduced as applications of
Complex Analysis in [BC90], are very extended and especially ”solvent” when describing physical
problems, as well as illustrative of Complex Analysis usefulnesses.
The problems which are described using complex variable or complex parameterizations are of spe-
cial interest throughout the Thesis (in particular those which refer to EM propagation). Although
the work is founded on the basis of complex functions (of real variable), the CTLA induces the use
of complex analysis a posteriori.

Aimed for the idea of parameterizing and modelling the solutions of certain EM problems using
complex variable, Prof. Emilio Gago-Ribas starts studying the complexification of the space of
coordinates for the positioning of the sources which generate Gaussian beams (which are only an
approximation of the solution of the wave equation) in free space, which may be also studied in
complex coordianates when the complexification is extended to the space of propagation (in fact,
these and other complex beams are explained by the analytical deformation of the 2D cylindrical
wave solution when the complex extension of the coordinates is applied).
As a result, this complex extension of the a priori real space allows for generalizing different ap-
proximations under the same framework. Moreover, those approximations are (a)19 physically
explained and (b) analytically characterized, for example in their allowed regions, by means of
complex geometrical parameters, for example complex distances, angles, etc., all of them with
clear physical meaning.

19The notation ”(a)-(b)” used in the introduction is kept here for emphasizing that both (a) the physical inter-
pretations and (b) the analytical characterization are also goals of these previous studies in the background, despite
the fact that there the addressed problems are of different (physical) nature from those presented in the Thesis.)
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These complex beams are mainly studied for the purpose of analyzing scattering of periodic struc-
tures in EM, leading to some interesting contributions in the field, [GG97, GGD97, HF01, GG99,
GG00, MGD07, MGD09].

In this point, it is important to understand the difference between, on one hand, complexifying
both the solutions and equations which have been initially posed in real variable and, on the other
hand, posing the problem in complex coordinates. This latter problem is not solved yet, but it is
aimed for being studied under the context of the Generalized Signals and Systems Theory (GSST),
[Her14].
The GSST is based on the Signals and Systems Theory (SST), [OWY97, Lin04], which has been
initially posed for providing a general framework for studying the problems different branches in
Engineering, such as the Communication Theory, Circuit Theory, Dynamical Systems Analysis,
Digital Systems Processing (DSP), and so on.
The GSST is the way to (i) generalize and explain rigoursouly all the resources used in the SST,
(ii) propose new mathematical tools which are useful for the description, resolution and parameter-
ization of different physical problems, and (iii) support the existing theories suggesting the way to
be reinterpreted from the beginning while evidencing their limitations, for example it is required a
GSST on complex variable (CGSST) for analyzing rigorously both the complexifiction of real EM
problems and its description and interpretation using complex variable.
Both Prof. Emilio Gago-Ribas and Ph.D. Juan Heredia-Juesas are the main promoters of the GSST
for that description, resolution and parameterization of EM problems. In fact, the recent Thesis
written by Ph.D. Juan Heredia-Juesas, [Her14], summarizes the previous works in the context of
the GSST and provides a detailed and updated analysis of the current version of the GSST.
The most important generalizations regarding the SST achieved in the GSST are:

(i) The generalized representation of the vectorial spaces of functions following algebraic struc-
tures equipped with a ”solid” definition of an inner product (dot product) which induces, in
turn, well defined norms and metrics, leading to Hilbert spaces of functions20.

(ii) Based on the representation of any function as a linear combination (which is also generalized
and generically denoted as LC) of a basis set of functions, the thoroughly extended and known
concept of ”transform”, e.g. the Fourier transform of continuous functions with finite norm,
is explained as the projection of the function in these set of functions (in case of the Fourier
transform the basis are complex exponentials21.). As a consequence, the inverse tansform,
e.g. the inverse Fourier transform, is the expansion of a function by the LC of the elements
of the basis weighted by the coefficients of the (direct) transfom.
Since the transforms are generically defined in both directions (the projection based on the
dot product and the LC) they are presented in the GSST as Generalized Transforms (GT).
From this point, and based on well-known algebraic definitions, it is natural to consider
how to change between the different transforms, that is how to change the coefficients which
represent a function in different basis sets. The process of changing the basis has been
afforded in a generic way leading to the Generalizd Tranform Changes (GTC).

(iii) As it is also natural in Algebra, the definition of operators lets to transform functions, which
are either in the same space or different space. Linear operators, both invariant and non
invariant has been studied in the context of the GSST generalizing how the coefficients
change by means of the action of the operator in question, leading to the Generalized Spectral
Analysis (GSA).

(iv) In order to overcome the limitations of: (i) including functions that are not in the original
space of functions, for example the exponentials playing the role of ”Fourier basis” in L2;
(ii) managing distributions and generalized functions within the context of the GSST and
the defined algebra defined over the original space of functions; and (iii) ”homogenize” the

20The ”completeness” of these spaces for being considered Hilbert spaces is proved by the completeness of the
metric defined from the dot product in each possible space of functions: functions of discrete or continuous real
variable, in a finite or infinite dimension space, periodic or aperiodic, etc.

21This means a dichotomy because the exponentials which act as basis of functions with finite norm (square
integrable, indeed) are not in this function space (L2)
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domain and range of operators; a new version of the GSST based on the construction of
rigged Hilbert spaces (RHS), [Her14, HGV15, HGV16] is proposed and studied rigorously
under the same algebraic basis of the original GSST.

In this way, the basis of a solid theory22 –the GSST– intended to rigorously explain the problems
in EM are establish. However, the studies which would explain the use of complex variable for
the application in EM are still undeveloped. This is mainly because unifying an algebraic theory
with Complex Analysis sets out a lot of open questions non trivial to be answered, as for example
some very basic as how to deal with the LC in complex variable (is the Laplace Transform a
representative example of this LC? What does having an improper integral in a complex domain
really mean? And a lot more of related questions).
In this context, it is probably more efficient –and if not, it is also a good practice– having a look at
the physical problems which are candidates to be studied under a possible CGSST. Among these
problems are, for example, the mentioned scattering problems contextualized in this section, but
also the CTLT associated with the study of the TLT using resources typical of Complex Analysis,
just as it has been presented in the introductory section.
All these physical problems would serve as examples of use of the supposed CGSST, so notice that
the achievement of this latter theory is much more general (because even the physical meaning is
lost in favor of be generalized as only an analytical theory) and thus challenging.

Taking into account the idea presented in this summarized background, the focusing on the CTLT
may be perfectly understood and justified from the point of view of the GSST. Thus, the most
general objective of the GTLT, and in particular the CTLA in the CTLT, even beyond the de-
scription of a theory which serves to deal with the TLT rigorously, is to exemplify the use of the
GSST and state the fundamentals giving ideas to the potential CGSST.

1.2.2 Previous works

In this section, the previous studies related to CTLA are detailed. These analysis, which are de-
veloped in [Gag01], serve as basis for the definition of the first version of the CTLT (CTLT-v1)
proposed in this thesis book, which serves, in turn, to analyze rigorously –in this case– the LTLT
(that is, leading to a TLT (a) physically right interepreted and (b) analytically well-characterized).

The CTLA handbook, [Gag01], has to be read (and the author had to be studied as the main
reference in the CTLA) just as it has been written for: it is a reference of the first results regarding
the CTLA, and as such it does not provide neither (a) the physical interpretation of the underlying
TLT nor (b) the analytical characterizations in the context of Complex Analysis. Thus, this hand-
book does not explain the CTLT as it has been introduced and intended for analyzing the TLT. In
this sense, it has been part of the author’s work both: (i) completing the studies introduced in the
handbook, and contextualizing and explaining them within Complex Analysis and the subsequent
differential Geometry based on the graphical analysis presented in complex planes; and (ii) formu-
lating the associated CTLT in terms of the CTLA; in this thesis book.
Nevertheless, the analysis presented in the handbook are a fundamental part of both the back-
ground of the thesis and the analysis presented in the context of the CTLT used ”de jure”.
As a part of the thesis background, the CTLA had been conceived by Prof. Emilio Gago-Ribas as
a parallel research line which involves an analysis which is possibly better to be described using
complex variable or complexifying the real variables in use. Back then, analyzing the more exam-
ples as possible in which Complex Analysis was present would serve to generalize a SST (or GSST)
in complex variable (or CGSST), originally named as Complex Signals Theory (CST), [Gag09].
Nevertheless, although it could have been the starting point, Prof. Emilio Gago-Ribas realized the

22Base an emerging theory on Algebra is, undoubtely, one of the best ways to make this theory well founded and
solid.
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need of formulating the CTLA met more purposes than uniquely serving as example of use of a
possible CST:

(i) From the educational point of view, Prof. Emilio Gago-Ribas appreciated the lack of a
general analysis which lets to deal with all the particular TL-related problems under the
same methodology. This is maily explained for ”the bad” of seeing the TL-realted problems
one by one instead of all the problems together seen as a continuation within the same
theory.
One illustrative example of this ”short-sighted” way on understanding the analysis is the
use of the Smith Chart (SC), [Smi39, Smi44], or other related graphical tools, such as the
Generalized Smith Chart, [GDG06], despite these graphs are useful tools to analyze the
reflection coefficient parameterized by the impedance/admittance for any lossless or lossy TL,
respectively. However, under the point of view of the CTLA, these graphical parameterized
charts are only one example within the all the possible parameterized complex analysis.

(ii) The approximations regarding losses were not rigorously explained, for example the regions
of valifity of the low losses approximation, because it was not obvious establishing an intuitive
closed analysis of the approximations and particular cases23 for obtaining the differences, in
which cases they coincide, under which parameterizations these coincidences were produced,
etc.
The CTLA was posed to avoid these limitations in the analysis and provide a common
framework for the approximations and all the possible real cases at the same time.

(iii) Lossy TLs were not completely analyzed due to the complexity of trying to solve some of the
possible TL-related problems implies, often requiring great amount of calculus, or becoming a
lot of times impossible only by using algebraic operations. For example, solving the lengths at
which the impedance/admittance is purely real (after proving the existence of these solutions)
neccesarily requires Complex Analysis techniques.
In this sense, the CTLA had to provide an alternative way to characterize lossy TLs in such
a way that the related problems would have become much more easy to be solved.

Under these premises, the CTLA of lossy TLs has been written in the handbook in the following
terms:

(i) The CTLA starts assuming a TL which obeys the telegrapher’s equations equations param-
eterized by (real parameters) R, L, G, and C; being R and G those (lossy) line parameters
that model the losses in the TL. These parameters are considered constant coefficients in the
telegrapher’s equations which, written in this form, parameterize TEM modes. Moreover, it
is implicitly assumed time harmonic regime for the complex analysis being able to be applied.

(ii) On one hand, with the aim of studying the influence of lossy line parameters, the approparite
parameterizations of losses are used to describe the basic parameters both when frequency is
fixed and variable in their respective complex planes. For this purpose, the basic parameters
are normalized according to the parameterizations used, and so the complex planes which
describe them.
Then the graphical analysis directly appears associated with the variation of one of the
parameters when keeping fixed the rest. Since the parameterizations regarding losses are
presented by pairs, the result of the graphical analysis of basic parameters in terms of losses
is having two sets of curves in case the frequency is fixed (parameterized by the source of
losses: conductor or dielectric losses) and one set of curves parameterized by losses when
frequency is variable (which describes the whole frequency band when losses are fixed).

(iii) On the other hand, it is interesting to see how losses affect the description of wave parameters.
For this purpose, the well-known transformations between the wave parameters are studied
at any fixed point, normalizing them so that the phase of the characteristic impedance, ϕZ0

,
is the parameter which describe the influence of losses in these transformations.

23An approximation is not a real solution of the wave equation in any case. However, a particular case is an exact
solution under certain conditions. Specify these conditions is one of the purposes of the CTLA.
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The graphical analysis is strictly addressed in terms of (complex) transformations between
planes, due to the simplicity and properties these parameterized transformations present.
Among all the possible graphical analysis between the wave parameters which have been
described in [Gag01], the one that parameterizes the real and imaginary parts of the wave
impedance in this plane to be transformed to the relfection coefficient complex plane is iden-
tifyied as the generalized version of the usual SC, called the GSC, [GDG06]. This graphical
tool is seen as a particular case of CTLA.

(iv) A series of TL-related questions in the context of the CTLA are left open. For example: How
do the wave parameters behave in terms of the explicit influence of lossy parameterizations?
How are they along the TL? Which TLs (described in terms of losses) have the same phase of
the characteristic impedance (which parameterizes the GSC); among others related to more
specific problems, for example, given a loaded lossy TL, solving the lengths –if any– at which
the wave impedance/admittance is real, by using the CTLA (along the TL).

The reinterpretation of these analysis in the scope of the CTLA, contextualizing them appropri-
ately, has served to set the thesis objectives as well as propound the first version of the CTLT,
giving the consequent ideas to both the future versions of the CTLT and the terms in which the
CGSST (or CST) could be posed.
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Fig. 1.2: General scheme that summarizes the background in applied complex analysis including
the works developed in the Thesis.
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1.3 Thesis objectives and contents
(In which goals the Thesis is supported? Which concepts are (and which
are not) described in this book?)

Based on the ideas which define the Thesis background and the conclussions which may be deduced
from the previous work related to the CTLA, the following reinterpretations are posed to be then
analyzed as objectives for the Thesis:

(i) The CTLT is not the same as the CTLA.
While the CTLA refers to the methods within the Complex Analysis which serve to char-
acterize the TLs, the CTLT is the theory –presented as alternative to one particular TLT–
which characterizes the TL which physically represents a problem of EM propagative nature
under certain conditions. In other words, the CTLA has to be understood as the use of a
set of analytical methods typical of Complex Analysis to describe the TL which represents
any type of EM system, whereas the CTLT is the physical interpretation of a more or less
generalized (but neither particular nor general) TLT from the particular use of the CTLA.

(ii) Both research on the CLTA and on the CTLT are required. A lot of times the developments
in both sides –the analysis and the physical interpretations, respectively– come together or,
although not all at once, at least they may be identifyed on both parts. One clear example of
this correlative behavior happens when characterizing the wave parameters along the TL if the
losses on it are fixed, in which the (a priori disregarded) study of the transformations from the
reflection coefficient complex plane parameterized by the (fixed) phase of the characteristic
impedance is (finally) required. In this way, the study of wave parameters along the TL
for physically describe them as a part of the CTLT requires the a priori useless inverse
transformation that the GSC, [GDG06], describes.

(iii) The transformations explain the parameterized curves in each normalized complex plane.
Even when the parameterizations of losses and frequency or the variable that denotes the TL’s
length parameterize the curve, it is possible to imagine a transformation from a ”space/domain
of parameterizations/variables” to the complex plane of the parameter to be finally charac-
terized. These transformations are posed, in general, between complex quantities.
If all the parameterized curves are seen as the result of a complex transformation, then these
curves may be detransformed using the inverse transformation, provided that the transfor-
mation is injective. In turn, thus suggests analyzing the properties of the transformations
involved in the CTLA. The appropriate CTLA which lets to describe graphically the param-
eters as any TLT does analytically, leads to define the subsequent CTLT (supporting the
underlying TLT).
On the other hand, if looking at the possible transformations, two types may be considered:
those that are directly and naturally related to physical parameters/variables, for example,
the transformation which describes a wave parameter in terms of the TL’s length; and those
transformations which mainly have analytical meaning, for example the transformations be-
tween the wave parameters. They can be distinguished because the first type a priori involves
real parameterizations, while the second transformations are in general complex. Equiva-
lently, from the GSST point of view, the first transformations describe a complex function
of (a priori) real variable, whereas the second ones are complex operators between complex
parameters, which may be, in turn, described as complex functions (of complex variable).

(iv) The complex parameterizations (regarding the complex transformations) are typically de-
scribed separating the real and imaginary parts or the modulus and phase, because they
correspond with the usual descriptions of complex numbers, [BC90], athough they can be
described by any complex function because sometimes it is interesting to reparameterize24

them (e.g. the reflection coefficient will be better described as logarithmic reparameterization
for describing the impedance/admittance along the TL, [VG17-I]). However, the complex pa-
rameterizations have to be understand as only one25. In fact, under the context of the CTLT

24The concept of reparameterization, [MP77], is clearly bound to the geometrical interpretation of the analysis.
25The notations ”real-imaginary parts” and ”modulus-phase” (instead of ”real and imaginary parts” and ”moulus
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it is expected to have a real physical parameterization which accordingly relate the parts of
the complex parameterization.
In any case, the parameterizations are normalized (so they are dimensionless) in such a way
that they are able to describe the normalized TL parameters (also dimensionless) by means
of an ”universal” graphical analysis.

(v) The TL parameters are able to fully desrcribe the solutions in the equivalent TL and thus
the EM fields in the system that TL represents.
Their representation in normalized complex planes efficiently substitutes the original analyt-
ical expressions, so that it provides all the possible values and the regions of validity at the
same time, as well as the required rigorous explanation to particular cases and approxima-
tions.

(vi) The CTLA should be able to be re-used for the analysis of different particularizations of the
TLT leading to their respective versions of the CTLT. Thus, the definitions have to be as
general as the analysis can be. This basically translates to the fact that the parameterizations
should be able to describe the couple of equivalent telegrapher’s equations that models the
problem, while the direction of propagation and time are described either as parameter or
variable. For example, in the usual frequency domain ω parameterizes the time while the
TL’s length is kept as the variable which describes the direction of propagation.

Based on these premises, the following objectives, which describe the contents of the Thesis, have
been proposed and fulfilled:

(i) The Thesis is mainly focused on describing the CTLT referred to the LTLT (the CTLT-v1),
using the appropriate CTLA, which includes those analysis presented as previous works:
basically (i) the characterization of basic parameters in terms of losses and frequency and (ii)
the transformations between the wave parameters when losses are fixed; which are related
to direct transformations, so they have to be reinterpreted like this; and those ones new
proposed: basically (i) the characterization of the TL (the line parameters) in terms of the
basic parameter and (ii) the characterization of basic parameters when the impedance at any
fixed point is given; related to the inverse transformation, and thus also interpreted in terms
of transformations.

(ii) For being the CTLT-v1 well defined, the LTLT has to be posed and developed. Define the
LTLT means define the TLT for (i) harmonic plane waves (HPW), in which (ii) losses come
from every possible source: non zero conductivity of materials and dispersivity of them; and
(iii) described in both time and space coordinates (see the scheme in Fig. 1.1.
Seen the achievement of the LTLT as objective, it should be advance that: (i) studying HPWs
fixes both the BCs and geometries of the domain in which these waves can propagate; (ii) in
the abscense of a theoretical model, the constitutive parameters do not depend explicilty on
frequency (CTLT-v1.0) so they are not function of time. However, this does not mean that
the equivalent TL is not dispersive. In fact, it is, with the exeption of the non dispersive
case, which is studied in detail; and (iii) the optimal way to describe the TL parameters
for their characterization in terms of losses is in the frequency domain, so for being the
solutions/parameters desribed in the time domain, it is neccesary to analyze the parameters
when frequency is variable (a kind of spectral analysis).

(iii) The LTLT can be posed in two ways: as an independent case defined by the conditions
exposed before, or as a particular case of a more general TLT. Both ways for obtaining
the LTLT are proposed: the first one leads to the ”closed” LTLT (the name is kept the
same), which is defined particularizing step by step the Maxwell equations to be transformed
to telegrapher’s equations to finally obtain the solutions for a equivalent TL; whereas the
second one comes from ”A Generalized Version of the TLT” (GTLT-v1), which supposes the
solutions adjust specific functions, and from these functions the parameters of the equivalent

and phase”, respectively) is a direct consequence of considering one complex parameterization (instead of two real
parameterizations).
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TL are obtained.
These ways of describing the CTLT correspond with the ”direct” and ”inverse” way of seeing
the tranformations in the CTLT, so they are called the direct characterization and the inverse
characterization of the CTLT, respectively. Thus, in this case the direct characterization and
the invere characterization are denoted as CTLT-v1.0a and CTLT-v1.0b, respectivey.

(iv) Recall that for any version of the CTLT to be completed, the TL parameters have to be fully
characterized in terms of the physical parameterizations: losses, frequency and TL’s length.
Keeping this triple characterization in mind, only by combining the direct and inverse charac-
terizations the CTLT-v1 can be completely studied. As a result, the physical characterization
of the lossy TL is presented as example of use of the combination of the direct and inverse
transformations. Those examples of use are: (i) the parameters described along the TL, (ii)
in terms of losses and analyzed when frequency is variable; and (iii) when they are described
both along the TL and in terms of losses/frequency at the same time, presenting this dual
behavior when the appropriate parameterizations (based on angles) are chosen.

Once the CTLT-v1 is clearly defined and studied, different types of lossy TL-problems may be
analyzed, examplifying some applications of the Theory presented here.
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1.4 Thesis structure
(Based on the contents, how is the info organized in this book? What
does each chapter include?)

Keeping in mind the global purpose of the Thesis, which is define the CTLT-v1 based on the LTLT
(within the GTLT-v1) together with all the needed resources in the CTLA which lead to it and
prepare the definition of future versions, the Thesis is organized after this introductory chapter as
follows:

Part I

The first part is intended to introduce and describe the LTLT from two perspectives:

In Chapter II, the LTLT is presented from Maxwell equations being particularized for HPWs,
that is, waves whose EM fields are perpendicular to the direction of propagation presenting zero
Laplacian in the transverse at the same time.
The analysis is developed from zero in the time domain, that is solving the wave equations in
full time-space coordinates, and in the frequency domain, that is selecting time exponentials (time
harmonics) as basis and describing the problem in the spectrum of frequency, [Cle96]; to be then
compared.
As a result, it may be shown that the characterization in the frequency domain presents better
characteristics for the complete description of the parameters in terms of any type of losses.
From this point, the equivalent voltage and current waves are defined by integrating the electric
and magnetic fields, and the subsequent integration of Maxwell equations while identifying these
equivalent waves, which leads to the definition of the line parameters in a generic (orthogonal)
coordinate system, together with the equivalent telegrapher’s equations.
At the end of this chapter, the most important particular cases (from the lossy case, which is going
to be studied in the CTLT-v1.0a) are obtained (not efficiently) one by one.
This chapter is based on the usual TLT, [Poz98], but it is enterely presented generalizing: (i) losses
(linking the CTLT) in both the time domain and the frequency domain, and (ii) the coordinate
systems; which both suppose new contributions of the author to the Thesis and the state of the art.

In Chapter III, a version of the GTLT (GTLT-v1) is introduced. This version is intended to
gather all the possible solutions in waveguides under the same theory, generalizing the geometry of
the transversal section and the BCs, all of them described in the frequency domain for generalizing
losses as in the LTLT.
For this purpose, the GTLT-v1 starts supposing that any solution in the waveguide may be de-
scribed as a linear combination (denoted as LC, whatever the form it takes) of a set of orthogonal
vectors that are unequivocally defined by the gradient of a scalar potential plus the curl of a vector
potential (a scalar product according to this definiton is also proposed).
Using the scalar product besides BCs conciuosly imposed a posteriori, different solutions may be
obtained.
Among of them the HPWs that describe the LTLT may be deduced from the general equations.
Thus, the LTLT is a particular case of this GTLT-v1 (see this inclusion in the scheme in Fig. 1.1).
This particularization is presented as example of obtaining the line parameters by means of the
inverse characterization. This inverse characterization lies in identifying the constitutive parame-
ters with the line parameters in the supposed telegrapher’s equation (the line parameters may be
complex, depending on the solutions to parameterize. In the cases of the LTLT are positive real).
The resultant line parameters are normalized, but this is actually not critical for the subsequent
complex analysis.
This chapter is a original contribution of the author of this thesis book, which is inspired in many
viewpoints: (i) the GSST provides a general perspective of the problem; (ii) the way of solving
the equations by integration with a scalar product is one of the forms to solve Green functions,
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[Sta79], for obtaning the general solution of a EM problem, which is is also used in [Mar51], but
particularized to obtain TEM modes, TE modes26 and TM modes27 in waveguides with ideal BCs
(PECs); and (iii) the inverse characterization proposed in the context of the CTLT.

Part II

This part is intended to develop the CTLT-v1 completely.

In Chapter IV, the (basic28) transformations between the planes associated to the TL parameters
under study are characterized.
The chapter is splitted into two parts: the direct characterization, which mainly supports the
analysis in Chpt. II regarding the characterizations of TLs parameterized by losses and frequency;
and the inverse characterization, which mainly supports the analysis in Chpt. III obtaining the line
parameters from specifications on basic parameters and, these latter parameters from specifications
on wave parameters.
In order to understand the graphical analysis presented in the CTLT, the curves in each plane
are presented as complex transformations from another plane. For this purpose, the ”space of
parameterizations (of line parameters)” is algebraically defined. In particular, for the CTLT-
v1 this ”space” may be reduced to a (non euclidean) plane which is the domain and origin of
parameterizations for both the (direct) analysis in terms of losses and the (direct) analysis when
frequency is variable; and the plane to (inversely) parameterize the basic parameters.
For each transformation described in the CTLA of the CTLT-v1, the following points are described
in detail:

• Parameterizations

• Normalizations

• Graphical analysis

• Geometrical analysis

• Physical interpretations

• Practical uses

The analysis presented in this section are based on the previous works, gathered in [Gag01]. The
previous analysis are framed within the direct characterization, but they have to be reinterpreted in
terms of transformations, with the exception of the transformations between the wave parameters,
which are presented by means of one example.
The rest of analysis which involve the inverse characterization are developed by the author,
[GVH15, VG16-I, VG16-II].

In Chapter V, the CTLA presented in Chpt. IV (by means of both the direct and inverse
characterizations) is used as example to characterize the CTLT regarding HPWs which propagates
in lossy media, that is the CTLT-v1.
The TL parameters are characterized:

(i) along the TL when the losses and frequency are fixed (Ex. 01);

(ii) in terms of losses when frequency is fixed, or varying the frequency when losses are fixed,
both at a fixed point along the TL in which the load is known (Ex. 02); and

26Traversal Electric modes.
27Transversal Magnetic modes.
28In the sense that they only comprise two complex planes: the transformed and the ”transformative”; so they

involve transformations of constant parts (e.g. real-imaginary parts) or any modulus-phase.
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(iii) parameterizing the losses/frequency and the TL’s length by means of the phase of basic
parameters in order to be both analysis before (Ex. 01 and Ex. 02) gathered in only one
(Ex. 03).

Each example is detailed in:

• Normalizations and parameterizations

• Graphical and geometrical analysis

• Physical interpretations

• Practical uses

In addition, for the purpose of being the graphical analysis properly interpreted (as alternative to
the ”closed” analytical expressions), all the parameterized complex planes are presented together
(or at least grouped in consecutive pages for the right interpretation while they are clearly de-
picted).
These analysis have been carried out by the author once the direct and inverse characterizations
were studied in the associated CTLA. In particular, some partial analysis of Ex. 01 and Ex. 02
have been introduced in [GVH15], and [VG16-I] and [VG16-II], respectively.

Part III

In this part, some Applications of the CTLA in different fields: as graphical tools (for exam-
ple the logarthimic version of the GSC introduced in [VG17-I], and presented in [VG17-II] and
[VG17-III]), as theoretical contributions in ”complexification” examples, as supportive analysis in
numerical problems, and as example for the GSST; are briefly explained.

At the end, both the General Conclusions of the CTLA regarding the CTLT version studied in
the Thesis and the immediate Future Lines taking advantage of these analysis are presented.
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General Transmission Line Theory
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Chapter 2

The Lossy Transmission Line
Theory

2.1 Introduction

The TLT has been extensively used in RF and microwave engineering to describe the behavior
of EM propagative fields by means of equivalent voltage and current waves which propagate in
TLs. The reader may refer to some basic bibliography, for example the references [Mar51, Col90],
to find several examples of use of the TLT. Some of the examples in which the TLT is helpful
could be in modelling waveguides, passive RF and microwave circuits –in general, N -port devices–,
propagation in free space, etc.
In addition, the TLT continues being very useful from the educational point of view because it
serves to describe the elements of the EM propagation in a very simplified way.
Furthermore, the study of TLs may be combined with the analysis of different networks which sim-
ulate pasive and/or active HF circuits by means of some well-known parameters, as for example
the scattering parameters (S-parameters), [Poz98]. This possibility also makes the TLT one of the
most appropriate ways to characterize microwave components holding propagative waves.

Despite the TLT has demostrable usefulness in many analysis, it is often set aside to analyze lossless
TLs or low losses approximations of lossy TLs. This is quite common because: (i) guided waves
which propagate in low-lossy mediums hold the major part of applications in the engineering, in
which losses are disregarded. The study of EM waves in that ”almost lossless” media, or waveg-
uides in practice, is often carried out by means of equivalent TLs in which different rigorousless1

approximations are imposed over the lossless case; and (ii) these particular cases clearly reduce the
complexity of the general analysis.
However, the mentioned simplification when using the lossless case or the usual low losses approxia-
mation, [Poz98], not only cast serious doubts on the rigor of the analysis, but also they (i) keep the
study of losses widely limited and, as consequence, (ii) a lot of physical interpretations regarding
lossy TLs and practical uses of losses are completely missed. And that is not all; limiting the study
does not only affect the better understanding of lossy TLs in itself, but also the characterization
of many other circuits that present the characteristics of lossy TLs, as for example –and maybe
surprisingly– active circuits, [Poz98].
It is for that reason that any methodology which serves to generalize the classical studies to the
rigorous analysis of lossy TLs is encouragingly neccesary. If that intended methodology exists,
its use would mean avoiding the limitations of particular cases or approximations and taking full

1A particular analysis, for example an approximation, is said to be ”rigorousless” when neither its validity nor
the effects, that is the error it causes, are considered, although it makes sense in practice. On the contrary, the
validity of a ”rigorous” analysis can not be questionable at all (and this is not a philosofical question). Moreover, a
”rigorous” analysis will allow for explaining the suitability of the possible ”non rigorous” analysis.
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Fig. 2.1: Generic function represented in the [z, t]-plane and some time parameterizations of the
same function. The graphs ”paused” at different times (they are parameterized by time, or time
realizations) give an idea of how is the field at different moments and at which velocity the function
varies.

advantage of general analysis, too. With no doubt whatsover, the generalization of the TLT, in
this case to study lossy TLs thoroughly, is within the purposes of the present Thesis, as it has been
previously detached among the general objectives presented in Sect. 1.3 in Chpt. 1.

Of course the TLT has the basis in EM Theory, and so in Maxwell equations, [Col90]. Maxwell
equations are the laws2 in which every analysis in the present Thesis is based on. In particular,
EM plane waves, as the ones used in [Cle96] for expanding any guided waves, are the object of
study of the TLT, as it is usually presented.
But the true objective underlying the TLT should be simplifying the study of EM guided waves
(they do not have to be plane waves) to equivalent voltage and current waves defined as functions
of one variable denoting the coordinate along which the TL extends, besides the time (t) variation.
The coordinate z is often used as this ”spacial variable” and it coincides with the direction of
propagation, whereas time may be seen, for example, as a parameter.
In Fig. 2.1 a representation of a generic function in the [z, t]-plane is shown together with different
representations of itself parameterized by different time moments. This graphs could represent a
wave which is propagating along z.

Once the voltages and currents are defined along the TL, a system of two first order differential
equations (ODEs3) commonly known as the telegrapher’s equations relate the variations of volt-
ages and currents in both z and t. The coefficients accompanying the derivatives clearly define the
solution of the system of ODEs.
What is more, not only the coefficients in the telegrapher’s equations serve to define the (mathe-
matical) solution in terms of voltage and current waves in the equivalent TL, but also the ”physical
nature” of the problem under study. For example, waves propagating in lossless or lossy media
correspond with different physical problems, being the coefficients of the first case a particulariza-
tion of the second one, provided that this latter case is rigorously studied.

2Every law, condition, or common/significant equation will be written in italic throughout the Thesis; for example
Maxwell equations

3Ordinary differential equations.
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When decoupling the telegrapher’s equations, two second order ODEs of, separately, voltage waves
and current waves are obtained. These equations to be solved follow the form of wave equations,
[Poz98].

In this chapter, the basis regarding the TLT are reviewed while losses affecting TLs are fully con-
sidered. This fact supposes, on one hand, an important generalization if it is compared to the
well-known definitions regarding lossless TLs or low losses approximations, [Poz98]. In this way, it
is about introducing the LTLT from zero in order to generalize the usual TLT. Nevertheless, on the
other hand, this generalization implies an important increase on the complexity of the analysis.
Nevertheless, the basis of the TLT are kept the same, which implies defining and studying the
characteristics and behavior of plane waves. In particular ”harmonic” plane waves are the object
of study, which are defined below in Sect. 2.2 in a generalized orthogonal coordinate system, and
analyzed in both time domain and frequency domain.
Based on the properties of this kind of waves and the facilities the frequency domain presents in
comparison with the time domain, the equivalent voltage and current waves are defined taking
the frequency as the variable of study. The particularization of Maxwell equations using these
equivalent voltage and current waves immediately leads to the equivalent telegrapher’s equations,
which are introduced in Sect. 2.3.
At the end, and overview of several cases/approximations within the LTLT: the general lossy case,
the lossless case, the non dispersive, and the low-losses approximations; are described in detail in
Sect. 2.4, in order to be then compared and analyzed in a rigorous way.

The LTLT explained in this chapter lets see that it is important to: (i) generalize the TLT to
the study of different waves –not only HPWs– which propagate in waveguides, leading to the first
version of the GTLT (the GTLT-v1) explained in Chpt. 3; and (ii) define a method of analysis which
allows for analyzing the generalizations rigorously. This method is based on Complex Analysis,
[BC90], because it results natural when analyzing TLs under time harmonic variation, which is
a specific parameterization of t, and it leads to the analysis in frequency domain. Thus, the first
version of the CTLT (the CTLT-v1) introduced in Chpt. 4 arises out to study the wave solutions
included in the GTLT-v1.
Nevertheless, the cited analysis in time harmonic regime is just one possibility to describe the EM
propagation by means of TLs. The same characterization may be generalized using concepts of
Functional Analysis and Operator Theory, [HP80], as it will be introduced among the Future
Lines. This latter generalization means an important leap from the usual TLT and it sets the
basis of a new version of the GTLT (GTLT-v2).
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2.2 The plane waves fundamentals

In this section, the solutions of Maxwell equations based on plane waves in homogeneous isotropic
media in absence of EM fonts4 are obtained in both time domain and frequency domain, general-
izing the presence of losses. The most important assumptions which lead to define the TLT based
on these plane waves are detached at the same time, in order to later generalize the conditions to
impose regarding the GTLT-v1.
In addition, the main aspects regarding the generalization of the TLT for the lossy TL character-
ization are emphasized in order to introduce the CTLT-v1 as alternative methodology to study
the LTLT based on Complex Analysis, which is presented in Chpt. 4 and used in Chpt. 5 for
completing the CTLT-v1 characterization.

2.2.1 Plane wave definition

It starts defining the system of reference in generalized coordinates, and the notation to be used
to define these plane waves.

Graphically, the system of reference may be represented as follows

Fig. 2.2: Example of representation of a generic planar cylindrical region. The intrinsec trihedrom
[t̂1, t̂2, ẑ] serves to describe both the direction of propagation (z) and the orientation ([t̂1, t̂2]) of
plane waves, which are in the planar cross section D.

If taking z as the direction of propagation, plane waves are those solutions of Maxwell equations
which verify the plane wave condition:

Plane wave cond.

Ez = Hz
def
= 0.

This condition means that the field components are in the plane (denoted as D in Fig. 2.2) which
is perpendicular to the direction of propagation given by the z-axis, that is, the longitudinal field
components are null.
This fact inherentely establishes planar cylindrical regions5 as the domains in which plane waves
are better described. As a result, the plane wave condition indirectly geometrizes both the depen-
dence on the position and the orientation of the fields in these planar cylindrical regions, such as
it is exemplified in Fig. 2.2.
The generic intrinsec trihedrom [t̂1, t̂2, ẑ] has been chosen to describe plane waves; both their direc-
tion of propagation and the orientation at the same time. The defintion of the coordinates [t1, t2]
could be both local, that is intrinsecly to the point of study, or universal as a generic orthogonal
coordinate system in the space. The selection of one specific orthogonal coordinate system will

4Typically, electric charge and current.
5A generic planar cylindrical region is a domain defined as invariant along one of the cartesian coordinates. Thus,

planar cylindrical regions are geometrically built up by means of the infinite extrusion of planar cross sections (for
example D in Fig. 2.2) along the one axis (z-axis in the case of Fig. 2.2).
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mainly depend on the boudary conditions (BCs) imposed around D6.

The dogmatic Maxwell equations in homogeneous isotropic media in absence of fonts, [Mar51],
particularize for plane waves in planar cylindrical regions as:

Faraday’s law

(∇t + ∂
∂z ẑ)× Et = −∂µHt

∂t ;

Ampère’s law

(∇t + ∂
∂z ẑ)×Ht = σEt + ∂εEt

∂t ;

Gauss’s law (electric field)

(∇t + ∂
∂z ẑ) · Et = 0;

Gauss’s law (magnetic field)

(∇t + ∂
∂z ẑ) ·Ht = 0.

As it may be seen, the curl and divergence operators in space simplify to the one in the [t1, t2]-plane
(where D lives in), besides the vector product and the dot product both with ẑ accompanying the
directional derivative in z.
Also notice that the current (J t) is only consequence to the non zero conductivity, and so it should
be proportional to the eletric field (σEt in the Ampère’s law). Moreover, the magnetic (Bt) and
electric (Dt) displacement fields have been expressed proportionallyl to the electric (εEt in the
Ampère’s law) and magnetic (µHt in the Faraday’s law) fields in Maxwell equations.
Once Maxwell equations are posed in cylindrical coordinates and the plane wave condition has
been imposed for the longitudinal field components to vanish, the resultant equations are carefully
analyzed to be simplified.

Take in mind the vectors [̂t1, t̂2] are, indeed, orthogonal. If the fields satisfy the plane wave
condition, the transversal curl operator (∇t×) applied to the transversal fields also vanishes, and
so the electric and magnetic fields are orthogonal. This is proved in Appendix Appendix 2.A in an
easy way. As a result, the curl operator applied to plane waves has the form of ∂/∂z×7.
In addition, the ortientation of [̂t1, t̂2] supposes a degree of freedom because Maxwell equations are
invariant under rotations, which is also proved in Appendix 2.A. This lets to select the vectors
[̂t1, t̂2] being coincident with the electric and magnetic fields, respectively:

Et ≡ Et1 t̂1, (2.1)

Ht ≡ Ht2 t̂2. (2.2)

This assumption does not mean any loss of generality but it simplifies the notation in Maxwell
equations a lot, which result in the particularized equations:

∂Et1
∂z

= −∂µHt2

∂t
, (2.3)

−∂Ht2

∂z
= σEt1 +

∂εEt1
∂t

, (2.4)

∇t · Et1 t̂1 = 0, (2.5)

∇t · Ht2 t̂2 = 0. (2.6)

Notice how the particularized Faraday and Ampère’s laws in eqs. (2.3) and (2.4) are scalar equa-
tions after the components [̂t1, t̂2] being identified with the fields in eqs. (2.1) and (2.2)8.

6The possibility of generalizing any coordinate system by the local definition in terms of another (known) coor-
dinate system is thanks to leave the imposition of BCs as an (a posteriori) open problem.

7The ”×” symbol makes reference to the vector product.
8This is due to: ẑ × t̂1 = t̂2 and ẑ × t̂2 = −t̂1.
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The field solutions come from decoupling the (general) field functions Et and Ht from (the general)
Maxwell equations, to be then particularized with the expressions in eqs. (2.1) and (2.2). For this
purpose, the curl on both sides of the Faraday and Ampère’s laws is taken and, after using the curl-
curl vector identity9 together with Gauss’s laws, and the particularizations of the fields mentioned,
it leads to

∆tEt1 +
∂2Et1
∂z2

− ∂µσEt1
∂t

−
∂µ

∂εEt1
∂t

∂t
= 0, (2.7)

∆tHt2 +
∂2Ht2

∂z2
− ∂µσHt2

∂t
−
∂µ

∂εHt2

∂t

∂t
= 0. (2.8)

Eqs. (2.7)-(2.8)10 are of the form scalar wave equation if (i) eliminating the first order term re-
lated to the non zero conductivity, and (ii) considering the medium non dispersive so that the
constitutive parameters (functions ε, µ, and σ) do not depend explicitly on time. Nevertheless,
eqs. (2.7)-(2.8) could me referred as ”modified wave equations”, which govern the wave solutions
in general lossy media.
The solutions to eqs. (2.7)-(2.8) are of extremely different type depending on the BCs imposed.
Among of them, there are those which are more straightforard, such as uniform plane waves in free
space, for inctance, but most of them are truly hard to condense by one analytical expression, for
example, local scattered waves11. All the solutions would be object of study of the TLT provided
that they present a propagative behavior.

Remark 1. Despite the large variety of solutions of wave equations –eqs. (2.7)-(2.8)– subject to
the imposition of BCs, the TLT would be able to generalize the study of all of them under the
same methodology. However, this analysis supposes such a huge generalization that the TLT is
not expected to solve completely the underlying EM problem, but to describe the meachanisms of
propagation of EM waves.
In the same way, the so called Generalized Transmission Line Theory (GTLT) will try to
generalize the usually known TLT with respect to the study of: (i) losses; (ii) propagative modes or
field solutions (includying BCs); and (iii) parameterizations of time/space.

Domain BCs→modes Parameterizations
(Usual) TLT Time & Frequency Harmonic modes Lossless

LTLT Time & Frequency Harmonic modes Lossy
GTLT-v1 Frequency Multi-mode Lossy
GTLT-v2 Phase velocity Multi-mode Lossy

Table 2.1: Scheme of different versions for different (i) parameterizations of losses, (ii) BCs (modes),
and (iii) domains of analysis. The LTLT presented here generalizes losses in regions which support
”harmonic” modes analyzed in both the time domain and the frequency domain.

9∇× (∇×A) = ∇ (∇ ·A)−∆A

10The hypenation between equations consecutive numbered is used to designate those equations that have been
obtained at the same time by substituying one equation into another one, and viceversa, so they are connected in a
certain way. An example of these bound equations used throughout the Thesis is the pair of wave equations related
to the electric and magnetic fields.

11It is supposed that any EM wave (satisfying Maxwell equations) presents a plane behavior in certain region in
which the appropriate BCs are imposed. In this way, it is about relying each type of possible solutions on the posing
of BCs.
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Fig. 2.3: General scheme which guides the procedue to obtain the main equations regarding HPWs
which are written in the general coordinate system [t̂1, t̂2].

Fig. 2.4: Function space in which the ”modified” d’Alembert operator (�∗) representing the wave
equations, and the curl operators (∝ ∇×) representing Maxwell equations act over the functions
which represent the electric and magnetic fields. These fields may be obtained by the expansion of
harmonics ejωt weighted by the functions E(r̄;ω) and H(r̄;ω) studied in the frequency domain.

The usual TLT is posed for (i) lossless mediums in which (ii) ”harmonic” plane waves, which
are introduced in next section, propagate. Moreover, the TLT may be referred in (iii) either
[z, t]-coordinates (time domain) when solving the PDEs12 (2.7)-(2.8), or parameterizing the time
variation when supposing time harmonic dependence (frequency domain) for fields to be solved
from an equivalent complex Helmholtz-type ODE.

Here the LTLT, that is, the TLT in which losses are fully taken into account, is posed for HPWs (for
example, those associated with the infinite boundary conditions (IBCs) or uniform plane waves)
in both time domain and frequency domain. The advantages of parameterizing the losses in each
domain are detached, being the frequency domain the most appropriate domain (which is repre-
sented as a basis in the space represented in Fig. 2.4) to analyze losses.

2.2.2 Plane waves in time domain

Here the general solution of eqs. (2.7)-(2.8) is fully obtained in [z, t]-cordinates. For this purpose,
the ”harmonicity” of plane waves is imposed.
In addition, the medium is supposed to be non dispersive in order to simplify the PDEs in eqs.
(2.7)-(2.8).
An example when IBCs are imposed gives a particular solution of harmonic plane waves in time
domain: the uniform plane waves.

12Partial differential equations
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HPWs are those solutions to wave equation which verify:

Harmonic plane wave cond.

∆tEt1 = ∆tHt2 = 0.

This condition tells that both Et1 and Ht2 are harmonic functions in the cross section.

Additionally, if the mediums are non dispersive, the constitutive parameters do not depend on time,
so they are constant for time derivatives. As a result, the particularized Faraday and Ampère’s
laws in eqs. (2.3) and (2.4) result in

∂Et1
∂z

= −µ∂Ht2

∂t
, (2.9)

−∂Ht2

∂z
= σEt1 + ε

∂Et1
∂t

, (2.10)

whereas the Gauss’s laws in eqs. (2.5) and (2.6) remain the same.
On the other hand, the so called modified wave equations in eqs. (2.7)-(2.8) reduce to

∂2Et1
∂z2

− µσ∂Et1
∂t
− µε∂

2Et1
∂t2

= 0, (2.11)

∂2Ht2

∂z2
− µσ∂Ht2

∂t
− µε∂

2Ht2

∂t2
= 0. (2.12)

The general (individual) solutions13 of the PDEs (2.11)-(2.12) are

E±t1 ∼= fe(t1, t2)e∓αz sin(ωt∓ βz + ϕe), (2.13)

H±t2 ∼= fh(t1, t2)e∓αz sin(ωt∓ βz + ϕh), (2.14)

ω ≥ 0

α2 = µεω2

2

[
−1 +

√
1 +

(
σ
ωε

)2] ≥ 0,

β2 = µεω2

2

[
1 +

√
1 +

(
σ
ωε

)2]
> 0,

in which fe(t1, t2) and fh(t1, t2) are harmonic functions in the cross-section.

The general solutions in eqs. (2.13) and (2.14) are plane waves which propagate along the z-axis
at the same velocity vp = ω/β ≤ c[m·s−1], c the speed of light, whereas they both attenuate expo-
nentially at the same rate set by α.
The parameters α and β are the well-known attenuation constant and phase constant, respectively.
They determine the characteristics of propagation along the z-axis.
Notice that the dependence of the conductivity σ, which is the only source of losses considered in
time domain, is present in both parameters α and β.
Also notice the dependence of frequency (ω) in both parameters α and β, which are not linear
functions of frequency as long as losses due to conductivity are present. Nevertheless, the func-
tion f(α, β) = ±

√
(α2 − β2) presents a linear behavior with frequency, even though the conductor

losses exist.
All these particular behaviors regarding the attenuation and phase constants due to conductivity

13There are two possible individual solutions to wave equations regarding the electric and magenetic fields. Each
solution is denoted by the superscript ”+” or ”−”, which respectively refer to the electric or the magnetic field
which propagates in the ẑ direction (z increasing) or the −ẑ (z decreasing) direction. The total solution is the linear
combination (LC) of both waves. The coefficients of the LC are found a posteriori when the BCs are imposed in the
z direction. Thus, the total solution (the total wave) distinguishes from the individual solutions (or basic solutions),
and so the parameters which relate them. When solving the wave equations, the individual solutions are the ones
interesting to obtain.
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losses, and also the changes with frequency, are object of study latter in Chpt. 4 when frequency
is parameterized (frequency domain).

If the solutions in eqs. (2.13) and (2.14) are expected to model an unique EM wave which propa-
gates at ω/β[m·s−1] and it is attenuated e at a point which is 1/α[m] away from each z, then ω, α,
and β have to be the same for Et1 and Ht2 . These correspondences between the parameters of the
electric and the magnetic fields are due to the physics of the problem: α and β are unique because
they depend on the constitutive parameters and frequency which depends, in turn, on the speed
of the EM wave. As a consequence, there is only one value of ω for which the EM field solutions
in eqs. (2.13) and (2.14) present the same parameters α, β, and vp, which clearly determines the
kinematics of the wave.

Remark 2. The constitutive parameters of the medium together with the kinematics (phase speed)
of the electric and magnetic fields regarding the same EM wave make the frequency have to be equal
for both fields. Thus, it seems to be a logic practice arranging the fields in frequency, something
which is done in the frequency domain.
Contrarily, it is possible to see the constitutive parameters and frequency as the elements for building
up equivalence classes which arrange the EM waves. For example, the phase speed vp fix an equiv-
alence relation between the constitutive parameters to build up the partitions of the vp-equivalence
classes, that is, to see the EM waves in the ”velocity domain”. This arrangement is useful for
studying the waves that propagate in lossy mediums which are invariant along the z-axis, and it
constitutes the basis to develop an alternative version of the GTLT in future analysis (see Future
Lines).

Furthermore, if the EM fields fulfill the particularized Faraday’s law in eq. (2.9), then

fe(t1, t2) ∝ fh(t1, t2) ≡ f(t1, t2), (2.15)

and so the general solutions are

E±t1 ∼= f(t1, t2)e∓αz sin(ωt∓ βz + ϕe), (2.16)

H±t2 ∼= f(t1, t2)e∓αz sin(ωt∓ βz + ϕh),. (2.17)

Notice that, if the fields belong to the same EM wave, they only differ in some constant of pro-
portionality and their phases ϕe and ϕh, but they present the same variation in the cross section.
Thanks to the particularized Maxwell equations, it is possible to obtain the constant of proportion-
ality and the phase difference.
With this purpose in mind, eqs. (2.16) and (2.17) are substituyed in the particularized Faraday
and Ampère’s laws in eqs. (2.9) and (2.10) and, after operating (see the Appendix 2.B), it leads
to the relation of proportionality between the EM fields (in eq. (2.B.11) in Appendix 2.B)

η =
√

µ
ε

√
−1+

√
1+( σ

ωε )
2

2
√

2
sin (∆ϕ) +

√
−1+

√
1+( σ

ωε )
2

8 sin2 (∆ϕ) + cos2 (∆φ)

 , (2.18)

in which ∆ϕ = ϕe − ϕh is the phase difference between the electric ans magnetic fields. The
parameter η is the same for both individual solutions (the ones defines in each direction +z or −z)
in eqs. (2.16) and (2.17).

This parameter η is known as the impedance of the medium, or simply the impedance. It relates
the electric and magnetic fields regarding harmonic plane waves expressed in time domain.
Notice again the influence of the conductivity σ and the phase difference ∆ϕ in the expression of
the impedance.
Also notice the dependence of η with ω, which makes the impedance be non constant if seeing this
as a function of frequency, as long as neither the conductivity nor the phase difference are zero. The
fact that either the zero conductivity or the zero phase difference make the characteristic impedance
non frequency dependent suggests that there is a relation between the presence of conductivity and
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the phase difference.
In Appendix 2.B this relation is solved leading to (eq. (2.B.12) in Appendix 2.B)

∆ϕ = ± tan−1

(
α

β

)
= ± tan−1


√√√√√−1 +

√
1 +

(
σ
ωε

)2
1 +

√
1 +

(
σ
ωε

)2
 ∈ [−π

4
,
π

4

)
. (2.19)

The sign of ∆ϕ is not related to each of the individual solutions in eqs. (2.16) and (2.17), but
it makes an extension of the usually known tan−1 (◦) function by reflecting it. Both individual
electric and magnetic fields have the same ∆ϕ.

Fig. 2.5: Geometrical construction which represents the relations between the parameters α, β,
and ∆ϕ regarding the analysis of wave solutions achieved in time domain.

Notice the geometrical interpretation of the relation between ∆ϕ, and α and β, which is detached
in Fig. 2.5: the complementary angle to that one that α and β form (β vs. α) is ∆ϕ. This fact
gives to the analysis of parameters clear geometrical meaning.

Remark 3. The study of the parameters which determine the characteristics of EM waves in terms
of both the presence of losses and frequency, requires a methodology which facilitates these analysis
and gives at the same time physical interpretations regarding the behavior of these parameters.
Since the parameters are related by means of trigonometric identities, every analysis has geomet-
rical meaning. This indicates Geometry to be one possible strong method of analysis.

In summary, solving the PDEs in [z, t]-coordinates when the harmonic plane wave condition and
the non dispersivity are imposed, that is solving eqs. (2.11)-(2.12), leads to the parameterized
solution of EM fields in eqs. (2.16) and (2.17) in time domain.
On one side, the parameters α and β and, on the other side, η and ∆ϕ, completely determine the
general solution of EM waves in time domain when losses due conductivity are studied rigorously.

The particular solution to this problem comes when imposing the appropriate BCs14. The following
example serves to illustrate what appropriate BCs means when looking for a particular solution of
the general one.

Example 2.2.1. Imagine the deleted plane, [BC90], D = (x, y) ≡ (ρ cos(ϕ), ρ sin(ϕ)) ∈ R2\(0, 0), ρ ∈
(0,+∞), ϕ ∈ [−π, π), in which the harmonic plane wave condition is imposed, so

∆tEρ =
1

ρ

∂

∂ρ

(
ρ
∂Eρ
∂ρ

)
+

1

ρ2

∂2Eρ
∂ϕ2

= 0, (2.20)

∆tHϕ =
1

ρ

∂

∂ρ

(
ρ
∂Hϕ
∂ρ

)
+

1

ρ2

∂2Hϕ
∂ϕ2

= 0, (2.21)

having been chosen, [t̂1 ≡ ρ̂, t̂2 ≡ ϕ̂], and Et1 ≡ Eρ and Ht2 ≡ Hϕ, because of the symmetries the
operator ∆t has in the domain D.

14Here the term ”appropriate” is quite ambiguous because it depends on the solution (within a space of functions)
which is looking for. In the case of looking for a example which represents the behavior of harmonic plane waves,
appropriate BCs would be, for instance, those imposed on the general solution in eqs. (2.16) and (2.17), which serve
to obtain the amplitude function f(t1, t2) of the fields Et1 and Ht2 . In Example 2.2.1 the IBC lets to obtain uniform
plane waves (which are a particular solution of harmonic plane waves) in a specified domain.
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Eqs. (2.20)-(2.21) have not an unique solution. For example, both f1(ρ) = log(ρ) and f2(ρ) = C ∈
R are solutions to eqs. (2.20)-(2.21). However, if IBC15 are imposed, only Eρ = C and Hϕ = ηC,
with η as defined in eq. (2.18), are possible. In this way, the fields are uniform in D in the sense
of they are constant in D. Thus, the resultant waves when IBCs are imposed are called uniform
plane waves.

Remark 4. Uniform plane waves are a type of harmonic plane waves verifying the Laplace equation
in the not bounded or infinite (IBC) transversal section which is perpenticular to the direction of
propagation.

Uniform plane wave cond.

∆tEt1 = ∆tHt2 = 0,
+IBC.

By means of the example Example 2.2.1 before, it has been seen that each particular HPW solution
in the cross section does not determine the propagative behavior or relation between the electric
and magnetic fields at all. This fact makes the study of these characteristics: propagation and
relation between the fields; generalized, which is exactly for what the any version of the TLT is
intended to.
Nevertheless, it has been seen that the study of the parameters regarding this proposed TLT clearly
becomes much more complex when the most basic losses (those due to conductivity) are taken into
account. In this case, only the first order term −(σµ)∂(·)/∂t would produce losses in those solu-
tions in time domain.
Furthermore, notice that the frequency ω, which is a time scaling factor, explicitly appears in each
parameter α, β, η, and ∆ϕ, which are also written in terms of constitutive parameters. This,
together with the fact that losses essentially come with time derivatives, suggests ”parameterizing”
ω and, consequently, transforming time. Therefore, so far the analysis in time domain are proposed
in the frequency domain, with the corresponding advantages that come with it.

2.2.3 Plane waves in the frequency domain

In this section, the general solutions to eqs. (2.7)-(2.8) are obtained parameterized by frequency.
In this way, the total solution would be expanded by means of the Inverse Fourier Transform (IFT)
of the (time) Fourier Transform (t-FT) using the complex basis16 e(t;ω) ≡ ejωt (see this basis in
the scheme in Fig. 2.4). In this way, the proposed study is focused on the harmonic parameterized
by ω, so talking in terms of time harmonic regime and the use of complex functions parameterized
by ω.

Time harmonic regime transformations

F
u

n
cs

. Et1(r̄, t)
t−FT−→ Et1(r̄;ω)

Ht1(r̄, t)
t−FT−→ Ht2(r̄;ω)

O
p
s. ∂(·)/∂t) t−FT−→ jω(·)

∂2(·)/∂t2 t−FT−→ −ω2(·)

Notice that time derivatives regarding any complex time exponential lead to the same exponential
weigthed by the complex factor jω, that is complex exponentials are eigenfunctions of time deriva-

15Infinite boundary conditions ensure that the field is zero or constant when the position vector r̄ →∞ if either
the field fonts (which are not in the domain of study) are finite or ”infinite functions” (in the sense of distributions),
respectively.

16The notation e(t;ω) (ejωt in Fig. 2.4) is a particular case of the generic notation e(τ ;µ) presented in [Her14],
which refers the element ’e’ parameterized by µ in the basis set of functions of variable τ . The use of this notation
is quite recommendable to study parameterized functions, for example those in the TLT, but especially when
designating the basis in the space of functions in which the fields are repressented.



32 CHAPTER 2. THE LOSSY TRANSMISSION LINE THEORY

tives. This fact makes (i) solving the wave equations in the frequency domain much more easy
than in time domain and (ii) the analysis in terms of losses generalizes to dispersive cases, that is,
the analysis when complex constitutive parameters may be frequency dependent.
The same example of uniform plane waves (harmonic plane wave solutions + IBC) may be ad-
dressed in the frequency domain.

Again the harmonic plane wave condition is imposed.
By considering the time harmonic regime transformations above, the particularized Faraday and
Ampère’s laws in the frequency domain follow the form

∂Et1

∂z
= −jωµHt2 , (2.22)

−∂Ht2

∂z
= (σ + jωε)Et1 , (2.23)

whereas the Gauss’s laws in the frequency domain are witten as

∇tEt1 t̂1 = 0, (2.24)

∇tHt2 t̂1 = 0, (2.25)

if the mediums are suposed to be homogeneous with no fonts, although they can be dispersive if
ε ≡ ε(ω) ∈ C, µ ≡ µ(ω) ∈ C, and even σ ≡ σ(ω) ∈ C, that is, the constitutive parameters are
complex functions of frequency (parameterized by frequency for each harmonic).

For its part, if the wave equations in eqs. (2.7)-(2.8) are transformed to the frequency domain
by using the time harmonic regime transformations above, and the harmonic wave condition is
imposed, they result in

∂2Et1

∂z2
+ k2Et1 = 0 (2.26)

∂2Ht2

∂z2
+ k2Ht2 = 0 (2.27)

k ≡ k(ω) = ω
√
µεeq ∈ C, εeq ≡ εeq(ω) =

(
ε(ω)− j σ(ω)

ω

)
∈ C. Notice that eqs. (2.26)-(2.27)

are Helmholtz-type with coefficients in C. Thus, the complexity of solving the fields from these
equations has descreased significantly in comparison with the original eqs. (2.7)-(2.8).

The complex parameters in the transformed equations are briefly characterized from the physical
point of view: the complex constitutive parameters ε, µ, and σ, have the real part positive but
the imaginay part negative, so they are written as: ε = ε′ − jε′′, ε′ ≥ ε0, ε′′ ≥ 0; µ = µ′ − jµ′′,
µ′ ≥ µ0, µ′′ ≥ 0; and σ = σ′ − jσ′′, σ′ ≥ 0, σ′′ ≥ 0; then the parameters εeq and k defined from
the complex constitutive parameters are written as (see the mathematical analysis in Appendix

2.C): εeq = ε′ − σ′′

ω − j
(
ε′′ + σ′

ω

)
, so εeq = ε′eq − jε′′eq, ε′′eq ≥ 0 (while ε′eq ∈ R); and k = k′ + jk′′,

k′ =

√
ω2

2

(
µ′ε′eq − µ′′ε′′eq +

√
(µ′2 + µ′′2)(ε′2eq + ε′′2eq )

)
≥ ω
√
µ0ε0 (eq. (2.C.16) in Appendix 2.C),

k′′ =

√
ω2

2

(
−µ′ε′eq + µ′′ε′′eq +

√
(µ′2 + µ′′2)(ε′2eq + ε′′2eq )

)
≤ 0 (eq. (2.C.17) in Appendix 2.C).

A graphical analysis of these parameters based on complex transformations between themselves is
carried out in [Rie98]. This analysis lets to see how these parameters vary in terms of physically
realizable parameterizations of the constitutive parameters, and it is useful when analyzing the
parameterizations regarding the TLT from a physical point of view.
The parameter k is called the complex wavenumber. It depends on frequency and the constitutive
parameters, which depend, in turn, on frequency. It determines the solutions of eqs. (2.26)-(2.27).
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The general solutions regarding eqs. (2.26)-(2.27) are

Et1
∼= fe(t1, t2)e∓jkz, (2.28)

Ht1
∼= fh(t1, t2)e∓jkz, (2.29)

jk = jω
√
µεeq,

fe(t1, t2) and fh(t1, t2) are complex harmonic functions in the cross section.

Notice that eqs. (2.28) and (2.29) are fully equivalent to those eqs. (2.13) and (2.14) once the first
ones are tranformed to the time domain provided that

γ ≡ γ(ω) = α+ jβ ≡ jk ∈ C (2.30)

has been defined.
The parameter γ is known as the propagation constant. It determines the propagative behavior of
EM waves in lossy media. Thus, eqs. (2.28) and (2.29) may be compactly written in terms of γ as

Et1
∼= fe(t1, t2)e∓γz = fe(t1, t2)e∓αze∓jβz, (2.31)

Ht1
∼= fe(t1, t2)e∓γz = fh(t1, t2)e∓αze∓jβz, (2.32)

γ = α+ jβ ≡ jk,

α = −k′′ =

√
ω2

2

(
−µ′ε′eq + µ′′ε′′eq +

√
(µ′2 + µ′′2)(ε′2eq + ε′′2eq )

)
≥ 0,

β = k′ =

√
ω2

2

(
µ′ε′eq − µ′′ε′′eq +

√
(µ′2 + µ′′2)(ε′2eq + ε′′2eq )

)
≥ ω√µ0ε0.

The parameters α and β defined above –the complex attenuation and phase constants– generalize
the ones presented in time domain. In the frequency domain, not only the losses due to the presence
of non zero conductivity but also the losses due to dispersivity are taken into account.
Moreover, the congruency (symbolized by ”∼=”) regarding the field solutions in eqs. (2.31)-(2.32)
have to be understood in ”complex sense”, that is, a function which is the result of multiplying
eqs. (2.31) or (2.32) by any complex scalar factor is also a solution.
Even so, the physical properties regarding the attenuation and velocity of waves are the same as
in time domain.
The greatest usefulness regarding the analysis in the frequency domain is in having both real
parameters α and β in only one complex parameter γ, which, in turn, generalizes losses due to
conductivity and dispersivity.

Just like the solutions in time domain, the parameters α, β, and of course the parameterized fre-
quency ω, are the same for the electric and magnetic fields regarding the same EM wave. Likewise,
the amplitude functions should be (complex) proportional if the field is required to verify both
particularized Faraday and Ampère’s laws in eqs. (2.22) and (2.23). In this way,

f(t1, t2) ≡ fe(t1, t2) ∝ fh(t1, t2) ≡ ηfh(t1, t2), (2.33)

, in which η ∈ C plays the role of the complex impedance of the medium, so the fields result in

Et1
∼= f(t1, t2)e∓αze∓jβz, and (2.34)

Ht1
∼= ηf(t1, t2)e∓αze∓jβz. (2.35)

If substituying the field eqs. (2.34) and (2.35) in either the particularized Faraday’s law in eq.
(2.22) or the particularized Ampère’s law in eq. (2.23), it gets to the same expression of the
complex impedance

η ≡ η(ω) = ±jωµ
γ

= ±ωµ
k
≡ ± γ

jωεeq
= ± k

ωεeq
= ±

√
µ

εeq
∈ C. (2.36)
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Notice that the expression of the impedance in the frequency domain is much more simple than
the expression of the impedance in eq. (2.18) expressed in time domain. In addition, the phase
difference between the electric and magnetic fields, ∆ϕ, is included in the phase of the complex
impedance, ϕη, so

∆ϕ ≡ ϕη = − 1
2 tan−1

(
µ′′

µ′

)
+ 1

2 tan−1
(
ε′′eq
ε′eq

)
, (2.37)

which not only depends on conductor losses but also on the losses due to dispersivity.

Studying the parameters in the frequency domain lets analyizing them geometretrically because
of the inmmedate representation of complex parameters on complex planes. This is just as it has
been shown in analysis presented in [Rie98].
When relating the phases of the propagation constant, ϕγ , and the characteristic impedance, ϕη,
it leads to the following condition regarding HPW in frequency domain

Harmonic plane wave phase cond.

ϕγ + ϕη ≤ π
2 .

Notice that this condiction generalizes the geometrical interpretation between α, β, and ∆ϕ which
has been presented in Fig. 2.5 in the time domain analysis.

Remark 5. The analysis in the frequency domain, which leads to the complex analysis of the
parameters that determine the characteristics of EM propagation of each harmonic (parameterized
by ω), noticeably reduce the complexity of the expressions in time domain.
In addition, since these complex parameters have direct representation in complex planes, the ge-
ometrical analysis become natural when doing the appropriate complex analysis. These complex
analysis are expected to leave the required physical interpretations regarding the behavior of the
parameters in terms of losses (the constitutitve parameters).

The same Example 2.2.1 solved in time domain may be addressed here in the frequency domain
but taking into accout that uniform plane waves in the cross section are complex constant.
This analysis is different from complexifying the coordinates [t1, t2] in the cross section under the
same complex variable, and impose the harmonic plane condition in complex variable on the re-
sultant complex domain. In fact this method of complexifying the coordinates is a representative
example of that for which the complex analysis of EM is aimed for (introducedd as objective for
previous works in Sect. 1.2 in Chpt. 1 and inherited by CTLA).
This analysis leads to have complex derivatives and thus the Laplacian operator becomes ”univer-
sal” regardless the geometry of the problem included the BCs, just as it is presented in Appendix
2.D.

In any case, the dependence in the cross section does not determine the characteristics of propa-
gation of harmonic plane waves. This significative result may be used to study the wave solutions
in different structures under the same theory. Thus, equivalent voltage and current waves would
generalize the propagative fields.
The origin of these equivalent waves and the particularization of main equations to the ones that
govern them: the telegrapher’s equations; is studied in next section. The definition of these waves
and the transformations of the underlying equations that govern them are the bases of the TLT.
Moreover, any generalization from the usual TLT should do the same. In particular, the GTLT-v1
introduced in Chpt. 3 defines equivalent waves from a priori non-harmonic non-plane waves and
particularizes the Maxwell equations to obtain the equivalent telegrapher’s equations. Of course,
this generalized version is able to explain the particular solutions such as HPWs, but the process
is inverse: from a general case to those particular cases which are of interest.



2.3. EQUIVALENT WAVES. TELEGRAPHER’S EQUATIONS. 35

2.3 Equivalent waves. Telegrapher’s equations.

The usual Transmission Line Theory (TLT) bases on the study and parameterization of HPW
defined in Sect. 2.2. As it has been seen, these waves behave in such a way that the propagation is
completely independent of the variation in the cross section. This fact makes that different waves
which propagate in different domains (physical structures) may be studied under the same theory,
simplifying the original EM problem.
Keeping these ideas in mind, the TLT means a generalization in itself, in the sense that it tries
to gruop all the possible scenarii in which the solutions to the particularized wave equations in
eqs. (2.7)-(2.8) are HPWs, that is, those solutions regarding the particularized wave equations
in eqs. (2.11)-(2.12) expressed in the time domain, or those regarding the Helmholtz equations
in eqs. (2.26)-(2.27) in the frequency domain. These generalizations are, without a doubt, useful
when analyzing the propagation of HPWs in different media by simply parameterizing the physical
properties into the same circuit scheme.

Fig. 2.6: Scheme that summarizes both procedures to obtain the Helmholtz equations correspond-
ing to the direct and the inverse characterizationn of the TLT.

The objective in this section is to introduce the generalization of defining the equivalent voltage
and current waves (the functions V , I in Fig. 2.6, which are equivalent to φe and φh, respectively,
if seeing these in a more general frameworks such as the one in which GTLT-v1 introduced in
Chpt. 3 is posed), to deal with them in the LTLT17. As a result of posing this generalization,
the parameterization of the problem may be done by means of circuital components (the line pa-
rameters in Fig. 2.6). These circuital elements are the parameters in the telegrapher’s equations,
which appear replacing Maxwell equations (Maxwell equations → Telegrapher’s equations in Fig.
2.6). The telegrapher’s equations, which differentially relate the voltage and currents by means of
the circuital elements, define two networks based on lumped components per unit lenght (p.u.l.).
These networks physically parameterize the medium (losses included) and they define the equiva-
lent TL. Then, the telegrapher’s equations are solved by decoupling the voltage and current waves
(Telegrapher’s equations → Helmholtz equations in Fig. 2.6). The parameters which define the
voltages and currents in the TL are congruent with those that parameterize the EM waves, in such
a way that these latter ones can be restored from the equivalent waves and circuital parameters,
and so the original solutions of Maxwell equations.
This procedure to finally obtain the solutions on an equivalent TL is called the direct characteri-
zation of the TLT (represented clockwise in Fig. 2.6). This is the natural way to define the TLT.
It is also the most accurate because the equivalence between the medium and the representative
TL is found in the physical meaning of the problem.

The alternative to this definition consists in assuming the equivalence between the parameters

17The difference between the TLT and the LTLT will not be explicitly detached anymore. The (lossless) TLT is
a particular case of the LTLT, which allows for studying lossy TLs rigorously.
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which characterize the propagative solutions of Maxwell equations obtained when decoupling in
Helmholtz equations, and the parameters which characterize the equivalent telegrapher’s equa-
tions. For this purpose, the equivalent waves φe and φh (playing the roll of V and I) are asummed
to verify the (general) telegrapher’s equations (in which the line parameters may be even com-
plex), while they represent (by differentiation) the electric and magnetic field solutions (Maxwell
equations←telegrapher’s equations in Fig. 2.6). Then the obtained field Helmholtz equations are
solved in terms of the constitutive parameters (Helmholtz equations←Maxwell equations in Fig.
2.6), and the parameters which identify the field solutions are mapped onto the parameters which
identify the solutions of telegrapher’s equations through the line parameters.
This procedure to define the solutions of the TL is called the inverse characterization of the TLT
(represented counterclockwise in Fig. 2.6). This way to proceed is much more generalized but less
specific than the direct characterization, so that it is the method in a generalized version of the
TLT (then presented as GTLT-v1 when operating in the frequency domain).

Furthermore, each form of obtaining the solutions in the TLT is in the same sense of analyzing the
parameters of the TL in Chpt. 4.

Notice that it is assumed working in the frequecy domain because the facilities in the analysis it
presents in comparison with the time domain, just as it has been explained in Sect. 2.2. This
assumption does not suppose any loss of generality in the study but a useful simplification in the
expression of the parameters and a great generalization regarding the inclusion of losses.

This section is intended to explain and develop the direct characterization of HPW, and so ob-
taining the equivalent voltage and current waves which define the telegrapher’s equations and the
circuital parameters in the frequency domain.
Notice that this analysis could be repeated for non harmonic plane waves leading to a new direct
characterization. However, this proccess is not efficient in the objective of parameterizing the so-
lutions. Thus, a generalized version of the TLT based on the inverse characterization is introduced
in Chpt. 3. In this generalized version of the TLT the same solutions based on HPWs may be
obtained, which is exactly what it is done in Chpt. 3, allowing the comparison between the inverse
and the direct characterization presented here.

2.3.1 Direct characterization of harmonic plane waves

As it is previously mentioned, the direct characterization of HPWs deals with the transformation
of Maxwell equations to obtain the equivalent telegrapher’s equations, to be these ones decoupled
obtaining the equivalent Helmholtz equations.

Fig. 2.7: Scheme that summarizes the transformations regarding the direct characterization of the
LTLT.

For this purpose, the analysis starts obtaining the equivalent voltage and current waves by means
of definite integrals of the electric and magnetic fields, respectively. Then, from these wave defini-
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tions, the equivalent telegrapher’s equations are obtained by integrating Maxwell equations, at the
same time that the line parameters of the equivalent TL are deduced emphasizing their physical
interpretation. Finally, the equivalent voltage and current waves are solved by decoupling the tele-
grapher’s equations. Each solution is parameterized by the basic parameters, which are expressed
in terms of line parameters. The sum of the solutions leads to the total voltage and currrent waves
together with the definition of wave parameters which relate them.

Equivalent waves

In this section, the equivalent voltage and current waves are obtained by using properties inherited
from HPWs. These solutions are described in a general coordinate system, taking advantage of the
general notation which has been previously introduced in Sect. 2.2. The properties of harmonic
functions lets the integration being definite and unique, and so the expression of equivalent waves
results simplified.
This study leads to define the characteristics of the contours bounding the cross section, as well as
the BCs imposed on them.
The equivalences will be helpful when next defining the equivalent telegrapher’s equations from
Maxwell equations.

Let’s start supposing a random planar region D like the one in Fig. 2.2, but now delimited by the
contour C, and the cylindrical volume18 V sorrounding D, which is obtained by the extrusion of
D along the z-axis.

Fig. 2.8: Cylindrical volumen V obtained by the extrusion of the domain D delimited by C where
the harmonic plane wave propagates.

Suppose that HPWs exist in V, so eqs. (2.26)-(2.27) verify there. Recall that the harmonic plane
wave condition written in the frequency domain ensures

∆tEt1 = 0, (2.38)

∆tHt2 = 0, (2.39)

in D, so the fields are harmonic there.
The fact that both Et1 and Ht2 are harmonic is useful to generalize the field expressions by means
of equivalent voltage and current waves.

First of all, it is interesting to describe the approprite BCs over C for the HPWs to live in D (and
so in V). For this purpose, the properties of harmonic functions are consciuously used.

On one hand, the fact that the field functions are harmonic in D guarantees that the integration
of Et1 and Ht2 along any path in D̄ ≡ D∪C does not depend on the shape of the path itself. This

18Remember that a ”cylindrical volume” does not refer uniquely a cylinder, but a geometry invariant along the
z-axis.
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is demostrated by using lemmas of harmonic functions, [BC90]19.
In addition, there exists primitive functions, [BC90], which are denoted by φe ≡ φe(t1, t2)20 and
φh ≡ φh(t1, t2) associated with Et1 and Ht2 , respectively, such that

ˆ
P1−2

Et1dl = φe(t1,2, t2,2)− φe(t1,1, t2,1), (2.40)

ˆ
P1−2

Ht2dl = φh(t1,2, t2,2)− φh(t1,1, t2,1). (2.41)

Fig. 2.9: A random path P1−2 between the points (t1,1, t2,1) and (t1,2, t2,2) in the cross section D.

The points (t1,1, t2,1) and (t1,2, t2,2) are, respectively, the initial and final points of the path P1−2,
as depicted in Fig. 2.9. If the path is a parametizable simple curve, [MP77], with general equation

l(t1, t2) = 0, (2.42)

then the integrals in eqs. (2.40) and (2.41) may be generalized to

ˆ
P1,2

Et1dl ≡
ˆ t1,2

t1,1

(∇φe∇l)h1dt1 ≡ φe(t1,2, t2)− φe(t1,1, t2) ∀t2, (2.43)

ˆ
P1,2

Ht2dl ≡
ˆ t2,2

t2,1

(∇φh∇l)h2dt2 ≡ φh(t1, t2,2)− φh(t1, t2,1) ∀t1, (2.44)

in which h1 and h2 are the scale factors of the coordinates t1 and t2, respectively.
Notice that the equivalences in eqs. (2.43) and (2.44) are possible thanks to the definition of the
electric and magnetic fields in the t̂1 and t̂2 components, respectively, and also because the ortog-
onality between the coordinates [t1, t2]. This reduces the integrals to simple ones.
If the integrals do not depend on the shape of the path but these ones may be reduced to integrals
in only one coordinate as in eqs. (2.43) and (2.44), it means that the primitive functions φe and
φh are constant along t2 and t1, respectively. Congruently, Et1 and Ht2 are orthogonal to these
curve levels of φe and φh, respectively.

On the other hand, the harmonicity ensures that fields are at least class C2 in D, and class C1 in D̄.
For the primitive functions φe and φh not to be constant on D, the contour C can not be simple
connected. This is direct consequence of the mean value theorem, [Bro96], and it is explained in
Appendix 2.E in detail. Thus, C is mandatorily multiply connected.

19It is possible to use the generalization of harmonic complex functions in order to get the lemmas. For this
purpose, the domain D should be complexified, just as it is presented in Appendix 2.D, instead of particularizing
the lemmas of complex functions to real bivariate functions.

20The dependence on z is omitted in the definitions regarding D. This does not affect the equations based on
integrals of fields (field integral equations, FIEs) expressed in D because the dependece on z is separable and it can
be eliminated from both sides of the related equations.
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Fig. 2.10: A generic representation of the multiply connected cross section in which a random path
P1−2 goes from C1 to C2.

(a) Infinite parallel plates (b) Coaxial (c) Wire and infinite plate

Fig. 2.11: Some examples of multiply connected sections in which C1 and C2 are separated. They
all support harmonic plane waves, and thus unique equivalent voltage and current waves may be
defined in these structures.

In Fig. 2.10 a generic multiply connected cross section is represented. There the path P1−2 repre-
sents a random curve which goes between the separated contours C1 and C2.
Some examples of multiply connected regions are depicted in Fig. 2.11. For each case, the co-
ordinates [t1, t2] have been particularized to any well-known orthogonal coordinate system which
adjusts to the geometry of the domain. This may be done by defining either an universal coordinate
system as in Fig. 2.11a or Fig. 2.11b, or a local one as in Fig. 2.11c21.
Multiply connected regions could be extended to more than two separated closed contours. Also
notice that any contour which is infinitely extended is also a closed contour22, for example, in the
infinite parallel plates in Fig. 2.11a.
In any case, the primitive functions φe and φh should be constant wherever the coordinates t1 and
t2 are constant, respectively, and the coordinate system is mandatorily othogonal for the definitions
above to verify.

Remark 6. If the fields are constant along one of the transveral coorditates (as the primitives are),
the geometry of the domain D has to be invariant along this coordinate. This is inverse consequence
of imposing IBCs in that coordinate, which makes any field constant on it.
Some geometries parameterizable with orthogonal coordinate systems in which one of them varies
in all the range are the parallel plates or the coaxial, for example.

Both primitive functions φe and φh have clear physical meaning. They are the electric and magnetic
potential funtions, respectively.
The electric potential function, φe, which is the antiderivative of the electric field, is the voltage
function, it has volts ([V]) as units, and the difference of this function evaluated in different points
on the cross section is the electric potential difference. Since φe is constant along the contours
described by the equation

C (≡ Ce) : t1 = a, (2.45)

21In the case of describing a geometry in a coordinate system which does not adjust to it, which means that the
multiply connected contours are non constant in the selected coordinate system, the BCs to impose become non
constant functions. This increases the difficulty of solving the fields in the cross section, although this is not strictly
required for defining equivalent voltage and current waves.

22The idea of considering infinitely large contours as closed contours is topologically accepted.
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being a a real constant in the range of t1, φe(C2)−φe(C1) is also constant if C1 and C2 are written
in terms of eq. (2.45). As a consequence, the definite integral in eq. (2.43) is constant if the path
P1−2 connects the contours C1 and C2:

V0 =

ˆ
P1−2

Et1dl = φe(t1,2, t2)− φe(t1,1, t2), t1,2 ∈ C2 and t1,1 ∈ C1, ∀t2. (2.46)

The magnetic potential function, φh, which is the antiderivative of the magnetic field, is the current
function, it has amps ([A]) as units, and the difference of this function evaluated in different points
on the cross section is the magnetic potential difference. Since φh is constant along the contours
described by the equation

C (≡ Ch) : t1 = b, (2.47)

in which b is a real constant in the range of t2, φh(C2)− φe(C1) is also constant if C1 and C2 are
written in terms of eq. (2.47). As consequence, the definite integral in eq. (2.44) is constant if the
path P1−2 connects these contours:

I0 =

ˆ
P1−2

Ht2dl = φh(t1, t2,2)− φh(t1, t2,1), t2,2 ∈ C2 and t2,1 ∈ C1, ∀t1. (2.48)

Fig. 2.12: Example of structure based on finite parallel plates which supports both φe and φh
potentials whose curve levels are represented in horizontal continuous and vertical dashed lines,
respectively. The potential difference between the contours on the extremes is V0 and I0 for the
electric and magnetic potentials, respectively.

Although it is usual to define φe in structures which are totally symmetric respect to the t̂2 direc-
tion (in the sense of they are invariant along this direction), for example the parallel plates along
ŷ in Fig. 2.11a, or the coaxial along ϕ̂ in Fig. 2.11b, in which imposing φe(C2) − φe(C1) = V0,
the theory which is presented here may be generalized to non symmetric structures, for example,
finite parallel plates in Fig. 2.12.
The first approach in which φe is constant along a contour is the most common case because con-
tours in which the electric potential is constant are physically realizable. They are the so called
Perfect Electric Conductors (PEC) in comparison with Perfect Magnetic Conductors (PMC), which
are more difficult to synthesize.
However, the first case in which the contours are PECs also invariant along the t2 direction makes
φh constant, also because the contours are not multiply connected in this direction. As a result,
the magnetic field can not be obtained by differentiating the primitive φh, and I0 is not the result
of the integration in eq. (2.48). Thus, these ”invariant cases” can not be addressed using strictly
the direct characterization. Nevertheless, they can be studied if a equivalent structure delimited
by PMCs is defined in such a way that the EM solution in the cross section does not vary from the
original problem.
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Fig. 2.13: Example of equivalent coaxial structure in which PMCs are placed at ϕ = −π and
ϕ = +π. These placements do no vary the form of the fields in the cross section of a coaxial
geometry but lets to define I0 from the magnetic potential φh.

In Fig. 2.13 an equivalent structure with PMCs placed in the interior of a coaxial geometry lets
analyzing this case by using both potential function φe and φh without changing the solution re-
garding the original problem. Another example of an equivalence between an infinite (invariant)
structure and a structure bounded by PMCs is that established between infinite parallel plates and
finite parallel plates depicted in Fig. 2.12.

With these definitions of V0 and I0, it is possible to define the voltage and current waves and the
parameter which relates them.

Remark 7. The TLT as it is usually known does not analyze the electrostatical and magnetostat-
ical problem for every possible structure which supports plane waves. The fact that the EM fields
come from potential functions (primitives) is used to ”universalize” the solutions making use of
voltage and electric current waves. This connects with the idea of having the propagative behavior
of EM fields independent from the form that they present in the cross section.
In addition, since the fields are harmonic, the equivalent waves are defined by constants in the
cross section obtained by means of definite integrals of the electric and magnetic fields. However,
these integrals are not strictly neccesary, so they could be non definite without changing the solu-
tions, precisely because the independence between the propagative behavior and the variation of the
fields/equivalent waves in the cross section.

The amplitudes are written as factors of the exponential terms inherited from the fields in eqs.
(2.28)-(2.29), which determine the variation along the z-axis:

V ±(z) = V0e
∓jkz = V ±0 e∓γz, (2.49)

I±(z) = I0e
∓jkz = I±0 e

∓γz. (2.50)

These are the equivalent voltage and current waves. They have V0 and I0 as amplitudes, respec-
tively, regardless the structure under study that they parameterize.
The relation between V0 and I0 is given by:

Z0 =
V ±(z)

I±(z)
=
V ±0
I±0

, (2.51)

which is known as the characteristic impedance, and it fixes the true dependence on physical and
constitutive parameters.

Remark 8. The TLT focuses on the study of the characteristic impedance instead of the equivalent
waves in themselves. The characteristic impedance parameterizes the dependence of the equivalent
waves in the cross section, both dimensionally and in its constitutive parameters.

Once the equivalent waves have been obtained and the procedure that leads to define them has
been described, the equivalent telegrapher’s equations may be rigorously obtained from Maxwell
equations in order to see the equivalent TL problem.
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Equivalent telegrapher’s equations

With the equivalent voltage and current waves defined by integrating the field solutions regarding
HPWs, the telegrapher’s equations are obtained by repeating this integration of those fields in
Maxwell equations.
The procedure of transforming Maxwell equations lets defining the line parameters of an equivalent
TL. The physical definitions of these line parameters are generalized in the sense that they are
written as functions of constitutive and dimensional parameters associated with any geometry in
the cross section.
The transformations and definitions here lead to important physical interpretations of the equiv-
alent TL seen as circuit. These phsysical interpretations are then analyzed in Chpt. 4 in detail.
Moreover, they let to define the basic parameters as functions of the line parameters once the
equivalent telegrapher’s equations are decoupled leading to Helmholtz equations.

For the purpose of obtaining the equivalent telegrapher’s equations, let’s start tranforming the
Ampère’s law23. For this purpose, consider the generic cylindrical volume extruded dz from the
cross section D, which is multiply connected:

Fig. 2.14: Representation24of the volumen extruded dz from the cross section surrounded by the
surface S ≡ C ∪ dz whose normal vector is t1. Moreover, the path P connects the separated
contours in the cross section (P goes from (t1,1, t2) to (t1,2, t2)), and it is useful for the definition
of the conductance and capacitance (or complex capacitance).

Integrating the particularized Ampère’s law in eq. (2.23) in D and using the Stokes’ theorem
p.u.l.25 in the right hand side (r.h.s.):

ˆ t1,2

t1=t1,1

(ˆ
〈t2〉

∂
(
ẑ ×Ht2 t̂2

)
∂z

h2dt2t̂1

)
h1dt1 =

ˆ t1,2

t1=t1,1

(ˆ
〈t2〉

Ht2 t̂2h2dt2t̂2

)
h1dt1 =

= jωεeq

ˆ t1,2

t1=t1,1

(ˆ
〈t2〉

Et1 t̂1h1dt1t̂1

)
h1dt1

(2.54)

23This law is much more intuitive to transform because the integration uncovers the electric effects: conductance
and capacitance; which appears connected with electric potentials. This potentials are –as it has been detached in
the previous section– more intuitive to understand because of the classic correspondence with the electric potentials
in electrostatic, in comparision with the ”magnetic potentials” (currents) in magnetostatic.

24This figure is only a scheme, not a geometry in itself. In this case, the contours in C represent curves with t1

constant and so t2 varies in the whole range where it is defined (〈t2〉).
25The Stokes’ theorem applied to the surface S′ ≡ 〈t2〉 × dz having t̂1 as normal vector:

¨
S
∇×AdSt̂1 =

˛
C≡S̄

Ad̄l; (2.52)

reduces to the Stokes’ theorem p.u.l. as

¨
〈t2〉×dz

∂
(
ẑ × ∂At2 t̂2

)
∂z

h2dt2 t̂1 =

˛
t2

At2 t̂2h2dt2 t̂2, (2.53)

because the vector A ≡ At2 t2 is orthogonal to P .
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The equation before has been organized in such a way that the Stokes’ theorem p.u.l. can be
applied to the magnetic field in the r.h.s. The integration along t2 is in the complete range of t2

but it is not closed becuase the definition of the contour p.u.l. In Appendix 2.F the transformation
of both sides of eq. (2.54) to the equivalent waves has been carried out. The result in eq. (2.F.29)
which relates I(z) and V (z) is brought here:

I(z) = jωεeq
Lt2

H1,2
V (z), (2.55)

in which Lt2
26 is the measure of the range of t2, and H1,2

27 is the definite integral of the scale
factor h1/h2 in the range of t1.
Notice that the coefficient εeqLt2/H1,2 plays the role of ”complex capacitance” p.u.l. in the sense
that it relates the current and the trasnformation of the derivative of the voltage in the frequency
domain. The ”complex capacitance” refers to a capacitance with a parallel condutance. If dividing
εeqLt2/H1,2 in the real and imaginary parts, the capacitance p.u.l., C, and conductance p.u.l., G,
are obtained separately: {

C = ε′eq
Lt2

H1,2
≥ ε0

G = ωε′′eq
Lt2

H1,2
≥ 0

28. (2.56)

As it has been remarked, the integration in eq. (2.54) has been done in the cross section D and
thus the circuital parameters C and G are expressed p.u.l. Nevertheless, the integration may be
extended to the volume V in Fig. 2.14 in the following form:

‹
S

∂
(
ẑ ×Ht2 t̂2

)
∂z

d̄S = jωεeq

‹
S

Et1 t̂1d̄S, (2.57)

in which S is the surface sorroundig V, that is the clausure of V (S ≡ V̄). The r.h.s. in eq. (2.57)
integrates dz times the r.h.s. in eq. (2.54). That is because the field Et1 does not vary along dz
and it repits dz times in the ẑ direction, where the lateral surface has t̂1 as normal vector, so the
total voltage is V (z)dz.
The l.h.s. in (2.57) equals the application of the Stokes’ theorem continuously along dz. The
adjacent line integrals cancel so it only remains the first integral minus last one, that is I(z) −
I(z + dz) ≡ −dI(z).
As a result, if considering the circuital parameters in eq. (2.56), eq. (2.57) is equivalent to

dI(z)

dz
= − (G+ jωC)V (z), (2.58)

which is of the form of one of the telegrapher’s equations.

Now let’s transforming the Faraday’s law. Consider the same cylindrical volume as in Fig. 2.14
but now the path covers the whole range of t1 (〈t1〉) and it also goes from t2,1 to t2,2 in the cross
section:

26Do not confuse Lt2 with any self-inductance.
27Do not confuse H1,2 with any magnetic field.
28The parameter ε′eq may be lower than ε0 if σ′′ is not zero. However, this case is not usual because the conductivity

is real in practice.
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Fig. 2.15: Representation29of the volumen extruded dz from the cross section surrounded by the
surface S ≡ C ∪ dz whose normal vector is t2. Moreover, the path P connects the separated
contours in the cross section (P goes from (t1, t2,1) to (t1, t2,2)), and it is useful for the definition
of the resistance and inductance (or complex inductance).

Integrating the particularized Faraday’s law in eq. (2.22) in D, and using the Stokes’ theorem
p.u.l.30 in the r.h.s.:

ˆ t2,2

t2=t2,1

(ˆ
〈t1〉

∂
(
ẑ × Et1 t̂1

)
∂z

h1dt1

(
−t̂2

))
h2dt2 =

=

ˆ t2,2

t2=t2,1

(ˆ
〈t1〉

Et1 t̂1h1dt1t̂1

)
h2dt2 =

= −jωµ
ˆ t2,2

t2=t2,1

(ˆ
〈t1〉

Ht2 t̂2h1dt1

(
−t̂2

))
h2dt2

(2.61)

This equation is reciprocally equivalent to the one defined in eq. (2.54). It has been organized
in such a way that the Stokes’ thorem p.u.l. can be applied to the electric field in the l.h.s. The
integration along t1 is in the whole range of t1 but the path it is not closed. The procedure of
transforming both sides of eq. (2.61) is completely equivalent of the one transforming eq. (2.54),
which has been presented in Appendix 2.F. The result in eq. (2.F.30), which relates V (z) and I(z),
is brought here:

V (z) = jωµ
H1,2

Lt2

I(z), (2.62)

in which Lt2 and H1,2 are defiend as for eq. (2.54).
Notice that the coefficient µH1,2/Lt2 plays the role of ”complex inductance” p.u.l. in the sense
that it relates the voltage and the trasnformation of the time derivative of the current in the
frequency domain. The ”complex inductance” refers to a self-inductance with a series resistance.
If splitting the term µH1,2/Lt2 into its real and imaginary parts, the self-inductance p.u.l., L, and
the resistance p.u.l., R, are separately obtained:{

L = µ′
H1,2

Lt2
≥ 0

R = ωµ′′
H1,2

Lt2
≥ 0

. (2.63)

Since the integration in eq. (2.61) has been done in the cross section D, the circuital parameters
L and R are expressed p.u.l. Nevertheless, the integration may be extended to the surface S

29This figure is only a scheme, not a geometry in itself. In this case, the contours in C represent curves with t2

constant and so t1 varies in the whole range where it is defined (〈t1〉).
30The Stokes’ theorem applied to the surface 〈t1〉 × dz having t̂2 as normal vector:

¨
S
∇×BdSt̂2 =

˛
C≡S̄

Bd̄l; (2.59)

reduces to the Stokes’ theorem p.u.l. as

¨
〈t1〉

∂
(
ẑ × ∂Bt1 t̂b

)
∂z

h1dt1 t̂2 =

˛
t1

Bt1 t̂1h1dt1 t̂1, (2.60)

because the vector B ≡ Bt1 t̂1 is orthogonal to P .
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sorrounding the volume V (the clausure of V or V̄) in Fig. 2.15 in the following form:

‹
S

∂
(
ẑ × Et1 t̂1

)
∂z

d̄S = −jωµ
‹
S

Ht2 t̂2d̄S. (2.64)

The r.h.s. in eq. (2.64) integrates dz times the r.h.s. in eq. (2.61). That is because the field Ht2

does not vary along dz and it repits dz times in the ẑ direction, where the internal section has t̂2

as normal vector, so I(z)dz.
The l.h.s. in (2.64) equals the application of the Stokes’ theorem continuously along dz. The
adjacent line integrals cancel so they only remains the first minus last ones, that is V (z)− V (z +
dz) ≡ −dV (z).
As a result, if considering the circuital parameters in eq. (2.63), eq. (2.64) is equivalent to

dV (z)

dz
= − (R+ jωL) I(z), (2.65)

which is of the form of the other telegrapher’s equation.

Once the equivalent telegrapher’s equations in eqs. (2.58) and (2.65) have been obtained, the
equivalent voltage and current waves may be decoupled in the equivalent Helmholtz equations and
solved in terms of line parameters.
The general solutions to the telegrapher’s equations and the general expression of basic parameters
are next obtained.
Next sections are intended to particularize the parameters to those cases that will be analyzed in
Chpt. 4. These cases may be obtained by particularizing the general solutions and parameters,
which avoids to rewrite and solve the telegrapher’s equations repeatedly.

Equivalent Helmholtz equations

In this section the equivalent voltage and current waves are solved by decoupling the equivalent
telegrapher’s equations, which have been obtained in the previous part when tranforming the par-
ticularized Maxwell equations by using the physical definition of line parameters, that is the direct
characterization of the equivalent TL.
The procedure which is going to be followed to obtain the wave solutions of telegrapher’s equations
is well-known in the literature, [Poz98], so the method which guides the analysis is only briefly
summarized. Nevertheless, the parameters which are going to be particularized in the following
epigraphs are outlined to be then analyzed in Chpt. 4

The decoupled Helmholtz equations written in terms of the line parameters are obtained by differ-
entiating eq. (2.65) in z (see this in the scheme in Fig. 2.6) and substituying eq. (2.58) on it, and
viceversa, leading to

d2V ±(z)

dz2
− (R+ jωL) (G+ jωC)V ±(z) = 0, and (2.66)

d2I±(z)

dz2
− (R+ jωL) (G+ jωC) I±(z) = 0, (2.67)

respectively. The solutions to eqs. (2.66) and (2.67) are of the form of the equivalent voltage and
current waves in eqs. (2.49) and (2.50), respectively.

The parameter which identifies with the propagation constant of the equivalent waves is written
in terms of the line parameters as

γ = α+ jβ =
√

(R+ jωL) (G+ jωC) ∈ C, (2.68)
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in which

α =
1√
2

√
RG− ω2LC +

√
(R2 + ω2L2) (G2 + ω2C2) ∈ R, and (2.69)

β =
1√
2

√
−RG+ ω2LC +

√
(R2 + ω2L2) (G2 + ω2C2) ∈ R. (2.70)

In order to obtain the relation between the voltage and current waves in eq. (2.51), eqs. (2.58)
and (2.65) are divided, separating the magnitudes and integrating the sides, leading to

Z0 =

√
R+ jωL

G+ jωG
∈ C, (2.71)

which is the expression of the characteristic impedance in terms of line parameters.

The line parameters in both the propagation constant in eq. (2.68) and the characteristic impedance
in eq. (2.71) may be frequency dependent, and so these latter basic parameters are, besides their
explicit dependence on the noted ω.

The total voltage in the TL is expanded by adding the individual solutions in eq. (2.49), while the
total current is expanded by substracting the individual solutions in (2.50). Thus,

V (z) =V +(z) + V −(z) = V +
0 e−γz + V −0 eγz ≡

≡V +
0 e−γz + ρ0V

+
0 eγz = V +

0 e−γz
(
1 + ρ0e

2γz
),31 (2.72)

I(z) =I+(z)− I−(z) = I+
0 e
−γz − I−0 eγz ≡

≡I+
0 e
−γz − ρ0I

+
0 e

γz = I−0 e
−γz (1− ρ0e

2γz
), (2.73)

in which

ρ0 ≡
V −0
V +

0

=
I−0
I+
0

∈ C, (2.74)

is the so called reflection coefficient.
Notice that the definition of ρ0 is the same as the one obtained when relating the reflected and
incident voltage or current waves in z = 0. Then, it is possible to define the reflection coefficient
at any point of the TL from ρ0 as

ρ(z) = ρ0e
2γz ∈ C, (2.75)

so that the total voltage and current waves may be rewritten as

V (z) = V +
0 e−γz(1 + ρ(z)), (2.76)

I(z) = I+
0 e
−γz(1 + ρ(z)). (2.77)

Relating these total voltage and current waves and taking into account the definition of the char-
acteristic impedance in eq. (2.51), the impedance of the total wave, or wave impedance, is defined
as

Z(z) ≡ V (z)

I(z)
= Z0

1 + ρ(z)

1− ρ(z)
= Z0

1 + ρ0e
2γz

1− ρ0e2γz
∈ C, (2.78)

while the admittance of the total wave, or wave admittance, is the inverse quotient of the wave
impedance:

Y (z) ≡ I(z)

V (z)
≡ 1

Z(z)
= Z0

1− ρ(z)

1 + ρ(z)
∈ C. (2.79)

31Notice the difference in the notation between the total solution, V (z), and the individual solutions, V ±(z).
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Conversely, the reflection coefficient may be rewritten as function of Z(z) or Y (z), if it is solved
from eq. (2.78) or eq. (2.79):

ρ(z) =
Z(z)− Z0

Z(z) + Z0
=

1− Z0Y (z)

1 + Z0Y (z)
∈ C. (2.80)

For defining the total waves, it is usual to reference the waves at the load (ZL ∈ C). Then, the
voltage and current waves are defined towards the beginning of the TL from the load (at l from
the load). With this reference, the voltage and current waves are

V ±(l) = V ±L e
±γl, and (2.81)

I±(l) = I±L e
±γl. (2.82)

They are related by means of the relection coefficient

ρ(l) =
V −(l)

V +(l)
=
I−(l)

I+(l)
= ρLe

−2γl ∈ C, (2.83)

for which ρL ≡ ρ(l = 0) is the reflection coefficient at the load, which is defined from the impedance
at the load as

ρL =
ZL − Z0

ZL + Z0
∈ C. (2.84)

The wave impedance along the TL from the load is then written as

Z(l) = Z0
1 + ρ(l)

1− ρ(l)
= Z0

ZL cosh (γl) + Z0 sinh (γl)

ZL sinh (γl) + Z0 cosh (γl)
∈ C, (2.85)

whereas the wave admittance is

Y (l) ≡ 1

Z(l)
=

1

Z0

1− ρ(l)

1 + ρ(l)
=

1

Z0

ZL sinh (γl) + Z0 cosh (γl)

ZL cosh (γl) + Z0 sinh (γl)
∈ C. (2.86)

It is possible to obtain the expression of ρ(l) in terms of Z(l) or Y (l) as:

ρ(l) =
Z(l)− Z0

Z(l) + Z0
=

1− Z0Y (l)

1 + Z0Y (l)
∈ C. (2.87)

The conversions which have been introduced in this section: (i) the equivalent voltage and current
waves from harmonic EM waves, (ii) the equivalent telegrapher’s equations from Maxwell equations,
and (iii) the (equivalent) basic parameters defined from (equivalent) line parameters, and the wave
parameters defined from the basic parameters; lets to study particular cases based on different
definitions of line parameters and particularizations or approximations imposed on the basic and
wave parameters.
Since the (equivalent) line parameters determine the parameters of the individual and total wave
solutions, their definition p.u.l. in an equivalent circuital based on lumped components schematizes
the equivalences presented in this section and defines de equivalent TL.
Two basic examples of TLs based on the definition of line parameters: the lossy TL and the lossless
TL; an additional example based on the conditions imposed on the propagation constant: the non
dispersive TL; and an approximation in the basic parameters: the low-losses approximation; are
next presented. The circuit p.u.l. defines de equivalent TL in each case. Then, the basic parame-
ters and total wave parameters are obtained particularizing the general solutions presented in this
direct characterization.
In the following section, the physical meaning of each parameter under study is emphasized in first
instance. Nevertheless, the analysis in terms of losses and frequency, and the subsequent physical
interpretations, are obtained by means of Complex Analysis in Chpt. 4.
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2.4 Transmission Line particular cases

In this section, four different TL cases or approximations are studied by means of the definition
of their respective line parameters, basic parameters, and wave parameters, following the scheme
presented as the direct characteriation (see Fig. 2.7).

Fig. 2.16: Scheme that represents the sets of harmonic plane wave (HPW) solutions and approx-
imations. The non dispersive cases are the HPW solutions with coincide with their respective
approximations.

These cases are: the lossy case, the lossless case, the non dispersive case and the low-losses ap-
proximation.
Notice that the low-losses approximation is not a solution in the rigorous sense of the analysis
presented in this chapter, as it is reflected in Fig. 2.16, but it will be useful for the analysis in
Chpt. 4, in which may be rigorously interpreted.

2.4.1 Lossy Transmission Lines

In this section, the solution of lossy TLs in which the line parameters are not frequency dependent
is obtained. This case corresponds with the physical description of harmonic plane waves which
propagates in mediums whose constitutive parameters are specifically defined as functions of fre-
quency.
This non frequency dependent lossy case is a particular case of the general lossy case presented
in the section before, at the same time that it generalizes some particular cases, for example the
lossless case presented in next section.
Because of the generalization this case supposes, the parameters are studied in deep in Chpt. 4 by
means of Complex Analysis.

Line parameters

The line parameters regarding this lossy case are required to be non frequency dependent. This
means that the constitutive parameters present the following specific behavior with frequency:{

ε′ ≥ ε0

ε′′ ∼= ε′′0
ω ≥ 0, ε′′0 ∈ R

,

{
µ′ ≥ µ0

µ′′ ∼= µ′′0
ω ≥ 0, µ′′0 ∈ R

,

{
σ′ ≥ 0

σ′′ ∼= σ′′0ω, σ′′0 ≤ ε′, σ′′0 ∈ R
, (2.88)
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so that the line parameters {
C = (ε′ − σ′′0 )

Lt2

H1,2

G = (ε′′0 + σ′)
Lt2

H1,2

,

{
L = µ′

H1,2

Lt2

R = µ′′0
H1,2

Lt2

, (2.89)

and thus R, L, G, C ≥ 0 are constant on frequency.

The equivalent circuits p.u.l. are:

(a) (b)

Fig. 2.17: Circuit schemes of line parameters defined p.u.l. in the equivalent TL. The analysis of
these circuits leads to the equivalent telegrapher’s equations which govern the general lossy case.

The analysis of the circuital schemes in Figs. 2.17a and 2.17b define the telegrapher’s equations in
eqs. (2.58) and (2.65), respectively.

Basic parameters

Since the non frequency dependent basic parameters of this case are a particularization of the
general lossy case, the characterisstic impedance, Z0, and the propagation constant, γ, expression
are those in eqs. (2.71) and (2.68), respectively, and also the attenuation constant, α, and the
phase constant, β, in eqs. (2.69) and (2.70), respectively.
The basic parameters determine the individual solutions, which are of the form of eqs. (2.49) and
(2.50) for the voltage and current waves, respectively.

Notice that the basic parameters depend explicitly on frequency and thus, the equivalent waves
will present certain degree of dispersivity.
The study of basic pameters in terms of line parametes and frequency regarding the direct charac-
terization of the basic parameters is done in Chpt. 4 while emphasizing the physical interpretation
of losses and their behavior when frequency varies.

Wave parameters

The wave parameters ρ(z), Z(z), and Y (z) keep the form of eqs. (2.75), (2.78), and (2.79).
If the wave parameters are defined along l from the load: ρ(l), Z(l), and Y (l); they are of the form
of eqs. (2.83), (2.85), and (2.86).
These wave parameters determine the total solutions in the equivalent TL, which are of the form
of eqs. (2.72) and (2.73) for the total voltage and current waves, respectively.

Since the wave parameters depend on the basic parameters, which depend, in turn, on frequency,
the first ones also present different behavior when frequency varies.
The study of wave parameters in terms of both losses and frequency is carried out in Chpt. 4 while
outlining the physical interpretations underlying the analysis.
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2.4.2 Lossless Transmission Lines

In this section, the lossless mediums are parameterized into lossless TLs whose line parameters are
not frequency dependent. This case also corresponds with the physical description of harmonic
plane waves which propagate in lossless mediums whose constitutive parameters are not frequency
dependent.
This lossless case is just a particular case of the lossy case presented before. Thus, it will be
useful for the normalizations regarding the Complex Analysis when analyzing the basic and wave
parameters in terms of losses in Chpt. 4.

Line parameters

In this case, the specifications of a lossless medium are imposed over the constitutive parameters:

{
ε′ ≥ ε0

ε′′ = 0
,

{
µ′ ≥ µ0

µ′′ = 0
,

{
σ′ = 0

σ′′ = 0
, (2.90)

so that the line parameters are:

{
R = 0

L = µ′
H1,2

Lt2
≥ 0

,

{
G = 0

C = ε′
Lt2

H1,2
≥ 0

. (2.91)

By means of the line parameters, it can be seen that this case is a particular case of the lossy TL.

The equivalent circuits p.u.l. are:

(a) (b)

Fig. 2.18: Circuit schemes of line parameters defined p.u.l. in the equivalent lossless TL. The
analysis of these circuits leads to the equivalent telegrapher’s equations which govern the particular
lossless case.

If analyzing the circuits in Fig. 2.18, the equivalent telegrapher’s equations regardig the lossless
case are obtained:

I(z)

dz
= −jωCV (z), (2.92)

V (z)

dz
= −jωLI(z), (2.93)

which is are the form of those in eqs. (2.58) and (2.65) when making G = R = 0.
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Basic parameters

The basic parameters regarding the lossless case are denoted by Z0,sp
32 and γsp, for the character-

istic impedance and the propagation constant, respectively.
Since the lossless case is a particular case of both the general lossy case and the lossy case pre-
sented in Sect. 2.4.1, the lossless basic parameters are a particular case of those ones in these lossy
cases when G = R = 0. The resultant lossless basic parameters are the same as the ones obtained
when dividing or decoupling eqs. (2.92) and (2.93) to get the characteristic impedance and the
propagation constant, respectively.

The lossless characteristic impedance and propagation constant result in:

Z0,sp =

√
L

C
∈ R, (2.94)

and
γsp ≡ jβsp = jω

√
LC ∈ I, (2.95)

respectively.
In this case, αsp = 0, and the characteristic impedance is pure resistive (real) so it presents 0-phase
(ϕZ0,sp

= 0). Remember that α and ϕZ0
are the parameters which quantify lossless, so they are

congruently zero in this lossless case.
When decoupling eqs. (2.92)-(2.93) the resultant voltage and current waves regarding the lossless
TL are:

V ±(z) = V ±0 e∓jβspz ≡ V ±L e
±jβspl, (2.96)

I±(z) = I±0 e
∓jβspz ≡ I±L e

±jβspl. (2.97)

Notice that Z0,sp does not depend on frequency. Thus, this parameter is appropriate to normalize
the lossy characteristic impedance when frequency varies. However, the propagation constant is
a linear function of frequency, which means that, although lossless TLs are not dispersive (each
harmonic propagates at the same vp), this parameter is not appropriate for normalizing the general
lossy case when the studies are frequency variable.

Wave parameters

The wave parameters ρ(z), Z(z), and Y (z) in eqs. (2.75), (2.78), and (2.79) particularize when
taking into account the basic parameters defined for this lossless case as:

ρsp(z) = ρ0e
2jβz ∈ C, (2.98)

Zsp(z) = Z0,sp
1 + ρsp(z)

1− ρsp(z)
∈ C, and (2.99)

Ysp(z) =
1

Z0,sp

1− ρsp(z)
1 + ρsp(z)

∈ C. (2.100)

If the wave parameters for this lossless case are defined from the load (ZL ∈ C), they result in:

ρsp(l) = ρL,spe
−2jβspl ∈ C, (2.101)

in which

ρL,sp =
ZL − Z0,sp

ZL + Z0,sp
, (2.102)

32The subindex ”sp” referes to the lossless cases. It comes from the translation of the term ”lossless” to Spanish:
”sin pérdidas”.
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Zsp(l) = Z0,sp
1 + ρsp(l)

1− ρsp(l)
= Z0,sp

ZL cos (βspl) + jZ0,sp sin (βspl)

jZL sin (βspl) + Z0,sp cos (βspl)
∈ C, and (2.103)

Ysp(l) =
1

Z0,sp

1− ρsp(l)
1 + ρsp(l)

=
jZL sin (βspl) + Z0,sp cos (βspl)

ZL cos (βspl) + jZ0,sp sin (βspl)
∈ C. (2.104)

Since the characteristic impedance of this lossless case does not depend on frequency and the
propagation constant is linear function of frequency, the appropriate length normalization with
respect to the wavelength, which is inversely proportional to ω, ”univeralizes”33 the behavior of
wave parameters along the TL.

2.4.3 Non dispersive Transmission Lines

Here the non dispersive TLs are defined by means of imposing that the phase velocity is constant,
which translates to the line parameters, which are, in turn, non frequency dependent. In this way,
this case corresponds with the physical description of harmonic plane waves which propagate in
lossy or lossless mediums in which the phase velocity is constant.
This non dispersive case is a particular case of the lossy case; and the lossless case is, in turn, a
particular case of the non dispersive case described here. This case will be useful in future anal-
ysis in which the phase velocity is required to be constant, for example the ones related with the
analysis briefly introduced among the Future Lines.

Line Parameters

In this case, the specification regarding non dispersive mediums is imposed on the phase velocity.
This phase speed has to be constant:

vp = v0 ∈ R→ β ∼= ωβ0, β0 ≥
√
µ0ε0 ∈ R. (2.105)

Since the non dispersive case is a particular case of the lossy case, it is possible to examine β
written in terms of line parameters in eq. (2.70), and impose the condition which makes it a linear
function of frequency. This condition is well-known, [Poz98],

G

C
=
R

L
, (2.106)

which, in terms of the constitutive parameters defined in eq. (2.88) in the lossy case, means

ε′′0 + σ′

ε′ − σ′′0
=
µ′′0
µ′

. (2.107)

In this case, the equivalent circuits may be defined as in Fig. 2.17 but now only by means of three
values if solving one of them from eq. (2.106). The same occurs in the parameterization of the
equivalent telegrapher’s equations.

33The term ”universal” is frequently used throughout the Thesis to designate those behaviors that may be gathered
within the same complex expression. This translates in different ”operations” depending on the type of analysis
it is doing. For example, from the geometrical point of view, ”to universalize” means ”to reparameterize” a curve
regarding the analysis in complex planes.
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Basic parameters

Since this case is a particular case of the lossy case, the basic parameters are the same but partic-
ularized with the condition in eq. (2.106)

The characteristic impedance regarding this non dispersive case, Z0,nd
34 is

Z0,nd =

√
L

C
≡ Z0,sp ∈ R. (2.108)

The propagation constant results in

γnd = αnd + jβnd =G

√
L

C
+ jω

√
LC = R

√
C

L
+ jω

√
LC ≡

≡GZ0,sp + jβsp ≡
R

Z0,sp
+ jβsp ∈ C.

(2.109)

Notice that losses only appears in αnd, whereas the phase of the characteristic impedance is zero
as in the lossless case. Moreover, the non dispersive case presents the same lossless phase constant.
As a result, αnd and Z0,nd does not depend on frequency, while βnd is a linear function of frequency.

The voltage and current waves regarding this non dispersive case are of the form of of eqs. (2.49)
and (2.50), respectively, but particulaizing the basic parameters.

Wave parameters

The wave parameters ρnd(z), Znd(z), and Ynd(z) keep the form of eqs. (2.75), (2.78), and (2.79),
but particularized with the basic parameters defined above.
If the wave parameters are defined along l from the load: ρnd(l), Znd(l), and Ynd(l); they are of
the form of eqs. (2.83), (2.85), and (2.86), also particularizing the basic parameters for this non
dispersive case. Nevertheless, notice that the reflection coefficient at the load, ρL,nd is the same as
in the lossless case presented in eq. (2.102).
These wave parameters determine the total solutions in the equivalent TL, which are of the form
of eqs. (2.72) and (2.73) for the total voltage and current waves, respectively, but particularizng
the basic parameters with the ones presented for this non dispersive case.

2.4.4 Low-losses approximation for Transmission Lines

In this section, the low-losses approximation is introduced and compared to the rest of solutions,
specially to the non-dispersive case. This case is not a physical solution among the harmonic plane
waves, but a mathematical approximation obtained from the lossy case, which is frequently used
in the literature, [Poz98, Col01].
This case will be helpful when normalizing the basic parameters for the variable frequency analysis
in Chpt. 4.

34The same Spanish notation on the subindex of this non dispersive case is followed here. In this case ”nd” refers
to ”no dispersivo”, which means ”non dispersive”.
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Line parameters

In this case, the line parameters regarding the lossy case in eqs. (2.68) and (2.71) are required to
verify

{
R� ωL

G� ωC
, (2.110)

which means that the constitutive parameters fulfill

{
µ′′0 � ωµ′

ε′′0 + σ′ � ω (ε′ − σ′′0 )
. (2.111)

Notice that both the line parameters in eq. (2.106) and the constitutive parameters in eq. (2.107)
fulfill the conditions in eqs. (2.110) and (2.111), respectively, if ω is high enough 35. Thus, the non
dispersive case is within the low-losses approximations.

Basic parameters

The Taylor series of the propagation constant and the characteristic impedance in the general lossy
case in eqs. (2.68) and (2.71) are

Z0 ≈
√
L

C

[
1 + j

1

2

(
G

ωC
− R

ωL

)
+ . . .

]
and (2.114)

γ ≈ 1

2

(
G

√
L

C
+R

√
C

L

)
+ jω

√
LC

(
1− 1

4

G

ωC

R

ωL

)
+ . . . , (2.115)

respectively.

The characteristic impedance of the low-losses approximation, Z0,bp
36, is built by taking the first

term of the expansion of Z0 in eq. (2.114), so

Z0,bp =

√
L

C
≡ Z0,sp. (2.116)

The propagation constant of the low-losses approximation, γbp, is built by taking the first real and
imaginary terms of the Taylor series of γ in eq. (2.115), which results in

γbp =
1

2

(
G

√
L

C
+R

√
C

L

)
+ jω

√
LC ≡ αbp + jβsp, (2.117)

in which

αbp =
1

2

(
G

√
L

C

)
≡ 1

2

(
GZ0,sp +

R

Z0,sp

)
. (2.118)

35This condition has to been understood in asymptotic sense (from asymptotic analysis). That is, a generic
function f(ω) is asymptotically equivalent to g(ω) as ω →∞, which is written as

f(ω) ∼ g(ω) (as ω →∞), (2.112)

if

lim
ω→∞

f(ω)

g(ω)
= 1. (2.113)

36In this case, the subindex ”bp” refers to ”bajas pérdidas”, which is the Spanish term which means ”low losses”.
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Notice that the parameters in this low-losses approximation are the same that in the lossless case
excepto to α ≡ αbp which quantifies losses in the equivalent TL. This parameter does not depend
on frequency as long as the line parameters are not functions of frequency, so it is appropriate
for the normalizations when analyzing the propagation constant in frequency, as it is used in the
analysis in Chpt. 4.
Also notice that, when the non dispersive condition in eq. (2.106) verifies,

αbp ≡
R/L=G/C

αnd, (2.119)

and so the basic parameters are all the same as in the non dispersive case. In fact, only if the non
dispersive condition is fulfilled, the low-losses approximation coincides with real harmonic plane
waves solutions.

The voltage and current waves regarding this non dispersive case are of the form of of eqs. (2.49)
and (2.50), respectively, but particulaizing the basic parameters.

Wave parameters

The wave parameters ρbp(z), Zbp(z), and Ybp(z) keep the form of eqs. (2.75), (2.78), and (2.79),
but particularized with the basic parameters defined above.
If the wave parameters are defined along l from the load: ρbp(l), Zbp(l), and Ybp(l); they are of the
form of eqs. (2.83), (2.85), and (2.86), also particularizing the basic parameters for this low-losses
approximation. Nevertheless, notice that the reflection coefficient at the load, ρL,bp is the same as
in the lossless case presented in eq. (2.102).
These wave parameters determine the total solutions in the equivalent TL, which are of the form
of eqs. (2.72) and (2.73) for the total voltage and current waves, respectively, but particularizng
the basic parameters with the ones presented for this low-losses approximation.
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2.4.5 Summary of Transmission Line particular cases

Line
parameters

Basic parameters Wave
parameters

L
os

sy
ca

se

R, L, G, C
Z0 =

√
R+jωL
G+jωC ,

γ =
√

(R+ jωL) (G+ jωC)

Z(z) (Z(l))
Y (z) (Y (l))
ρ(z) (ρ(l))

L
o
ss

le
ss

ca
se

(R
=

0,
G

=
0
)

L, C
Z0,sp =

√
L
C ,

γsp = jω
√
LC

Zsp(z) (Zsp(l))
Ysp(z) (Ysp(l))
ρsp(z) (ρsp(l))

N
on

d
is

p
er

si
ve
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se

(R
/L

=
G
/
C

)

R, L, (G), C

Z0,nd =
√

L
C ≡ Z0,sp,

γnd = G
√

L
C + jω

√
LC =

= R
√

C
L + jω

√
LC ≡

≡ GZ0,sp + γsp ≡ R
Z0,sp

+ γsp

Znd(z) (Znd(l))
Ynd(z) (Ynd(l))
ρnd(z) (ρnd(l))

L
ow

-l
os

se
s

a
p

p
ro

x
im

at
io

n
(R
�
ω
L

,
G
�
ω
C

)

R, L, G, C

Z0,bp =
√

L
C ≡ Z0,sp,

γbp = 1
2

(
G
√

L
C +R

√
C
L

)
+

+jω
√
LC ≡

≡ 1
2

(
GZ0,sp + R

Z0,sp

)
+ jβsp

Zbp(z) (Zbp(l))
Ybp(z) (Ybp(l))
ρbp(z) (ρbp(l))

Table 2.2: Summary of the parameters regarding the TL particular cases: the lossy case, the
lossless case, and the non dispersive case; and approximations: the low-losses approximation.
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2.5 Conclusions

In this chapter, the LTLT regarding HPW has been presented with the goal of parameterize lossy
mediums in which this type of waves propagate in equivalent TLs. For this purpose, the equiva-
lent waves are obtained by integrating the fields taking advantage of the properties of harmonic
functions to generalize the integration which is, in addition, definite.
This characterization (named as direct characterization) lets to define the line parameters from
the constitutive parametrs and the geometry of the structure which supports HPWs. This direct
characterization has been carried out in a generalized way in the sense that: (i) all the possible
sources of losses are considered, and (ii) the coordinates which describe the problem are taken in
a generalized coordinate system; so that the LTLT presented in this chapter is analytically ”com-
plete” for the purpose of studying lossy TLs in wich these types of waves propagate.

The resultant individual equivalent waves (that waves that propagate in each direction) are com-
pletely characterized by the basic parameters and, in turn, the total waves are characterized by the
wave parameters. These parameters have been obtained for a general lossy case by simply using
the LTLT. However, there are still open questions which are non easy to answer only by inspecting
the resultant expressions of this analysis, as for example answering which are the allowed values of
the basic and wave parameters for the lossy case and also the particular cases and approximations.
It is also important to detach the geometrical meaning these pararemeters show, for example when
adding the angles of the basic parameters, they not exceed π/2. In fact, angles and modulus
of basic parameters are directly connected with physical behaviors of the equivalent waves, for
example the angle of the characteristic impedance is the phase shifting between the voltage and
current waves. From these physical interpretations, it is possible to pose more questions that the
analytical expressions does not directly answer. For example, related to the phase shifting, are all
the displacements possible?

As it is showing in this section, the LTLT developed in this chapter is not ”complete” when looking
beyond the analytical expressions because it lacks of large amount of interpretations that are very
useful in the analysis of the TLs. In fact, it is introducing the physical aspects (in this case the
losses, but also the influence of TL’s length to the parameters and the equivalent waves) when the
analytical expressions show the most important weaknesses.
All these facts suggest studying the inlfuence of losses from another (”complete”) perspective that
complements the analytical results, so it is based in the LTLT posed here.
Since the expressions that generalize the presence of losses in TLs are addressed in frrequency
domain are complex, the complex analysis of the TL parameters turns to be the method to over-
come the limitations in the analysis presented in this chapter. The results of this type of analysis
together with the physical interpretations will lead to the CTLT regarding the LTLT, that is, the
CTLT-v1.
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Chapter 2

Appendices

Appendix 2.A

Appendix 2.A The curl operator applied to a vector At which represents a plane wave in some
generic cylindrical coordinate system denoted by [t1, t2, z],

∇×At =

(
∇t +

∂

∂z
ẑ

)
×At =

1

h1h2

∣∣∣∣∣∣
ˆh1t1 h2t̂2 ẑ
∂
∂t1

∂
∂t2

∂
∂z

h1At1 h2At2 0

∣∣∣∣∣∣ =

=
∂At1

∂z
t̂2 −

∂At2

∂z
t̂1 +

1

h1h2

(
∂h2At2

∂t1
− ∂h2At1

∂t2

)
ẑ =

=
∂

∂z
ẑ ×At +

1

h1h2

(
∂h2At2

∂t1
− ∂h2At1

∂t2

)
ẑ =

∂

∂z
ẑ ×At +∇t ×At,

(2.A.1)

in which h1 and h2 are the scale factors of the cordinates t1 and t2, respectively, which are taken
non z dependent.
Furthermore, Maxwell equations relate two vectors belonging to the same plane, At and Bt, under
the form

∇×At = Bt. (2.A.2)

Thus, identifying this equation with the curl of plane waves identity in eq. (2.A.1), it leads to{
∂
∂z ẑ ×At = Bt

∇t ×At = 0
, (2.A.3)

and so the transversal curl operator (∇t×) is null if it is applied to plane waves.

Moreover, if expanding the vectors At and Bt in the first identity in eq. (2.A.3), and identifying
the components between themselves, it gets to{

∂At1

∂z = Bt2

−∂At2

∂z = Bt1

. (2.A.4)

Now, scalar multiplying the vectors At and Bt, and using the identities in eq. (2.A.4) as

At ·Bt = At1Bt1 +At2Bt2 = −At1

∂At2

∂z
+At2

∂At1

∂z
. (2.A.5)

Since At and Bt are written using a generic coordinate system, it is possible to chose that one
which makes At ≡ At1 t̂1, and so At2 = 0. Thus, the scalar product in eq. (2.A.5) equals zero,
making At and Bt orthogonal.

Finally, Maxwell equations of the form of eq. (2.A.2) are proved to verify that they are invariant
regarding rotations, that is, if rotating the field At, then the field Bt appears rotated the same
angle.
Here this property is proved for plane waves but the same result may be easily generalized to non
plane waves.
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Appendix 2.B

If the fields Et1 , Ht2 in eqs. (2.16)-(2.17) are brought to the particularized Faraday and Ampère‘s
laws in eqs. (2.9) and (2.10), the following system of equations is obtained:

±ηα sin (ωt∓ βz + φe)± ηβ cos (ωt∓ βz + ϕe) =µω cos (ωt∓ βz + φh)

±α sin (ωt∓ βz + φh)± β cos (ωt∓ βz + ϕh) =ησ sin (ωt∓ βz + φe) +

+ ηεω cos (ωt∓ βz + φe)

, (2.B.6)

in which η is defined as
Et1 = ηHt2 . (2.B.7)

Since the system in eq. (2.B.6) verifies for each [z, t], if taking for example

ωt∓ βz + φe = 0, (2.B.8)

the same reduces to {
ηβ =± µω cos (∆ϕ)

ηεω =∓ α sin (∆ϕ)± β cos (∆ϕ)
, (2.B.9)

in which ∆ϕ = ϕe − ϕh, the phase difference between the electric and magnetic fields. Solving η
as a function of α and ∆ϕ,

η = ±
α sin (∆ϕ) +

√
α2 sin2 (∆ϕ) + 4ω2εµ cos2 (∆ϕ)

2εω
. (2.B.10)

Writing α in terms of constitutive parameters and substituying it in eq. (2.B.10) leaves

η = ±
√

µ
ε

√
−1+

√
1+( σ

ωε )
2

2
√

2
sin (∆ϕ) +

√
−1+

√
1+( σ

ωε )
2

8 sin2 (∆ϕ) + cos2 (∆ϕ)

 , (2.B.11)

which is the expression of the characteristic impedance solved in time domain when the conductor
losses are fully taken into account.

On the other hand, if dividing the equations of system (2.B.9), it is possible to solve ∆φ as

∆ϕ = ± tan−1

(
α

β

)
= ± tan−1


√√√√√−1 +

√
1 +

(
σ
ωε

)2
1 +

√
1 +

(
σ
ωε

)2
 , (2.B.12)

which is the expression of the phase difference solved in time domain when conductor losses are
rigorously considered.
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Appendix 2.C

From the complex permeability µ = µ′ − jµ′′, and the complex equivalent permitivity εeq =
ε′eq − jε′′eq, the complex wavenumber k = k′ + jk′′ is defined as follows

k = ω
√

(µ′ − jµ′′)
(
ε′eq − jε′′eq

)
= ω

√(
µ′ε′eq − µ′′ε′′eq

)
− j

(
µ′ε′′eq + µ′′ε′eq

)
. (2.C.13)

Now, taking the square of k,
k2 =

(
k′2 − k′′2

)
+ j2k′k′′, (2.C.14)

and identifying the real and imaginary parts with those which result when squaring k in eq.
(2.C.13), it lead to a system of equations{

k′2 − k′′2 = ω2
(
µ′ε′eq − µ′′ε′′eq

)
k′k′′ = ω2

(
µ′ε′′eq + µ′′ε′eq

) . (2.C.15)

Solving k′ and k′′ from the system above:

k′ =

√
ω2

2

(
µ′ε′eq − µ′′ε′′eq +

√
(µ′2 + µ′′2)(ε′2eq + ε′′2eq )

)
≥ ω√µ0ε0, (2.C.16)

k′′ =

√
ω2

2

(
−µ′ε′eq + µ′′ε′′eq +

√
(µ′2 + µ′′2)(ε′2eq + ε′′2eq )

)
≤ 0. (2.C.17)

The limits for k′ and k′′ have been obtained by means of the analysis which has been presented in
[Rie98]37. They correspond with the lossless case for which the mediums are non dispersive and
the conductivity is zero.

37The anaysis presented in this work has to be extended to the case in which ε′eq < 0 (due to the presence of σ′′).

However, this case does not affect the limits of k because the terms ±
(
µ′ε′eq − µ′′ε′′eq

)
in eqs. (2.C.16) and (2.C.17)

are in ]−∞,∞[ for any lossy case.
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Appendix 2.D

The complexification of transversal coordinates [t1, t2] in the cross section means an important
simplification in both the complexity of the problem to be solved, and notation of functions and
operators to be applied.
This transformation is specially useful when dealing with harmonic plane fields, as it is here proved.

The following change is proposed:

[t1, t2] ∈ D ⊆ R2 → t̃ ∈ D∗ ⊆ C.

Fig. 2.19: Transformation from the original cross section D ∈ R2 to the complex domain D∗ ∈ C
by means of the complexification of the coordinates [t1, t2] in only one complex coordinate t̃.

The complex variable t̃ parameterizes the cross section just like it is represented in Fig. 2.19.

On one hand, if the EM wave to be parameterized in D∗ belong to a plane wave, the electric and
magnetic fields are orthogonal. This has been proved in Appendix 2.A. In fact, the magnetic field
is rotated π/2 from the electric field (and scaled by η). Thus, in the frequency domain, the fields
Et1 and Ht2 of eqs. (2.34) and (2.35) are possible to be gathered in only one complex function F :

F = Et1 + iHt2 = f(t1, t2)(1 + iη)e∓γz ∈ C. (2.D.18)

Regarding the function F in eq. (2.D.18), it is important to detach that the imaginary units i
and h are used in a different manner. While i represents a rotation in D∗, j refers to the basis
parameterized by ω in the frequency domain, so both can not be simplified together.

On the other hand, the function F is said to be complex harmonic in D∗, [BC90], because the
functions Et1 and Ht2 are harmonic in D. This immediately means that F is analytical in D∗ if
supposing this region is open, [BC90], so the inherent properties of complex analytical functions
may be applied to F .
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Appendix 2.E

Imagine C is a contour in which the primitive φe(t1, t2) is constant, that is, C is given by the
equation t1 = c, because of the definition of φe in Sect. 2.3.

Fig. 2.20: Simply connected contour C enclosing a domain D where the random closed path P is
chosen to demostrate that Et1 is constant.

Imagine C is simply connected, as for example the one depicted in Fig. (2.20). A randomly chosen
closed path Pc which interects C in more than a point (Pi ≡ Pc∩C denotes intersection, which is
an open curve) makes zero the integration of Et1 over there. That is only because Et1 is harmonic.
Additionally, the integration in the part of Pc which intersects C is constant:

ˆ
Pc∩C

Et1dl = a, ∀Pc. (2.E.19)

That means that ˆ
Pc−Pi

Et1dl = −a, ∀Pc. (2.E.20)

Since Pc is randomly chosen, then Et1 has to be constant. This contradicts the fact that Et1 varies
with t1.

Fig. 2.21: Multiply connected contour C enclosing a deleted domain D. The parts of the closed
path P which intersect C are denoted by Pi,1 and Pi,2. There the function Et1 is constant different
from part to part.

As a result, C has to be multiply connected and φe has to be different in each separated contour
belonging to C, as it is represented in Fig. (2.21).
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Appendix 2.F

The transformation of the particularized Ampère’s law in eq. (2.23) to one of the telegrapher’s
equations is here studied. This is equivalent to transform its integral version in eq. (2.54) to finally
obtain eq. (2.58).

Firstly, the integration of the t̂1-field components in the Ampére’s law in the whole range of t2,

ˆ
〈t2〉

∂
(
ẑ ×Ht2 t̂2

)
∂z

h2dt2t̂1 = jωεeq

ˆ
〈t2〉

Et1 t̂1h2dt2t̂1, (2.F.21)

may be transformed if using the Stokes’ theorem p.u.l., leading to

ˆ
〈t2〉

Ht2 t̂2h2dt2t̂2 = jωεeq

ˆ
〈t2〉

Et1 t̂1h2dt2t̂1. (2.F.22)

The scale factor h2 does not depend on t2. This is proved as follows:
The scale factor h2 is defined as:

h2 =

∣∣∣∣ ∂r∂t2

∣∣∣∣ , (2.F.23)

r ≡ r (t1, t2) is the vector position in the generic coordinate system. Geometrically, the definition
of h2 corresponds with the modulus of the tangent vector of curve defined in the whole range of
t2. These curves (Ch) follow the equation

Ch : t1 = a, (2.F.24)

with a ∈ R. Thus,
∂h2

∂t2
= 0, (2.F.25)

in which ∂h2/∂t2 is geometrically the same as the modulus of the normal vector in the curves
described by eq. (2.F.24), because the orthogonality between t1 and t2.
Eq. (2.F.25) means that h2 does not depend on t2.

Then, the factor h2 is solved in the r.h.s. of eq. (2.F.22). Moreover, Et1 in the r.h.s. is constant
along t2 so it leaves the integral. This leads to

1

h2

ˆ
〈t2〉

Ht2 t̂2h2dt2t̂2 = jωεeqEt1 t̂1t̂1

ˆ
〈t2〉

dt2 = jωεeqEt1 t̂1t̂1Lt2 , (2.F.26)

in which Lt2 is the measure or arc length of the range of t2.
Notice that the integral in the l.h.s. is that one defined in eq. (2.48), so

1

h2
I(z) = jωεeqEt1 t̂1t̂1Lt2 . (2.F.27)

Now, integrating both sides of eq. (2.F.27) in the path along t1 defined in the interval (t1,1, t1,2),(ˆ t1,2

t1=t1,1

h1

h2
dt1

)
I(z) = jωεeqLt2

(ˆ t1,2

t1=t1,1

Et1 t̂1h1dt1t̂1

)
. (2.F.28)

The integral in the r.h.s. identifies with that one in eq. (2.46). Moreover, if denoting the definite
integral in the l.h.s as H1,2, and solving I(z), it leads to,

I(z) = jωεeq
Lt2

H1,2
V (z). (2.F.29)
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The transformation of the Faraday’s law is completely equivalent when taking the same assump-
tions to transform eq. (2.61). It leads to

V (z) = jωµ
H1,2

Lt2

I(z), (2.F.30)

with H1,2 and Lt2 as defined above.



Chapter 3

A Generalized Version of the
Transmission Line Theory

3.1 Introduction and fundamentals

In this chapter the GTLT for the parameterization and description in the frequency domain of all
the possible modes which propagate in lossy media (GTLT-v1) is introduced and explained.
The purpose with this generalized Theory introduction is describing the modes based on HPWs
in an easy way from the general equations once these ones are particularized by imposing the
harmonic plane wave condition, at the same time that the inverse characterization introduced in
Sect. 2.3 in Chpt. 2 is explained in comparison with the direct characterization described in the
LTLT detailed in that chapter.
Furthermore, as a generalization in itself, this Theory lets to parameterize more modes by means
of equivalent TLs describing equivalent telegrapher’s equations. However, those possible solutions
of general equations beyond HPWs are not obtained here for the sake of focusing the analysis pre-
sented in the Thesis (both under the TLT and the CTLT points of view) on these type solutions
(HPWs). Neverthelss, since this version of the GTLT is posed from the general case point of view
to be then particularized to specific cases, the inverse characterization for HPWs presented here
could be repeated imposing different conditions leading to parameterize different modes and wave
solutions.

In certain way, the generalized analysis presented by means of this chapter is induced from the
particular case studied in the LTLT in which HPWs propagate. Nevertheless, while the process
in the LTLT goes from imposing the harmonic plane wave condition in the field equations for ob-
taining the solutions, and from them the equivalent equations that govern the equivalent TL (and
this direct characterization could be repeated for different conditions), here the process is reverse
making all the analysis generalized in terms of the final expressions, structures, relations between
fields, etc. In particular, the following characteristics of the LTLT developed in the previous chap-
ter are taken generalized as assumptions for being the analysis presented in this chapter able to be
parameterized using equivalent TLs:

(i) The modes which are of interest are propagative. This means working in ”propagative har-
monic regime”; a concept which has to be explained.
For the purpose of understafing this specific behavior of waves, recall the definition of ”time
harmonic regime” under the GSST or the Function Theory point of view: a basis ejωt is
selected in the space of functions which describes the fields solutions to the EM problem (see
this in the scheme in Fig. 2.4). Operating with the coefficients in this basis set of time expo-
nentials parameterized by ω reduces the dimension of the original problem while converting

65
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ω as the parameter in the so called frequency domain, which is the domain of operation in-
cluding these coefficients. The time exponentials are separable from the coefficients because
the problem under study is time invariant, which is direct consequence of imposing IBC on
the time coordinate.
Taking the idea of representing the solutions by means of coefficients accompanying a basis,
it is imposed for the soutions to be propagative, besides operating in the space of coefficients
in the frequency domain (which is assumed in the version of the GTLT). This assumption,
which is natural for the analysis of propagative waves in which the analysis of this thesis
book is focused on, supposes chosing the basis set1 e(z; γ) ≡ e∓γz for describing propagative
waves. With respect to this set it should be detached that: (i) within the set of propagative
exponentials there are two subsets of solutions distinguished by the signs ”∓”, which make
reference to the propagative solutions in the ẑ direction and the −ẑ direction; (ii) the pa-
rameter γ, which plays the role of spectral variable, is complex (γ ∈ C) for generalizing the
propagative solutions to those which attenuate at the same time they propagate; and (iii)
because the division in (i) and the complex nature of γ in (ii), the real and imaginary parts
of γ, α and β, respectively, both are greater or equal than zero. When α = 0 the mode in
question is not attenuating, so it should propagate in lossless media, whereas when β = 0 the
mode is called evanescent, [Mar51]. It may be foreseen that these behaviors are, separately,
not physically realizable. Thus, if α = β = 0, it may be assumed that the EM is operating
in DC-regime, which does not describe a propagative behavior of solutions, although it is a
parameterization physically realizable.
On the other hand, since the propagative exponentials are separated from the dependence on
the cross section (as well as the time variation), the EM system in which the modes propagate
is invariant along the direction of propagation, which lets to define physically the structures
which support these propagative modes.

(ii) The structures in which the propagative modes exist are defined by the imposition of in-
variance related to the use of complex propagative exponentials. These structures are called
uniform waveguides (uniform WG), [Mar51].

Fig. 3.1: An uniform waveguide infinite along the direction of propagation, ẑ. The section
of the waveguide is denoted as ST while its contour is CT . The extrusion of CT along the
ẑ-direction lead to the lateral surface, SL.

Although the uniform WGs generalize the direction of propagation, which means that any
unitary vector may describe the direction along which the modes propagate and thus the uni-
form WG is defined invariant, the direction ẑ is generally chosen for describing a (cylindrical)
uniform WG, as the one represented in Fig. 3.1. In this way, the subsequent equations are
particularized to this structure in which z is the direction of propagation and the coordinates
[t1, t2] act as the generic coordinate system in the cross section ST . This selection does not

1The notation presented in [Her14] which has been used to denote the set of time exponentials (e(t;ω)) is reused
here to describe the set of ”propagative exponentials” (e(z; γ)).
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suppose a restriction to the generalization but an important reduction in the expressions of
fields and operators (for example ∇× ẑ = 0, because ẑ is contant in ST ).
It should be said that ST may represent an unbounded domain, such as the free space, but,
in any case, the constitutive parameters are required to be the same from cross section to
cross section, so invariant along the z-coordinate.

(iii) If the electric and magnetic fields propagate with the same ∓γ along the z-axis, then there
exists a relation between the electric and magnetic fields given by Maxwell equations in
such a way that for the ith mode solution projected to the ST (that is the transversal field
components Et and Ht), it verifies:

Et,i = Z0,irot−1 [Ht,i] , or (3.1)

Ht,i =
rot [Et,i]

Z0,i
, (3.2)

in which rot[◦] is an operator which rotates the field components in the space, rot−1[◦] causes
the same rotation but inversely oriented, and Z0,i would play the role of the characteristic
impedance in the equivalent TL.
This assumption is forced for the electric and magnetic fields be analyzed by means of an
equivalent TL.

There are some open questions that the previous itemized premises leave open.
On one hand, selecting γ as the sprectral variable for describing a set of solutions by means of the
set of ”propagative harmonics” e∓γz is clearly an ”overstimation” in the sense that not all the pos-
sible values of γ refer to real solutions in the waveguide once the BCs and constitutive parameters
are imposed. However, a priori every γ whose α, β ≥ 0 is physically possible, something which is
a problem when expanding the a particular set field solutions based on γ.
The LC that defines the expansions in terms of γ, that is LCγ , is of the form of inverse Laplace
Transform (LT), inverse Z-transform (ZT), etc., depending on the space of fuctions in which the
solutions are found, [Her14], which, in turn, depends on BCs and constitutive parameters of the
WG. In any case, the spectral variable is complex which means that: (i) it is neccesary to study the
region of convergence (ROC) in which the expansion converge and (ii) define which form adquires
that expansion, for example, if the expansion is an integral, in which path (represented by a curve
in the γ-plane) the integration is defined.
The issue of (i) determining the ROC is not critical because the physical restriction on the direction
os propagation (making α > 0 and β > 0 in practice) produces that any definite integral converges
to a finite function (square integrable/summable, for instance). However (ii) determining the form
of the LCγ requires more specific analysis. The most intuitive way to define LCγ is using paths
based on the complex analysis of γ in terms of losses and BCs, besides the frequency. In this way,
the integration along these parameterized path makes the integrals be completely defined. The
example presented below helps understanding this idea:

Example 3.1.1. Imagine the field functions E and H are obtained continuously expanding ”prop-
agative harmonics” on the domain of γ in such a way that the LCγ is of the form of Laplace
tranform represented by the operator LT−1, which is a LC, [Her14], so:

E(t, z) ≡ LT−1
{
E±a (t, γ)

}
, and

H(t, z) ≡ LT−1
{
H±a (t, γ)

}
,

in which Ea(t, γ) and Ha(t, γ) play the role of coefficients.
If the BCs and the constitutive parameters make the path of integration in the complex plane of γ
is Pς (regularly) parameterized by ς, then the LT−1 and the fields may be written as:

E(t, z) ≡ LT−1
{
E±a (t, γ)

}
=

ˆ
Pς

E±a (t, γ)e∓γ(ς)zdς, and

H(t, z) ≡ LT−1
{
H±a (t, γ)

}
=

ˆ
Pς

H±a (t, γ)e∓γ(ς)zdς.
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Moreover, if the parameteric expression of the path Pς is written in general form, and α is solved
as a function of β (α(β)), then the LT−1 may be written as an inverse Fourier Transform (FT−1

in the range in which β varies (denoted as 〈β〉)

E(t, z) ≡
ˆ
〈β〉

(
E±a (t, β)e∓α(β)z

)
e−jβ(z)dβ ≡ FT−1

{
E±a (t, β)e∓α(β)z

}
, and

H(t, z) ≡
ˆ
〈β〉

(
H±a (t, β)e∓α(β)z

)
e−jβ(z)dβ ≡ FT−1

{
H±a (t, β)e∓α(β)z

}
.

By means of this example it can be seen that the characterization of γ becomes essential for the
analysis.
Notice that this requirement is slightly and subtly different to expand the fields by means of time
harmonics because in that analysis ω is always in R, whereas γ as complex spectral variable has
to be characterized in terms of losses, the BCs and the frequency in itself. Thus, in this charac-
terization of γ the BCs have to be parameterized at the same level as the losses or the frequency
(taking it as fixed parameter, so in the fixed frequency analysis). The process of parameterizing
the BCs as losses is consequence of the inverse characterization when looking for different solutions
regarding Maxwell equtions.

Keeping these ideas in mind, in this chapter the propagative solutions of Maxwell equations in
uniform WGs are obtained in a generalized form in Sect. 3.2. Over these equations it is possible to
impose different conditions for obtaining different solutions. This would be, for example, the case
of HPWs presented in Sect. 2.2 in Chpt. 2, in which introducing the HPW conditions (plane wave
cond. plus harmonic wave cond.) leads to solve these waves from the wave equations. However,
the solutions here are left open and written as a LCγ of the fields. Then, the domain of is reduced
to the so called propagative domain, which is no more than the domain of the coefficients which
results when the propagative basis e∓γz introduced above are chosen.
Then, some potential functions which describe the fields by differentiation (see the scheme pre-
sented in Fig. 2.6 in Sect. 2.3 in Chpt. 2) are supposed to fully describe the equivalent voltage and
current waves in generalized telegrapher’s equations. A well-defined scalar product based on these
potentials lets to solve the Maxwell equations posed using the LCγ (posed in integral/summable
form).
The parameters which characterize the solutions of Maxwell equations are identifyed with the
parameters which define the solutions in the supposed telegrapher’s equations by inverse charac-
terization. This procedure is briefly described in Sect. 3.3.
The analysis presented in this chapter are finally guided and particularized in Sect. 3.4 to obtain
the HPW solutions and parameterize them in order to be compared with the solutions and param-
eters obtained by direct characterization in Chpt. 2.
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3.2 Guided waves in uniform waveguides

Referencing a generic orthogonal coordinate system in the ST of the the uniform WG depicted in
Fig. 3.1,

Fig. 3.2: Generic coordinate system used for describing the WG geometry in which ẑ points to the
longituinal direction and t̂ ≡ [t̂1, t̂2] is the unitary vector in the crosst section ST .

The fields in in the cylindrical coordinate system established in the waveguide depicted in Fig. 3.2
are written as:

E = Et + Ez ẑ, (3.3)

H = Ht +Hz ẑ; (3.4)

and the differential operators in this frame of reference may be written as:

∇ ≡ ∇t +
∂ [◦]
∂z

ẑ,

∆ ≡ ∆t +
∂2 [◦]
∂z2

;

so the two main Maxwell equations: the Faraday’s law and the Ampère’s law ; are splitted into
four equations separating the transversal and longitudinal components of each field, [Mar51]:

∇t × Ez ẑ +
∂ [ẑ ×Et]

∂z
= −jωµHt, (3.5)

∇t ×Et = −jωµHz ẑ, (3.6)

∇t ×Hz ẑ +
∂ [ẑ ×Ht]

∂z
= jωεeqEt, and (3.7)

∇t ×Ht = jωεeqEz ẑ. (3.8)

Eqs. (3.5)-(3.8) are written in the frequency domain as this analysis is supposed to operate in, so
ω is another parameter to take into account, and thus εeq and µ are complex parameters.
The fields Et and Ht are complex fuctions which depend on the spacial coordinates [t, z] ∈ S̄T × ẑ.
The real and imaginary parts of these fields are supposed to be at least C2(ST × z) and C1(S̄T × z).

The longitudinal components Ez and Hz are solved from eqs. (3.8) and (3.6) to be replaced in eqs.
(3.5) and (3.7), respectively. Assuming that there is no volume density charge in the waveguide,
the solved equations are:

∂Et

∂z
=

1

jωεeq

[
k2 + ∆t

]
Ht × ẑ and (3.9)

∂Ht

∂z
=

1

jωµ

[
k2 + ∆t

]
ẑ ×Et. (3.10)
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Notice that eqs. (3.9) and (3.10) relate the transversal components of the electric and magentic
fields, so once these equations are solved, the longitudinal components Ez and Hz would be ob-
tained by eqs. (3.8) and (3.6).
Also notice that eqs. (3.9) and (3.10) are of the form of telegrapher’s equations, [Mar51], despite
they relate vector instead of scalar functions which also depend on the coordinates in the cross
sesction. Nevertheless, they relate first derivatives of a magnitude along the direction of propaga-
tion with a scaling of another magnitude provided that the eigenvalues of the operator [k2 + ∆t]
were found, just as the telegrapher’s equations do.

Fig. 3.3: Representation of the solutions E ≡ E±(t, z) andH ≡H±(t, z) in the frequency domain,
which are expanded by means of a LCγ of complex propagative exponentials e±γz weighted by
coefficients Ea(t, γ) and Ha(t, γ), respectively.

Now, taking advantage of the fact that the electric and magnetic fields in a waveguide can be
expanded by means of complex propagative exponentials as

E±(t, z) ≡ LCγ

{
E±a (t, γ)e∓γz

}
, (3.11)

H±(t, z) ≡ LCγ

{
H±a (t, γ)e∓γz

}
; (3.12)

it is possible to restrict the analysis to the coefficients Ea(t, γ) and Ha(t, γ), depicted in Fig. 3.3,
which means working in the ”propagative domain” with the ”propagative harmonics” Ea(t; γ) ≡
Ea(t) and Ha(t; γ) ≡ Ha(t). In this way, γ transforms to a parameter, equivalently to what
happens with ω when operating in the frequency domain with time harmonics.
When γ is seen as a parameter of functions Ea(t, γ) and Ha(t, γ), it can be proved that they form
a 2-dim subspace (see Appendix 3.A).
In addition, the derivatives in z transform as:

[∂(◦)±]/∂z
z−LT−→ ∓γ · (◦)±;

so eqs. (3.9) and (3.10) are equivalent to:

Ea =
1

∓γ
1

jωεeq

[
k2 + ∆t

]
Ha × ẑ and (3.13)

Ha =
1

∓γ
1

jωµ

[
k2 + ∆t

]
ẑ ×Ea, (3.14)

respectively, when operating in the ”propagative domain”.

Analyzing eqs. (3.13) and (3.14), and comparing them with (3.1) and (3.2), the eigenvalues of the
Helmholtz operator

[
k2 + ∆t

]
are those that define the characteristic impedance. Integrating Et
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and Ht by means of an orthogonal set of functions that form a basis lets to obtain these eigen-
values. Rememeber that the space of functions in which Ea and Ha are in needs to be at least
twice differentiable in ST and the functions there must have finite energy. A Hilbert space equiped
with a scalar product in which their functions verify these two properties is a Sobolev space, W 2,2.
Subspaces of the domain and/or range of the Helmholtz operator are the sets of mode solutions.

With these ideas in mind, equations (3.13) and (3.14) are rewriten when considering the LCs

E±a = LCξ

[
V ±(ξ)e(t1, t2; ξ)

]
and

H±a = LCξ

[
I±(ξ)h(t1, t2; ξ)

]
as

LCξ

[
V ±(ξ)e(t1, t2; ξ)

]
=

=
1

∓γ
1

jωεeq
k2LCξ′

[
I±(ξ′)h(t1, t2; ξ′)× ẑ

]
+

+
1

∓γ
1

jωεeq
LCξ′

[
I±(ξ′)∆th(t1, t2; ξ′)× ẑ

]
and

(3.15)

LCξ

[
I±(ξ)h(t1, t2; ξ)

]
=

=
1

∓γ
1

jωµ
k2LCξ′

[
V ±(ξ′)ẑ × e(t1, t2; ξ′)

]
+

+
1

∓γ
1

jωµ
LCξ′

[
V ±(ξ′)∆tẑ × e(t1, t2; ξ′)

]
,

(3.16)

taking advantage of the linearity of LC operators.
In this case, the ”spectral variable” ξ (or ξ′) is useful to describe the order of modes, and it is
directly related to γ because it acts as the cutoff wavenumber, just as it has been presented in
Appendix 3.A. Depending on the belonging of ξ (ξ′) to different field of numbers, the LC will be
accordingly defined. The vector functions e and h are the basis functions which are required to be
orthogonal with recpect to the scalar product defined in the space in which the solutions are.

Notice that in eqs. (3.15) and (3.16), the conditions

e(t1, t2; ξ) = h(t1, t2; ξ)× ẑ and

h(t1, t2; ξ) = ẑ × e(t1, t2; ξ)

have to be fulfilled for the fields E and H to propagate in the same TL belonging to the same
wave, so eqs. (3.15) and (3.16) turn into

LCξ
[
V ±(ξ)e(t1, t2; ξ)

]
=

=
1

∓γ
1

jωεeq
k2LCξ′

[
I±(ξ′)e(t1, t2; ξ′)

]
+

+
1

∓γ
1

jωεeq
LCξ′

[
I±(ξ′)∆te(t1, t2; ξ′)

]
and

(3.17)

LCξ

[
I±(ξ)h(t1, t2; ξ)

]
=

=
1

∓γ
1

jωµ
k2LCξ′

[
V ±(ξ′)h(t1, t2; ξ′)

]
+

+
1

∓γ
1

jωµ
LCξ′

[
V ±(ξ′)∆th(t1, t2; ξ′)

]
.

(3.18)

Now the orthogonality between the e(t1, t2; ξ) and h(t1, t2; ξ) functions in eqs. (3.17) and (3.18) is
going to be used.
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Scalar multiplying both sides of eqs. (3.17) and (3.18) by e(t1, t2; ξ0) and h(t1, t2; ξ0), respectively,
leads to

LCξ
[
V ±(ξ) 〈e(t1, t2; ξ0), e(t1, t2; ξ)〉

]
=

=
1

∓γ
1

jωεeq
k2LCξ′

[
I±(ξ′) 〈e(t1, t2; ξ0), e(t1, t2; ξ′)〉

]
+

+
1

∓γ
1

jωεeq
LCξ′

[
I±(ξ′) 〈e(t1, t2; ξ0),∆te(t1, t2; ξ′)〉

]
and

(3.19)

LCξ
[
I±(ξ) 〈h(t1, t2; ξ0),h(t1, t2; ξ)〉

]
=

=
1

∓γ
1

jωεeq
k2LCξ′

[
V ±(ξ′) 〈h(t1, t2; ξ0),h(t1, t2; ξ′)〉

]
+

+
1

∓γ
1

jωεeq
LCξ′

[
V ±(ξ′) 〈h(t1, t2; ξ0),∆th(t1, t2; ξ′)〉

]
,

(3.20)

in which

〈e(t1, t2; ξ0), e(t1, t2; ξ)〉 = δ(ξ − ξ0), and also

〈h(t1, t2; ξ0),h(t1, t2; ξ)〉 = δ(ξ − ξ0),

being δ(ξ − ξ0) the Dirac delta distribution, [Her14], so the LCξ in which δ(ξ − ξ0) appears has
to be understood in distribution sense, [Her14], acting the δ as the kernel. Thus, eqs. (3.19) and
(3.20) particularize to

V ±(ξ0) =
1

∓γ
1

jωεeq
k2I±(ξ0)+

+
1

∓γ
1

jωεeq
LCξ′

[
I±(ξ′)

〈
e(t1, t2; ξ0),LCξ′′

[
−k2

c,e(ξ
′; ξ′′)e(t1, t2; ξ′′)

]〉]
=

=
1

∓γ
1

jωεeq
k2I±(ξ0) +

1

∓γ
1

jωεeq
LCξ′

[
−k2

c,e(ξ
′; ξ0)I±(ξ′)

]
and

(3.21)

I±(ξ0) =
1

∓γ
1

jωµ
k2V ±(ξ0)+

+
1

∓γ
1

jωµ
LCξ′

[
V ±(ξ′)

〈
h(t1, t2; ξ0),LCξ′′

[
−k2

c,h(ξ′; ξ′′)h(t1, t2; ξ′′)
]〉]

=

=
1

∓γ
1

jωµ
k2V ±(ξ0) +

1

∓γ
1

jωµ
LCξ′

[
−k2

c,h(ξ′; ξ0)V ±(ξ′)
]

,

(3.22)

in which the functions −k2
c,e(ξ

′; ξ′′) and −k2
c,h(ξ′; ξ′′) in eqs. (3.21) and (3.22) are the transfer

functions of the operator ∆t [◦] between the ξ′th mode and the ξ′′th mode.
The sets of orthogonal functions {e(t1, t2; ξ)}ξ and {h(t1, t2; ξ)}ξ, which are complete with respect

to the defined scalar product,together with the transfer functions −k2
c,e(ξ

′; ξ′′) and −k2
c,h(ξ′; ξ′′),

completely define the mode solutions.

Appendix 3.B shows how to define the scalar product between two-variable vector functions using
scalar and vector potentials. In this way, notice that the analysis of the solutions of eqs. (3.21) and
(3.22) reduces to find the potentials which are orthogonal on the ST domain. This analysis leads
to establish different BCs on CT and/or particularizing the operators acting over these functions
on ST . For example, the operator ∆t which is applied to the fields leading to the null vector lets
to define HPWs.

Next subsections are intended to describe the HPWs from scalar potentials, which is one solution
among all the possible TEM modes, particularizing the equations above (refer to the scheme in
Fig. 3.5 below to see a ”map” of all the possible solutions indicating where the HPWs are).
Nevertheless, this analysis could be particularized imposing different conditions on these equations
leading to different solutions. In this way, the GTLT-v1 is finally established. Its scope covers all
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the possible solutions that result from the particularization of the general equations presented in
this section.

3.2.1 TEM modes in uniform waveguides

The most trivial set of solution for eqs. (3.17)-(3.18) comes from imposing

TEM modes cond.

∆te = ∆t (−∇tφe +∇t ×Aeẑ)
2

=−∇t∆tφe +∇t (∆tAe)× ẑ = 0 and
∆th = ∆t (−∇tφh +∇t ×Ahẑ) = −∇t∆tφh +∇t (∆tAh)× ẑ = 0.

The dependence of the potentials on the transversal coordinates has been omitted for the sake of
simplicity. Thus, in the following analysis only the spectral variable ξ is indicated.

Replacing the dot products in eqs. (3.19) and (3.20) (in which the second addend is set to zero in
order to verify the TEM modes cond.) with the definition introduced in Appendix 3.B based on
potentials, it gets to:

LCξ

[
−V ±(ξ)

¨
ST

φe(ξ0)∆tφe(ξ)dS + V ±(ξ)

˛
CT

φe(ξ0)∇tφe(ξ) · n̂dl +

+V ±(ξ)

¨
ST

(∇tφe(ξ0)×∇tA∗e(ξ)) dSẑ−

−V ±(ξ)

¨
ST

(∇tAe(ξ0)×∇tφ∗e(ξ)) dSẑ−

−V ±(ξ)

¨
ST

Ae(ξ0)∆tA
∗
e(ξ)dS + V ±(ξ)

˛
CT

Ae(ξ0)∇tA∗e(ξ) · n̂dl
]

=

=
1

∓γ
1

jωεeq
k2LCξ′

[
−I±(ξ′)

¨
ST

φe(ξ0)∆tφe(ξ
′)dS+

I±(ξ′)

˛
CT

φe(ξ0)∇tφe(ξ′) · n̂dl+

+I±(ξ)

¨
ST

(∇tφe(ξ0)×∇tA∗e(ξ′)) dSẑ−

−I±(ξ′)

¨
ST

(∇tAe(ξ0)×∇tφ∗e(ξ′)) dSẑ−

− I±(ξ′)

¨
ST

Ae(ξ0)∆tA
∗
e(ξ
′)dS + I±(ξ′)

˛
CT

Ae(ξ0)∇tA∗e(ξ′) · n̂dl
]

and

(3.23)

2∆t (∇t ×Aeẑ) = ∇t × [∆t (Aeẑ)] = ∇t × (ẑ∆tAe) = ∇t (∆tAe)× ẑ
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LCξ

[
−I±(ξ)

¨
ST

φh(ξ0)∆tφh(ξ)dS + I±(ξ)

˛
CT

φh(ξ0)∇tφh(ξ) · n̂dl +

+I±(ξ)

¨
ST

(∇tφh(ξ0)×∇tA∗h(ξ)) dSẑ−

−I±(ξ)

¨
ST

(∇tAh(ξ0)×∇tφ∗h(ξ)) dSẑ−

−I±(ξ)

¨
ST

Ah(ξ0)∆tA
∗
h(ξ)dS + I±(ξ)

˛
CT

Ah(ξ0)∇tA∗h(ξ) · n̂dl
]

=

=
1

∓γ
1

jωµ
k2LCξ′

[
−V ±(ξ′)

¨
ST

φh(ξ0)∆tφh(ξ′)dS+

V ±(ξ′)

˛
CT

φh(ξ0)∇tφh(ξ′) · n̂dl+

+V ±(ξ)

¨
ST

(∇tφh(ξ0)×∇tA∗h(ξ′)) dSẑ−

−V ±(ξ′)

¨
ST

(∇tAh(ξ0)×∇tφ∗h(ξ′)) dSẑ−

− V ±(ξ′)

¨
ST

Ah(ξ0)∆tA
∗
h(ξ′)dS + V ±(ξ′)

˛
CT

Ah(ξ0)∇tA∗h(ξ′) · n̂dl
]

.

(3.24)

Equivantely,

LCξ

[
−V ±(ξ)

¨
ST

φe(ξ0)∆tφe(ξ)dS + V ±(ξ)

˛
CT

φe(ξ0)∇tφe(ξ) · n̂dl +

+V ±(ξ)

˛
CT

φe(ξ0)∇tA∗e(ξ) · (ẑ × n̂)dl+

+V ±(ξ)

˛
CT

φ∗e(ξ)∇tAe(ξ0) · (ẑ × n̂)dl−

−V ±(ξ)

¨
ST

Ae(ξ0)∆tA
∗
e(ξ)dS + V ±(ξ)

˛
CT

Ae(ξ0)∇tA∗e(ξ) · n̂dl
]

=

=
1

∓γ
1

jωεeq
k2LCξ′

[
−I±(ξ′)

¨
ST

φe(ξ0)∆tφe(ξ
′)dS+

I±(ξ′)

˛
CT

φe(ξ0)∇tφe(ξ′) · n̂dl+

+I±(ξ′)

˛
CT

φe(ξ0)∇tA∗e(ξ′) · (ẑ × n̂)dl+

+I±(ξ′)

˛
CT

φ∗e(ξ
′)∇tAe(ξ0) · (ẑ × n̂)dl−

− I±(ξ′)

¨
ST

Ae(ξ0)∆tA
∗
e(ξ
′)dS + I±(ξ′)

˛
CT

Ae(ξ0)∇tA∗e(ξ′) · n̂dl
]

and

(3.25)
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LCξ

[
−I±(ξ)

¨
ST

φh(ξ0)∆tφh(ξ)dS + I±(ξ)

˛
CT

φh(ξ0)∇tφh(ξ) · n̂dl +

+I±(ξ)

˛
CT

φh(ξ0)∇tA∗h(ξ) · (ẑ × n̂)dl+

+I±(ξ)

˛
CT

φ∗h(ξ)∇tAh(ξ0) · (ẑ × n̂)dl−

−I±(ξ)

¨
ST

Ah(ξ0)∆tA
∗
h(ξ)dS + I±(ξ)

˛
CT

Ah(ξ0)∇tA∗h(ξ) · n̂dl
]

=

=
1

∓γ
1

jωµ
k2LCξ′

[
−V ±(ξ′)

¨
ST

φh(ξ0)∆tφh(ξ′)dS+

V ±(ξ′)

˛
CT

φh(ξ0)∇tφh(ξ′) · n̂dl+

+V ±(ξ′)

˛
CT

φh(ξ0)∇tA∗h(ξ′) · (ẑ × n̂)dl+

+V ±(ξ′)

˛
CT

φ∗h(ξ′)∇tAh(ξ0) · (ẑ × n̂)dl−

− V ±(ξ′)

¨
ST

Ah(ξ0)∆tA
∗
h(ξ′)dS + V ±(ξ′)

˛
CT

Ah(ξ0)∇tA∗h(ξ′) · n̂dl
]

.

(3.26)

Let’s now particularize the equations above to obtain the so called HPWs based on harmonic scalar
potentials, which are the same type of waves of those presented and used in Chpt. 2 for developing
the LTLT.

Harmonic plane waves from Harmonic scalar potentials in uniform waveguides

First and most intuitive solutions (because of its physical meaning directly related to voltages and
currents) comes from imposing:

HPW cond.

Ae = Ah = 0 on S̄T , (no vector potential sources everywhere)

∆tφe = ∆tφh = 0 on ST , (Harmonic Scalar Potential sources)

being S̄T ≡ ST ∪ CT the closed domain and ST the cross section region.

Using the HPW cond. in eqs. (3.23)-(3.24) (or equivalenty in eqs. (3.25)-(3.26)) leads to:

LCξ

[
V ±(ξ)

˛
CT

φe(ξ0)∇tφe(ξ) · n̂dl
]

=

=
1

∓γ
1

jωεeq
k2LCξ′

[
I±(ξ′)

˛
CT

φe(ξ0)∇tφe(ξ′) · n̂dl
]

and

(3.27)

LCξ

[
I±(ξ)

˛
CT

φh(ξ0)∇tφh(ξ) · n̂dl
]

=

=
1

∓γ
1

jωµ
k2LCξ′

[
V ±(ξ′)

˛
CT

φh(ξ0)∇tφh(ξ′) · n̂dl
]

.

(3.28)

Since φe and φh are both harmonic on ST they are C2 differentiable. It also means that the
potentials verify the Cauchy-Riemann equations, [BC90], on ST and therefore they are analytic on
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ST .
The analiticity of φe and φh guarantees the derivatives are omnidirectional, and because they are
C2, continuous. It means that 3:

∂φe(t1, t2)

∂n

∣∣∣∣
CT (t)

= lim
(t1,t2)→CT (t)

∂φe(t1, t2)

∂n
≡ lim

(t1,t2)→CT (t)
∇tφe(t1, t2) · n̂, and

∂φh(t1, t2)

∂n

∣∣∣∣
CT (t)

= lim
(t1,t2)→CT (t)

∂φh(t1, t2)

∂n
≡ lim

(t1,t2)→CT (t)
∇tφh(t1, t2) · n̂,

in which CT (t) is a (piecewise) regular parameterization of the boundary curve CT , which may be
any (closed) curve and thus

∇tφe = ce,1 ∈ R on CT , and

∇tφh = ch,1 ∈ R on CT ,

because ∆tφe = ∇t (∇tφe) = 0 as ∆tφh = ∇t (∇tφh).

With this idea in mind, the conditions

φe = ce,2 ∈ R on CT , and

φh = ch,2 ∈ R on CT ,

have to be fulfilled. That is because the derivatives are continuous on ST and the potentials are
analytic, so if

dφe(n, t) = ∇tφe(n, t) · dr =

(
∂φe(n, t)

∂n
n̂+

1

ht

∂φe(n, t)

∂t
t̂

)
· dr,

on CT , and the limit

lim
∆t→0

φe(n, t + ∆t)− φe(n, t)|CT = dφe(n, t)|CT = ∇tφe(n, t)|CT · dlt̂ =
∂φe(n, t)

∂n
n̂ · htdtt̂ = 0,

n is the coordinate normal to CT and t is tangential to CT , then

lim
∆t→0

φe(n, t+ ∆t)
∣∣∣
CT

= φe(n, t)|CT = ce,2,

being ce,2 a constant, and the same follows φh = ch,2 on CT .

Then, the HPWs are obtained when solving:

∆φe = 0 on ST ,

(29)
∂φe
∂n = ce,1 on CT ,

φe = ce,2 on CT ,

and

3Without loss of generality, the normal coordinate is supposed to be metric so its scale factor hn = 1.
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∆φh = 0 on ST ,

(30)
∂φh
∂n = ch,1 on CT ,

φh = ch,2 on CT ,

The constants ce,1 and ce,2, and ch,1 and ch,1 can not be zero for the equations (3.27) and (3.28)
not be trivially solvable.

These equivalent problems in eqs. (3.29) and (3.30) are of the form of Cauchy problems seen as
boundary value problems (BVPs) with Cauchy conditions on CT , so the verify uniqueness by the
Cauchy–Kowalewski theorem, [Zwi97], supposing CT is a smooth (piecewise) curve (if CT accepts
a regular parameterization –as it is supposed to– then CT is smooth).
Because of the solution of the BVP is unique and normalized, the constants must verify:

ce,1 = ch,1 ≡ c1, Uniqueness of the
normalized BVPs (3.29) and (3.30)ce,2 = ch,2 ≡ c2.

The solutions of the BVPs above need to be orthogonal with respect to other modes.

Remark 9. It is important to detach that not only the BCs but also the class of the functions
belonging the space in which the BVP is solved is determining for solving it.

In addition, it is important to obtain the physical meaning of the BCs as well as the interpretation
of the class of funtions the modes belong.
For the purpose of physical interpretation, the condition the TEM solutions based on Harmonic
Scalar Potentials (HSP) (that is HPWs) have to verify is that ST is multiply connected so ST have
at least one ”hole”, just as it has been proved in Sect. 2.3 in Chpt. 2. Equivalenty, if ST is multi-
ply connected, CT is not a Jordan curve, or every point in the curve is not connected to another one.

The TEM mode based on HSP (the HPWs) is the mode ξ = 0 in eqs. (3.27) and (3.28) that
verifies:

V ±HPW ≡ V
±(ξ = 0) =

1

∓γ
1

jωεeq
k2I±(ξ = 0) ≡ 1

∓γ
1

jωεeq
k2I±HPW , and (3.31)

I±HPW ≡ I
±(ξ = 0) =

1

∓γ
1

jωµ
k2V ±(ξ = 0) ≡ 1

∓γ
1

jωµ
k2V ±HPW . (3.32)

Combining eqs. (3.31) and (3.31), it leads to:

γHPW = jk = jω
√
µεeq, and (3.33)

Z0,HPW ≡
V ±TEM
I±TEM

=

√
µ

εeq
, (3.34)

which are the propagation constant and the characteristic impedance of TEM modes based on
HSP, respectively, so the propagation constant and the characteristic impedance of HPWs, just as
they have been obtained in eqs. (2.51) and (2.68) in Chpt. 2.

As a result of this analysis, the potential functions φ±e ≡ V ±HPW f(t1, t2) and φ±h ≡ I
±
HPW f(t1, t2),

in which f(t1, t2) is a generic function which verifies the zero Laplacian (harmonic) on ST , param-
eterized by Z0,HPW and γHPW leads to define the line parameters which appear in the equivalent
telegrapher’s equations by means of inverse characterization. This is explained in the following
section, particularized to HPWs.
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3.3 Equivalent waves. Telegrapher’s equations

In the previous section it has been seen that potential functions may act as equivalent waves in
the supposed telegrapher’s equations. These potentials, which define the fields by differentiaton,
are related by means of the characteristic impedance, and they present propagative behavior γ,
which has been used a priori to parameterize propagative waves, but then is characterized by both
constitutive parameters and BCs.
In particular, it has been seen the case of obtaining HPWs, which are TEM modes based in HSPs.
This case serves as example of use of the inverse characterization.
Nevertheless, the process of completing the analysis is the same for any mode which is solution of
Maxwell equations when they are decoupled using the dot product previously introduced.

In this section the process of inversely characterizing the line parameters of the equivalent TL is
generically and briefly presented.

Fig. 3.4: Scheme that summarizes the transformations regarding the inverse characterization of the
GTLT. The direct characterization from telegrapher’s equations is added as the alternative way
of solving the Maxwell equations, which results being a way much more simple and intuitive than
decoupling these vector equations.

It starts assuming the potentials φe, φh, Ae, and Ah
4 are related by means of (generalized) teleg-

rapher’s equations:

∂υ

∂z
= −(R̄+ ωL̄)ı, (3.35)

∂ı

∂z
= −(Ḡ+ ωC̄)υ, (3.36)

in which

υ ≡

{
φe

Ae
, ı ≡

{
φh

Ah
,

so there are a total of four possible telegrapher’s equations in which R̄, L̄, Ḡ, and C̄ ∈ C.

On the other hand, the potentials φe, φh, Ae, and Ah are related in certain way when solving
Maxwell equations, for example by means of the amplitudes of φe and φh which characterize the
HPWs in eqs. (3.31) and (3.32). This relation translates to impedances between the potentials,
which depend on the constitutive parameters and those which parameterize the BCs, besides the
”spectral parameters” ω and γ. In this sense, two equations lead to solve both the characteristic
impedance between the modes and the propagation constant of the related modes, so the basic
parameters.

From this point, the line parameters are obtained from basic parameters by means of inverse char-
acterization. This could be done analytically or graphically by means of complex analysis in the

4Ae and Ah are the modulus of vectors Ae ≡ Aeẑ and Ah ≡ Ahẑ, so they are scalar functions.
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associated CTLT.
Then, the complete characterization of the TL under study and its physical interpretation in the
associated TLT may be done, just as it has been carried out in 2.3.1 in Chpt. 2 for the lossy
characterization of lossy TLs that support HPWs.

Remark 10. By means of the inverse characterization the line parameters of the equivalent TL
are obtained. Thereafter, the complete characterization of basic and wave parameters may be done.
Since the line parameters are obtained from the parameters that characterize the potentials whose
derivatives are solutions of Maxwell equations, this analysis is thoroughly supported in the sense
that the equivalent telegrapher’s equations comes from modes that represent real solutions in WGs.

In next section, HPWs are inversely characterized from the parameters γHPW and Z0,HPW . This
characterization mainly parameterizes the constitutive parameters, besides the dependence on fre-
quency, just as it is done in the previous chapter.
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3.4 Guided waves particular cases

3.4.1 Inverse characterization of harmonic plane waves

In this section, the HPWs are classified among the possible solutions. Then line parameters of this
type of waves are inversely characterized.
The following scheme allows for visualizing where the HPW solutions are within the ”Universe of
solutions” that this GTLT-v1 leads to:

Fig. 3.5: Scheme of possible modes and particular cases that the GTLT-v1 lets to analyze, together
with the conditions that lead to them. The HPWs are within the TEM modes (those modes that
verify ∆e = ∆h = 0, together with the so called ”curled” plane waves (CPW). Other well-
known solutions are the E-modes and the H-modes, [Mar51], obtained when imposing the Dirichlet
boundary conditions (DBC) and Neumann boundary conditions (NBC), respectively, over the
scalar potentials which verify the Helmholtz equation.

Notice that the HPWs classified in Fig. 3.5 are only ”a branch” among all the possible solutions.
In fact, it is, together the ”curled” plane waves (CPW) (that waves whose vector potential modulus
are harmonic, so they represent fields whose field lines are closed in the cross section) the most
basic solutions.

Now let’s characterize the line parameters in based on the solutions obtained representing HPWs.
For this purpose, the basic paremeters of the equivalent TL obtained from decoupling the (gener-
alized) telegrapher’s equations in eqs. (3.35) and (3.36):

γ̄ =
√(

R̄+ jωL̄
) (
Ḡ+ jωC̄

)
, and (3.37)

Z̄0 =

√
R̄+ jωL̄

Ḡ+ jωC̄
; (3.38)

are identifyed with the corresponding parameters obtanined for HPWs in eqs. (3.33) and (3.34),
respectively:

γ̄ ⇔ γHPW , (3.39)

Z̄0 ⇔ Z0,HPW . (3.40)

When operating for solving the line parametes in terms of the constitutive parameters, taking into
account the form of the particular lossless cases in the process which is carried out in Appendix
3.C, the result is that

(r ≡)
R

ωL
=
ε′′eq
ε′eq

, and (3.41)

(g ≡)
G

ωC
=
µ′′

µ′
. (3.42)
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Notice that the line parameters in eqs. (3.41) and (3.42) are real values because the solutions of
the indetification are found in these numbers.
The idetification means that: (i) r ≡ R

ωL and g ≡ G
ωC are the parameters which characterize the

TL in terms of losses. This fact is used in the following chapter as part of the CTLT-v1; (ii) by
means of the inverse characterization from basic parameters, the line parameters are cannot be
solved completely but the lossy ratios r and g. However, this could be solved when going deeper
into the Maxwell equations separating the source of losses, just as it is done at the end of Appendix
3.C, leading to: {

R = ωε′′eq
L = ε′eq

, and

{
G = ωµ′′

C = µ′
; (3.43)

and (iii) if the line parameters are chosen non frequency dependent, then from the identifications
above ε′′eq

∼= µ′′ ∼= c′′/ω, and ε′eq
∼= µ′ ∼= c′, in which c′ and c′′ are real constants.

Taking into account these facts, the parameterizations above are the same as those obtaned in Sect.
2.4.1 in Chpt. 2 when analyzing the lossy case within the LTLT. Thus, the subsequent analysis of
the rest of TL prameters has been done there, and the inverse characterization is finally connected
with this LTLT.

The same process which has been carried out for HPW may be done with the rest of solutions in a
much more efficient way taking advantage of the GTLT-v1 presented in this chapter. An additional
example of this inverse analysis characterizing E-mode solutions is presented among the 1 at the
end of this thesis book.
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3.5 Conclusions

In this chapter a generalized version of the TLT has been presented with the objective of gathering
in the same framework different types of waves making them ready to be parameterized for their
subsequent study in equivalent TLs.
For the purpose of generalizing the study of the voltage and current equivalent waves, the Maxwell
equations are not solved by differetiation while imposing different conditions on them, just as it has
been done in the previous chapter for obtaining HPWs. Instead of that, the solutions are possed
in integral/summable form (in general, a LC), and the definition of a complete inner product lets
to obtain each of them.
This generalized process, which is much more efficient than solving each of the possible case one
by one is called the inverse characterization.
Each of those solutions in the LC is supposed to verify the telegrapher’s equations which are posed
generalized in terms of equivalent waves. The term ”generalized” makes reference to consider the
line parameters complex, and the equivalent waves of two possible types: scalar potentials and
vector potentials. These assumptions extend the possible solutions which may be characterized
under the same basic parameter form, achieving the resultant GTLT the goal of generalizing the
analysis.

The inverse characterization in the GTLT assumes the waves are propagative, so γ acts as a pa-
rameter in a ”propagative domain”. This parameter, together with the characteristic impedance,
needs to be characterized in terms of the constitutive parameters and the BCs imposed. This
means that the BCs are put at the same level as the parameters that characterize the WG, which
are both mapped in the line parameters of the equivalent TL.

The HPWs are only one of the possible solutions that this analysis lets to parameterize in equiv-
alent TLs. In fact, this type of waves are the most basic solutions which come from the GTLT.
The zero Laplacian of the vector eigenfunctions (e and h) that characterize these waves makes
the associated BCs have no direct influence in the line parameters. As a consequence, the line
parameters of HPWs are real values.

This analysis is ready for parameterizing more solutions in WGs leading to the associated subser-
sions of this GTLT (just like the LTLT). An example of the inverse characterization of E-modes
(see these solutions in the scheme in Fig. 3.5) is shown among the Applications of this analysis.
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Chapter 3

Appendices

Appendix 3.A

In this section, the role of γ as a parameter explained as a function of k and the eigenvalues of the
Laplacian in the cross section is shown.
For this purpose, the fields E(t, z) and H(t, z) are decoupled from Maxwell equtions leading to
the vector Helmholtz equations:

∆E + k2E = 0, and (3.A.1)

∆H + k2E = 0. (3.A.2)

The Laplacian in eqs. (3.A.1) and (3.A.2) is replaced using the operators particularized in the
generaized coordinate system used for describing cylindrical WGs:

∆tE +
∂2E

∂z2
+ k2E = 0, and (3.A.3)

∆tH +
∂2H

∂z2
+ k2H = 0. (3.A.4)

Now, if assuming the propagative behavior of fields using ”propagative exponentials”, eqs. (3.A.3)
and (3.A.4) reduce to:

∆tE
±
a + (γ2 + k2)Ea = 0, and (3.A.5)

∆tH
±
a + (γ2 + k2)Ha = 0. (3.A.6)

The amplitude fields Ea(t; γ) and Ha(t; γ) are first assumed to be expanded as a linear combina-
tions, LCγce and LCγch , of certain e(t;γce) and h(t;γch) orthogonal basis functions, respectively:

Ea(t; γ) = LCγce [ε(γce; γ)e(t;γce)] , (3.A.7)

Ha(t; γ) = LCγch [η(γch; γ)h(t;γch)] . (3.A.8)

Now, let’s substitute the expansions (3.A.7) and (3.A.8) above into the eqs. (3.A.5) and (3.A.6):

LCγ

{
LCγce

[
ε(γce; γ)

(
∆te(t;γce) +

(
γ2 + k2

)
e(t;γce)

)]
e∓γz

}
= 0, (3.A.9)

LCγ

{
LCγch

[
η(γch; γ)

(
∆th(t;γch) +

(
γ2 + k2

)
h(t;γch)

)]
e∓γz

}
= 0. (3.A.10)

For the moment, it is assumed that:

∆te(t;γce) ≡ LCγ′ce
[
−λ2(γ′ce;γce)e(t;γ′ce)

]
, and

∆th(t;γch) ≡ LCγ′ch
[
−λ2(γ′ch;γch)h(t;γ′ch)

]
.

It is possible to select the set of basis functions in such a manner that−λ2(γ′ce; γce) and−λ2(γ′ch; γch)
are the eigenvalues of the operators LCγce [◦] and LCγch [◦], that is diagonalizing them so:

∆te(t;γce) ≡ −λ2(γce)e(t;γce), and (3.A.11)

∆th(t;γch) ≡ −λ2(γch)h(t;γch), (3.A.12)
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and thus e(t; γce) ∈ Aut {Ea(t; γ)} and h(t; γch) ∈ Aut {Ha(t; γ)}.
When replacing these eigenfunctions to eqs. (3.A.9) and (3.A.10) they result in:

LCγce
{(

LCγ

[
ε(γce, γ)e∓γz

]) (
−λ2(γce) + γ2 + k2

)
e(t;γce)

}
= 0, (3.A.13)

LCγch
{(

LCγ

[
η(γch, γ)e∓γz

) (
−λ2(γch) + γ2 + k2

)]
h(t;γch)

}
= 0, (3.A.14)

(3.A.15)

in which also the LCγ and LCγce , and the LCγ and LCγch order has been interchanged.
Scalar multiplying both sides of (3.A.13) and (3.A.14) by e(t;γce0) and h(t;γch0), respectively,
leads to:

γ2 = λ2(γce)− k2,

γ2 = λ2(γch)− k2,

for every γce and γch because LCγ [ε(γce, γ)e∓γz] 6= 0 and LCγ [η(γch, γ)e∓γz] 6= 0 unless the fields
are trivially null.

As a consequence, the originally complex variable γ may be addressed as a complex parameter
to the 2-dim space that are expanded as Ea(t) and Ha(t) in eqs. (3.A.7) and (3.A.8) from the
orthogonal basis functions e(t,γce) and h(t,γch), respectively.
In addition, if such basis functions satisfy (3.A.11) and (3.A.12), then the result of applying the
transversal Laplacian is in the same space as e(t,γce) and h(t,γch), and thus in the same 2-dim
space as Ea(t) and Ha(t).

As a result, it might be said that γ plays the roll of a parameter which may be obtained from the
eigenvalues λ2(γce) and λ2(γch) to the vector Laplacian operator applied to fields when they are
expanded as a LCγ of complex exponentials. This is equivalent to the time harmonic dependence,
in which ω -being a factor in k- is seen as a parameter. Therefore, the complex analysis of γ as a
parameter becomes crucial.
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Fig. 3.6: General scheme of the E-field functions belonging different vector spaces: E(r, t) belongs
to the four-dimensional space ST × R × R represented as an ellipsoid, which may be obtained as
a continuous superposition of different surfaces parameterized by ω; the coefficients that expand
E(r, t) by means of the base ejωt, E(r, ω), are within the surfaces which represent the ST × R;R+

space. These surfaces are, in turn, arrangements of lines parameterized by γ and expanded by
e∓γz; Their coefficients Ea(t; γ) (≡ Ea(t; γ;ω)) are in the ST ;C;R+ space; at the end, the line
points may be pointed by the appropriate eigenfunction e(t;γce) which lives in the same space
(surface) E(r;ω).
The H-field would follow the same scheme except for the line parameterized by Ha(t; γ) which is
different from Ea(t; γ), although both they must be clearly related by means of Maxwell equations.
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Appendix 3.B

The scalar product (dot product) of two vectorial functions depending on the transversal coordi-
nates is defined here. The completeness of the induced metric space of vectorial functions is also
proved so the resultant space is a Hilbert Space and every field in the space may be expressed in
terms of a linear combination of a basis that, moreover, converges.

Recall the original space of vector functions is the Sobolev space, W 2,2, whose domain is ST , that
is the vector functions defined on ST with finite energy components and belonging C2. Moreover,
this functions are at least C1 on the boundary CT . Using the generalized notation, [Her14], the
dot product between f(t1, t2) and g(t1, t2)

〈f(t1, t2),g(t1, t2)〉 = c ∈ C,

may be writen as

〈f,g〉 ≡
¨
ST

f · g∗dS, (3.B.16)

g∗ is the complex conjugate of g, and the dependence of the functions on the transversal coordinates
is omitted for the sake of simplicity.
Each vector function may be writen as the gradient of a scalar potential plus the curl of a vector
potential5, so

f = −∇tφf +∇t ×Af ẑ, and

g = −∇tφg +∇t ×Ag ẑ,

and the scalar product in eq. (3.B.16) equals

¨
ST

f · g∗dS =

¨
ST

(−∇tφf +∇t ×Af ẑ) ·
(
−∇tφ∗g +∇t ×A∗g ẑ

)
dS =

=

¨
ST

∇tφf · ∇tφ∗gdS︸ ︷︷ ︸
(a)

+

¨
ST

∇tφf · ∇t ×A∗g ẑdS︸ ︷︷ ︸
(b)

+

+

¨
ST

∇t ×Af ẑ · ∇tφ∗gdS︸ ︷︷ ︸
(c)

+

¨
ST

∇t ×Af ẑ · ∇t ×A∗g ẑdS︸ ︷︷ ︸
(d)

.

(3.B.17)

Using the Green’s second identity in (a) and (d), as well as some vector identities6 in (b)-(d), the
sum in (3.B.17) is expanded as:

¨
ST

f · g∗dS =−
¨
ST

φf∆tφ
∗
gdS +

˛
CT

φf∇tφ∗g · n̂dl︸ ︷︷ ︸
(a)

+

¨
ST

(
∇tφf ×∇tA∗g

)
dSẑ︸ ︷︷ ︸

(b)

−

−
¨
ST

(
∇tAf ×∇tφ∗g

)
dSẑ︸ ︷︷ ︸

(c)

−
¨
ST

Af∆tA
∗
gdS +

˛
CT

Af∇tA∗g · n̂dl︸ ︷︷ ︸
(d)

,

(3.B.18)

which is the definition of the scalar product using scalar functions and space vector operations.
Notice that if φf ∝ A∗g and Af ∝ φ∗g, the terms (b) and (c) vanish since their gradient are parallel
on ST . Furthermore, Af and φg, or φf and Ag, may be null so f = ∇tφf and g = ∇t × Ag, or

5The vector potential has only ẑ compontent to be its curl in ST .
6∇t ×Aẑ = A∇tẑ +∇tA× ẑ = ∇tA× ẑ

. ∇tφ · ∇tA× ẑ = ẑ · (∇tφ×∇tA) (scalar triple product)

. (∇tA1 × ẑ) · (∇tA2 × ẑ) = (∇tA1 · ∇tA2) (ẑ · ẑ)− (ẑ · ∇tA2) (∇tA1 · ẑ) = (∇tA1 · ∇tA2)
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f = ∇t × Af and g = ∇tφg, so that only the term (b) or (d) are different from zero. Moreover,
it is possible that f and g are both the gradient of a scalar potential, or both the curl of a vector
potential, that is f = ∇tφf and g = ∇tφg, or f = ∇t × Af and g = ∇t × Ag, in a way that
only the terms (a) or (d) survive. In any case, the terms that are not null fix the extra properties
the orthogonal potentials have to fulfill in order to guarantee the orthogonality between vector
functions.
It is possible to rewrite the terms (b) and (c) in eq. (3.B.18) using identities of vector product
(cross product) and curl7 together with the Stokes’ theorem as:

¨
ST

f · g∗dS =−
¨
ST

φf∆tφ
∗
gdS +

˛
CT

φf∇tφ∗g · n̂dl︸ ︷︷ ︸
(a)

+

˛
CT

φf∇tA∗g · (ẑ × n̂)dl︸ ︷︷ ︸
(b)

+

+

˛
CT

φ∗g∇tAf · (ẑ × n̂)dl︸ ︷︷ ︸
(c)

−
¨
ST

Af∆tA
∗
gdS +

˛
CT

Af∇tA∗g · n̂dl︸ ︷︷ ︸
(d)

,

(3.B.19)

with ẑ × n̂ the unit vector tangent to the curve CT described clockwise. This is the way to define
formally the scalar product between two vector functions.

The norm of a vector function f,

‖f‖ = n ∈ R,

is induced from the dot product

‖f‖ = 〈f, f〉
1
2 =

[¨
ST

f · f∗dS
] 1

2

. (3.B.20)

By using the expansion in equation (3.B.18), the square of the norm is

¨
ST

f · f∗dS =−
¨
ST

φf∆tφ
∗
fdS +

˛
CT

φf∇tφ∗f · n̂dl +

¨
ST

(
∇tφf ×∇tA∗f

)
dSẑ+

+

¨
ST

(
∇tφ∗f ×∇tAf

)
dSẑ −

¨
ST

Af∆tA
∗
fdS +

˛
CT

Af∇tA∗f · n̂dl =

=−
¨
ST

φf∆tφ
∗
fdS +

˛
CT

φf∇tφ∗f · n̂dl+

+ 2Re

{¨
ST

(
∇tφf ×∇tA∗f

)
dSẑ

}
−

−
¨
ST

Af∆tA
∗
fdS +

˛
CT

Af∇tA∗f · n̂dl =

=−
¨
ST

φf∆tφ
∗
fdS +

˛
CT

φf∇tφ∗f · n̂dl+

+ 2Re

{˛
CT

φf∇tA∗f · (ẑ × n̂)dl

}
−

−
¨
ST

Af∆tA
∗
fdS +

˛
CT

Af∇tA∗f · n̂dl.

(3.B.21)

And distance between two vector functions f and g

d (f, f) = d ∈ R,

7∇tφ×∇tA = ∇t × (φ∇tA)
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is induced from the norm induced from the scalar product

d (f,g) =‖f− g‖ = 〈f− g, f− g〉
1
2 =

[¨
ST

(f− g) · (f− g)
∗
dS

] 1
2

=

=

[¨
ST

f · f∗dS −
¨
ST

f · g∗dS −
(¨

ST

f · g∗dS
)∗

+

¨
ST

f · f∗dS
] 1

2

=

=
[
‖f‖2 − 2Re {〈f,g〉}+ ‖g‖2

] 1
2 .

(3.B.22)

If f → g, for example defiing αg, α ∈ C, and making α → 0, then d(f,g) → 0, so that the space
equipped with this dot product is complete, so a Hilbert space.
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Appendix 3.C

In this section, the algebra for obtaining the line parameters of HPWs in terms of the constitutive
parameters is shown, serving also as example for parameterizing more modes within the GTLT-v1,
which is useful studying the mode behavior in the subsequent version of the CTLT.

On one hand, the propagation constant and the characteristic impedance of HPWs are obtained
in eqs. (3.33) and (3.34), respectively. On the other hand, the propagation constant and the
characteristic impedance obtianed when decoupling the (generalized) telegrapher’s equations are in
eqs. (3.37) and (3.38), respectively. Identifying these parameters by pairs as:

γ̄ ⇔ γHPW , and (3.C.23)

Z̄0 ⇔ Z0,HPW ; (3.C.24)

and written them in terms of line parameters and constitutive parameters, it make possible solving
them.

Firstly, the line parameters defining the propagation constant are requied to be solved. That is
because γ generically acts as a parameter for the characteristic impedance, although for the HPW
charactarestic impedance does not.
The parameter γHPW is:

γHPW = jω
√
εeqµ ≡ jω

√
(ε′eq − jε′′eq)(µ′ − jµ′′) =

=
√
−ω2µ′ε′eq + ω2µ′′ε′′eq + jω2(µ′ε′′eq + µ′′ε′eq)

, (3.C.25)

whereas γ is8:

γ =
√
RG− ω2LC + jω(RC +GL). (3.C.26)

If γ is required to represent γHPW in the same way in terms of lossy parameterizations, then first
of all, {

RG− ω2LC = ω2(µ′ε′eq + µ′′ε′′eq)

RC +GL = ω(µ′ε′′eq + µ′′ε′eq)
, (3.C.27)

and secondly, since the lossless case corresponds with R = G = 0 and ε′′eq = µ′′ = 0,

µ′ε′eq = LC, (3.C.28)

then RG in the first equation in eq. (3.C.27) is

RG = ω2ε′′eqµ
′′. (3.C.29)

Solving µ′ and µ′′ from eqs. (3.C.28) and (3.C.28), and substituying them in the second equation
in eq. (3.C.27), the following 2nd order equation in r′ = ωε′′/ε′ is obtained9:

r′2−
(
R

L
+
G

C

)
r′ +

RG

LC
= 0. (3.C.30)

Solving this equation, it leads to:

r′ =
ωε′′

ε′
=

{
R
L
G
C

.

8The notation with bars (̄) for indicating complex parameters or parameters which result from complex parameters
is simplified in this section writing the parameters normal. However, they are addressed in the same manner.

9The notation r′ is used on purpose because it corresponds with the parameterization of conductor losses used
in the variable frequecy domain in the CTLA. The same happens with the dielectric losses g′.
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Now the process is repeated with the characteristic impedance taking into account that for the
lossless case:

µ′

ε′
=
L

C
. (3.C.31)

Among the two possible cases for r′, only

r′ ≡ ωε′′

ε′
=
R

L
(3.C.32)

is possible, whereas

g′ ≡ ωµ′

µ′
=
G

C
. (3.C.33)

The way of solving each line parameter from the ratios r′ and g′ is analyzing the role of the
constitutive parameters in Maxwell equations and the line parameters in the telegrapher’s equations.
Eqs. (3.31) and (3.32) are of the form of telegrapher’s equations when fields are just integrated
from Maxwell equations. If identifying the constitutive parameters in each equation with the line
parameters of the generalized telegrapher’s equations, it leads to the following additional equations

R+ jωL = jωεeq = ωε′′eq + jωε′eq, and (3.C.34)

G+ jωC = jωµ = ωµ′′ + jωµ′. (3.C.35)

Then, {
R = ωε′′eq
L = ε′eq

, and

{
G = ωµ′′

C = µ′
. (3.C.36)

In this way, the line parameters are written in terms of the constitutive parameters and frequency,
ready for the analysis in the subsequent version of the CTLT.
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Chapter 4

The Complex Transmission Line
Theory

4.1 Introduction

The TLT has thoroughly demonstrated its usefulness when parameterizing different structures in
which EM fields propagate, [Mar51, Col90, Poz98, Col01]. These waveguide structures, which are
invariant along the z-axis –just as they have been introduced in Chpt. 3 generalizing the mode
propagation–, are fully equivalent to the parameterized TLs, once they are characterized in direct
or inverse manner.
In this way, the equivalent TL is completely defined by the line parameters, which compose the
basic parameters that characterize and relate the equivalent voltage and current single wave so-
lutions in the TL. These single voltage and current waves are, in turn, equivalent to the electric
and magnetic fields in the underlying TLT which they characterize, for example, the EM fields
regarding harmonic plane waves in lossy media, studied under the LTLT. In any case, the basic
parameters define both the kinematics (electrodynamics) of the equivalent waves that flow in each
of the directions in the TL (±ẑ) by means of the propagation constant, and the relation between
them in each direction by means of the characteristic impedance.
The total wave solution is the linear combination of the (partial) single wave solutions weighted
by the coefficients with define the BCs along the z-axis. The wave parameters define the relations
within and between the total voltage and current waves.
Thus, the analysis of the parameters defined in the equivalent TL: line parameters, basic parame-
ters and wave parameters; determines the solutions in the parameterized waveguide.

For the generalized study of losses, it has been seen in Chpts. 2 and 3 that analyzing the solutions
and the parameters in the frequency domain has some clear advantages: (i) losses are generalized
in the sense that not only conductor losses but also those losses wich affect dispersive mediums can
be considered; (ii) both Maxwell equations and ”modified wave equations”1 simplify to first order
ODEs and Helmholtz-type equations, respectively; (iii) the parameters regarding the TL become
complex. This fact, far from being a disadvantage, is a great advantage when analyzing the param-
eters of the TL. Notice that, for example, the attenuation constant, α, and the phase constant, β,
are gathered together in the same complex expression: they are the real and imaginary parts of the
(complex) propagation constant, γ, respectively; or the phase between the electric and magnetic
field solutions is the phase of the (complex) characteristic impedance, Z0; (iv) since the parameters
are complex, they admit a graphical representations in their respective complex planes. The im-
mediate consequence of using graphical analysis is geometrizing the underlying physical problem

1Remember: ”modified wave equations” refers to the well-known wave equations to which a first order term –in
this case parameterizing some source of losses– has been added.
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regarding the wave propagation in TLs, and thus many physical interpretations are obtained by
using geometrical concepts of classical Geometry and Differential Geometry, [MP77]; and (v) since
these complex parameters are transformations between themselves, they may be seen as complex
transformations of mappings, [BC90], between them. Moreover, this way of analyzing the transfor-
mations between the TL parameters has direct representation on complex planes, so not only the
physical interpretations but also the direct and inverse characterizations introduced in previous
chapters may be deduced from graphical analysis.

Remark 11. Graphical analysis results natural when dealing with complex parameters which are
characteristic in the frequency domain. This way to graphically see the parameters lets geometrizing
the different characterizations regarding the TLT. As a result, the problem of characterizing the
equivalent waves in the TL becomes geometrical. Moreover, physical interpretations regarding the
propagative behavior of waves in TLs are directly mapped on the complex planes associated to each
parameter, and those physical properties that could be hidden are found by applying concepts of
Differential Geometry.
In addition, since the way of characterizing the parameters is by means of transformations between
them, the direct and inverse characterization of the equivalent TLs –and thus the way of solving
the single waves– has direct representation in this type of analysis (based on transformations).

In addition, the graphical analysis has the advantage of ”compressing” all the possible values for
each parameter –and so the seeked solutions in the TL– in only one complex plane.
This idea of ”universalizing” all the possible values of each TL parameter in one plane connects
with the fact that either different particular cases come from a general expression, for example the
lossless or non disperive cases come from the lossy case in the direct characterization introduced
in Chpt. 2, or different line parameters come from the same propagative behavior and relation
between electric and magnetic fields in the inverse characterization presented in Chpt. 3.
These graphical analysis in complex planes and the transformations between them are part of
the methodology in the so called Complex Transmission Line Analysis (CTLA), [Gag01],
in which the graphical analysis are ”universally” parameterized depending on the characterization
which is being carried out.

Remark 12. In both the direct characterization and the inverse characterization of the TLT, the
graphical analysis supposes a ”universalization” of all the possible solutions in the planes of each
parameter under study.
The CTLA is based on parameterizing the transformations between complex planes, which is the
way of studying them graphically, and so they are able to be analyzed geometrically.

Keeping in mind the interest of studying the TL parameters in the frequency domain, the parame-
terizations used in the direct characterization are the losses, whereas the different parameterizations
of basic parameters are those which have special interest in the inverse characterization.
On the other hand, it is interesting to analyze how these characterizations vary in terms of fre-
quency, and thus expanding/finding any solution in time domain. This analysis affects both the
direct and inverse characterizations, but in different way: while the direct characterization de-
scribes how the basic parameters behave with frequency, the inverse characterization looks for the
frequency which corresponds to the a priori defined basic parameters.
These analysis may be brought to/from (depending if the characterization is direct/inverse) the
characterization of wave parameters. In this sense, it is interesting to analyze, for example, how
the equivalent total voltage and current waves behave along the TL, which mainly reduces to the
study of wave parameters along the TL (this is a direct characterization); or how the wave pa-
rameters vary with losses or frequency at any point of the TL (by definition, this is an inverse
characterization).
All these (non trivial) analysis require studying the basic concepts (it refers to the basic transfor-
mations) regarding the direct inverse characterizations in the context of the CTLA. Having studied
the basic transformations, these problems are finally been able to be solved as examples of use of
the CTLA (the ones previosly cites are solves in Chpt. 5.
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Remark 13. The CTLA settles the basis of the methodology for analyzing future more complex
problems.
The physical meaning of the basic analysis in the CTLA is found in the type of parameterizations
which are chosen to solve any particular problem.

For example, if the behavior of the TL is intended to be studied in terms of losses, the parameter-
izations should be the losses (this corresponds with a direct characterization). Or, if the losses are
required to be studied in terms specifications on different TL parameters (for examples the basic
parameters), the parameterizations should describe these parameters.
More interesting examples are the studies which parameterize the TL’s length for the analysis along
the TL, and also the parameterization of frequency for the variable frequency analysis.
Recall that the LTLT just as it has been presented in Chpt. 2 leaves a lot of open problems, some
of them are very interesting to solve indeed since they can not be solved analitically, for example:
(i) explain rigorously the low-losses approximation, that is, see its error in comparison with the
lossy case when both frequency is fixed and variable; (ii) suggest a method for expanding the solu-
tions from the frequency domain to time domain by analyzing how the TL parameters vary with
frequency; (iii) answer which TLs produce, for example, the same phase difference between the
electric and magnetic fields, that is the same phase on the characteristic impedance (this is basic
analysis regarding the inverese characterization); (iv) analyze how the wave parameters vary with
losses, frequency, or along the TL and, from this analysis, obtain any value which is of special in-
terest. For example the real values of the wave impedance along the TL, if they exist; among others.

The Complex Transmission Line Theory (CTLT) arises out of the need of analyzing different
generalizations of the TLT, and it is intended to characterize the equivalent TL under study both
directly and inversely by means of CTLA.
The CTLT takes on: (i) selecting the appropriate normalizations depending on the analysis which
is intended to be performed; (ii) normalizing the parameters under study in such a way that the
parameterized curves ”universalize” the analysis. In this sense the term ”universalizing” refers
to gather each parameterized analysis (losses, frequency, etc.) in only one complex plane; (iii)
obtaining the seeked physical interpretations from graphical analysis or uncovering more by means
of geometrical analysis; (iv) proposing practical uses of both the described analysis to solve more
complex TL related problems, and the TLs under study by taking advantage of their phsyical
properties, for example, losses combined with frequency could be suggested for matching purposes;
and (v) applying the analysis to solve real electromagntic systems (see the Future Lines at the
end of this thesis book).

Remark 14. The CTLT is proposed as the theory which explains different versions of the TLT
by using CTLA, that is, using resources of Complex Analysis to analyze TLs. In this way, the
CTLT is intended to overcome the limitations of the mathematical analysis by transforming the
original analytical problem giving graphical and so geometrical point of view, at the same time that
it ”universalizes” the analysis.

The first generalization of the TLT is the LTLT presented in Chpt. 2. Recall that this general-
ization deals with HPWs in which losses are fully taken into account. Moreover, the same lossy
HPWs are studied when particularizing the GTLT-v1 presented in Chpt. 3. Thus, the desired
parameterizations in the associated first version of the CTLT (CTLT-v1) which give the main
physical meaing are the losses regarding the equivalent TL, besides the frequency.
From this point, it is required to analyze a posteriori how the wave parameters vary wtih frequency
and along the TL, serving as examples of use of the analysis presented in this chapter.
These analysis would complete the CTLT-v1, leading to the alternative of the (analytical) LTLT.

For the purposes regarding the CTLT enumerated above, the theoretical aspects are presented in
this chapter by means of basic analysis which comprise the transformations between the parame-
terized curves in the normalized complex planes.
Next chapter, Chpt. 5, shows how to ”merge” these basic analysis and the underlying analytical
expressions to complete the CTLT.
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In this chapter, the direct characterization of the lossy TL following the analysis regarding the
LTLT introduced in Chpt. 2 is presented in Sect. 4.3. In this direct characterization, the basic
parameters are analyzed as transformations of lossy parameterized curves both when frequency is
fixed and variable, and the wave parameters are studied by means of parameterizations of basic
parameters.
The inverse characterization of the lossy TL following the analysis ing the GTLT regarding HPWs
introduced in Chpt. 3 is presented in Sect. 4.4. In the inverse characterization, the line parame-
ters are analyzed by means of specifications in basic parameters which parameterize the resultant
curves. On their behalf, these basic parameters are studied parameterized by wave parameters.
At the end, some conclusions regarding the theoretical aspects of the CTLT-v1 presented in this
chapter are outlined in Sect. 4.5 while emphasizing their usefulness when studying TL related
problems, which are presented as examples of use in Chpt. 5.

Nevertheless, a background to the analysis regarding the CTLA is presented in the following sec-
tion prior to describe the associated CTLT-v1 rigorously.
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4.2 Complex Transmission Line Analysis: previous works

The reader is referred to the text in [Gag01] to find some of the characterizations of the CTLA
introduced for the first time. In this CTLA handbook, the presented analysis correspond to the
(here named) direct characterization of the CTLT (which is only contextualized in analyis of TEM
modes2):

• The basic parameters are studied by means of graphical analysis of the parameterized curves
in the respective complex planes. This analysis lacks of several points:

(i) the rigoruous mathematical description in terms of transformations between planes.
In order to overcome this mathematical issue, it is required to define ”the space of
parameterizations” algebraically (see Appendix 4.A). From this ”space”, the ”plane of
parameterizations” is defined to mathematically characterize and graphically see the
curves to be mapped into the basic parameter complex planes;

(ii) the geometrical description of the resultant curves, which has special importance in
parameterizing future more complex analysis;

(iii) the physical interpretation of the depicted curves after their geometrical analysis; and

(iv) the practical uses of these analysis in both solving more TL-related problems and being
applied to solve other EM problems.

The first point is special important when thinking about the inverse characterization: if a
function which ”maps” the lossy parameters (or other parameters, for example, frequency)
into the basic parameters is not defined, the inverse characterization –given by the inverse
function– could never have been thought within the context of the CTLT, limiting the de-
scription of more solutions in waveguides (as those ones presented in Chpt. 3) by means of
studying their equivalent TLs. In fact, it is the inverse function (which is a complex vari-
able function) the one which actually ”sketches” the original mapping (seen as function) by
means of different type of parameterizations, namely: real-imaginary parameterized parts
and modulus-phase parameterizations.
This way of inversely seeing the analysis is not only crucial to describe equivalent TLs but
also to find the application in solving some problems, for example by using integral equations
defined over this ”space of parameterizations” (see the section Applications at the end of
this thesis book).

• The wave parameters are studied both graphically and geometrically. However, the analysis
lacks of:

(i) the physical interpretation of the study detaching its importance in parameterizing lossy
TLs and the limitations in the analysis.
It is crucial to explain the role of angle of the characteristic impedance in the analysis
ϕZ0

, also by its inverse characterization in terms of losses/frequency; and

(ii) the practical uses, for example in analyzing the wave parameters along the TL, beyond
its usefulness as a graphical tool, [GDG06].

The limitations to this analyis when analyzing lossy TLs inspire the definition of the inverse
characterization of basic parameters parameterized by the wave parameters, which is the dual
analysis to the description of wave parameters parameterized by basic parameters introduced
in the CTLA handbook.

Thus, regarding these previous works in the CTLA: (i) the analysis introduced in the CTLA hand-
book are conveniently contextualized within the direct characterization of the LTLT presented in
Chpt. 4, as well as rigorously described in the basis of the CTLT; (ii) the inverse characterization
is defined as the alternative/complementary analysis to the direct one; and (iii) both characteri-
zations are proposed to complete the CTLT-v1 regarding lossy TLs, in which the mentioned open

2Transversal ElectroMagnetic modes.
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problems: the analysis in terms of losses, frequency and along the TL; are solved as examples of
use in next chapter by combining the characterizations.
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4.3 Direct characterization of the Complex Transmission
Line Theory (CTLT-v1.0a)

In this section, the direct characterization of the TL regarding the LTLT presented in Chpt. 2 is
studied from the the CTLT point of view.
The analysis presented here exemplifies the methodology to be followed in the rest of characteriza-
tions regarding the different versions of the TLT, which emerge when (a) analyzing guided waves
in different mediums, with (b) different boundary conditions, studied in (c) different domains (see
the Table 2.1 introduced in Chpt. 2, which shows the classification of the TLT versions addressed
in the Thesis)3. These analysis cover those issues detached in the introduction of this chapter
regarding the subsequent achivement of the –in this case– CTLT-v1: (i) studying different types of
parameterizations: lossy parameterization, parameterization of frequency, and length parameteri-
zation; (ii) proposing the normalizations for each parameterized analysis; (iii) doing the graphical
analysis and characterizing the resultant curves geometrically; (iv) obtaining physical interpreta-
tions from the graphical and geometrical analysis; and (v) detaching the possible practical uses in
both manufacturing circuits and analyzing real electromagnetic systems. An appropriate division
in parts following these (i-v) points is presented for each parameter under study regarding the
underlying – also in this case– LTLT.

Fig. 4.1: Scheme of the lossy TL whose parameters: both the basic parameters in terms of losses
and frequency (the line parameters), and the wave parameters in a fixed point on the TL; are
analyzed in the CTLT-v1.0a.

This section is organized as follows: firstly, the basic parameters are characterized in terms of losses
when frequency is fixed. Then, the basic parameters are characterized when frequency varies. Both
the fixed frequency analysis (ffa) and variable frequency analysis (vfa) are basic4 analysis which let
to know how the individual voltage and current waves behave (see in Fig. 4.1 the line parameters
which vary –marked in yellow– for characterizing the basic parameters –marked in blue–).
After this, the wave parameters are next characterized parameterizing the transformations be-
tween them, while inheriting the parameterizations of losses/frequency from the analysis of basic
paremters (see in Fig. 4.1 the parameters which vary –the basic parameters marked in blue– for
characterizing the wave parameters –marked in pink–). Thus, this latter analysis manages two
types of parameterizations: the parameterization regarding the basic parameters and the param-
eterizations of wave parameters in themselves; but the true usefulness of this characterization is
in fixing the parameterization regarding the basic parameters in order to analyze how the total
waves vary when changing the parameterizations of wave parameters at any point of the TL, that
is, when changing the BCs (in the TL’s length) at any fixed point in the TL.
These basic transformations let to study a posteriori how the wave parameters vary in terms of
line parameters, which is one of the objectives proposed in the CTLT analyzed in Chpt. 5.

3The items (a), (b), and (c) are different combined for posing different versions of the TLT.
4A particular analysis is called ”basic” when it lies in one single complex transformation.
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4.3.1 Direct characterization of basic parameters

Fixed frequency analysis

The ffa of basic parameters refers to the analysis in terms of losses, corresponding to the analysis
in the frequency domain presented in Sect. 2.3 in Chpt. 2.

Remark 15. When talking about the ffa, it is assumed to be operating in one specific subspace of
coeffcients regarding the harmonic function –a basis representing the (inverse) Fourier Transform
(Fourier expansion)– parameterized by ω. Thus, the ffa regarding the CTLT is the homologous to
analyze the wave solutions (in this case HPWs) in the frequency domain regarding the underlying
TLT (in this case the LTLT).

In particular, the analysis of the lossy case in which the line parameters are not frequency dependent
is presented in this first version of the CTLT regarding the direct characterization (CTLT-v1.0a),
corresponding to the analysis introduced in Sect. 2.4.1 in Chpt. 2. Moreover, since this lossy
case generalizes the lossless and the non dispersive cases, besides it is the origin of the low-losses
approximation, the ffa lets to explain these cases at the same time it is described. The fact
that all the particular cases can be analyzed by only one characterization reveals the importance
of the CTLT as an efficient methodology, alternative to study the underlying analytical expressions.

Parameterizations: The line parameters of the equivalent lossy TL represented by the schemes
in Fig. 2.17 determine the basic parameters of the lossy TL.
These line parameters (R, L, G, C) should be parameterized taking into account that (i) in this
study, frequency is a fixed parameter, and (ii) the objective here it to characterize how losses affect
the TL. In this sense, notice that in eq. (2.89) the lossy constitutive parameters are mapped in R
and G, and that is because the lossless case in eq. (2.91) correspond to R = 0 and G = 0. This
suggests normalizing R and G with respect to ωL and ωC, respectively, which defines both the
parameterizations of losses in the ffa:

{
r = R

ωL ∈ [0,∞[

g = G
ωC ∈ [0,∞[

; (4.1)

and the normalizations of basic parameters with respect to the respective losseless cases (they are
next studied separately for the characteristic impedance and the propagation constant).
The parameters r and g in eq. (4.1) are called the conductor and dielectric losses, respectively,
because they simulate the losses due to the conduction of the equivalent current I(z) and the losses
due to the presence of a dielectric between the contours ”energized” with the potential difference
V (z)5.

Since the lossy parameterizations are not correlated (that is, they are independent because the
real and imaginary parts of the constitutive parameters only appear mapped once in the (real) line
parameters), it is possible to draw a (non Euclidean) plane whose axis refer to the lossy parame-
terizations r (acting as x-axis) and g (acting as y-axis). This plane is called the rg-plane, and it is
especially useful when explaining the origin of the parameterizations in the direct characterization
presented here, and to see graphically the analysis regarding the inverse characterization presented
in Sect. 4.4 (see the origin and properties of the rg-plane in Appendix 4.A).

5This denomination is kept from previous studies in [Gag01], although it is somewhat confusing because the
contours which support HPWs are PECs, so their conductivity σPEC → ∞ and thus they do not present any
resistane for the current to flow. However R in eq. (2.89) does not refer to the losses due to the material resistivity,
but losses caused by magnetic dispersivity.
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Fig. 4.2: Lossy parameterizations r and g in the rg-plane (≡ R2 ∪ (0, 0)) for the ffa of basic
parameters.

Lossy parameterizations
Lossless case r = 0, g = 0

Non dispersive case r = g
Low-losses approximation r → 0 (r �), g → 0 (g �)

Table 4.1: Values of the lossy parameterizations which define the particular cases: lossless and non
dispersive cases; and the low-losses approximation from the parameterized lossy case.

For the ffa, the lossy parameterizations are the constant curves{
r = r0 ∈ [0,∞)

g = g0 ∈ [0,∞)
(4.2)

in the rg-plane, as depicted in Fig. 4.2. Notice that this plane is restricted to the first quadrant
(R2 ∪ (0, 0)) for the lossy case studied in this version of the CTLT, besides both axis r and g are
real, which allows the graphical representation of the rg-plane.
The r and g parameterizations completely define the basic parameters once they are accordingly
normalized.
In addition, the particular cases and the approximation presented in Sect. 2.4 in Chpt. 2 can be
mapped with these lossy parameterizations, just as it is presented in Table 4.1.

Characteristic impedance: The importance of the equivalent characteristic impedance regard-
ing the direct characterization of the lossy TL when relating the individual wave solutions in both
amplitude and phase difference is detached in the LTLT presented in Sect. 2.4.1 in Chpt. 2.

Normalization: The expression of the characteristic impedance in terms of the line parameters
for the lossy case in eq. (2.71) is normalized with repect to the lossless case in eq. (2.94), leading
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Fig. 4.3: Graphical analysis of the curves parameterized by losses in the Z0n1-plane.

to

Z0n1 =
Z0

Z0,sp
=

√
R+jωL
G+jωC√

L
C

=

√
1− j R

ωL

1− j G
ωC

=

√
1− jr
1− jg

∈ DZ0n1
⊂ C, (4.3)

having used the definition of the lossy parameterizations in eq. (4.1).
Notice that this normalization is done with respect to a real value so the angle of the normalized
characteristic impedance is the same as in the original Z0. This fact is of great importance when
interpretating Z0n1 phisically, and also when taking the angle of the characteristic impedance as
the parameter for future analysis.
The parameter Z0n1 is called the normalized characteristic impedance for the ffa, [Gag01]. It is
parameterized by the conductor and dielectric losses so it could be characterized in terms of them.
Eq. (4.3) may be rewritten in terms of the 2th root of a quotient of two complex numbers:

Z0n1 = Z ′0n1 + jZ ′′0n1 = |Z0n1|ejϕZ0 ≡
√
n

d
, in which (4.4)

n = |n|ejϕn = 1− jr, |n| ≥ 1, ϕn ≤ 0, and (4.5)

d = |d|ejϕd = 1− jg, |d| ≥ 1, ϕd ≤ 0. (4.6)

This expression is useful when separating the parameterization r (included in n) and g (included
in d).
Moreover, only by using the particularizations in Table 4.1, it is possible to identify the particular
cases and approximations regarding the characteristic impedance which are explained in Sect. 2.4
in Chpt. 2, which shows the capabilities of the r-g parameterizations for compressing the complete
analysis.

Graphical analysis: The most intuitive way to analyze Z0n1 in terms of lossy parameterizations
is by means of graphical analysis in its associated complex plane. For the purpose of representing
the curves parameterized by r, this parameterization is kept fixed while g varies in its whole range
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(described in eq. (4.2)), [Gag01]. Conversely, the g-parameterized curves are obtained when keep-
ing fixed g and r varies.

Rigorously, this parameterized analysis may be interpreted as the complex mapping, [BC90], of
the r and g constant curves from the rg-plane introduced in Fig. 4.2 to the Z0n1-complex plane.
In this sense, Z0n1 is seen as a complex function (in this case a real bi-variate complex function)6:

Z0n1 : R2+ ∪ (0, 0)→ DZ0n1
⊂ C

(r, g) Z0n1(r, g) =

√
1− jr
1− jg

.
(4.7)

This is an analytic function in the rg-plane and so its Taylor series (power series) exist, [Bro96],
which justify the existence of the low-losses approximation, but it is not conformal, [BC90] if seeing
it as a mapping.
Nevertheless, using some properties of mappings: complex scalar multiplication and shifting, inver-
sion, and 2th root; [BC90], and concatenating them, it is possible to represent the parameterized
curves in the Z0n1-plane represented in Fig. 4.3.
In this way, all the possible values of the normalized characteristic impedance are represented in
only one complex plane, which clearly shows the possibilities of graphical analysis in compressing
the analysis of Z0n1 in terms of losses.

The curves in Fig. 4.3 are within the region (the range DZ0n1 of the function in eq. (4.7)) bounded
by the curves parameterized by r = 0 and g = 0 (r = 0 ∪ g = 0 ), and the real axis (Z ′′0n1 = 0).
This region is, in turn, within the sector ϕZ0

= ]−π/4, π/4] .
In particular, the g-curves present asymptotic behavior as r → ∞, and they limit with the curve
parameterized by r = 0 in the other end. On their behalf, the r-cuves are delimited by the origin
of Z0n1-plane (Z0n1 = 0 + j0) and the curve parameterized by g = 0.

Geometrical analysis: The graphical analysis in terms of the r- and g-parameterized curves in
the Z0n1-complex plane in Fig. 4.3 immeditely suggests analyzing these resultant curves geomet-
rically, in order to see both their geometrical properties and the alternative representation of the
original equation of Z0n1 in eq. (4.3), and thus the original Z0 in eq. (2.71).

The r-parameterized curves follow the general equation

|Z0n1| =
√
|n| cos (2ϕZ0 − ϕn), (4.8)

ϕZ0
∈
[ϕn

2
,
π

4
+
ϕn
2

[
,

which is written in polar form, having parameterized the (complex) variable n (which depends on
r) defined in eq. (4.4) as a parameter.

The set of r-curves described by eq. (4.8) parameterized by n are of the form of quarter lemniscates
of Bernouilli, [Law72].
Notice that each curve is a complex scalar transformation from another one. In particular, each
curve is the scalar transformation of the curve parameterized by r = 0 (the upper limit in the
Z0n1-plane), obtained when multiplying it by the complex factor

√
|n|ej

ϕn
2 . This fact is useful for

characterizing the possible linear transformations of this set of curves only by means of transform-
ing one of them, and also for obtaining some specific points on this curves. For example, the end

6In order to distinguish each parameter and the function which represent it, which defines a transformation, the
functions are written in boldface. For example, while Z0n1 is addressed as the normalized characteristic impedance,
Z0n1 refers to the function which transforms (r, g) points to normalized characteristic impedances, that is, Z0n1

points.
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of the curve parameterized by r = 0 is on Z0n1|r=0,end ≡ Z0n1(r = 0, g = 0) = 1 + j0. Then,
the end of the curve parameterized by r = r0 characterized by the complex value n = n0 is on

Z0n1|r=r0,end ≡ Z0n1(r = r0, g = 0) =
√
|n0|ej

ϕn0
2 .

The g-parameterized curves follow the general equation

|Z0n1| =
1√

|d| cos (2ϕZ0
+ ϕd)

, (4.9)

ϕZ0
∈
[
−ϕd

2
− π

4
,−ϕd

2

[
,

which is written in polar form, having taken d in eq. (4.4) as a parameter.

The set of g-curves described by eq. (4.9) parameterized by d are of the form of quarter hyperbolas,
[Law72].
Each hyperbola is a scalar complex transformation from another one. In particular, the factor

1/
(√
|d|ej

ϕd
2

)
multiplies the curve parameterized by g = 0 to obtain the set of curves in (4.9). In

this way, any linear transformation of the g-curves can be done only by means of transfoming one
of them.

Fig. 4.4: Graphical representation of the maximum of Z ′′0n1 (Z ′′0n1,max) in the Z0n1-plane.

Since the general expression of the curves in the bi-parameterized Z0n1-plane is known, some
important geometrical properties of curves may be obtained by eliminating one parameter. For
example, the maximum value of the imaginary part of Z0n1 (max{Z ′′0n1} ≡ Z ′′0n1,max) represented

in Fig. 4.4 is on the curve parameterized by r = 0, and it is obtained when g =
√

3, so Z ′′0n1,max =

1/
(
2
√

2
)

(see the calculus in Appendix 4.B).

Physical interpretations: The Z0n1-plane has straightforward physical interpretations: the
modulus of Z0n1 fixes the relation between the amplitudes of the voltage and current waves (as
long as the parameter which normalize Z0n1, that is Z0n1,sp, is known), whereas the phase is exactly
the phase shifting between these waves (because the normalization Z0n1 does not affect angles). In
this characterization, both the modulus and the phase included in Z0n1 are obtained in terms of
their lossy dependence.
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Fig. 4.5: The location of the lossless and non dispersive cases, and the low-losses and high-losses
approximation in the Z0n1-plane.

It is important to detach that the resultant curves in Fig. 4.3 are ”universal”, in the sense that
each parameterized curve correspond with multiple TLs that have r or g as a parameter. Thus,
each point in the Z0n1-plane is not identified with an unique TL but a infinite set of TLs working
at different (fixed) frequencies.
Among the points and the physical meaning of each of them, there are those which are of special
interest because they correspond to the particular cases and the approximation introduced in Sect.
2.4 in Chpt. 2. These points are located in Fig. 4.5 labeled by the terminology introduced in Table
4.1. Notice how the points fit the particularized expressions of Z0 for each case. In particular,
the point Z0n1 = 1 + j0 corresponds to the non dispersive case –the losses case included– and the
low-losses approximation. In this way, the function Z0n1(r, g) in eq. (4.7) is clearly non injective
in the bisector of the rg-plane.
Moreover, new particular cases or behaviors of lossy TLs may be deduced by examining the lossy
characterization of Z0n1 in Fig. 4.3. For example, the high-losses approximations are obtained
when making the values of r or g tend to infinity.

Lossy parameterizations
high-losses approximation r →∞ (r �) or g →∞ (g �)

Table 4.2: Values of the lossy parameterizations wich define the high-losses approximation from
the parameterized lossy case.

These high-losses approximation produce real values of the characteristic impedance, as it can be
seen depicted in Fig. 4.5.
Rememeber that low-losses approximation correspond to real TLs if and only if they are non dis-
persive, as it is reflected in Fig. 2.16 presented Sect. 2.4 in Chpt. 2. This also occurs with the
high-losses approximation. Thus, the real axis in the Z0n1 is not contained in the allowed region
except to the non dispersive point Z0n1 = 1 + j0.

Practical uses: In this part, the most important practical uses obtained from the analysis of
Z0n1 in terms of losses are outlined. These practical uses are focused on both the importance of
this analysis for more complex lossy characterizations and the possible applications of losses in
designing circuits.

The role of the phase of Z0n1 –and thus Z0– when parameterizing the losses is here detached.
This parameter ”universalizes” the lossy parameterizations in a certain way, while it inherits the
properties of the denormalized characteristic impedance at the same time. The importance of this
parameter when characterizing the wave parameters based on changes between themselves (which
is equivalent to change the BCs) is analyzed in Sect. 4.3.2 in this chapter.
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For the analysis of wave parameters in terms of losses, this analysis results crucial since the wave
parameters explicitly depend on the characteristic impedance. The analysis of wave parameters in
terms of losses is developed in Chpt. 5, which is presented as an example of use of this analysis of
Z0n1, expressly.

In addition, the ”universal” nature of the curves in the Z0n1-plane makes the analysis in terms of
losses a powerul method to expand the characteristic impedance of any case or approximation. For
this purpose, Z0n1 is seen as a function of losses (Z0n1(r, g) as defined in eq. 4.7, and sketched in
the inverse analysis by using the inverse function Z−1

0n1(r, g)) may act as the kernel of an integral
operator or integral equation (see this application regarding the deinition of the normalized char-
acteristic impedance in Applications).

Also notice that losses may be used for matching purposes at any fixed point on the TL. In this
way, the analysis of Z0n1 in terms of losses provides the limits for Z0n1 to do the matching.
This capability of lossy TLs has been used in [VG17-I], together with more properties of lossy TLs
recalled in the following sections, in order to introduce a graphical chart for matching loads with
losses in an easy way.

Propagation constant: The propagation constant determines the physical characteristics of
propagation: attenuation and phase speed of the individual waves; just as it has been stated in the
direct characterization regarding the LTLT presented in Sect. 2.4.1 in Chpt. 2.
The analysis of the propagation constant in terms of losses is developed in this section, dual to the
analysis of the characteristic impedace presented before.

Normalization: The natural normalization of the propagation constant regarding the lossy case
in eq. (2.68) for its study in terms of losses is with respect to the lossless phase constant (βsp),
which define the lossless propagation constant in eq. (2.95):

γn1 =
γ

βsp
=

√
(R+ jωL) (G+ jωC)

ω
√
LC

= j

√(
1− j R

ωL

)(
1− j G

ωC

)
=

=j
√

(1− jr) (1− jg) ∈ Dγn1 ⊂ C,

(4.10)

having used the same definition of lossy parameterizations in eq. (4.1).
Notice that this normalization has been done with respect to a real value so the angle of the nor-
malized propagation constant is kept the same as the original propagation constant γ. This fact is
important when analyzing the curves in the γn1-complex plane and deducing physical interpreta-
tions of this angle, and also when using this angle to parameterize the losses in future analysis (see
the example in which the TL is characterized both in terms of losses and along the TL presented
in Chpt. 5).
The parameter γn1 is called the normalized propagation constant for the ffa, [Gag01]. It is param-
eterized by the conductor and dielectric losses, which play equivalent role as factors in eq. (4.10).
This fact means an important graphical reduction, which also concerns the physical interpretations
of losses when parameterizing the propagation constant.
Notice that the normalization with respect to βsp includes the frequency. Despite the frequency is
a fixed parameter for this analysis, its inclusion in the normalization affects the interpretation in
the meaning of the resultant ”universal” curves.

Again it is also possible to rewrite eq. (4.10) in terms of the n and d complex factors as

γn1 = αn1 + jβn1 = |γn1| ejϕγ ≡ j
√
n · d, (4.11)



4.3. DIRECT CHARACTERIZATION OF THE CTLT (CTLT-V1.0A) 107

Fig. 4.6: Lossy parameterized curves in the γn1-plane. These curves are the result of transforming
the constant curves which parameterize the losses in the rg-plane in Fig. 4.2.

in which n and d are defined as in eqs. (4.5) and (4.6), repectively. Because of the equivalent role
of r and g in eq. (4.10), n and d also play de same role as factors in eq. (4.11).
The normalized attenuation constant, αn1, is

αn1 =

√
rg − 1 +

√
(r2 + 1) (g2 + 1)

2
, (4.12)

whereas the normalized phase constant, βn1, is

βn1 =

√
1− rg +

√
(r2 + 1) (g2 + 1)

2
. (4.13)

By means of the particularizations of r and g in Table 4.1, it is possible to obtain the particularized
expression of γn1, αn1, and βn1 for each particular case or approximation.

Graphical analysis: The normalized propagation constant is graphically studied by means of
parameterized curves in its associated complex plane. For the purpose of interpreting the graphical
analysis in an easy way, the parameter r or g is kept fixed while the other one: g or r, respectively;
varies in its whole range, dedined in eq. (4.2). This leads to draw the r- and g-parameterized
curves, also respectively. Since the parameterizations r and g in the expression of γn1 in eq. (4.10)
play the same role of factors in the square root, the resultant curves parameterized by r and g
overlap.

For the rigorous interpretation of the graphical analysis, the normalized propagation constant is
seen as a complex mapping which transforms the constant parametrizations in the rg-plane depicted
in Fig. 4.2 to curves in the γn1-complex plane. In this sense, γn1 has to be seen as a real bi-variate
complex function:

γn1 : R2+ ∪ (0, 0)→ Dγn1
⊂ C

(r, g) γn1(r, g) = j
√

(1− jr) (1− jg).
(4.14)
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This function is analytic in the rg-plane so it can be locally expanded in Taylor series, whish
justifies the existence of the low-losses approximation, but it is not conformal when seeing it as a
mapping.

Using some properties of mappings: product with complex scalar, shifting, and 2th root; and com-
posing them, it is possible to draw the parameterized curves in the γn1-plane, which is represented
in Fig. 4.6.
The γn1-complex plane gathers all the possible values of the normalized propagation constant in
only one complex plane.

The curves parameterized by losses are in the region (denoted by Dγn1 , which is the range of the
function presented in eq. (5.62)) bounded by the lossless curves r = 0 or g = 0, and the constant
line βn1 = 1. Recall that each curve is double parameterized because the equivalent role of r and
g in the expression of γn1.
It may be seen that the curves adjoin the lossless curve on one side, while they present asymptotic
behavior on the orther side. Moreover, every curve is tangent to the line βn1=1 in one point. The
intersection on the lossless curve, the angle of the asymptote, and the point in which each curve is
tangent can be deduced by geometrical analysis.

Geometrical analysis: The geometrical analysis of the curves depicted in Fig. 4.6 gives an
alternative representation of the equation of γn1 in eq. (4.10), and thus to the original definition
of the propagation constant in eq. (2.68).

The r- and g- parameterized curves follow the same general equation7

|γn1| =
√
|n|√

− cos (2ϕγ − ϕn)

(
|γn1| =

√
|d|√

− cos (2ϕγ − ϕd)

)
, (4.15)

ϕγ ∈
]π

4
+
ϕn
2
,
π

2
+
ϕn
2

] (
ϕγ ∈

]π
4

+
ϕd
2
,
π

2
+
ϕd
2

])
,

which are written in polar form having taken the complex quantity n (d) introduced in eq. 4.5 (eq.
(4.6)) as a parameter.
These curves are of the form of hyperbolas, [Law72], in the γn1-plane.
Each hyperbola may be obtained by the complex scalar transormation from any another one. In
particular, the factor

√
|n|ej

ϕn
2 (

√
|d|ej

ϕd
2 ) multiplies the curve parameterized by r = 0 (g = 0)

resulting in the curve parameterized by n (d). In this way, any linear transformation of the set of
curves parameterized by r (g) may be obtained by transforming only one on them, to then rotating
the one which has been linearly transformed.

It is possible to use the scalar transformation property mentioned above to obtain: (i) the point
in which each curve intersects the lossless limit, denoted by γn1,r−lim (γn1,g−lim). Notice that
the curve parameterized by r = 0 (g = 0) interects in γn1 = 0 + j1 with the other lossless
curve g = 0 (r = 0). This point is the same for each lossy curve after transforming it, so

γn1,r−lim = j
√
n ≡

√
|n|ej(

π
2 +ϕn

2 ) (γn1,g−lim = j
√
d ≡

√
|d|ej(

π
2 +

ϕd
2 )); and (ii) the angle of the

radious which is asymptotic to each parameterized curve, denoted by ϕγ,asymp. Notice that the
curve parameterized by r = 0 (g = 0) presents asymptotic behavior to the bisector of the γn1-plane.
By using the complex transformation above, the angle of each asymptote is ϕγ,asymp = π/4 + ϕn

2
(ϕγ,asymp = π/4 + ϕn

2 ) for each r- (g-) parameterized curce.
In addition, since the general equation of each curves in the γn1-plane is known, it may be differ-
entiated for obtaining the relative minimum in which it is tangent to the line βn1 = 1, denoted by

7An equation in brackets refers to an expression which has the same form as the equation which goes with,
so their parameterizations are interchangeable. This notation is used throughout the Thesis book to address the
equations in which the ”orthogonal” parameterizations play the same role, for example r and g (and thus n and d)
in the normalized propagation constant γn1.
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Fig. 4.7: Example of location of remarkable points of the curve parameterized by r = 1 (g = 1).

γn1,r−tan (γn1,g−tan), which is found at γn1,r−tan = r + j (γn1,d−tan = g + j) (see Appendix 4.C).
A graphical example of the location of these points when r = 1 (g = 1) is depicted in Fig. 4.7.

Physical interpretations: The γn1-plane has clear physical interpretation when examining the
real and imaginary parts of each point there.
The real part in the γn1-plane, αn1, is proportional to the attenuation constant, so proportional to
the way the voltage and current waves attenuate along the direction of propagation. Notice that
since αn1 = α/βsp = αλsp/(2π), the normalized attenuation constant gives an idea of how much
the waves attenuate along in one (lossless) wavelength. The minimum attenuation is produced
when the propagation constant is γn1,r−lim (γn1,g−lim).
The imaginary part in the γn1-plane, βn1, is proportional to the phase constant, so inversely pro-
portional to the phase speed of the voltage and current waves along the direction of propagation.
Notice that since βn1 = β/βsp = ceβ/ω = ce/vp, the normalized phase constant gives an idea of
how is the phase velocity of the wave in comparison with the speed of light in the medium. The
maximun speed is produced when the propagation constant is γn1,r−tan (γn1,g−tan), which is the
only case in which this velocity equals the speed of light.

Fig. 4.8: The lossless and non dispersive cases, and the low-losses and high-losses approximations
located in the γn1-plane.

The curves in the γn1-plane are also ”universal” in the sense that each curve represent multiple
TLs parameterized by r or g. As a consequence, each point in this plane represents those TLs with
different line parameters working at different frequencies which keep r or g fixed.
Some of these points in the γn1-plane are of special interest because they correspond to those
particular cases and the approximation explained in Sect. 2.4 in Chpt. 2: the lossles and non
dispersive case, and the low-losses approximation presented in Table 4.1; and the high-losses ap-
proximation presented in Table 4.2. These cases are graphically located in the γn1-plane in Fig.
4.8.
Notice that the lower limit in the γn1-plane (βn1 = 1) corresponds with the non dispersve case,
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when r = g and γn1,nd = r + j1 ≡ γn1,nd = g + j1, in which the waves present the highest phase
velocity.
The lossless case is a particular case of the non dispersive case when r = g = 0, located at
γn1 = 0 + j1 ≡ γn1,sp.

Fig. 4.9: Graphical example of the error analysis (e) between the low-losses approximation and the
lossy case when r = 5 and g = 1 (which is the same as the case r = 1 and g = 5).

On its behalf, the low-losses approximation can be rigorously explained by means of the graphical
analysis of the lossy case presented in Fig. 4.6. An example of the error analysis regarding the
low-losses approximation when r = 5 and g = 1 (reciprocally the same when r = 1 and g = 5) is
graphically analyzed in Fig. 4.9. Notice that, regarding the low-losses approximation,

αn1,bp =
r + g

2
, (4.16)

so in the example in Fig. 4.9, αn1,bp|r=5,g=1 = 3, an thus γn1,bp|r=5,g=1 = 3 + j1, whereas

γn1|r=5,g=1 = j
√

(1− j5) (1− j1), which explains the error (depicted as e in Fig. 4.9.
From this example it may be generalized that: (i) the attenuation constant regarding the low-
losses approximation is overestimated; and (ii) the phase constant is underestimated, so the phase
velocity is overestimated; except in the non dispersive case, in which γn1,bp|r=g = γn1|r=g ≡ γn1,nd.

Practical uses: The most important practical uses of the analysis of γn1 in terms of losses are
next detached focusing on both its importance in future analysis and the possible applications of
this analysis.

The analysis of γn1 in terms of losses results crucial when analyzing the variation of wave param-
eters along the TL in terms of losses, which is shown as example of use in Chpt. 5.
Moreover, this analysis supports the (more basic) analysis along the TL when the losses of the TL
are fixed, also presented as example of use in Chpt. 5.
In both cases, the role the phase of γn1 –and thus the phase of the denormalized propagation
constant, γ– plays is crucial. This parameter determines every analysis along the TL once the
appropriate normalization of the TL’s length –the eletrical length– is chosen8.

The ”universal” nature of this analysis makes possible to expand any case or approximation. For
this purpose, γn1 is seen as a function of losses (γn1(r, g)) which may act as the kernel of an integral
operator or integral equation. The analysis of γn1 in terms of losses gives the limits in the range
of this function. This function is characterized and ”sketched” by its inverse (γ−1

n1 (r, g)) which is
studied by means of the inverse characterization in Sect. 4.4.2.

8Depending the analysis that is being studied, the normalization of the TL’s lenght will be accordingly chosen.
For example, if the losses and the frequency on the TL are fixed the normalization of the TL’s length is with respect
to the lossy λ, so proportional to the lossy β.
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The use of losses for load matching at any fixed point of the TL can be extended at any point
of the TL taking into account the characterization of the propagation constant in terms of losses
presented in this section.
The graphical chart presented in [VG17-I] is expressly introduced to facilitate the use of losses for
the load matching along the TL.

Variable frequency analysis

The vfa of basic parameters refers to the analysis in terms of frequency for the TLs whose losses
are fixed in certain way. In this sense, this analysis expands the solution from the harmonics in
the frequency domain to the time domain, both presented Sect. 2.3 in Chpt. 2 regarding the LTLT.

Remark 16. When talking about the vfa, it is clearly refering to the expansion of the ω-parameterized
harmonics of any signal/solution in the TL. In particular, the characterization of the TL param-
eters when frequency is variable corresponds to either the spectral analysis of these parameters if
seeing them as operators (some of them are operators, indeed, which relate the voltage and current
waves) or the expansion of voltage or current functions in time domain.
For example, for solving v+(z, t):

v+(z, t) =
1

2
Re

{ˆ
ω

V +(ω)e−γ(ω)zejωtdω

}
, (4.17)

for which, for example, the spectrum V +(ω) is a Dirac delta (δ(ω − ω0)) and the integral has to
be understood in distribution sense, if v+(z, t) represents a sinusoidal signal varying ω0 times per
second.

Thus, the analysis varying the frequency results indispensable for deparameterizing frequency and
giving the solution in [z, t]-coordinates, not limiting the analysis to time harmonic regime.
As a result, this vfa may be seen as the complement of the ffa, in the sense that it can be used
to answer how the basic parameters vary if isolating the variation with frequency, once the losses
are fixed. Moreover, it supports the inverse analysis introduced in Sect. 4.4.2 regarding the basic
parameters, in order to answer which changes on losses produces the same effect of changing the
frequency.
As a consequence of the equivalence between changing losses and varying frequency, the analysis
presented here can be used to explain the particular cases and approximations, but in terms of
frequency. These explanations may be useful, for example, to exaplain asymptotic behaviors of
waves with frequency, leading to introduce the asymptotic techniques, [Mil06].

Parameterizations: In this case, the frequency, ω, determines the analysis of the basic param-
eters. Therefore, the frequency should be parameterized taking into account that (i) the resultant
paremeterization has to be linear function of frequency, and (ii) it is seeking for a combination of
line parameters (which are not frequency dependent) that allows this linear variation of frequency.
If examining the rg-plane in Fig. 4.2, it is noticeable that the modulus in this plane (|τ | =√
r2 + g2) is inverse linear function of frequency, since

|τ | =
√
r2 + g2 =

√(
r′

ω

)2

+

(
g′

ω

)2

=

√
r′2 + g′2

ω
, (4.18)

using the notation (τ) and geometrical interpretation of the rg-plane in the ”space of parameteri-
zations” presented in Appendix 4.A. This suggest 1/|τ | be the parameterization of frequency which
is being sought. As a consequence, the angle in this plane (θc as presented in Appendix 4.A, which
is the angle which forms τ in eac ω-plane, so independent of frequency) is the parameter which
determines the TLs which present the seeked linear variation of the parameterized frequency.
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Fig. 4.10: Parameterizations ωn and c in the rg-plane (≡ R2∪(0, 0)) for the vfa of basic parameters.

Lossy parameterizations
Lossless case ωn →∞ (ωn �)

Non dispersive case c = 1
Low-losses approximation ωn →∞ (ωn �)
High-losses approximation ωn → 0 (ωn �)

Table 4.3: Values of the parameterizations regarding the vfa which define the particular cases:
lossless and non dispersive cases; and the approximations: low-losses and high-losses approximation.

Also notice that 1/|τ | = ω/ρ is represented by the angle ϕτ = tan−1(ω/ρ) in the ”space of param-
eterizations”.
As a result, the parameterizations to be used for the vfa are:ωn ≡

1
|τ | = ω√

r′+g′
= ω√

R
L+G

C

∈ [0,∞[

c ≡ 1
tan(θc)

= r′

g′ = RC
GL ∈ [0,∞[

. (4.19)

The parameter c allows the analysis with frequency, whereas ωn fixes relative frequency scales over
the frequency analysis. The parameters which identify the conductor and dielectric losses in the
vfa are r′ and g′, wich are defined just as they have been used in eq. (4.19).
The parameters c and ωn are called the ”dispersivity constant” and the ”normalized frequency”,
respectively, because their physical interpretation in the analysis. The first one, c, makes reference
to how much dispersive the TL parameterized by c is, in the sense that it presents more or less
variation in the phase constant in the face of changes in frequency. This will be noticeable in the
size of the frequency scales. The second parameter, ωn, is a normalization of frequency in itself. It
is chosen with respect to the parameterizations of the normalized losses r′ and g′ used in eq. (4.19).

For the vfa, the parameterizations of frequency are the set of quarter of circumferences in the
rg-plane, whereas the parameterization of the ”dispersivity” are the radious in this plane.
The rg-plane is in the first quadrant just as for the ffa, but in the case of the vfa it is parameterized
in modulus and phase (both real), as Fig.4.10 shows.
The parameters ωn and c completely define the basic parameters once they are accordingly nor-
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malized.
In addition, the particular cases and the approximations located in the vfa can be mapped using
the dual particularizations of the ffa but expressed in terms of frequency parameterizations, as
shown in Table 4.3.

Characteristic impedance: In this part, the meaning of the characteristic impedance for char-
acterzing both the relation between the amplitudes and the phase difference between the electric
and magnetic fields is analyzed when frequency varies.

Normalization: The normalization of the characteristic impedance is done with respect to the
non dispersive case, which does not depends explicitly on frequency so it is suitable for the purpose
of normalizing:

Z0n2 =
Z0

Z0,nd
=

√
R+jωL
G+jωC√

L
C

=

√
ω − jRL
ω − jGC

=

√
ω − jr′
ω − jg′

∈ DZ0n2 ⊆ C, (4.20)

having used the definition of the lossy parameterizations r′ and g′ which appear in eq. (4.19).
Since Z0,sp ≡ Z0,nd, the expresion of Z0n2 is equivalent as the one in eq. (4.3) used for the ffa, so

Z0n2 ≡ Z0n1, (4.21)

but, in the case of Z0n2, separating the dependence on the frequency from the lossy parameteri-
zations for its analysis. Thus, it is possible to use Z0n1 for both cases9, as it is done in [Gag01].
The direct consequence of this analysis is that DZ0n2

in the vfa takes up the same in region in
the Z0n2-plane as Z0n1 in the ffa. Moreover, not only the angle ϕZ0 is the same as in the ffa, but
also the modulus, which is important when transforming these curves in future analysis (see an
example of these ffa and vfa transformations in Chpt. 5). As a result, those parameterizations
(c, ωn) corresponding with the pair (r, g) in the rg-plane lead to the same point in both Z0n1-plane
and the Z0n2-plane.

Using the parameterizations for the vfa introduced in eq. (4.19), the normalized characteristic
impedance may is rewritten as

Z0n2 =

√√√√√ωn − j r′√
r′2+g′2

ωn − j g′√
r′2+g′2

=

√
ωn − j cos (θc)

ωn − j sin (θc)
, in which (4.22)

ωn ∈ [0,∞[ , and

θc ∈
[
0,
π

2

]
(c = 1/ tan (θc) ∈ [0,∞[).

This expression is useful for separating the parameterizations of the normalized frequency, ωn and
the dispersivity constant, c, paremeterized by the angle θc.

9The notation Z0n2 is expressly used to distinguish the normalized characteristic impedance in the vfa from the
normalized characteristic impedance regarding the ffa, in contrast to use the same notation for both cases, just as
it is done in [Gag01].
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Fig. 4.11: Graphical analysis of the curves parameterized by frequency in the Z0n2-plane.

Graphical analysis: For the simple understanding of the graphical analysis, the representation
is done by keeping fixed the parameter c when varying ωn in its whole range, to draw the curves
which represent Z0n2 in the whole frequency range. Reciprocally, the normalized frequency, ωn,
is kept fixed while varying c to see how any frequency which is of interest or bandwidth (repre-
senting a scale) change with the losses parameterized by c. These analysis leads to the c- and
ωn-parameterized curves, respectively.

This analysis is rigorously carried out by considering Z0n2 as complex function of two real variables
ωn and c,

Z0n2 : R2+ ∪ (0, 0)→ DZ0n2
⊂ C

(ωn, c) Z0n2(ωn, c) =

√
ωn − j cos

(
tan−1 (c)

)
ωn − j sin

(
tan−1 (c)

) .
(4.23)

The same properties of the function defined for the ffa are for this definition in the vfa, because it
only changes the parametrizations but not the definition in itself.
In this case, the function is seen as a (non conformal) mapping of the curves parameterized by ωn
and c from the rg-plane to the Z0n2-complex plane. Using some properties of mappings: product
by complex scalar, shifting, inversion, and 2th root; [BC90], and composing them, it is possible to
draw the ωn- and c-parameterized curves in the Z0n1-plane represented in Fig. 4.11.

As it has been mentioned, the region in which Z0n1 varies is the same as in the ffa, but in this
case the boundary curves are parameterized by c = 0 and c�, and the real axis of the Z0n2-plane,
which is parameterized by ωn = 0 except to the point Z0n1 = 1 + j0 which is parameterized by
ω � (equivalently, c = 1).
The curves labeled by c < 1 have Z ′′0n1 > 0, whereas the curves with c < 0 have Z ′′0n1 < 0. These
c-curves rise in ωn = 0 and death in ωn �.
The curves labeled by ωn go from c = 0 to c�.
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Geometrical analysis: By geometrical analysis, it is possible to obtain the general expressions
of the characteristic impedance for the vfa.

The curves parameterized by c follow the general equation:(
Z ′20n2 + Z ′′20n2

)2
= (c+ 1)

(
Z ′20n2 − Z ′′20n2

)
− c, with (4.24){

Z ′0n2 ≥ 0, Z ′′0n2 ≥ 0, if c ≤ 1

Z ′0n2 ≥ 0, Z ′′0n2 ≤ 0, if c > 1
. (4.25)

These curves are Cassini ovals, [Law72], parameterized by c. The general equation of them has
been obtained in eq. (4.D.29) in Appendix 4.D, as well as its polar form

|Z0n1| =



√√√√√(c+ 1

2

)cos (2ϕZ0
) +

√(
c− 1

c+ 1

)2

− sin2 (2ϕZ0
)


if ϕZ0 >

1

2
sin−1

(
|c− 1|
c+ 1

)
√√√√√(c+ 1

2

)cos (2ϕZ0)−

√(
c− 1

c+ 1

)2

− sin2 (2ϕZ0)


if ϕZ0 <

1

2
sin−1

(
|c− 1|
c+ 1

)
for which (4.26)

ϕZ0
∈
[
0,
π

4

[
in eq. (4.D.30) in Appendix 4.D. This polar expression it is useful for parameterizing the modulus
and phase of this equations and transforming them to other planes.
Notice that, if c = 0 the curve degenerates to that in eq. (4.8) in the ffa parameterized r = 0, that
is the upper curve limit in the Z0n1-plane (which coincides with the upper limit in the Z0n2-plane).
In this case, the ovals are not complex scalar transformation between themselves. Nevertheless,
some interesting points may be obtained by using the general equation of ovals. As an example,
the point in which the c-curves intersect the real axis (Z ′′0n1 = 0) is located at Z ′0n2 =

√
c.

On its behalf, a closed general equation of the curves parameterized by ωn can not be obtained.

Physical interpretations: Recall the physical interpretation of the modulus and phase of Z0n2

in determining the relation between the amplitudes and the phase difference between the electric
and magnetic fields, respectively. In this case, these properties are characterized in both the whole
frequency band and at one particular (relative) frequency.

The c-parameterized curves describe how the characteristic impedance of a TL whose lossy param-
eters are related by c varies when changing the frequency. Moreover, the parameter c determines if
the characteristic impedance is either inductive (Z ′′0n2 > 0) if c < 1, capacitive (Z ′′0n2 > 0) if c > 1,
or pure resistive (Z ′′0n2 = 0) if c = 1.
The ωn-parameterized curves fix relative frequency scales or bandwidths over the c-curves. This
means that, once Z0n2 ≡ Z0n1 is located in the plane by using the ffa (the frequency is given), the
ωn curves determine the multiples/submultiples of the original frequency. Alternatively, the ωn
parameterization gives the values of the characteristic impedance for a fixed frequency when losses
vary but the same attenuation regarding the non dispersive case10.
As a result, these parameterizations play a role in the vfa very similar to r- and g-curves in the

10Remember: αnd ∝ r′ = g′; so ωn,nd ≡ ω/r′. If ωn,nd is constant and also ω is, then αnd is constant.
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ffa, although their physical meaning is not as straighforward as the lossy parameterizations are.
In this sense, c has to be interpreted as a ”degree of dispersivity”. This is deduced from how the
length of the curve gaps, that are fixed by the interection between each c-curve and the ωn curves,
vary as long as c differs from unity. In the extreme case, c = 1, the characteristic impedance does
not vary with frequency, so the corresponding TL is non disperive.

Fig. 4.12: Location of the lossless and non dispersive cases, and the low-losses and high-losses
approximation in the Z0n2-plane sung the parameterizations of the vfa.

Using the graphical analysis in Fig. 4.11 and the particular cases defined in Table 4.3 it is possible
to locate those ones in the Z0n2-plane. In Fig. 4.12, the Z0n2-plane in which the particular cases
and approximations are detached is depicted. Notice that the characteristic impedance in the non
disperive case is asymptotically the same when frequency increases. In fact, this non dispersive
characteristic, which is the same as the lossless one does not depend on frequency, contrary to the
rest of cases.

Practical uses: This analysis is equivalent to the lossy characterization of the characteristic
impedance but in terms of frequency parameterizations. Thus, the same practical uses may be
brought to this analysis, which adquires special importance when analyzing circuits in a freqency
band.

The phase of the characteristic impedance also changes with frequency. Thus, the wave parameters
at any point of the TL analyzed in Sect. 4.3.2 in terms of the this angle also change with frequency.
In addition, the wave parameters at the load are analyzed in terms of frequency in Chpt. 5 as
example of use of this analysis.

This ”universal” analysis in terms of frequency results crucial for transforming the wave solutions
from the frequency domain to the time domain. In this sense, the function Z0n2(ωn, c) has been
defined from the parameterizations in the rg-plane to the Z0n2-plane, and it can be used as kernel
of an integral operator or integral equation that expands Z0n2 in a bandwidth, that is, describing
the TL by means of Z0n2 in time domain.

This analysis may be also useul for matching TLs with frequency, or for seeing how the matching
at a point it the TL varies in some specific frequency bands.

Propagation constant: The analysis of the propagation constant in terms of frequency param-
eterizations is carried out in this part with the objective of characterizing how both the attenuation
of individual waves and their phase speed behave when changing the frequency.



4.3. DIRECT CHARACTERIZATION OF THE CTLT (CTLT-V1.0A) 117

This frequency analysis also gives an idea of how the dispersivity affects waves in the bandwidth
of operation.

Normalization: When looking for a parameter that serves to normalize the propagation con-
stant for the vfa, it is required for this parameter (i) to simplify the original expression of γ in
eq. (2.68) to one which is able to be written in terms of the frequency parameterizations ωn and
c, besies that (ii) it does not depend on frequency. The only parameter which does not depend
explicitly on frequency11 and it is a particular existing solution (in the sense of real solution) of
the equivalent Helmholtz equation is the attenuation constant in the non dispersive case, αnd used
in eq. (2.109)12. As a consequence, the normalized propagation constant is:

γn2 =
γ

αnd
=

√
(R+ jωL) (G+ jωC)

Rnd

√
Cnd
Lnd

=

√
(R+ jωL) (G+ jωC)

Gnd

√
Lnd
Cnd

=

= j

√
(ω − jr′) (ω − jg′)

r′nd
= j

√
(ω − jr′) (ω − jg′)

g′nd
∈ Dγn2

⊂ C,

(4.27)

in which the subindex ”nd” in the line parameters and lossy paramterizations has been used to
make explicit the difference between the parameters in the non dispersve case and those relative
to the lossy case. In this case, the region of the compelx plane in which γn2 expands, Dγn2

, has to
be determined by later graphical and geometrical analysis.

Using the frequency parameterizations introduced in eq. (4.19), and taking into account that the
non dispersive case is with θc = π/4 (c=1)13, the expression in eq. (4.27) may be rewritten as

γn2 = αn2 + jβn2 = j
√

2
√

(ωn − j sin (θc)) (ωn − j cos (θc)), in which (4.28)

ωn ∈ [0,∞[ , and θc ∈
[
0, π2

]
.

Just as for the characteristic impedance in this vfa, this latter expression is useful for separating
the parameterizations ωn and c (this latter coming from θc).

Graphical analysis: Thanks to the expression of γn2, it is possible to separate the dependence
of ωn and c by parameterizing one of them while varying the other one. This form of proceeding
lets drawing the ωn- and c-parameterized curves in the γn2, as it is usual for graphical bi-variate
analysis.

In order to be rigorous with the graphical analysis, the function γn2 of real positive variables ωn
and c is defined as:

γn2 : R2+ ∪ (0, 0)→ DZγn2
⊂ C

(ωn, c) γn2(ωn, c) = j
√

2
√(

ωn − j cos
(
tan−1 (c)

)) (
ωn − j sin

(
tan−1 (c)

))
.

(4.29)

The function above may be seen as a mapping from the ωn- and c-curves in the rg-plane and the
γn2-complex plane. Since the curves in the rg-plane in Fig. 4.10 are orthogonal parameterizations,

11Since the line parameters neither depend on frequency in the case studied, referring the ”explicit non dependence
on frequency” is equivalently to talk about the non dependece on frequency at all.

12In [Gag01], the parameter which normalizes the analysis propagation contant for the vfa is αbp. However, just
as it has been defined this parameter in eq. (2.118), it parameterizes a non existing solution, just an approximation,
unless this low-losses approximation is siuch that it coincides with the non-dispersive case. Only in this case,
αbp ≡ αnd the approximation is a real solution, and so it is valid for the normalization.

13This identity can be find thanks to the non dispersive case is a particular case (not a limit) in the parame-
terizaations posed in the rg-plane. Otherwise (if for example taking the low losses approximation), it can not be
addressed rigorously from the definition of the parameterizations in the rg-plane.
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Fig. 4.13: Graphical analysis of the curves parameterizing the vfa in the γn2-plane.

it is possible to transform them independently. For this purpose, some well-known properties of
mappings: complex scalar transformations, shifting, product and square root; are used for obtaing
the resultant curves in the γn2-plane.

In Fig. 4.13 the graphical analysis of γn2 in its complex plane is represented parameterizing the
curves for the vfa.
The curves are in the region delimited by the curves c = 0 (c�) 14 on one hand, and c = 1 on the
other hand.
Notice that the parameterizations c and 1/c lead to draw curves which overlap, due to the sym-
metric definition of the mapping in eq. (4.29).
In addition, the curves present asymptotic behavior to the line γn2 = 1 as ωn � (and this when
ω →∞). On the contrary, each c-curve starts in the line βn2 = 0 with different αn2 when ωn = 0
(and thus when ω = 0), being αn2 always lower than the attenuation when c = 1.

Geometrical analysis: The general equations of the curves in the γn2 for the vfa are here ob-
tained.

The c-curves follow the general equation:(
α2
n2 + β2

n2

)2
=

= 4
α2
n2β

2
n2

(cos(ϕc)+sin(ϕc))
2

[
1 +

α2
n2β

2
n2

(cos(ϕc)+sin(ϕc))
2

]
+ 4 cos2 (ϕc) sin2 (ϕc), in which

(4.30)

ϕc = tan−1
(

1
c

)
.

This equation has been obtained in eq. (4.D.31) in Appendix 4.D. It describes a set of (unknown,
in the sense that they are not classified) quartic curves in the γn2-plane, for which only specific

14The same notation with brackets is used here when the parameterizations regarding γn2 are equivalent and so
the curves overlap.
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values of c correspond to classified curves. For example, when c = 0 (c�), the resultant curve limit
is the so called Bullet nose, [Law72]; or when c = 1, the curve is the constant line parameterized
by αn2 = 1.
The equation before lets to solve the intersection of the c-curves with the real axis, that is the
value of αn2 when ω = 0, denoted by αn2,min =

√
2 cos (ϕc) sin (ϕc).

The ωn curves follow the general equation:

α2
n2 − β2

n2 =
1

ω2
n

(
α2
n2β

2
n2

)
− 2ω2

n − 1, (4.31)

which has been obtained in eq. (4.D.32) in Appendix 4.D. This equation describes a set of quartic
curves (also unkwnown) in the γn2-plane.
This lets to obtain obtain the intersections with any c-curve. For example, the curve parameter-
ized by c = 1 (αn2 = 1) is intersected in the minimum of βn2, denoted by βn2,min =

√
2ωn, so

proportional to ωn.

Physical interpretations: Both the graphical analysis and the subsequent geometrical charac-
terization concerning the study of the propagation constant in terms of frequency parameters leave
some interesting and applicable physical interpretations.

The normalization γn2 for the ffa has to be understood relative to the non dispersive attenuation
constant:

On one hand, the normalized attenuation constant, αn2, is the dimensionless quotient between
the attenuation of lossy TLs and the associated non dispesive case (the cases that equalizes the
lossy parameterizations). Also notice that the non dispersive case coincides with the low-losses
approximation when this latter is an existing (real) solution in the equivalent TL. Thus, αn2 is a
particular solution of the low-losses approximation (αn3 = α/αbp, used in [Gag01].
If looking at the graphical analysis in Fig. 4.13, it is noticeable that the attenuation constant for
each curve parametrized by c is αn2 ≥ αn2,min and αn2 < 1, achieved when ω = 0 and ω �,
respectively. This means that the attenuation constant is smaller than the one regarding the non
dispersive case, and also the low-losses approximation, ωn �. In fact, this latter case corresponds
to the asymptotic behavior of the propagation constant for each c-curve.
In addition, the non dispersive case corresponding to c = 1 is the only curve which presents regular
ωn-frequency scales, just as its denomination suggests.

On the other hand, the normalized propagation constant, βn2, has to be understood as a relative
ratio with respect to the ratio (angle) of the non dispersive case:

βn2 =
β

αn2
=

β

α2

βnd
βnd

=
β

βnd

βnd
αnd

=
β

βnd
tan (ϕγnd) . (4.32)

This parameter measures the difference of the phase constant between the non dispersive case and
the lossy case.
Also notice that when ωn �, βn2 → ∞, which suggests that the dipersivity increases wtith fre-
quency.



120 CHAPTER 4. THE COMPLEX TRANSMISSION LINE THEORY

Fig. 4.14: Location of particular cases and approximation regarding the vfa of the propagation
constant in its normalized complex plane.

The points corresponding to the particular cases and approximations are detached in Fig. 4.14.
Notice that βn2 → 0 when ωn → 0 (ω → 0), which corresponds with the high-losses cases. This
behavior does not mean that the waves are nor propagative, but the attenuation per wavelength
is much more greater than the distance the wave moves. In fact, only in DC regime (ωn ≡ ω = 0)
the waves do not propagate, independently of losses are.
The low-losses approximation (ωn �) only coincides with the non dispersive case when c = 1 in
the limit.

Practical uses: The usefulness of this analysis is on describing how the physical properties of
the individual waves vary with frequency.
Conversely, this analysis may be useful for determining the characteristics of the wave in a specific
bandwidth.

In addition, this analysis is useful for analyzing the behavior of wave parameters along the TL in
terms of frequency, which supposes, in turn, the complete characterization of lossy TLs for design-
ing circuits using both frequency and length as variables.
For this purpose, notice that the angle of the propagation constant may be directly measured from
the γn2-plane, which is the variable to be used to characterize the wave paramters along the TL,
as it is used in one of the examples presented in Chpt. 5.

In addition, notice that, when expanding any voltage or current wave solution in frequency to
obtain the wave in time domain, for example by means of eq. (4.17), the analysis of γn2 in the vfa
governs the integral equation. For example,

v+(z, t) =
1

2
Re

{ˆ
ω

V +(ω)e−γ(ω)zejωtdω

}
≡

≡1

2
Re

{ˆ ∞
ωn=0

V +(ωn)e−γn2(ωn;c)(αndz)ejωt(dωn/
(√

r2 + g′2
)}

,

(4.33)

in which r′ and g′ are fixed, so also both αnd and c are, and c parameterizes the propagation
normalizes constant γn2.
This example shows the capabilities of the present analysis to analyze, for example, different cir-
cuits in a frequency band. This useulness is detached among the Applications.

4.3.2 Direct characterization of wave parameters

The direct characterization of wave parameters refers to the analysis in the frequency domain pa-
rameterizing them at any point of the TL.
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The wave parameters have been introduced in Sect. 2.3 in Chpt. 2 to define the relations of the
total voltage and current waves which propagate in the equivalent TL. In particular, the lossy case
in which the line parameters do not depend on frequency is presented on this version of the CTLT
(CTLT-v1.0), which corresponds to the particular analysis introduced in Sect. 2.4 in Chpt. 2.
In particular, the analysis to be presented here will be focused on describing the wave parameters
when specific conditions on thenselves and the basic parameters are parameterized. Essentialy,
the direct characterization regarding each wave parameter supposes analyzing it parameterizing
another, besides a parameterization regarding the basic parameters.

Remark 17. The direct characterization of wave parameters lies in double parameterized analysis:
one parameterization is ”exterior” and real, based on the basic parameters; and the other one is an
”inner” parameterization and complex (which is, in practise, bi-real), based on the wave parameters.

Physically, this parameterized analysis is equivalent to fix, on one hand, the BCs at any point of
the and, on the other hand, the losses and frequency of the TL to characterize the wave parameters.

The direct characterization of wave parameters supposes a considerable increase on the complexity
of the analysis. Firstly because the number of parameterizations increases: here not only the losses
of the TL are parameterized by also the BCs are taken into account; but also because the number
of the parameters to be studied is consequently greater.
This means that, if the analysis are required to be basic transformations15, some degree os precis-
sion in the analyis is assumed to be missed, which supposes reducing the complexity but increasing
the difficulty in the understanding the of both their analytical and physical interpretation.

Remark 18. When increasing the number of parameters involved for a specific analysis, its direct
interpretations are hidden. Namely, the physical interpretarions of the analysis in question are not
as obvious as in the analysis that parameterizes the physical parameters directly.
This is inevitable in the analysis of wave parameters: if both the parameterizations of losses and
the BCs are addressed at the same time, then the parameterizations used in the analysis do not deal
specifically with them. As a result, the analysis become a priori ”more analytical than physical”.

It is a priori remarkable the usefulness of the analysis to be presented in this section in both design-
ing and understanding circuits based on TLs. The graphical analysis have led to useful graphical
tools, as for example the Generalized Smith Chart (GSC) presented in [GDG06], among others
explained in [Gag01].

This analysis of wave parameters is especially helpful when analyzing TLs in which the losses and
frequency are fixed, for example if the wave parameters are required to be described along the TL.
This analysis along the TL is presented as example of use of the direct characterization of wave
parameters in Ex. 01 in Sect. 5.2 in Chpt. 5. Nevertheless, this latter analysis gives a partial
view of the total wave solutions since both the losses and the frequency are fixed to the TL under
study. Its generalization (and thus, because of the reason remarked above, the analysis would miss
the physical interpretation of the study in terms of either losses/frequency or the TL’s length)
presented in Ex. 03 in Sect. 5.4 in Chpt. 5 completes this intended analysis.

Keeping the purposes of the direct charactrization of wave parameters in mind, the analysis is
presented following the steps concerning the CTLT: the normalizations are obtained from the
original expressions of the wave parameters when taking into account the fixed parameterizations
regarding the basic and wave parameters to be used (the sheme in Fig. 4.1 lets to see which
parameterzations concern this analysis); the parameterized graphical analysis of the involved nor-
malized basic parameters. As mentioned above, the greater complexity of this analysis supposes
increasing both the number of parameterizations and the parameters to take into account. Then
the number of mappings between complex planes becomes greater; the geometrical analysis of the

15Remember that basic transformations are those involving two planes, in order to see them as mappings.
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resultant curves; the physical interpretations of the analysis; and the possible practical uses of them.

Recall that the graphical analysis are thoroughly described in the CTLA Handook, [Gag01]. Thus,
only an example of graphical analysis is here presented. Nevertheless, this example serves to ref-
erence the use of parameterizations and normalizations, as well as obtaining the possible physical
interpretations regarding both the graphical and geometrical analysis. Moreover, the practical uses
of this analysis are detached at the end of the section, especially its use for analyzing some of the
examples presented in Chpt. 5.
In any case, a very similar analysis concerning the inverse characterization of basic parameters is
presented in detail in Sect. 4.4.2, which serves to see how the graphical analysis in this section
should be completed (just as it is done in [Gag01]).

Parameterizations: Recalling the original expressions of the wave parameters regarding the
lossy case presented in 2.4.1 in Chpt. 2: the reflection coefficient; the wave impedance, and the
wave admittance, defined either from the generator in eqs. (2.80), (2.78), and (2.78), respectively,
or from the load the load in eqs. (2.87), (2.85), and (2.85), also respectively (both definitions follow
the same form if considering any point of the TL); which are expressed as transformations between
themselves if the characteristic impedance, Z0, is parameterized.
The following normalizations are defined:

Z0n =
Z0

|Z0|
= eϕZ0 ≡ c0 + js0, in which (4.34)

c0 = cos (ϕZ0
) , and s0 = sin (ϕZ0

) ,

Zn0 =
Z

|Z0|
= Z ′n0 + jZ ′′n0 = |Zn0|ejϕZ , (4.35)

and Z generically describes the wave impedance at any point of the TL, that is either Z(z) or
Z(l). Notice the notation difference in eqs. 4.34 and 4.35, which is explained in Appendix 4.E
(also outlined at the beginning of the Thesis book).
Moreover, to be coherent with the definitions of the rest of wave parameters: Y and ρ; their
normalizations are:

Yn0 = Y |Z0| = Y ′n0 + jY ′′n0 = |Yn0|ejϕY , (4.36)

ρn0 ≡ ρ, (4.37)

respectively.

Remark 19. Since in the analysis of the wave parameters the parameterized BCs are parameter-
izations of the wave parameters in themselves, each normalization to be described is exactly the
same as the parameterization used for describing the rest of wave parameters. As a consequence,
once the normalization is chosen, it forzes the normalization for the rest of wave parameters.

Some properties concerning these normalizations have to be detached: (i) the normalized reflection
coefficient follows the same expression as the original one, ρ. This fact reveals the ”universal” na-
ture of the reflection coefficient, which goes beyond the normalization. This, in turn, supposes that
ρ is the parameter which describes future analysis which combine this direct characterization with
the inverse characterization introduced in Sect. 4.4.2; (ii) since the modulus of the characteristic
impedance, |Z0|, depends on losses and frequency (see the analysis in the section before), their
respective explicit parameterizations are missed in this analsysis. As a result, only the angle of the
characteristic impedance, which explicitly appears in eq. (4.34), inherits the dependence on losses;
and (iii) since the normalizations are done with respect to |Z0|, the angles of wave parameters are
the same as their denormalized versions. This fact is also useful when combining characterizations,
and thus for using these characterizations with practical-design purposes.
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Notice that the normalized wave parameters are complex. If any of these normalizations have to
act as parameterizations, either both the real and imaginary parts, or both the modulus and phase
are required to be parameterized for the complete parameterization of the analysis. Thus, it is
about parameterizing the a priori complex parameterizations by splitting the real and imginary
parts, or the modulus and phase.
Nevertheless, there is a way to relate the bi-real parameterizations in only one complex parameter-
ization: an specific (physical) analysis. For example, the analyis along the TL, which is developed
in Ex. 03 in Sect. 5.4 in Chpt. 5, relates the modulus and phase of the complex parameterizations
of the reflection coefficient, leading to one (complex) parameterization.

Remark 20. The nature of the parameterizations of wave parameters is complex. In order to ad-
dress them, they are separated by its real and imaginary parts, or modulus and phase. Nevertheless,
each specific analysis in the TL, for example the analysis of wave parameters along the TL, leads
to assemble them in only one (complex) parameterization. Thus, it is the physical interpretation of
the problem under study which provides sense to the complex parameterizations at the same time
that it reduces the number of parameterizations.

Normalizations: The normalizations regarding the wave parameters are directly defined by
taking into account the definition of the parameterizations, because they may be seen as transfor-
mations between themselves, apart from the parameterization of losses included in the angle of the
characteristic impedance, ϕZ0

. As a result, the analysis are addressed from the parameterizations
in the complex plane of each normallized wave parameter, [Gag01].Thus:

(i) From the parameterizations of the normalized wave impedance, Zn0 in eq. (4.35), the nor-
malized wave parameters to be analyzed are the normalized wave admittance,

Yn0 =
1

Zn0
, (4.38)

and the (normalized) reflection coefficient,

ρ =
Zn0 − Z0n

Zn0 + Z0n
=
Zn0 − ejϕZ0

Zn0 + ejϕZ0
, (4.39)

as defined in (4.36) and eq. (4.37), respectively.

(ii) From the parameterizations of the normalized wave admittance, Yn0 in eq. (4.36), the nor-
malized wave parameters to be analyzed are the normalized wave impedance,

Zn0 =
1

Yn0
, (4.40)

and the (normalized) reflection coefficient,

ρ =
1− Yn0Z0n

1 + Yn0Z0n
=

1− Yn0e
jϕZ0

1 + Yn0e
jϕZ0

, (4.41)

as defined in (4.35) and eq. (4.37), respectively.

(iii) From the parameterizations of the (normalized) reflection coefficient, ρ in eq. (4.37), the
normalized wave parameters to be analyzed are the normalized wave impedance,

Zn0 = Z0n
1 + ρ

1− ρ
= ejϕZ0

1 + ρ

1− ρ
, (4.42)

and the normalized wave admittance,

Yn0 =
1

Z0n

1− ρ
1 + ρ

= e−jϕZ0
1− ρ
1 + ρ

, (4.43)

as defined in (4.35) and eq. (4.36), respectively.

These definitions directly define complex mappings, which may be graphically and geometrically
analyzed.
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Fig. 4.15: Scheme of transformations between the normalized wave parameters regarding the direct
characterization of the CTLT. The continuous arrows indicates the transformations between the
normalized wave parameters (complex parameterized), whereas the dashed arrows indicate the
extra ”partial” (in the sense that it has no direct physical meaning) parameterization ϕZ0

, inherited
from the basic parameter analysis.

Graphical analysis: Eqs. (4.40)-(4.43) define the complex transformations between the nor-
malized wave parameters including the extra parameterization of the phase of the characteristic
impedance, ϕZ0 (see the scheme in Fig. 4.15). These transformations may be seen as complex
mappings or complex variable functions fitting the generic form

T : Dwp ⊂ C→ DWp ⊂ C
wp  T (wp) = Wp

. (4.44)

The function TϕZ0
(◦) designates any of the transformations in eqs. (4.40)-(4.43), while wp des-

ignates the normalized wave parameter which is parameterized, and Wp is the parameter to be
characterized by the transformation TϕZ0

(◦). The transformation TϕZ0
are denoted as the charac-

terized parameter.

Example 4.3.1. The transformation from the Zn0-plane to the ρ-plane is given by the expression
in eq. (4.42). In this case, the generic notation in eq. (4.45) reduces to:

ρϕZ0
: DZn0 ⊂ C→ Dρ ⊂ C

Zn0  ρ (Zn0]) = ρ
. (4.45)

Notice that every mapping defined as in the example before is (extra) parameterized by the phase
of the characteristic impedance, so TϕZ0

(◦) describes a set of complex functions16.

For depicting the transformations defined in eq. (4.45), two different useful types of parameteriza-
tions in the domain of the transformation are defined: the paramaterized real-imaginary parts (a-b),
and the modulus-phase parameterizations (m-p)17; are employed to define the complex parame-
terization. These parameterizations really helps drawing the curves in the complex plane of the
parameter under study, especially the modulus-phase parameterizations, because the importance of
angles in complex transformations, which go beyond the normalizations considered for the analysis.

16Here TϕZ0
(◦) is considered a set of complex functions of complex variable –parameterized by ϕZ0

– because
these functions operates with complex values at any fixed point of the TL. However, if the wave parameters are
written as functions of a physical parameter, for example functions of the coordinate describing the TLs length, the
set TϕZ0

[◦] referes to complex operators –parameterized by ϕZ0
. Notice the slight difference in the notation in this

latter case using square brackets.
17The hypenation (”-”) is again used in the notation here to indicate the bi-real parameterizations which go

together to define a complex parameterization.
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Fig. 4.16: Complex transformations from the Zn0-plane parameterizing (a) its real-imaginary parts,
and (b) its modulus-phase, to the ρ-plane, when ϕZ0

= 25◦.

Example 4.3.1 (cont.). The real-imaginay parameterized parts in the Zn0-plane are denoted by{
Z ′n0 = a

Z ′′n0 = b
,

whereas the modulus-phase parameterized parts in the Zn0-plane are denoted by{
|Zn0| = m

ϕZn0
≡ ϕZ = p

,

to be transformed to the ρ-plane.

Notice that each part of the parameterizations may be studied independently to be geometrically
characterized as a curve in the range of the parameter under study.
Moreover, for being the transformations completely characterized, it is required to specify the
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domains of each parameter. Since the parameters are mutually connected (see Fig. 4.15) the defi-
nition of the domain of one of them directly defines the range of the transformation, which is, in
turn, the domain of the inverse transformation. Taking this fact into account, the first definition
is in the domain of Zn0, whose real part is Z ′n0 ≥ 0 (as it is depicted in Fig. 4.16). Thus, the
domain in the Yn0- and ρ-planes is bounded by the transformation of the curve Z ′n0 = a = 0 into
these planes.

By using properties of complex transformations: complex scalar products, shiftings, and quotients;
point by point, it is possible to draw the resultant curves.
In Fig. 4.16, an example of graphical analysis of the transformation introduced in Example 4.3.1
when ϕZ0 = 25◦ is represented (in which some remarkable points and particular cases are located
to be then analyzed). Specifically, the ρ-plane represented in Fig. 4.16 is the GSC, [GDG06],
particularized to ϕZ0

= 25◦. This example of graphical analysis may be found (completed) in
[VG16-I], and a complete graphical analysis of all the possible transformations in eqs. (4.40)-(4.43)
is documented in [Gag01]. These graphical analysis are similar to those relative to the inverse
characterization of basic parameters, presented in Sect. 4.4.2 in detail.

The graphical analysis helps the geometrical characterization of the curves of the transformation
in the task of solving some specific values of the parameter under study and, conversely, which
parameterizations lead to those interesting values.

Geometrical analysis: The complex transformations in eqs. (4.40)-(4.43) are geometrically
characterized in order to: (i) facilitate their representation; (ii) find alternative expressions to the
complex functions, which lead to locate some remarkable points or interesting particular cases in
the involved complex planes; and (iii) obtain physical interpretations and practical uses of this
analysis, some of them ”hidden” in the underlying original equations or complex transformations.

Let’s analyze the ”conformability” (that is the properties of a map to be conformal, [BC90]) of the
transformations from each parameterized plane, separately. For this purpose, it is firstly required
to analyze the regions in which each plane is defined:
Because of its physical meaning, the Zn0-plane includes those Zn0 ∈ C̄\Z ′n0 ≥ 018. From this
definition and taking into account the transformation of the parameterizations from the Zn0-plane
to the Yn0-plane in eq. (4.40), the Yn0-plane takes up the same complex region. On its behalf, the
ρ-plane is bounded by the transformation of the limits in the Zn0-plane by using the expression in
eq. (4.42). As it may be seen in the Fig. 4.16, this region is within the circumference which passes
through ρ = 1 + j0 and ρ = −1 + j0.
Now, it may be said that:

(i) From the parameterizations in the Zn0-plane, the transformation to the Yn0-plane in eq.
(4.40) is conformal in the Zn0-plane except for Zn0 =∞ (because 1/0 exists in the Yn0-plane
but the derivarive of the transformation is null in Zn0 = ∞, which is a critical point); and
the transformation to the ρ-plane in eq. (4.42) is also conformal in the Zn0-plane except for
Zn0 = ∞ (because the denominator of the transformation can not be null in the domain of
Zn0, but the derivarive is null in Zn0 =∞).

(ii) Similarly, from the parameterizations in the Yn0-plane, the transformations in eqs. (4.38)
and (4.43) to the Zn0- and the ρ-planes , respectively, are also conformal except for Yn0 =∞.

(iii) From the parameterizations in the ρ-plane, the transformations in eqs. (4.39) and (4.3.2) are
conformal in this plane.

18C̄ denotes the extended complex plane: C̄ ≡ C ∪∞, [BC90]
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From this analysis, it may be concluded that the transformations in eqs. (4.40)-(4.43) are, in
practice, conformal, because the measure of the angles can not be done at infinity.
In fact, these transformations are of the type of Möbius transformations, [Apo90], which map lines
and circumferences into circumferences. These circumferences are completely dermined by geomet-
rically locating their center and radious.

Example 4.3.1 (cont.). The transformations from the real (a)-imaginary(b) parameterized parts
in the Zn0-plane to the ρ-plane are described by the expressions, [Gag01]:

(
ρ′ − a

a+c0

)2

+
(
ρ′′ + s0

a+c0

)2

=
(

1
a+c0

)2(
ρ′ − b

b+s0

)2

+
(
ρ′′ − c0

b+s0

)2

=
(

1
b+s0

)2 .

These are the equations of circumferences with centers in ρa = c′a+ jc′′a = a/(a+ c0)− js0/(a+ c0)
and ρb = c′b + jc′′b = b/(b + s0) + jc0/(b + s0), respectively, and radious ra = 1/(a + c0) and
rb = 1/|b+ s0|, also respectively.
The expression of these curves can be condensed using the following notation

(c′, c′′) : r,

so the circunferneces in the ρ-plane obtained from the transformations of the real-imaginary parts
in the Zn0-plane are condensely denoted as:

(
a

a+c0
,− s0

a+c0

)
: 1
a+c0(

b
b+s0

, c0
b+s0

)
: 1
|b+s0|

.

The transformations from the modulus (m)-phase(p) parameterizations in the Zn0-plane to the
ρ-plane are condensely described by, [Gag01]:

(
m2+1
m2−1 , 0

)
: 2m
|m2−1|(

0,− 1

tan(p−ϕZ0)

)
: 1

|sin(p−ϕZ0)|
.

The continuation of Example 4.3.1 above shows the simplicity of the resultant curves. The math-
ematical analyis id shown in [Gag01], together with the geometrical characterization of the rest of
possible transformations. A similar analysis to that one followed in [Gag01] is developed in the
inverse characterization of basic parameters, presented in Sect. 4.4.2.

Both the graphical and geometrical analysis let to: (i) find some remarkable points as the ones
detached in Fig. 4.16 labeled with A-D, and O. The location on these points only depends on
the parameterization of the angle ϕZ0

. For example, the point A is in the intersection between
the curves parameterized by Z ′n0 = a = 1 and Z ′′n0 = b = 0, or equivalentely, |Zn0| = m = 1 and
ϕZ = p = 0. Taking for example the parameterizations m-p, the curve parameterized by m = 1
is the imaginary axis in the ρ-plane, while the p-curve is there represented by the circumference
parameterized by (0, c0/s0) : 1/|s0|, which is centered in the same axis. Thus, A is 1/|s0| separated
from the center of this circunference, on the imaginary axis, so ρA = 0 + j(c0 − 1)/s0; and (ii)
characterize some regions or domains regarding the involved complex plane. For example, as said
before, the domain of ρ is bounded by the transformation of the imaginary axis from the Zn0-plane
(or the Yn0-plane, because there the imaginary axis is mapped in the same region –although it is
reversed), so the curve characterized by ϕZ = 90◦. As a result, the boundary curve which limits
the domain of the ρ-plane follow the form (0,−s0/c0) : 1/c0 ≡ (0,− tan (ϕZ0)) : 1/ cos (ϕZ0).
The complete analysis of the location of the remarkable points for each transformation and complex
plane is detailed in [Gag01].
In particular, notice that the ρ-plane supposes a contraction with respect to the Zn0- or Yn0-planes,
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and for this reason a useful graphical tool, or GSC. Notice that this ϕZ0 -parameterized chart is,
in turn, topologically the same as the original Smith Chart (SC), which has first introduced in
[Smi39, Smi44].

Physical interpretations: The direct characterization of wave parameters should be inter-
preted as the way for determining one specific wave parameter at a specific point in the TL when
both the characteristic impedance is fixed and any other wave parameter, which sets the BCs at
this point, is known. In these sense, this characterization uses both conditions –the characteristic
impedance and another wave parameter– to ”universalize” the values of the wave parameter to be
characterized. For example, as it has been seen by means of the graphical analysis in Fig. 4.16b,
the reflection coefficient is solved in a specific point of the TL if the phase of the characteristic
impedance, the phase of the impedance at this point and the ratio between the modulus of the
wave impedance and the modulusof the characteristic impedance, |Zn0|, are known19.

Keeping these ideas in mind, the real value of the graphical analysis presented above is in represent-
ing all the possible values of the normalized wave parameters in only one complex plane. For this
purpose, the influence of losses/frequency is reduced to the parameterization of ϕZ0

. In this way,
if the losses/frequency parameterizations are known, the basic parameters are also known by the
analysis in Sect. 4.3.1, and thus ϕZ0

is known, which completely determines the transformations
between the wave parameters. This is also possible because the process of normalizing the wave
parameter complex planes leaves the planes ”isomorphic” (the normalized wave impedance and
wave admittance planes takes up the same region as those regarding the original parameters, so
the curves preserve the form; and ρ is the same as in its normalized version).

Remark 21. The angle of the characteristic impedance, ϕZ0
, which parameterizes both the graph-

ical (including the set of functions which define the transformatins) and the geometrical analysis,
determines the influence of losses in the (direct) characterization of wave parameters. In this way,
this parameter becomes the really useful parameterization of losses for the analysis of wave param-
eters, and thus the total waves in the equivalent TL. For this reason, its inverse analysis (presented
as the inverse characterization of line parameters): which losses correspond to ϕZ0

; is of special
interest when looking for the physical meaning of the analysis.

Some particular cases especially important in the analysis of wave parameters are the short circuit,
denoted as sc, the open circuit, denoted as oc, and the matching load, denoted as O, because they
are located at fixed points in some of the wave parameter complex planes.
In Fig. 4.16, these points are detached. In general: the sc is fixed at Zn0,sc = 0 + j0 in the
Zn0-plane, and at ρsc = −1 + j0 in the ρ-plane (at infinity in the Yn0-plane); the oc is fixed at
Yn0,oc = 0+j0 in the Yn0-plane, and at ρoc = 1+j0 in the ρ-plane (at infinity in the Zn0-plane); the
O point is at ρO = 0+j0 in the ρ-plane, at Zn0,O = ejϕZ0 in the Zn0-plane, and at Yn0,O = e−jϕZ0

in the Yn0-plane.
Moreover, the point labeled with A represents the same load as the lossless and non dispersive
case, and also the low-losses approximation. This point is fixed at Zn0,A = 1+ j0 in the Zn0-plane,
and at Yn0,A = 1 + j0 in the Yn0-plane, whereas it is at ρA = 0 + j(c0 − 1)/s0 in the ρ-plane (as
mentioned before among the geometrical analysis).

These facts reveal different meanings/usefulnesses of the direct characterization regarding the wave
parameter complex planes in locating points: the true physical interpretation of wave parameters
is in both the Zn0- and Yn0-planes, because the points with true physical meaning, for example sc
or oc, and the points which represent particular cases of the TL, for example A, are fixed. On the

19This example clarifies the idea of ”universalizing the analysis”. The immediate consequence of ”universalizing
the analysis” is in reducing the number of parameters that should be known (in the example described above the
ratio between the modulus –but not both the modulus of the wave impedance and the characteristic impedance–
should be known). This means that each point in the resultant curves regarding the graphical analysis does not
represent one specific scenaio but infinite problems with different parameters.
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other hand, the ρ-plane is useful for practical-design purposes, because points with practical uses,
for example the matching load, O, are fixed.

Remark 22. The true physical meaning of wave parameters is in the wave impedance/
admittance, whereas the relection coefficient is a ”mathematical tool” which connects the basic
parameters and wave parameters. This statement is based on (i) the ”universal” definition of the
particular cases regarding TLs as fixed points in the wave impedance/admittance comple planes, in
contrast to the their variable location in the ρ-plane; and (ii) the dimensional nature of the wave
impedance/admittance, in contrast to ρ, which is dimensionless.

Practical uses: The direct characterization of wave parameters presents many interesting prac-
tical uses when decribing these parameters when losses/frequency are fixed by means of the phase
of the characteristic impedance, ϕZ0

.
When ϕZ0

is fixed, the transformations between the wave parameters complex planes are de-
termined by the graphical analysis, for example the graphical analysis in Fig. 4.16, for which
ϕZ0

= 25◦. In this context, the changes on the load affect the reflected wave, and so the matching
measured by the reflection coefficent, which can be analyzed by using the GSC, for example the
one represented in Fig. 4.16a.
On the other hand, the changes on the reflection coefficient produce variation on the wave impedan-
ce/admittance, which can be analyzed by using the inverse transformations from the ρ-plane to
the Zn0-plane, [Gag01]. A clear and very important example of this latter analysis happens when
analyzing the wave parameters along the TL. For example, using the expression of ρ parameterized
by the length from the load introduced in eq. (2.83) in Chpt. 2, its complex parameterizations
from the ρ-plane leads to graphically analyze the wave impedance/admittance in their respective
complex planes. This analysis, which is presented as example of use in Ex. 01 in Sect. 5.2 in
Chpt. 5, supposes extending the analysis of the wave parameters along the whole TL, and thus
characterize graphically the total waves as functions (signals) of the length, having an alternative
to the analysis of the original expressions.

However, this characterization is not efficient for analyzing changes on the characteristic impedance,
because it supposes denormalizing the wave parameters for each change. Nevertheless, it may be
useul for verifying how change some particular cases when varying the basic parameters, for example
the matching point, O.
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4.4 Inverse Characterization of the Complex Transmission
Line Theory (CTLT-v1.0b)

In this section the inverse characterization of the TL related to the LTLT presented in Chpt. 3
is studied as the alternative to the direct characterization of the CTLT while detaching its ad-
vantages, in particular those concerning its physical interpreation and also, more specifically, its
practical uses.
This analysis is easily applicable for characterizing several solutions in waveguides –not only HPWs–
when taking different particularizations of the GTLT introduced in Chpt. 3. Nevertheless, the anal-
ysis presented in this section refers to the characterization of HPWs, in order to be compared with
the direct characterization of HPW presented before, also acting together to solve some TL-related
problems presented as examples of use in Chpt. 5.

The inverse characterization of the CTLT presents opposite parameterizations and analysis when
comparing it with the direct characterization20.
On one hand, instead of describing the basic parameters in terms of different type of parameteri-
zations, here the line parameters corresponding to these parameterizations are studied in terms of
basic parameters, leading to important physical interpretations and practical uses of this type of
characterization.
On the other hand, instead of transforming the wave parameters between themselves (parameter-
ized by the angle of the characteristic impedance), the transformations between the characteristic
impedance and the reflection coeffient (this latter parameter should be considered as basic param-
eter from the inverse characterization point of view) are studied (parameterized by the angle of
the wave impedance).
This fact, far from being a disadvantage, makes this analysis to be ”the perfect complement” of the
direct characterization, which can be demostrated by analyzing some examples using both charac-
terizations together. Some of these examples, which are especially important to see the advantages
of the CTLT in comparison with the TLT, are presented in Chpt. 5.
Furthermore, this characterization is specially useful for the application of the CTLT for the anal-
ysis on any EM problem whose solution can be achieved basing on TLs.

For the inverse characterization, the definition of the so called isocomplex numbers in Appendix
4.A results crucial for both the ”geometrical” interpretation of the parameterizations concerning
this analysis and also for the algebraic rigor is required for the analysis in the CTLT.

Remark 23. Isocomplex numbers arise from the need of having a ”space of parameters” which
explains the characterizations in the CTLT. Concretely, this ”space of parameters” is really useful
for adding the physical interpretation to the CTLA as it has been presented: involving parame-
terized transformations between the planes associated to those TL parameters under study. Thus,
the ”space of parameters” is conciously defined for achieving the issue of parameterizing several
physical parameters such as different type of losses and frequency (these parameters have immediate
representation in the ”space”) and also some more that are hidden in different parameterizations,
e.g. the length of the TL represented by curves which keep the angle of the propagation constant
the same.
Furthermore, this ”space” lets to parameterize different mode solutions by inverse analysis, thanks
to its definition in the most generalized way.

The rg-plane is the region of the ”space of parameters” in which the curves parameterizing the
basic parameters are plotted, leading to the graphical analysis.
Apart from the graphical representations, it is explained among the practical uses of the rg-plane
in Appendix 4.A that the inverse characterization of basic parameters leads to obtain the inverse

20This is the main reason of the ”inverse” denomination, although some more reasons of this name can be found,
for example in the origin of the equivalent voltage and current waves, which differentially define the EM waves
(regarding this inverse characterization), in contrast to definition of these equivalent waves by integrating the EM
fields (concerning the direct characterization).
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function which completely defines these parameters,which is even more interesting than simply
seeing how the basic parameters vary in terms of different types of parameterizations. As a con-
sequence of this inverse characterization in the ”space of parameters”, any TL is parameterized in
an unique way.
This approach is much more interesting when trying to parameterize more solutions in different
TLs, although in this version of the CTLT (CTLT-v1.0b) it comes to: (i) validate the LTLT and
the direct characterization as it has been contextualized in Chpt. 2 and developed in previous
Sect. 4.3 in this chapter; and, which is maybe more important, (ii) complete the characterization
of the CTLT, which is shown in Chpt. 5 by means of examples of use for the application of both
characterizations together.

The methodology of study is presented in the same way as the direct characterization of HPWs
regarding the CTLT (CTLT-v1): (i) the main parameterizations of this study are described. This
includes studying both the parameterization of basic parameters for the inverse characterization of
line parameters and those concerning the wave parameters for the inverse characterization of ba-
sic parameters. The parameterizations regarding the basic parameters are ”universalized”, which
means that any normalization can be used interchangeably by simply rescaling the parameteriza-
tions of those resultant curves that parameterize the real or imagiary parts or the modulus of these
parameters in the rg-plane, while the parameterization of the angles remind the same. This is due
to normalizations in the direct characterization are always done with respect to real values that
”zoom” the complex planes associated to each parameter, but they conserve the magnitude (and
sense) of the angles (the normaliations and the transformations between them are conformal). In
order to exemplify this important property of the inverse characterization, take for example the
propagation constant: the one normalized for the ffa, γn1, and that one normalized for the vfa,
γn2. The parameters which normalize each case are different, but in both cases, they are real
numbers. As a consequene, the same point in the rg-plane parameterized by (r, g) or (ωn, c), de-
scribes different modulus in the γn1- and γn2-planes, respectively, but the same angle, so the points
transform rescaled in each cited plane. Conversely, the same parameterization of the modulus in
the γn1- and the γn2-planes leads to rescaled parameterizations in the rg-plane, provided that the
phase is the same in both cases. This is proved more rigorously in Appendix 4.F. This fact is
essential to reduce the inverse analysis of basic parameters to only one plane. Nevertheless, and
this should be understood, each rg-plane has to be referenced to any parameterization for being
the values of the parameterizations contextualized, and appropriately rescaled if needed; (ii) the
normalizations of line parameters are, consequently, those coming from the definition in rg-planes,
whereas the normalizations of basic parameters are studied referred to the wave parameter for the
inverse characterization; (iii) the corresponding graphical analysis are done by previuosly solving
any of the forms of the inverse function regarding each parameter under study when it is feasible,
and analyzing the resultant curves geometrically. Some of them are specially useful to be ana-
lyzed, for example those that parameterize angles, for the subsequent application to other analysis;
(iv) the physical interpretation of the inverse characterizations is direct because, it answers which
parameterizations of the TL lead to specific behaviors of basic parameters. On the other hand,
the inverse characterizations answers how the basic parameters vary when they are parameterized
by wave parameters, which may be also provided with physical meaning when for example fixing
the load and varying the basic parameters accordingly a specific physical behavior, for example,
varying the characteritic impedance with frequency; and (v) the mention of the practical uses both
when characterizing the parameters of the lossy TL and when solving related physical problems.
These points (i-v) are addresed for each parameter under study, dual to the manner the direct
characterization of the lossy TL has been presented in Sects. 4.3.1 and 4.3.2.
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Fig. 4.17: Scheme of parameterizations regarding the basic parameters –marked in blue– to de-
termine the line parameters described for both the ffa and the vfa –marked in yellow), and the
parameterizations of wave parameters –marked in pink– to determine the basic parameters; both
corresponding to the CTLT-v1.0b.

This section is organized as follows: firstly, the parameterizations of specific behavios of basic
parameters are depicted. This means characterizing the line parameters inversely. The behaviors
studied parameterize these analysis in rg-planes, and they consist in describing the parameteri-
zations of the real and imaginary parts, and the modulus and phase of both basic parameters:
the characteristic impedance and the propagation constant (in Fig. 4.17, see these parameters –
colored in blue– which vary to characterize the line parameters –colored in yellow).
Notice that the parameterizations of the real-imaginary parts of basic parameters represented in
the axis of the assoaciated complex planes are the reciprocal of r and g for the vfa in the direct
characterization, because they are represented in the axis of the rg-plane, whereas the modulus-
phase parameterizations of basic parameters are the reciprocal of the frequency parameterizations
in the vfa regarding the direct characterizations, becuase they represent the modulus and phase
in the rg-plane. Thus, the inverse characterization of basic parameters splits into real-imaginary
parametrizations and modulus-phase parameterizations, reciprocally to the division for the ffa and
the vfa concerning the direct characterization.
Secondly, the basic parameters: in this case, the characteristic impedance and the reflection coef-
ficient (the reflection coefficient is here addressed as basic parameter, just as it has been presented
in Chpt. 3); are analyzed as transformations between themselves extra parameterized by the wave
parameters, namely by the wave impedance (in Fig. 4.17, see these parameters – colored in pink–
which keeps constant to characterize the basic parameter transformations).

4.4.1 Inverse characterization of line parameters

The inverse characterization of line parameters is intended to define the functions which relate the
line parameters in such a way that different parameterizations of basic parameters: real-imaginary
parameterized parts and modulus-phase parameterizations; are described by these functions. This
is equivalent to ”sketch” the parameterizations of basic parameters over planes which represent the
line parameters.
The underlying analysis of this characterization is the one introduced in Chpt. 3, in which the
definition of harmonic potential functions as equivalent waves in the TL requires to solve the pa-
rameters of the assumed equivalent TL in which they propagate.

For the purpose of solving the line parameters, it is neccesary to take into account that, as it has
been detached in the direct characterization, the appropriate normalizations of basic parameters
lead to define the subsequent parameterizations of line parameters, which are arranged by pairs,
for example r and g in the ffa regarding the direct characterization. This fact together with the
property of the parameterizations to be rescaled accordingly to the normalization which has been
chosen (in order to do not affect the graphical analysis: see Appendix 4.F), makes the analysis
”universal” when it is doing over rg-planes.
As a consequence, there are two ways to proceed: (i) if the direct characterization concerning a
particular analysis has been done (just as it happens in this case of analyzing harmonic plane waves
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Fig. 4.18: Example of the possible methods for inversely characterizing the characteristic impedance
of the TL: the method #1 is based on solving, for example, the inverse function Z−1

0n1 regarding
the one defined for the direct characterization, Z0n1; whereas the method #2 is based on solving
this inverse function from the impedance of the mode parameterizing the constitutive parameters
with line parameters.

described in terms of losses: CTLT-v1.0a in Sect. 4.3, concerning the LTLT), the inverse function
of those defined for the graphical analysis are solved in any form, if possible (see Fig. 4.18, in which
the method #1 is the one described in this point); otherwise (ii) either the analytical expression
of the impedance, Zmode, and the propagation constant, γmode, regarding a wave solution, or their
graphical analyis in complex planes, just as it is done in [Rie98], are used for parameterizing the
basic parameters supposing a complex function which characterize them (see Fig. 4.18, in which
the method #2 is the one described in this point).
In this section, finding the inverse functions of those ones defined in the direct characterization
(that is, the method (i) (#1) as it has just been described above and shematized in Fig. 4.18) is
the method to be followed, whereas an example of obtaining the line parameterizations regarding
superior modes (see Chpt. 3 for their introduction) is presented within the Applications and
Future Lines, showing the great usefulness of the inverse characterization in parameterizing more
solutions, not only HPWs.

Real-Imaginary parameterized parts

In this section, the real-imaginary parts of basic parameters: the characteristc impedance and the
propagation constant; are parameterized in any of their normalized complex planes to be then
transformed to the rg-plane.
For each parameter under study: (i) the parameterizations are mathematically described. In rela-
tion to this step, it is important to specify in which normalization of basic parameters the inverse
function is going to be obtained for labeling the resultant curves accordingly; (ii) the curves are
graphically depicted and geometrically analyzed; (iii) some physical interpretations for each anal-
ysis are obtained; and (iv) the practical uses of these inverse characterizations in both the solution
of new problems and the possible applications in modelling and designing circuits are detached.

The analysis presented here parameterizes the real and imaginary parts concerning the normaliza-
tions of basic parameters with respect to the lossless case, that is, those normalizations used in the
ffa regarding the direct characterization, presented in Sect. 4.3.1. Thus, the labels in the rg-plane
wil be referred to the parameterizations of basic parameters normalized with respect to the lossless
case.
If for example the parameterizations are required to be referred to the non dispersive case used for
the vfa, the values of the parameterizations in the rg-plane have to be rescaled ·1 (not rescaled)
for characterizing the real-imaginary parts of the characteristic impedance, and ·βspαnd in case of
characterizing the real-imaginary parts of the propagation constant.
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Characteristic impedance: Characterizing the real-imaginary parameterized parts of the char-
acteristic impedance has mainly analytical and geometrical interest. In this sense, these parame-
terizations can be used for determining directly those parameterizations of losses/frequency which
lead to specific values of real or imaginary parts of the characteritic impedance.

Normalizations and parameterizations: As it has been mentioned, the normalization of the
characteristic impedance, whose inverse function is intended to be analyzed, is that one used for
the ffa, which is normalized with respect to the lossless case.
Thus, it is about obtaining the inverse function of Z0n1 defined in eq. (4.7), that is solving Z−1

0n1,
in order to transform the real-imaginary parameterized parts for the subsequent graphical analysis.

Fig. 4.19: Parameterizations of the real-imagninary parts in the Z0n1-plane used for the inverse
characterization in the rg-plane.

The parameterizations of the real and imaginary parts of Z0n1 are denoted by{
Z ′0n1 = a

Z ′′0n1 = b
, (4.46)

which are depicted in Fig. 4.19, it its respective (bounded) complex plane.

The easiest way to define the inverse function for each parametrization is solving r as a function
of g (see the mathematical notes of the development in Appendix 4.G), leading to the expressionsr = g − 2a

(
1 + g2

)
·
(
ga−

√
a2 (1 + g2)− 1

)
r = g + 2b

(
1 + g2

)
·
(
gb−

√
b2 (1 + g2) + 1

) , (4.47)

for each parameterized part in eq. (4.46).

These r vs. g expressions are able to be graphically represented and geometrically analyzed in the
rg-plane.
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Fig. 4.20: Transformations of the real-imaginary parameterized parts of Z0n1 in the rg-plane.

Graphical and geometrical analysis: Since r is expressed as function of g parameterizing the
real-imaginary parts of the charateristic impedance, the graphical analysis in rg-planes is straigh-
forward.

The resultant curves may be seen as the complex transformation from the Z0n1-plane to the rg-
plane given by the seeked inverse function Z−1

0n1, which is rigorously defined as:

Z−1
0n1 : DZ0n1

⊂ C→ R2+ ∪ (0, 0)

Z0n1  Z−1
0n1(Z0n1) = (r, g) (≡ τZ0n1 ∈ H).

(4.48)

Notice that this function is defined in complex variable Z0n1.

Remark 24. The inverse characterization establishes an approach regarding complex variable func-
tion is here in the inverse characterization of the expressions which are naturally complex due to
their definition in the frequency domain. This fact, far from being an anecdote in the analysis, will
bring important conclusions concerning future analysis in complex variable, in the sense that each
problem defined in a complex domain is the inverse of the original problem defined in real variable
when it is analyzed by means of complex functions parameterized by complex parameters.

In Fig. 4.20 the graphical analysis of the characteristic impedance parameterized by its real-
imaginary parts are depicted in the rg-plane. This representation ”sketches” the inverse complex
variable funtion Z−1

0n1 in the rg-plane. Thus, the resultant curves in the rg-plane may be seen as
(complex) ”curve levels” of the function Z0n1.

If analyzing the curves in the rg-plane geometrically, they can be classified as sets of hyperbolas,
[Law72], parameterized by the real-imaginary parts of the characteristic impedance.
Some interesting properties that these curves show in the rg-plane may be detached: (i) the curves
parameterizing the imaginary part of the charactristic impedance are hyperbolas with different
orientation depending on the sign of the parameterization: when the parameterization is positive,
the curve goes closing to g =

√
3, which produces the maximum value of the imaginary part of the
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characteristic impedance, whereas when the parameterizations of the imaginary part tend to 0, the
curves open to the bisector in the rg-plane. The curvature of these curves makes that there are two
values of g which produces the same imaginary part of the characteristic impedance. On the other
hand, when the parameterization is negative, the curves tend to be closer to the r-axis, as much
as the parameterization is more negative. Moreover, for each especific negative parameterization
of the imaginary part, the minimum r is given by rmin|Z′′0n1=b<0 = −2b

√
b2 + 1, achieved when

substituying g = 0 in the second equation in (4.47); (ii) the curves parameterizing the real part of
the characteristic impedance present similar geometrical behavior. In this case, the curves whose
parameterization is greater than the unity lead to two different values of g that produce the same
real part; and (iii) the mentioned ”double parameterization” (the same parameterizations for two
different values in the rg-plane) also happens if analyzing the curves varying the frequency.

Fig. 4.21: Example of frequency analysis in the rg-plane which shows the ”double parameterization”
for an unique parameterization of the imaginary part of the characteristic impedance.

The graphical example above serves to show this phenomenon when varying the frequency; among
the infinity of geometrical properties that could be extracted by combining the graphical analysis
and the analytical expressions in eq. (4.47).
In any case, those most interesting geometrical properties are always related to the physical prop-
erties to be analyzed, or the practical uses which are intended to be obtained.

Physical interpretation: The inverse characterization of the basic parameters serves to answer
–and this happens in general in the inverse characterization– which parameterizations of losses or
frequency lead to specific parametrizations of these parameters.
In this particular case of splitting the real and imagiary parts of the characteristic impedance, the
only physical interest is when interpreting the terms of the mean transmited power separately (see
the expression of the transmited power in lossy TLs in Sect. 2.4.1 in Chpt. 2). Otherwise, the
interpretation of this inverse characterizations lacks of physical meaning, despite its mathematical
interest.

Practical uses: The main practical uses of this characterization are in taking advantage of losses
for matching purposes. In this sense, if the load at any point is given, the TL that matches the
load at this point is that one which has the same real and imaginary parts, making ρ in eq. (2.84)
zero. Thus, once the real and imaginary parts are known, it is possible to solve –by means of this
inverse characterization– which lossy parameterizations at a fixed frequency do the matching, or
conversely at which frequency the matching produces when losses are fixed.
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Propagation constant: Studying the real-imaginary parameterizations of the propagation con-
stant to obtain the parameterizations of losses/frequency which lead to them has special interest
because of the physical interpretation these parameterized parts have in the wave propagation:
the real part –the attenuation constant– fixes how the waves decay along the TL, whereas the
imaginary part –the phase constant– establishes the speed of the propagative waves. In this sense,
specific values of both the attenuation constant and the phase constant may be analyzed by means
of the analysis presented here.

Normalizations and parameterizations: In this case, the analysis of the parameterizations
of the propagation constant is carried out by taking again the normalizations with respect to the
lossless case, γn1, which has been used for the ffa in the direct characterization of the propagation
constant. Thus, it is about obtaining the inverse function of γn1 defined in eq. (4.10), that is
solving γ−1

n1 so that the real-imaginary parts of the propagation constant characterize the param-
eterizations of losses/frequency in the subsequent mathematical and graphical analysis.

Fig. 4.22: Parameterizations of the real-imagninary parts in the γn1-plane used for the inverse
characterization in the rg-plane.

The real-imaginary parts are parameterized as follows:{
γ′n1 = αn1 = a

γ′′n1 = βn1 = b
. (4.49)

These parameterizations are graphically depicted in Fig. 4.22 in the γn1-plane. Notice that the
depicted γn1-planes does not have the same scale for both axis. The fact of not having a regular
grid in the γn1-plane meets the purpose of having equispaced curves in the subsequent graphical
analysis in the rg-plane.

The way to define the inverse function for each parameterization is solving r as a function of g
(or g as a function of r because the equivalent role the r and g parameterizations play in γn1),
in a similar way of how the curves parameterizing the real-imaginary parts of the characteristic
impedance have been obtained in Appendix 4.G.
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Fig. 4.23: Transformations of the real-imaginary parameterized parts of γn1 in the rg-plane.

The following curves parameterized by the real-imaginray part of the propagation constant have
been obtained: {

r = −g
(
2a2 + 1

)
+ 2a

√
(1 + g2) (a2 + 1)

r = g
(
2b2 − 1

)
± 2b

√
(1 + g2) (b2 − 1)

, (4.50)

in which g ∈ [0,∞[ for both equations,

or equivalently, {
g = −r

(
2a2 + 1

)
+ 2a

√
(1 + r2) (a2 + 1)

g = r
(
2b2 − 1

)
± 2b

√
(1 + r2) (b2 − 1)

, (4.51)

in which r ∈ [0,∞[ in both equations.

These curves are going to be graphically represented and geometrically analyzed in the rg-plane,
while emphasizing their most important poperties.

Graphical and geometrical analysis: The way of obtainig the parameterized curves in eq.
(4.50) (or eq. (4.51)) allows for the direct graphical representation in rg-planes.

The resultant curves ”sketch” the function γn1 from the inverse function γ−1
n1 , which is rigorously

defined as:

γ−1
n1 : Dγn1

⊂ C→ R2+ ∪ (0, 0)

γn1  γ−1
n1 (γn1) = (r, g) (≡ τγn1 ∈ H).

(4.52)

Notice that this inverse function is defined in complex variable γn1.
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In Fig. 4.23, the graphical analysis of the propagation constant parameterized by the real-imaginary
parts is depicted in the rg-plane. This representation in the rg-plane is one of the ways of obtaining
the seeked inverse function γ−1

n1 . The resultant curves may be seen as (complex) ”curve levels” of
the function γn1.

The curves in the rg-plane are hyperbolas, [Law72], which are parameterized by the real-imaginary
parts of the propagation constant.
If analyzing the curves geometrically, some interesting properties can be detached: (i) the curves
are symmetric with respect to the bisector in the rg-plane. This is due to the parameterizations
r and g are interchangeable because the equivalent role of them when defining γn1; (ii) the curves
parameterizing the imaginary part of the propagation constant are unfolded. This means that
for each r (or g) there are two values of g (or r) that lead to the same imaginary part. More-
over, the minimun r (or the minimun g) for each curve parameterized by the impaginary part is
rmin|γ′′n1=b = 2b

√
b2 − 1 (or gmin|γ′′n1=b = 2b

√
b2 − 1). These curves present asymptotic behavior

when r � (or g �), for which the asymptote is the ray whose slope is masymp = 2b2−1+2b
√
b2 − 1

(or masymp = 2b2 − 1 − 2b
√
b2 − 1); and (iii) the hyperbolas parameterizing the real part of

the propagation contant have their vertex in the bisector of the rg-plane. Moreover they cut
the r-axis (or the g-axis) in the maximun r (or the maximun g), rmax|γ′n1=a = 2a

√
a2 + 1 (or

gmax|γ′n1=a = 2a
√
a2 + 1).

Some geometrical properties are connected with the physical interpretations of the curves in the
rg-plane.

Physical interpretations: As mentioned before, the inverse characterization of the propagation
constant parameterizing the real and imaginary parts has special interest from the physical point
of view because the direct relation between the parameterizations and the characteristics of the
wave which propagates.
In any case, this analysis should be interpreted as any in the rg-plane. Particularly, this analysis
answers which TLs lead to specific attenuation or wave speed of the waves which propagate along.

Regarding the attenuation constant, it may be said that: (i) for a fixed frequency (that is a
circunference in the rg-plane) the minimum attenuation is produced when the TL is non dis-
persive; (ii) for a TL characterized by c (a ray inclined θc = tan−1(1/c)) the attenuation de-
creases when ω increases; and (iii) when r (or g) is fixed, the minimum attenuation is achieved

when r (or g) is the rmax|γ′n1=a (or gmax|γ′n1=a), so that αn1,min|r=r0 =
√

(−1 +
√

1 + r2
0)/2 (or

αn1,min|g=g0 =
√

(−1 +
√

1 + g2
0)/2).

Regarding the propagation constant, it is neccesary to detach that: (i) when frequency increases
(the circunferences in the rg-plane are smaller), the phase constant tends to be the one character-
istic of the non dispersive case; but (ii) when frequency decreases (the circunerences are bigger),
the phase constant tends to be linear with frequency, because the asymptotic behavior of the phase
constant curves; and (iii) when r (or g) is fixed, the maximum value of the propagations con-
stant (minimum speed) is achieved when that r (or g) is the rmin|γ′′n1=b (or gmin|γ′′n1=b), so that

βn1,max|r=r0 =
√

(1 +
√

1 + r2
0)/2 (or βn1,max|g=g0 =

√
(1 +

√
1 + g2

0)/2).

In conclussion, seeing the graphical analysis in Fig. 4.23 supported by the geometrical analysis,
it may be said that: when losses increase or frequency decreases the TL tends the non dispersive
case. The speed of the wave is maximum in the non dispersive case, at the same time that the
attenuation is minimum in this case when the lossy parameterizations (r = g) are fixed.
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Practical uses: The practical uses of this characterization mainly come when describing the
physical behaviors of the equivalent waves that it parameterizes: attenuation and speed; varying
the parameters of the TL, for example analyzing the TL when changing the frequency and seeing
how the physics of the wave varies.

Modulus-phase parameterizations

In this section, the modulus-phase parameterizations of basic parameters: the charateristic impedance
and the propagation constant; are studied in order to be characterized in rg-planes. In this way,
an interesting representation for analyzing TL-related problems (alternative to the study of the
real-imaginary parameterized parts) is obtained by means of this analysis, which shows special use-
fulness in characterizing the wave parameters, both along the TL and in terms of losses/frequency
as it is seen by means of different examples presented in Chpt. 5.
In this sense, the inverse characterization of the angles of both the characteristic impedance and the
propagation contant becomes especially important. In addition, recall that these angular parame-
terizations are ”universal” because they are not affected by the normalizations of basic parameters.
Thus, as it is shown in Chpt. 5, the angles of basic parameters completely characterize the behavior
of the TL, so studying which losses/frequency leads to these angles is a crucial issue to be solved
by means of this inverse characterization.

In the same way as the real-imaginary parameterized parts, the inverse characterization of basic
parameters is studied in terms of: (i) the parameterizations regarding the normalization of basic
parameters. As mentioned above, the angles are not scaled in any case, so the parameterizations
of the angles are the same for each normalization of basic parameters or the denormalized versions;
(ii) the graphical representation of the parameterized curves as well as their geometrical analysis;
(iii) the physical interpretations of the characterization described inversely; and (iv) the practical
uses of this characterization, detaching those that determine the analysis of wave parameters.

The analysis presented here is performed with respect to the lossless case, useful in the ffa of
basic parameters. This only affects the parameterizations regarding the modulus, because the
conservation of the angles after each normalization, as explained before. Thus, using different
normalizations of basic parameters only affects in changing the label of the curves parameterizing
the modulus, just as it is explained in Appendix 4.F, so that the subsequent definion of functions
Z0n1 and γn1 over the rg-planes is valid for every normalization by simply rescaling the modulus
parameterizations. In this sense, the rg-plane in which the ”curve levels” are plotted will be always
referred to the normalization which describes them (in this case, the lossless case).
In any case, the inverse characterization of functions Z0n1 and γn1 in rg-plane is helpful for any
type of analysis: losses, frequency, etc., by means of the same graph, which is one of the most
important usefulnes of this analysis.

Characteristic impedance: The inverse characterization of the characteristic impedance pa-
rameterizing its modulus-phase is essential for analyzing lossy TLs.
On one hand, this characterization has special physical meaning because the underlying phisycal
interpretation regarding the modulus and and phase of the characteristic impedance: the modulus
represents the relation in amplitude of the equivalent voltage and current waves, whereas the phase
represents the phase shifting between these waves. Moreover, this latter parameter has direct re-
lation with losses. Thus, by means of this inverse characterization, it is directly answered which
TLs –which losses/frequency– present specific behaviors regarding these physical properties.
On the other hand, the inverse characterization of the characteristic impedance provides a repre-
sentation of the function Z0n1 which is especially useful for analyzing TLs. In this sense, recall,
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for example, that the GSC is parameterized by the angle of the characteristic impedance. Solving
which TLs are able to be studied by the same parameterized GSC is of special interest in the
analysis of wave parametrs or, conversely, explaining which angle parameterization should be used
in the GSC in terms of the losses/frequency of the TL.
The main analytical result of this analysis is on defining and ”sketching” the complex function
Z0n1 as defined in eq. (4.7) (and Z0, in general) when spliting its modulus and phase.

Normalizations and parameterizations: The Z0n1-complex plane regarding the ffa is the
one selected for inversely characterized Z0n1 in terms of line parameters in the rg-plane. Thus,
it is about obtaining the inverse function Z−1

0n1 which maps the modulus-phase parameterizations
from the Z0n1-plane to the rg-plane.

Fig. 4.24: Parameterizations of modulus-phase in the Z0n1-plane used for the inverse characteriza-
tion in the rg-plane.

The modulus-phase parameterizations of the characteristic impedance are denoted as:
|Z0n1| = m ∈

]0,
√

cos 2ϕZ0 ] if ϕZ0 > 0[
1√

cos 2ϕZ0

,∞
[

if ϕZ0 < 0

ϕZ0n1
≡ ϕZ0

= p ∈

{[
0, cos−1

(
1
2 |Z0n1|2

)]
if |Z0n1| < 1[

cos−1
(

1
2|Z0n1|2

)
, 0
]

if |Z0n1| > 1

. (4.53)

The simplest way to obtain the modulus-phase parameterized curves in the rg-plane is by writing r
as a function of g. In this sense, the resultant curves are (the mathematical procedure for obtaining
these curves is developed in Appendix 4.H):

r =
√
m4(1 + g2)− 1, for which g ∈

[√
1

m4
− 1,∞

[
, (4.54)

r =
g − tan (2p)

1 + g tan (2p)
, for which

{
g ∈ [tan (2p) ,∞[ if g ≥ 0

g ∈ [0, | tan (2p) |] if g < 0
. (4.55)

These curves have direct graphical representation in the rg-plane, where they can be geometrically
analyzed.
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Fig. 4.25: Transformations of the modulus-phase parameterizations of Z0n1 in the rg-plane.

Graphical and geometrical analysis: The curves in eqs. (4.54) and (4.55) parameterizing the
modulus and phase of the characteristic impedance are represented in the rg-plane in Fig. 4.25.
The resultant curves may be seen as the complex transformations of the from the Z0n1 complex
plane to the rg-plane given by the inverse function Z−1

0n1 defined in eq. (4.48) (in complex variable,
Z0n1) when the modulus and phase are parameterized.

Some interesting geometrical properties of the curves depicted in the rg-plane concerning the
modulus-phase parameterizations of the characteristic impedance may be detached: (i) both the
modulus and phase parameterized curves are symmetric with respect to the bisector in the rg-plane.
Moreover, each symmetric curve is parameterized by the inverse value in case of modulus parame-
terizations, or by the inverse sign in case of the phase parameterizations; (ii) the minimum value
of r (or g) for each parameterization of the modulus is rmin||Z0n1|=m =

√
m4 − 1, for which m > 1

(or gmin||Z0n1|=m =
√
m4 − 1, for which m < 1). Moreover, each parameterization of the modulus

is asymptotic to the ray whose slope is masymp = 1/m221; and (iii) the mimum value of r (or g) for
each parameterization of the phase is rmin||ϕZ0

=p| = − tan (2p) (or gmin||ϕZ0
=p| = tan (2p). Each

p-curve is asymtotic to rasymp = 1/ tan (2p) in case of p > 0, and gasymp = −1/ tan (2p) in case of
p < 0.

The most important physical interperetations of this analysis are related to the geometrical prop-
erties of the curves in the rg-plane which parameterize the characteristic impedance in modulus-
phase.

Physical interpretations: In this case, the parameterized curves plotted in the rg-plane have
to be interpreted in terms of which TLs lead to the specific values of the modulus or the phase of
the characteristic impedance.

21The term masymp refers to the slope of the ray, not the modulus parametrization in itself.
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If interpreting the graphical analysis in terms of losses, it may be said that the symmetries of the
curves are produced when changing the values of losses, leading to the inverse modulus and the
opposite phase, and so the inverse relation between the amplitudes and the contrary phase shifting
regarding the voltage and currents waves.
Moreover, given a value of the conductor losses r = r0, the maximum value of the modulus is
|Z0n1|max|r=r0 = 4

√
r2
0 + 1. Given a value dielectric losses g = g0, the minimum value of the mod-

ulus is |Z0n1|min|r=g0 = 4
√
g2

0 + 1. These values let to solve the maximum and minimum relations
between the electric and magnetic fields.
On the other hand, the maximum phase difference for each parameterization of the conductor losses
r = r0 is ϕZ0,min|r=r0 = tan−1(r0)/2 (for the dielectric losses g0 is ϕZ0,min|r=g0 = tan−1(g0)/2).

If interpreting the graphical analysis in terms of frequency, it may be said that, for each pair of
losses whose ratio is c, the modulus of the characteristic impedance when the normalized frequency
ωn � is |Z0n1||ωn� =

√
c, whereas when ωn �, the modulus is |Z0n1||ωn� = 1.

Practical uses: The most important application of the inverse characterization of the character-
istic impedance is on describing the wave parameters both in terms of losses/frequency and along
the TL.
Remember that the angle of the characteristic impedance fixes the GSC (see Fig. 4.16) which rep-
resents the transformations from the normalized wave impedance complex plane to the reflection
coefficient complex plane.
If the losses of the TL are known, the inverse characterization in the rg-plane directly offers the
phase of the charactersitic impedance.
Otherwise, if for example the frequency changes, the variation in the rg-plane turns into a propor-
tional change on the modulus (ωn) in the rg-plane, and so the change on the modulus and the phase
(which is especially important for the parameterization of wave parameters) of the characteristic
impedance.

Propagation constant: The inverse characterization of the propagation constant parameteriz-
ing its modulus-phase reults crucial for analyzing lossy TL, especially the wave parameters along
the TL.
Contrary to the parameterizations of the real-imaginary parts, the modulus-phase parameteriza-
tions of the propagation constant do not have clear physical meaming. However, these param-
eterizations have special interest when describing the wave parameters both in terms of losses,
and along the TL. Here it is foreseen that the phase of the propagation constant identifies a TL
characterized along its extension (see Ex. 01 in Sect. 5.2 in Chpt. 5). Thus, the modulus of the
propagation constant acts as a the parameter which describes the TL’s length when the appropriate
normalization is chosen (see Ex. 03 in Sect. 5.4 in Chpt. 5).
As a result of this characterization, a representation of the complex function γn1 introduced by
means of eq. (5.62) when splitting the modulus and phase is here obtained, allowing for ”sketching”
the function, in an alternative way of the analysis parameterizing the real-imaginary parts.

Normalizations and parameterizations: The γn1-complex plane regarding the ffa serves to
inversely characterize γn1 in terms of line parameters in the rg-plane. From this point, it is about
solving the inverse function Z−1

0n1 which maps the modulus-phase parametrizations from the γn1-
plane to the rg-plane:
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Fig. 4.26: Parameterizations of modulus-phase in the γn1-plane used for the inverse characterization
in the rg-plane.

The modulus-phase parameterizations of the propagation constant are denoted as:
|γn1| = m ∈


[

1
sin(ϕγ) ,∞

[
if ϕγ ∈

]
0, π4

][
1

sin(ϕγ) ,
1√

− cos(2ϕγ)

]
if ϕγ =

]
π
4 ,

π
2

]
ϕγn1 ≡ ϕγ = p ∈

[
sin−1

(
1
|γn1|

)
, 1

2 cos−1
(
−1
|γn1|2

)] . (4.56)

Obtaining the modulus-phase parameterized curves in the rg-plane requires solving r (or g, because
of the equivalent role of this parameter in the expression of γn1 introduced in eq. (4.10) written as
a function of g (or r). The mathematical procedure for solving in one or the other way is similar
to the one presented in Appendix 4.H for the characteristic impedance. The resultant curves are:

r =

√
m4

1 + g2
− 1, for which g ∈

[
0,
√
m4 − 1

]
, (4.57)

r =
g + tan (2p)

g tan (2p)− 1
, for which g ∈

]
1

tan(2p) ,∞
]

, (4.58)

or, equivalentely:

g =

√
m4

1 + r2
− 1, for which r ∈

[
0,
√
m4 − 1

]
, (4.59)

g =
r + tan (2p)

r tan (2p)− 1
, for which r ∈

]
1

tan(2p) ,∞
]

. (4.60)

These curves can be directly represented in the rg-plane leading to graphical representation of the
modulus-phase parameterizations of the propagation constant.

Graphical and geometrical analysis: The curves in eqs. (4.57) and (4.58) parameterizing the
modulus and phase of the propagation constant are represented in Fig. 4.27.
The resultant curves may be seen as the complex transformations of the modulus-phase parameter-
izations from the γn1-plane to the rg-plane following the inverse function γ−1

n1 defined in eq. (4.52).
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Fig. 4.27: Transformations of the modulus-phase parameterizations of γn1 in the rg-plane.

Some geometrical properties of the curves which parameterized the modulus and phase of the
propagation constant in the rg-plane may be detached: (i) the curves are completely symmetric
with respect to the bisector in the rg-plane, and they all are hyperbolas, [Law72]; (ii) for the
curves parameterizing the modulus, the maximum value of r (or g) for each parameterization is
rmax||γn1=m| = 4

√
m4 − 1 (gmax||γn1=m| = 4

√
m4 − 1); and (iii) for the curves parameterizing the

phase, the maximum value of r (or g) for each parameterization is rmax|ϕγ=p = tan(2p) if p > π/4

(otherwise the maximum is at +∞ and the curves are asymptotic to the line g = 1/ tan(2p))
(gmax|ϕγ=p = tan(2p) if p > π/4, and +∞ if p ≤ π/4, and the curves are asymptotic to the line

r = 1/ tan(2p)).

These geometrical properties are useful for detaching some physical interpretations regarding the
modulus-phase parameterizations of the propagation constant.

Physical interpretations: Regarding this case, the parameterized curves in the rg-plane sould
be understood in terms of which TLs lead to specific values of the modulus or the phase of the
propagation constant.

When interpreting the graphical analysis, it may be said that the curve symmetries are because of
the equivalent role of lossy parameterizations in the expression of the propagation constant.
Moreover, given a value of the conductor losses r = r0 (or the dielectric losses g = g0), the mini-
mum value of the modulus of the propagation constant is |γn1|min|r=r0 = 4

√
r4
0 + 1 ( |γn1|min|g=g0 =

4
√
g4

0 + 1).
On the other hand, given a value of the conductor losses r = r0 (or the dielectric losses g = g0),
the maximum value of the phase of the propagation constant is ϕγ,max|r=r0 = tan−1(r0)/2 as

(ϕγ,max|r=r0 = tan−1(r0)/2), and the mimum is ϕγ,min|r=r0 = tan−1(1/r0)/2 (ϕγ,min|g=g0 =

tan−1(1/g0)/2).
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It important to detach that the labels regarding the modulus parameterized curves change ac-
cordingly in case of analyzing the propagation constant in terms of frequency in the rg-plane.
Nevertheless, the phase keeps the same for both the ffa and the vfa and, concerning this latter
analysis, it may be said that the phase passes from ϕγ = 0 to ϕγ = π/2, when going from ωn �
to ωn �.

Practical uses: The inverse characterization of the modulus and phase parameterized curves
regarding the propagation constant shows great usefulness when analyzing the wave parameters
along the TL in terms of losses. This analysis is presented as an example of use of this characteri-
zation in Ex. 03 in Sect. 5.4 in Chpt. 5.

It may be foreseen that the parameter which decribes the analyis of wave parameters along the TL
is the angle of the propagation constant, once the appropriate normalization of the TL’s length is
chosen. For this reason, the analysis of those parameterizations of losses/frequency that lead to
the same ϕγ becomes so important. Furthermore, this means obtaining those parameterizations
which, keeping fixed ϕγ , parameterize the length of the TL (those complex pairs which vary the
modulus), as presented among the Applications.

4.4.2 Inverse characterization of basic parameters

The most common analysis regarding the wave parameters deals with the transformations between
themselves, so that they result completely charaterized by the corresponding parameterized anal-
ysis (explained in Sect. 4.3.2). Regarding this analysis, the graphical representations have shown
true usefulness on describing –in only one (complex) graph– all of these parameterized transfor-
mations, while also giving geometrical interpretation to the analysis which is addressed.
The most common example of this kind of parameterized graphical analysis is the usual SC,
[Smi39, Smi44], which is no more than the graph of the tranformations of the real-imaginary
parameterized parts of the wave impedance (normalized with respect to the lossless characteristic
impedance) to the reflection coefficient complex plane.
Different versions regarding the SC has arisen in the literature. For example, the GSC, [GDG06],
(see Fig. 4.16a) is extra-parameterized by the phase of the characteristic impedance, ϕZ0

, which
represents, in turn, different combinations of losses/frequency (those ones described by the curves
regarding the inverse characterization when parameterizing ϕZ0). Or, for example, in [WLH09],
a generalized Smith Chart based on defining the transformation from the wave impedance plane
to the reflection coefficient plane in the most generalized form (as parameterized Möbius trans-
formation, [Apo90]) is presented in order to, precisely, generalize different versions of the SC.
Nevertheless, the particular understanding of the GSC (and all the SCs) seen as ”only” one of all
the possible complex transformation between the wave parameters is detached in [Gag01]. This
viewpoint opens the analysis to the study of all the possible complex planes interconnected, espe-
cially for the losses/frequency characterization, as outlined in the direct characterization of wave
parameters presented in Sect. 4.3.2.

However, using the GSC – or any transformation involving the wave parameter complex planes
at the same level– for characterizing the wave parameters in terms of losses/frequency –which is
the goal of the CTLT– is quite a lot inefficient because any change on the parameterizations also
changes the graph in both the normalizations and the extra-parameterization of angle ϕZ0 .
On the other hand, the BCs on the TL are often supposed to be fixed (normally at the end of
the TL). These BCs could be given by the wave impedance at the load, ZL, its inverse: the wave
admittance at the load, YL; or the the reflection coefficient at the load, ρL. Among of them, it
is usual to consider the impedance at the load fixed, because of its physical meaning implies its
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realizability in circuits.
Keeping these ideas in mind, the subsequent natural question is: How the reflection coefficient
varies when changing the characteristic impedance if the impedance at the load is given?
In order to answer this new question (up to know the characteristic impedance has been considered
fixed for each analysis), the idea of transforming the characteristic impedances from the associated
complex plane to the reflection coefficient complec plane when the wave impedance (normally at
the load) is fixed naturally arises in the context of the CTLT. In particular, the transformation
between the real-imaginary parameterized parts of the characteristic impedance to the reflection
coefficient complex plane would play the role of the ”inverse Generalized Smith Chart (iGSC)”.
Nevertheless, as in [Gag01], it should be taken into account all the possible parameterizations
transforming these parameters in both directions (from the characteristic impedance to the reflec-
tion coefficient, and viceversa).
All of these transformations leads to the inverse characterization of basic parameters presented in
this section.

There are some important points to take into accont for this analysis a priori: (i) firstly notice that,
as shown in Fig. 4.17, the reflection coefficient is addressed at the same level as the charactersitic
impedance. Thus, in this case, the reflection coefficient plays the role of ”basic parameter”; (ii)
since the transformations are at a fixed point of the TL, the transformations are only between the
characteristic impedance and the reflection coefficient. On its behalf, the analysis of the propaga-
tion constant in terms of the characteristic impedance or the reflection coefficient could be obtained
by means of lossy/frequency parameterizations, being an example of use of both the direct and
inverse chracterizations a posteriori; (iii) both the limits in the Z0-plane (obtained when denormal-
izing, for example, the Z0n1-plane) and the Z-plane (obtained when dernormalizing the Zn0-plane)
concerning their respective direct characterizations should be taking into account, providing the
inverse characterization of line parameters with the required physical sense and also making this
inverse characterization of basic parameters the complement to the direct characterization of wave
parameters. In this sense, it may be foreseen that ρ will play the role of link between both char-
acterizations, being a wave parameter or a ”basic parameter” depending on the type of analysis:
direct or inverse; respectively; and (iv) this analysis is extends the inverse characterization of line
parameters presented in Sect. 4.3, in the sense that the parameterizations of the characteris-
tic impedance to be transformed to the reflection coefficient complex plane may be seen as the
lossy/frequency parameterizations given by this latter inverse characterization.

As a result of the inverse characterization introduced by means of this section, the problem of
describing the wave parameters in terms of frequency/losses will be able to be solved in an easy
way. The related solution is presented in Ex. 02 in Sect. 5.3 in Chpt. 5 as example of use of this
inverse characterization, acting together with the direct characterization of Z0n1.

For the understanding of the analyis, the inverse characterization is splitted into two different
analysis depending on the origin of the parameterizations: parameterizations of the normalized
characteristic impedance and parameterizations of the reflection coefficient; in a similar to how it
is done in [Gag01]. For this purpose, the normalizations and the subsequent parameterizations are
first motivated to be then defined. Then the graphical and the geometrical analysis are described
in detail. At the end, the practical uses for each parameterization are detached.

Normalizations and parameterizations: As it has been introduced in this section, the nor-
malizations for this inverse characterization are those which allows for analyzing the characteristic
impedance and the reflection coefficient parameterized by the wave impedance, which is fixed for
the analysis at any point of the TL.
Despite this analysis could be referred to any point of the TL, the impedance which parameterizes
the analysis will be the one at the load, ZL. This does not neccesary means fixing the impedance
at the end of the TL, but any fixed point where the load is known. Moreover, this nomeclature is
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helpful for the notation definitions22 (see the notation expressly used in Appendix 4.E).

Recalling the expressions of the characteristic impedance, Z0, in eq. (2.51), and the wave param-
eters: the reflection coefficient at the load, ρL, in eq. (2.84), and the supposed wave impedance,
ZL; defined in the lossy case in Sect. 2.4.1 in Chpt. 2, the following normalizations are defined:

ZLn =
ZL
|ZL|

= eϕZL = cL + jsL, in which (4.61)

cL = cos (ϕZL) , and sL = sin (ϕZL) , and

Z0nL =
Z0

|ZL|
= Z ′0nL + Z ′′0nL = |Z0nL|ejϕZ0 . (4.62)

Regarding these definitions it is important to detach the differences in the notation with respect
to the normalizations concerning the direct characterization of wave parameters, both explained
in Appendix 4.E.

In accordance with the definition of ρL as function of both the characteristic impedance and the
wave impedance, its normalized expression results the same as the denormalized one:

ρLn =
ZLn − Z0nL

ZLn + Z0nL
=
ejϕZL − Z0nL

ejϕZL + Z0nL

≡ ZL − Z0

ZL + Z0
= ρL. (4.63)

Some important facts concerning the definition of these normalizations should be detached: (i)
as it has been seen, the reflection coefficient is the same after the normalization. This, besides
revealing the ”universal” nature of this parameter in the sense that it represents multiple TLs dif-
ferent loaded, is an important property for combining this inverse characterization with the direct
characterization by using the same parameter and so the same associated complex (”only” the
physical interpretation varies between the direct and inverse characterizations); and (ii) the angle
of the impedance at the load, ϕZL , determines the dependence on the load in this characterization.
As a result, it can be said that there exists a clear parallelism between the direct characterization
and the inverse characterization: the reflection coefficient is the link between them, and each char-
acterization is extra-parametrized by angles. This connection leads to solve the most important
analysis to completely characterize the CTLT, and many other TL-related problems.

From these normalizations and the definition of ρL in eq. (4.63), the inverse transformation from
Z0nL to the ρL is solved:

Z0nL = ZLn
1− ρL
1 + ρL

= ejϕZL
1− ρL
1 + ρL

, (4.64)

in which ϕZL ∈
[
−π2 ,

π
2

]
.

Eqs. 4.63 and 4.64 define the transformations between the ρ-plane (ρL-plane) and the Z0nL-plane
in both senses, when parameterizing the normalized parameters ρL and Z0nL in both its real-
imaginary parts and modulus-phase.
The graphical and geometrical analysis are presented together for each type of parameterization
(real-imaginary or modulus-phase) regarding each parameter (Z0nL or ρL).

Graphical and geometrical analysis: If analyzing the expressions which define the transfor-
mations in eqs. (4.63) and 4.64, it is possible to realize that they are conformal mappings, [BC90],
and, in particular, Möbius-type, [Apo90]. Thus, analogously to the analysis of wave parameters

22The subscript ”L” refers to the point in which the load is known.
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Fig. 4.28: Scheme of transformations between the normalized basic parameters regarding the in-
verse characterization of the CTLT referred at the load. The continuous arrows indicates the
transformations between the normalized wave parameters (complex parameterized), whereas the
dashed arrows indicate the extra parameterization of the impedance at the load, ϕZL .

regarding the direct characterization, the lines and circunferences in the plane which acts as ori-
gin of parameterizations transform into circumferences in the other one, which suppose a strong
reduction in the complexty of the related graphical and geometrical analysis.
Due to the simplicity of the a priori resultant curves, it is better to study the transformations
geometrically before analyzing them graphically.
As said before, the transformations are studied from each complex plane: first the normalized
characteristic impedance, and then the reflection coefficient; parameterizing on one hand the real-
imaginary parts, and on the other hand the modulus-phase.

Tranformations from the Z0nL-complex plane

The transformations from the Z0nL-complex plane to the ρ-plane follow eq. (4.63).
In order to be rigorous when dealing with the transformations, the following complex function is
defined:

ρϕZL
: DZ0nL

⊂ C→ DρL ⊂ C

Z0nL  ρϕZL
(Z0nL) =

ejϕZL − Z0nL

ejϕZL + Z0nL

.
(4.65)

This function ρϕZL
is actually a set of functions parameterized by ϕZL , and so the transformations

have to be addressed in the same way.
The function is defined in the domain DZ0nL

. The limits of this domain are obtained by either
the direct characterization of the characteristic impedance (renormalized) or the inverse charac-
terization (which does not have to be renormalized because the ”universal” nature of angles). If
analyzing, for example, the phase parameterizations of the characteristic impedance in the rg-plane
in eq. 4.55 (depicted in Fig. 4.25), it may be seen that the limits of the parameterized curves are
in ϕZ0 = ±π/4, achieved at zero or infiniy, respectively (for the plus or minus), regarding any
parameterization of the modulus. Thus, those Z0nL values contained in the region bounded by the
rays ϕZ0nL

≡ ϕZ0
= ±π/4, define the domain of the functions ρϕZL

.
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Fig. 4.29: Domain for the definition of parameterizations to be transformed from the Z0nL-plane
to the ρ-plane.

In the domain depicted in Fig. 4.29 the real-imaginay parameterized parts of Z0nL, or the modulus
and phase parameterizations are taken to be tranformed to the ρ-plane.
Once the transformations are defined (parameterized by the angle ϕZL), the range of ρL in C will
be solved suppoted by the corresponding graphical analysis.

Real-imaginary parameterized parts: The Z0nL-plane is parameterized in the real-imaginary
parts as follows:

Fig. 4.30: Real-imaginary parameterized curves in the Z0nL-plane.

{
Z ′0nL = a, for which Z ′′0nL ∈ [−a, a] , and

Z ′′0nL = b, for which Z ′0nL ∈ [b,∞[
. (4.66)
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Fig. 4.31: Tranformations of the real-imaginary parameterized parts from the Z0nL-plane to the
ρ-plane when ϕZL = −65◦.

Fig. 4.32: Tranformations of the real-imaginary parameterized parts from the Z0nL-plane to the
ρ-plane when ϕZL = 0◦.
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The tranformations are analytically studied in Appendix 4.I by taking into account the geometri-
cal properties of Möbius transformations: the resultant curves are circumferences (in fact arcs of
circumferences because of the limits of the curves in the Z0nL-plane). For this purpose, it is needed
to find the inverse function of ρL in eq. (5.43), which is equivalent to solve Z0nL from eq. (4.63)
in terms of ρ, so exactly the same to obtain eq. (4.64).

Remark 25. Those functions whose expression is defined as a (parameterized) linear fractional
transformation have inverse, which is direct to obtain. In fact, the inverse function, which is
required to solve the expression of the parameterized curves (”curve levels”) in the plane of the
transformation, is that one defined for the transformation in the opposite direction.

The resultant circunferences parameterizing the real-imaginry parts are (see Appendix 4.I):
(
− a
a+cL

, sL
a+cL

)
: 1
a+cL(

− b
b+sL

,− cL
b+sL

)
: 1
|b+sL|

, (4.67)

respectively.

In Figs. 4.31 and 4.32 the graphical analysis of the transformations of the curves parameterizing
the real-imaginary parts when ϕZL = −65◦ and ϕZL = 0◦, respectively, are depicted. In addition,
some remarkable points are detached in both planes, which are explained in the subsequent geo-
metrical analysis.

Notice that the tansformations described in this analysis play the inverse role of the transformation
in the GSC. Thus, this particular transformation (from the real-imaginary parameterized parts in
the Z0nL-plane to the ρL-plane) definesthe so called ”inverse Generalized Smith Chart” (iGSC).

Before analyzing the graphical results geometrically, the same transformation parameterized by
modulus-phase is next described.

Modulus-phase parameterizations: When the Z0nL-plane is parameterized in its modulus
and phase:
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Fig. 4.33: Modulus-phase parameterized curves in the Z0nL-plane.

{
|Z0nL| = m, for which ϕZ0

∈
[
−π4 ,

π
4

]
, and

ϕZ0 = p, for which |Z0nL| ∈ ]0,∞[
. (4.68)

The transformations are analytically studied in Appendix 4.H, equivalently to the real-imaginary
parameterizations.
The resultant circumferences parameterizing the modulus-phase are (see them in Appendix 4.I):

(
−m

2+1
m2−1 , 0

)
: 2m
m2−1(

0, 1
tan(p−ϕZL )

)
: 1
| sin(p−ϕZL )|

, (4.69)

respectively.
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Fig. 4.34: Tranformations of the modulus-phase parameterizations from the Z0nL-plane to the
ρ-plane when ϕZL = −65◦.

Fig. 4.35: Tranformations of the modulus-phase parameterizations from the Z0nL-plane to the
ρ-plane when ϕZL = 90◦.
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In Fig. 4.34 and 4.35, the graphical analysis of the transformations of the curves parameterizing
the modulus-phase when ϕZL = −65◦ and ϕZL = 90◦, respectively, are depicted.

With respect to the geometrical analysis, overlapping the curves in the graphical analysis are
the same remarkable points as in the real-imaginary parameterizations: the point marked as (A)
characterizes Z0nL = 1 + j0 ≡ 1ej0, which is in the imaginary axis in the ρ-plane:

ρ′′(A) =
1− cos (ϕZL)

sin (ϕZL)
; (4.70)

the points (B) and (C) are those points characterizing Z0nL = 1/
√

2 ± j1/
√

2 ≡ 1e±jπ/4. These
points transform to the maximum and minimum values on the imaginary axis in the ρ-plane:

ρ(B) ≡ ρ′′max =
1−cos(−π4−ϕZL)

sin(−π4−ϕZL)

ρ(C) ≡ ρ′′min =
1−cos(π4−ϕZL)

sin(π4−ϕZL)

; (4.71)

the points (D) and (E) are respectively the minimum and maximum values of the real part of ρ.
Despite obtaining these points in the Z0nL-plane is object of the opposite tranformation (from the
ρ-plane to the Z0nL-plane), solving them is an interesting example of how the graphical analysis
helps the geometrical operations: As it might be seen by means of Figs. 4.31-4.35, the points (D)
and (E) are over the curve parameterized by p = −45◦ if ϕZL > 0 or p = 45◦.

It is important to detach that the transformations from the Z0nL-plane to the ρ-plane (parame-
terized by ϕZLn) regarding this inverse characterizations follow the same form as those from the
Yn0-plane to the ρ-plane (parameterized by ϕZ0) regarding the direct characterization if applying
the following changes: {

ϕZL → −ϕZ0

Z0nL → Yn0

, (4.72)

and viceverse when changing from the direct characterization to the inverse characterization.
This fact helps the use of both transformations -direct and inverse- together, for example changing
between the GSC and the iGSC.

Tranformations from the ρ-complex plane

The transformations from the ρ-plane to the Z0nL-plane follow eq. (4.64).
In order to be rigorous when dealing with the transformations, the following complex function (in
complex variable) is defined:

Z0nL,ϕZL
: DρL,ϕZL

⊂ C→ DZ0nL
⊂ C

ρL  Z0nL,ϕZL
(ρL) = ejϕZL

1− ρ
1 + ρ

.
(4.73)

This function is actually a set of functions parameterized by ϕZL , which supposes a final rotation
in the curves prior to be transformed to the Z0nL-plane. Thus, the transformations following Z0nL

have to be addressed as a set parameterized by ϕZL .
The function Z0nL is defined in the domain Dρ,ϕZL

. This domain depends on ϕZL , and that because
the concordance to be imposed with the function ρϕZL defined in eq. (5.43), whose range has to
be the domain of Z0nL in orther to be them inverse functions. As it may be seen by the graphical
analysis of the transformation ρϕZL , its range in the ρ-plane is delimited by the transformations
of the curves parameterized by ϕZ0

= ±π/4, includying the point (A):
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Fig. 4.36: Different domains of the ρL,ϕZL function: DρL,ϕZL=±π/2 and DρL,ϕZL=0; in which
different parameterized curves are defined to be transformed to the Z0nL-plane.

For example, in case ϕZL = π/2, the upper limit the circumfernce (0, 1) :
√

2, which intersects with
the lower limit in ρ = −1 + j0 and ρ = 1 + j0; the cirfumference (0,−1) :

√
2.

For analyzing the function Zn0L defined in eq. (5.39) graphically, each region DρL,ϕZL
is parame-

terized in its real-imaginary parts or its modulus-phase.

Real-imaginary parameterized parts: The ρ-plane is firstly parameterized in its real-imaginary
parts as follows:



ρ′ = a ∈

[
− 1

| sin
(
π
4 − ϕZL

)
|
,

1

| sin
(
π
4 − ϕZL

)
|

]

, for which ρ′′ = ±

√
1− a2 sin2

(
π
4 − ϕZL

)
− cos

(
π
4 − ϕZL

)
sin
(
π
4 − ϕZL

)
ρ′′ = b ∈

[
− 1

| sin
(
π
4 − ϕZL

)
|
,

1

| sin
(
π
4 − ϕZL

)
|

]

, for which ρ′ = ±
√

1− b2 − 2b

tan
(
π
4 − ϕZL

)

. (4.74)

The tranformations to the Z0nL-plane are studied using the inverse mapping in eq. (4.63), parame-
terizing the real imaginary parts, similarly to the procedure which have been followed in Appendix
4.I for the contrary transformation.
Since the transformations are also Möbius-type, they result in circunferences in the Z0nL-plane
parameterized as: {(

−cL a
a+1 ,−sL

a
a+1

)
: 1
|a+1|(−sL+bcL

b , −sL−bcLb

)
: 1
|b|

. (4.75)
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Fig. 4.37: Tranformations of the real-imaginary parameterized parts from the ρ-plane to the Z0nL-
plane when ϕZL = −65◦.

Fig. 4.38: Tranformations of the real-imaginary parameterized parts from the ρ-plane to the Z0nL-
plane when ϕZL = 0◦.
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In Figs. 4.37 and 4.38 the transformations of the curves parameterized by the real-imaginary parts
from the ρ-plane to the Z0nL-plane when ϕZL = −65◦ and ϕZL = 0◦, respectively, are graphically
represented.

Modulus-phase parameterizations: Now the ρ-plane is parameterized in its modulus-phase:

{
|ρ| = m

ϕρ = p
. (4.76)

The tranformations to the Z0nL-plane are also studied using the inverse mapping in eq. (4.63),
but parameterizing the modulus and phase of ρ, following a similar mathematica procedure to the
one developed in Appendix 4.I for the opposite transformation.
Since the transformations are also Möbius-type, they result in circunferences in the Z0nL-plane
parameterized as: 

(
−cLm

2+1
m2−1 ,−sL

m2+1
m2−1

)
: 2m
|m2−1|(

− sL
tan(p) ,

cL
tan(p)

)
: 1
| sin(p)|

. (4.77)
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Fig. 4.39: Tranformations of the modulus-phase parameterizations from the ρ-plane to the Z0nL-
plane when ϕZL = −65◦.

Fig. 4.40: Tranformations of the modulus-phase parameterizations from the ρ-plane to the Z0nL-
plane when ϕZL = 90◦.
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In Figs. 4.39 and 4.40 the transformations of the curves parameterized by the modulus-phase from
the ρ-plane to the Z0nL-plane are represented when ϕZL = −65◦ and ϕZL = 90◦, respectively.

Physical interpretations: The inverse characterization of basic parameters should be inter-
preted as the analysis of the changes affecting the line parameters when the wave impedance at
any point of the TL is known. Since the wave impedance parameterizes the analysis, all the pa-
rameters under this inverse study are referred to the load, although this does not mean studying
the parameters at the end of the TL.

Typically, the wave parameters are analyzed as a function of basic parameters along the TL, which
is the objective of the direct characterization. These parameters detrmine the relation of the to-
tal equivalent waves, an so the physical meaning. For this purpose, ρ is consiered part of wave
parameters, because it composes the total voltage and current waves separately. In this case,
the characteristic impedance (besides the propagation constant) is considered contant, something
which agrees the definitions regarding the original equations.
But, in the case of the inverse characterization, the analysis deals with study of the variations on
the basic parameters when they change. In this way, it is about knowing how the individual wave
solutions change, and so the phyical meaning is somewhat missed in this sense. Nevertheless, this
analysis gains in the physical interpetation of how the variations of wave parameters affect the
total wave when analyzing ρ, for example when frequency varies.
Thus, the role of ρ should be in reinterpreted in certain way. Here it does not act as a paramter to
compose the wave impedance as final objective, but the parameter which determines the match-
ing when the characteristic impedance varies. As a consequence, this analysis leaves room to the
possibility of varying the characteristic impedance with frequency for example, something that is
inherent to lossy TLs.

The mentioned reinterpretation for the role of ρ makes that some particular cases and remarkable
points in its associated complex plane also do. The points ρ = 1 + j0 and ρ = −1 + j0 (which
correspond to the open circuit (oc) and the short circuit (sc), respctively, regarding the direct
characterization) correpond to the perfect conductor (pc) and the perfect dielectric (pd), that is
Z0 = 0 and Z0 =∞, respectively, in this inverse characterization. Equivalently, if using the inverse
characterization of line parameters, it means that the point (pc) in the ρ-plane is associated to
(r = 0,g → ∞) in the rg-plane, whereas the point (pd) is associated to (r → ∞,g = 0) in the
rg-plane.

On one hand, the transformation from the Z0nL-plane to the ρ-plane has to be understood in terms
of which reflection coefficients produce different parameterizations of the characteristic impedance.
On the other hand, the transformation from the ρ-plane to the Z0nL-plane should be interpreted
in terms of which characteristic impedance produce different parameterizations of the reflection
coefficient.
Both types of (complex) transformations (the transformations in both senses) do not have explicit
physical meaning until the curves of any of the domains are connected, leading to the effective
practical uses of this analysis, for example, when connecting the curves in the Z0nL describing
how the characteristic impedance (in comparison with the impedance at the load, which fixes the
normalization) varies in the whole frequency band.

In any case, it is convinient to detach the role of ϕZL concerning the inverse characterization. Just
like ϕZ0

in the direct characterizations, the parameter ϕZL determines the characterization of the
TL at the load. Thus, this is the parameter which characterizes the load. For example, if the load
is purely capacitive ϕZL = −90◦; if the load is resistive ϕZL = 0◦, and the iGSC to be used in this
case is the one depicted in Fig. 4.32; if the load is purely inductive ϕZL = 90◦, for which the plane
to be used is the one respresented in Fig. 4.35 (in this case, this is not a iGSC becuase it parame-
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terizes the modulus-phase of Z0nL), and if the load is mixed (resistive and capacitive/iductive) the
iGSC to be used is, for example, the one represented in Fig. 4.31.

Practial uses: As it has been foreseen, the inverse characterization of basic parameters is espe-
cially useful when analyzing TLs at the load.
For example, the complex transformations from the Z0nL-plane to the ρ-plane serve to analyze
how the reflection coefficient behaves when the characteristic impedance changes with losses or
frequency. These significant analysis are analyzed in Ex. 02 in Sect. 5.3 in Chpt. 5 as example of
use. These example reveals the usefulness of combining the direct characterization and the inverse
characterization, both referred to the basic parameters.

Regarding the transformation from the ρ-plane to the Z0nL, it may be used to characterize which
characteristic impedances lead to specific values of the reflection coefficient.
An interesting application of this analysis comes when analyzing the characteristic impedances
which lead to decribe ρ along the TL. Normally the wave impedance is described along the TL
through ρ, when it is defined along the TL (this analysis is developed in Ex. 01 in Sect. 5.2
in Chpt. 5). Nevetheless, it is possible to think inversely solving ”Z0nL along the TL” from ρ
described along the TL, and fixing the wave impedance at the load. Then, by using the inverse
characterization of line parameters it is possible to see which losses/frequency parameterizations
respresent the length of the ”inverse” TL.

Remark 26. The inverse analysis not only solves directly which TLs (which losses/frequency) are
associated with different specifications on basic parameters. It is also the analysis which parameter-
izes different behaviors of basic and wave parameters with the lossy/frequency parameterizations,
which is the true advantage of the inverse characterization when parameterizing different physical
properties, for example the TL’s length; or more solutions, for example, superior modes.
For the purpose of parameterized different TL-related problems, the a priori real parameterizations
turn to be complex (see the Applications for having a reference of how complex parameterizations
explain, for example, the behavior of different mode solutions).
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4.5 Conclusions

In this chapter, the CTLT regarding HPWs which propagate in lossy media has been presented
exemplifying the methodology of analysis based on Complex Analysis, which is an interesting al-
ternative to describe in detail the underlying equations regarding the LTLT.

Although the presented analysis of HPW in the frequency domain parameterized by losses is only
an example of how to proceed for analyzing more mode solutions (related to different BCs), do-
mains, and parameterizations, the methodology of analysis has been described in detail, which
leaves many interesting conclusions to detach, serving as guide for future analysis, and also con-
tributing with interesting analytical resources.
Before explaining the results regarding the behavior of HPWs in lossy TLs, it is crucial to outline
the main contributions and interpretations obtained regarding generalized analysis of TLs.

The analysis of TLs is focused on the parameters which describe the propagative solutions. Thus,
characterizing these parameters in the context of the analysis which is intended to be described
(for example, in terms of losses) is the way to obtain the interpretation of the solutions. However,
these (physical) interpretations are preceded by the definition of the (complex) transformations
between the parameters involved. Although these transfomations –which have special intuitive
representation in (complex) planes– lack physical meaning, they suppose the basis for analyzing
any TL-related problem, and thus they have been called ”basic transformations”.
In this context, the inverse characterization, which is presented here to support the GTLT (in
particular the GTLT-v1 introduced in Chpt. 3) for analyzing the influence of losses in TLs, is the
correct way to proceed for any analysis before providing the physical interpretations.

Remark 27. Regarding the LTLT, the inverse characterization arises from answering: ”Which
line parameters parameterize the TL which simulates the propagation of HPWs in lossy media?”;
but the same question could be posed for the interest of parameterizing the TL of different modes,
in different domains, and under different parameterizations.

This inverse characterization (which often will not be achieved easily) requires a solid algebraic
definition of the ”space of parameters” (or ”space of parameterizations”), which is met in the def-
inition of isocomplex numbers (see this definition in Appendix 4.A).
Based on this definition, the analysis of the TL parameters as complex transformations is rigorously
posed: the transformations are defined as complex functions which related complex parameters,
so they are complex variable functions. Thus, these functions are addressed as mappings relate
to Complex Analysis, as well as their properties (for example, conformability, which is crucial for
characterizing the transformations geometrically). The mappings are generically defined as trans-
formations of the real-imaginary parameterized parts or the modulus-phase parameterizations, in
abscense of providing the physical interpretations to the analysus yet.
Moreover, going back in the inverse characterization lets to answer ”which parameterizations (of
basic parameters) come from the total waves (parameterized by the wave parameters)”. In this
latter process, the reflection coefficient loses its original meaning as wave parameter to be consid-
ered as basic parameter for the inverse characterization.

Remark 28. The reflection coefficient becomes the parameter which connect the analysis of basic
parameters and wave parameters for any characterization thanks to the duality here suggested
playing the role of wave or basic parameter depending on the analysis that is being carried out.

With the definition and pursposes of the inverse characterization in mind, the direct characteri-
zation provides the physical sense to the parameterized analysis. Moreover, the transformations
involved in the direct characterization are able be studied within the context of mappings.
The direct characterization refers to all the possible analysis that connect the complex parameter-
izations of the inverse characterization, giving it physical sense, for example, the analyis of basic
parameters in terms of losses.
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Direct characterization Inverse characterzation

• Physical parameterizations
(real): losses, frequency, length,
etc.

• Complex parameterizatons:
real-imaginary/modulus-phase.

• Complex parameters described
by real parameterizations.

• Complex parameters (some-
times particularized to real pa-
rameters) described by complex
parameterizations.

• It describes one physical (real)
behavior

• It parameterizes the specifica-
tions (complex) parameters

• The phase ϕZ0 is the pa-
rameter which characterizes
losses/frequency

The phase ϕZL is the parame-
ter which characterizes the total
waves

Table 4.4: Comparison between the properties of the direct and inverse characterizations.

Furthermore, both the direct and inverse characterizations are based on parameterizations which
are described by angles in any plane or space. This is direct consequence of normalizing the param-
eters involved in the transformations, making the analysis ”universal”, which means that any point
in the normalized complex planes or in the space of parameters represents multiple TLs which keep
the value of this parameter constant.
In this sense, the rg-plane defined from the ”space of parameters” gathers all the definition of the
TL parameters based on angles in only one graph: losses, frequency, the phases of basic parameters,
etc.; that is, all the parameterizations which ”universalize” the analysis.

When looking at the results of the analysis in terms of losses and frequency regarding the direct
characterization, it may be concluded that: (i) the graphical analysis of the resultant parame-
terized curves leads to analyze the TL parameters geometrically, and thus having an alternative
representation of them as parameterized curves, besides the underlying complex expressions; (ii)
the geometrical analysis lets to characterize more complex problems in the same way (geometri-
cally), avoiding the limitations of studying the complex expressions analytically. Related to the
geometrical analysis and the idea of ”universalizing” the characterizations by means of angles, the
phases ϕZ0

and ϕZL have special importance to the parameterizations of losses/frequency for the
direct characterization, and the parameterization of wave parameters (the BCs in any z along the
TL) for the inverse characterization. These parameters determine the (extra) parameterizations
providing the physical meaning or solvability in each case (see Table 4.4).
The analysis in terms of losses and frequency (the direct characterization) explains the particular
cases and approximations, and it is especially important for showing the limits in which the pa-
rameters vary while providing physical meaning to the solutions.

For finishing the characterization of HPWs within the LTLT, the wave parameters representing
the total waves have to be analyzed in the variables they depend on: the length of the TL and
frequency (direct characterization). For this purpose, the analysis presented in this chapter are
applied to solve these TL-related problems within the context of the CTLT, serving as examples
of use, which are presented in next chapter.
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Chapter 4

Appendices

Appendix 4.A

The complex ”space” of parameters for the TL characterization is here presented detaching: (i)
its analytical properties based on its mathematical definition; (ii) its graphical and geometrical
representation, including some interesting projections useful for the TL analysis, for example the
rg-plane; (iii) its physical interpretation in terms of the parameters of the TL; and (iv) its practical
uses in characterizing any TL.
Although most of these properties are presented particularized to the analysis of harmonic plane
waves in lossy media in the frequency domain, this ”space” is useful for studying any type of pa-
rameterizations concerning guided waves.
The definition of the ”space” of parameters is crucial for understanding and defining the complex
transformations as direct or inverse functions.

Definition: The orgin of this ”space” of parameters is direct consequence of the possibility of
”universalizing” the curves which represent the TL parameters (in particular the basic parameters)
in their respective normalized complex planes, without affecting the physical meaning of the pa-
rameters involved. In this sense, it has been seen that the parameterizations reduce the complexity
of analyis taking advantage of its physical meaning. For example, the characteristic impedance
regarding the lossy case, Z0, introduced in eq. (2.51), depends on four parameters: R, L, G, and
C; besides the frequency, ω. If the intended analysis consists in characterizing Z0 in terms of lossy
parameters, an appropriate normalization with respect to the losseless characteristic impedance,
Z0,sp, introduced in eq. (2.94), leads to reduce the parameterizations to two (the frequensy is
included within these couple of parameterizations). So, in this case, the analysis interpreted in
terms of losses is appropriately reduced, as it has been developed in Sect. 4.3.1 for the ffa.
These facts –and the experience of studying multiple parameterized analysis which have been de-
veloped in the same way– lead to think that any of the proposed analysis could be done by means
of the appropriate parameterizations of TL parameters, which motivates the definition and use of
the ”space” of parameters introduced here.

For the deinition of the ”space” of parameters, firstly start considering tuples, τ , of three elements:

τ ≡ (r′, g′, jω) , (4.A.1)

r′, g′, jω ∈ C,

in which r′ = R/L, g′ = G/C, and jω = jω = j (ω′ + jω′′) = jω′ − ω′′. These definitions are
generic for multiple purposes: the a priori real parameters R, L, G, and C, and also ω are com-
plexified, and they particularize accordingly the study that is being carried out.
In the frequency domain ω ≡ ω′ ∈ R+ ∪ {0}, so the third element of the tuple in eq. (4.A.1) is
jω ≡ jω′ ∈ I23.

For the graphical understanding of the the operations which are going to be defined involving
τ -tuples, the components r′ and g′ are considered real positive or zero. This case corresponds with

23The imaginary part of ω, ω′′, would be the alternative form of considering losses if the solutions of wave equations
were seeking in the ”phase constant domain”.
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parameterizations of HPWs:

τHPW ≡ τ ≡ (r′, g′, jω) , (4.A.2)

r′, g′ ∈ R+ ∪ {0}, and jω ∈ I+ ∪ {0}.

Nevertheless, this particularization could be generalized in case r′ and g′ were complex by using
hipercomplex numbers accordingly (see for example the documents in [Ola00] for having a full
reference of the definitions and operations regarding hipercomplex numbers).

Some operations involving τ -tuples are defined:
The sum of two τ -tuples, τ1 and τ2 is defined as

τ1 + τ2 = (r′1, g
′
1, jω1) + (r′2, g

′
2, jω2) = (r′1 + r′2, g

′
1 + g′2, jω) , (4.A.3)

for which is mandarory that ω1 = ω2 = ω,

otherwise the sum (+) is not defined.
Because two tuples must have the same third component, which is a imaginary number (∈ I) in
the frequency domain, these numbers are called isocomplex numbers.
Under this premise, the τ -tuples (∈ H ≡ C2 × I+ ⊂ C3) form an Abelian group ((H,+))24.
For the practical uses of these isocomplex numbers, it is neccesary to emphasize the particular
sums:

τr = (r′, 0, jω) + (0, 0, jω) , and (4.A.4)

τg = (0, g′, jω) + (0, 0, jω) , (4.A.5)

so τi,+ = (0, 0, jω) acts as the sum identity for isocomplex numbers whose third component is jω.
The τi,+-tuple is written simplified as jω.
Notice that the numbers τr and τg represent, separately, complex numbers, but their sum can not
be interpreted in terms of the addition of complex numbers.
Basically, the sum operation defined in eq. (4.A.3) serves to define isocomlex numbers that merge
r′ and g′ components, so any isocomplex number τ may be separated into its τr and τg parts, so
that τ=τr+τg.

An alternative representation for isocomplex numbers is the polar form. The polar form of isocom-
plex numbers follows the notation

τ ≡ ρτ∠θτ + jωτ , (4.A.6)

in which ρτ =
√
r′2 + g′2 ∈ C , and θτ = tan−1 (g′/r′) = tan−1 (1/c) ∈ C.

The sum operation with the sum identity (jωτ ) is used in this notation to emphasize the dependence
on ω of the addend ρτ∠θτ + jωτ ≡ (r′, g′, jω).
The modulus ρτ and the polar angle θτ are generally defined in C. Nevertheless, for HPW they
are (positive or zero) real numbers, ρτ ∈ [0,∞[ and θτ ∈ [0, π/2].
The tuples are obtained by transforming the polar form with the following changes:

r′ = ρτ cos (θτ )

g′ = ρτ sin (θτ )

ω ≡ ωτ
, (4.A.7)

in which the functions cos(◦) and sin(◦) have in general arguments in C (but in R+ ∪ 0 in case of
parameterizing HPWs).
The polar form is especially useful for defining the product between isocomplex numbers below.

24Notice that for the τ -tuples representing harmonic plane waves are within an Abelian group (with inverse of the
sum), it is neccesary that r′, g′ ∈ R, not in R+, as it has been particularized in this appendix. Nevertheless, the
inverse element of the sum is not used in practice.
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The product of two τ -tuples is defined in porlar form as

τ1 · τ2 = (ρτ1∠θτ1 + jω1) · (ρτ2∠θτ2 + jω2) =

= (ρτ1ρτ2 − ω1ω2)∠ (θτ1 + θτ2) + j (ω1ρ2 + ω2ρ1) ,
(4.A.8)

so the modulus of the product in its polar form is ρτ1·τ2 = ρτ1ρτ2−ω1ω2, the angle θτ1·τ2 = θτ1 +θτ2 ,
and the third component is the ”beat” of the frequencies of the isocomplex factors weighted by the
modulus, ωτ1·τ2 = ωτ1ρτ2 + ωτ2ρτ1 .
Notice that, in this case, the third components of the factors do not have to be the same (as for
the sum), although they will be when using isocomplex numbers for practical purposes.
In this case the product indentity is

τi,· = 1∠0 + j0 (≡ (1 + j0)∠ (0 + j0) + j0), (4.A.9)

and, by definition, τ = τ · τi,·.
From the definition of τi,·, the inverse of an isocomplex number is defined as

τ−1 ≡ 1

τ
=

[(
ρτ

ω2
τ + ρ2

τ

)
∠ (−θτ )

]
− j

(
ωτ

ω2
τ + ρ2

τ

)
. (4.A.10)

The isocomplex numbers form a Abelian group with the product (·) defined above, ((H, ·)).

Proof. It has been seen that: (i) the product of two isocomplex numbers is, by definition, another
isocomplex number (closure); (ii) there is an identity element, τi,·, defined in eq. (4.A.9); and
(iii) the inverse for each isocomplex number (except for τ0 = 0∠θτ0 + j0) is denoted as τ−1, as
introduced in eq. (4.A.10).
The proof of the commutativity is direct by using the conmmutativity between complex numbers.
The associativity is proved as follows: for all τ1, τ2, and τ3 in H, the associativity would mean:

τ1 · (τ2 · τ3) = (τ1 · τ2) τ3 ≡ τ3 · (τ1 · τ2) . (4.A.11)

The l.h.s. in equation before is developed as

τ1 · (τ2 · τ3) = (ρτ1∠θτ1 + jωτ1) [(ρτ2ρτ3 − ωτ2ωτ3)∠ (θτ2 + θτ3) + j (ωτ1ρτ2 + ωτ2ρτ1)] =

= (ρτ1ρτ2ρτ3 − ρτ1ωτ2ωτ3 − ωτ1ρτ2ωτ3 − ωτ1ρτ3ωτ2)∠ (θτ1 + θτ2 + θτ3) +

+j (ωτ1ρτ2ρτ3 − ωτ1ωτ2ωτ3 + ρτ1ρτ2ωτ3 + ρτ1ρτ3ωτ2) .

The r.h.s is

τ3 · (τ1 · τ2) = (ρτ3∠θτ3 + jωτ3) [(ρτ1ρτ2 − ωτ1ωτ2)∠ (θτ1 + θτ2) + j (ωτ1ρτ2 + ωτ2ρτ1)] =

= (ρτ3ρτ1ρτ1 − ρτ3ωτ1ωτ2 − ωτ3ρτ1ωτ2 − ωτ3ρτ2ωτ1)∠ (θτ1 + θτ2 + θτ3) +

+j (ωτ3ρτ1ρτ2 − ωτ1ωτ2ωτ3 + ρτ3ρτ1ωτ2 + ρτ3ρτ2ωτ1) .

If comparing the developed l.h.s. and r.h.s. term by term, it can be seen they are the same, so the
associativity is proved.

However, the isocomplex numbers forming a group with the sum and product as defined above
((H,+, ·)) is not possible because the heterogeneity of these operations causes that the distributive
property can not be verified. Nevertheless, this property is not crucial for the practical purposes
of isocomplex numbers.

The main usefulness of isocomplex numbers is when using them in the product. In this sense, it is
useful to known the closed expression of the square root of an isocomplex number,

√
τ1 = τ2.

Using the 2nd power:

τ1 = (±τ2)
2

,
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indentifying the modulus, phase and the term in j, and solving those concerning τ2, it leads to
ρτ2 = ±

√
ρτ1+
√
ρ2τ1

+ω2
τ1

2

θτ2 =
θτ1
2

ωτ2 = ± ωτ1√
2
√
ρτ1+
√
ρ2τ1

+ω2
τ1

.

Thus, the square root of τ = ρ∠θjω is:

√
τ = ±

√
ρ+

√
ρ2 + ω2

2
∠θ/2± j ω

√
2
√
ρ+

√
ρ2 + ω2

, (4.A.12)

for which the sign is accordingly chosen in terms of the domain of interest, for example only the
positive solution is valid for describing parameters of HPWs in the frequency domain.

Graphical representation and geometrical interpretation: The so called isocomplex num-
bers can be represented in a complex ”space”. Strictly speaking, this ”space” of numbers is not an
Euclidean space, althoufh the graphical representation may help the understading of the definition
of these numbers, and also some of their properties based on geometrical analysis. Moreover, these
geometrical properties have clearly correspondence with the study of parameterizations in complex
functions representing the TL parameters, and thus the representation shows a lot of usefulnesses
in the TLT.

The representation of isocomplex numbers is, on one hand, clearly inspired by the representation
of complex numbers in a complex plane but, in the other hand, influenced for the physical meaning
of the parameterizations in use in the CTLT, and how they parameterize (by pairs, besides the
frequency) the TL parameters.
In this section, the graphical representation of isocomplex numbers in the ”space” H is introduced
together with the graphical/geometrical interpetation of the operations between themselves.
Since H is in C3, the most general graphical representation of isocomplex numbers (that would
be in a space of 3 × 2 coordinates) is not possible. However, the particularization of isocomplex
numbers for representing the real lossy parameterizations and frequency regarding HPWs can be
afforded in a space affine to R3+, which is able to be depicted. The generalization would be done
by considering each axis as complex.

The tuple representing τ may be plot in a 3-axis space as:

Fig. 4.41: Gaphical representation of the tuple (r′, g′, jω) which represents an isocomplex number
in its ”space”.

Notice that the components are represented ortogonally, making those independent. Moreover,
the modulus of the polar form corresponds with the modulus, ρ, in the [r′, g′]-plane, whereas the
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phase, θ, is the angle between these componentes, measured from the r′-axis.
This represenation allows for defining the isocomplex numbers in an intuitive way. In addition, the
graphical representation lets to define the modulus of an isocomplex number25, |τ |, as the ”length”
of the ray which goes between the origin and the point locating τ in the ”space”, whereas the angle
of the isocomplex number26, ϕτ , is the angle which forms this ray with the [r′, g′]-plane:

Fig. 4.42: Graphical definition of the modulus and phase of an isocomplex number represented
within its ”space”.

As said before, the isocomplex numbers τr and τg defined in eqs. (4.A.4) and (4.A.5), respectively,
are of special interest. They are represented as:

Fig. 4.43: Representation of the isocomplex numbers τr and τg in the ”space” of parameters.
The angles of these tuples are ϕr = tan−1(1/r) and ϕg = tan−1(1/g), in which r and g are the
parameterizations of losses for the ffa.

If these tuples τr and τg are added with the rules of the sum (ωτr = ωτg ), the result is represented
as follows:

The resultant tuple is the τc-tuple, which is also of great usefulness in the analysis of TL parameters
when frequency is variable.
This is also an example of how to add isocomplex numbers graphically.

The isomplex numbers τr and τg can form a ”plane”: the rg-plane. This ”plane” arises when adding
the τr and τg convenientely weighted by coefficients αr and αg, for which ”conevenientely” means
that αrτr and αgτg must have the same ω-component in order to be able to be added according to
the definition of the sum in eq. (4.A.3).

A generic coefficient α is defined in the form of iscomplex numbers as:

α = α∠0 + j0, α ∈ C.

25Notice the difference between the modulus of an isocomplex number, |τ |, and the modulus of the polar form,
ρ ≡ ρτ .

26Notice that the angle of the iscomplex number, ϕτ , is completely different to the angle of the polar form, θτ .
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Fig. 4.44: Representation of the sum of the isocomplex numbers τr and τg in the ”space” of
parameters. The angle of the resultan tuple is ϕc = tan−1 ((r′ + g′)/ω) ≡ tan−1(1/ωn), whereas
the angle of the polar form is θc = tan−1(g′/r′) = tan−1(1/c). These angles are the frequency
parameterizations used in the vfa.

Notice that this definition makes that any ray in the ”space”, for example that one which represents
τc in Fig. 4.44, can be represented as

c-ray: {τ ∈ H\τ = α (τr + τg)} ,. (4.A.13)

The ”unitary” isocomplex numbers, τ̂r and τ̂g which represent τr and τg, respectively, with coeffi-
cients αr = r′∠0 + j0 and αg = g′∠0 + j0, also respectively, are:{

τ̂r = 1∠0 + j ωr′ ≡ 1∠0 + j/r

τ̂r = 1∠π2 + j ωg′ ≡ 1∠π2 + j/g
. (4.A.14)

Thus, the rg-plane is defined as:

rg-plane: {τ ∈ H\τ = αr τ̂r + αg τ̂g} , (4.A.15)

, in which αr = r′∠0 + j0, and αg = g′∠0 + j0.

Notice that, graphically in the ”space”, the rg-plane is the horizontal plane elevated ω:

Fig. 4.45: The rg-plane defined from the sum of the isocomplex numbers τr = αr τ̂r and τgαg τ̂g,
elevated ω.

The rg-plane is referred to ω and the modulus of the components αr and αg should be referred to
ω leading to the coordinates (r, g) on this plane (or (ωn, θc) if writing them in polar form) which
implicitly depend on ω (except to θc).
Thus, rg-plane is not and Euclidean plane but a plane in which different angles are ”measured”:
the parameters r, g, and ωn represent angles in the ”space”, whereas c represents the same angle
in each horizontal plane parameterized by ω.
Another way to understand the coordinates in the rg-plane is seeing them as the inverse of the
third component of the unitary tuples τ̂r and τ̂g defined in eq. (4.A.14).
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Concerning the graphical representation of the product between isocomplex numbers, it is impor-
tant to detach the properties when interpreting this operation in terms modulus (|τ |) and phase
(ϕτ ).
The modulus of the product of two isocomplex numbers is the product of their modulus, whereas
the phase of the product is the sum of the phases of the isocomplex numbers involved.
Analogously, this can be extended to obtain the modulus-phase relations of product with the in-
verse, the power, and the roots.

Proof. The identities with modulus and phase regarding the product of isocomplex numbers are
proved. The properties regarding the rest of operations based on the product could be proved
following a similar procedure.

The product of two isocomplex numbers τ1 and τ2 has been defined in eq. (4.A.8). The modulus
of this product is:

|τ1 · τ2| =
√
ρ2
τ1·τ2 + ω2

τ1·τ2 =

√
(ρτ1ρτ2 − ωτ1ωτ2)

2
+ (ρτ1ωτ2 + ρτ2ωτ1)

2
=

=
√
ρ2
τ1ρ

2
τ2 + ω2

τ1ω
2
τ2 + ρ2

τ1ω
2
τ2 + ρ2

τ2ω
2
τ1 =

√(
ρ2
τ1 + ω2

τ1

)√(
ρ2
τ2 + ω2

τ2

)
= |τ1| · |τ2|,

which is equal to the product of the modulus, as it has been noted.

On the other hand, the phase of the product of τ1 and τ2 is:

ϕτ1·τ2 = tan−1

(
ρτ1ωτ2 + ρτ2ωτ1
ρτ1ρτ2 − ωτ1ωτ2

)
= tan−1

( ωτ1
ρτ1

+
ωτ2
ρτ2

1− ωτ1
ρτ1

ωτ2
ρτ2

)
=

= tan−1

(
tan (ϕτ1) + tan (ϕτ2)

1− tan (ϕτ1) tan (ϕτ2)

)
= tan−1 (tan (ϕτ1 + ϕτ2)) = ϕτ1 + ϕτ2 ,

having applied the definition of the tangent of the angle sum, to conclude that the phase of the
product is the sum of the phases of the factors in it.

These properties regarding the product and the similarities with the product of complex (or bi-
complex) numbers, let to define the process of ”complexifying” isocomplex numbers, ζ, as

ζ: H→ C (C2)

τ  z = ζ(τ) = |τ |+ jϕτ ,
(4.A.16)

and the process of ”isocomplexifying” complex numbers (that is, generating isocomplex numbers),
δθ,

δ: C (C2)→ H
z  τ = δθ(z) = |z|∠θ + jϕz.

(4.A.17)

Graphically:

Notice that the process of ”isocomplexifying” complex numbers is associated to the ”complexifica-
tion” as its inverse, so it inherits θ (δθ), or explicitly defines θ by convention:

Complex number Associated θ [rad] (in the polar form)
r′ + jω 0
g′ + jω π/2
j1 (≡ j) 0



APPENDIX 4.A 171

Fig. 4.46: Graphical representation of the ”complexification” of isocomplex numbers (z = ζ(τ)),
and ”isocomplixification” of complex numbers (τ = δθ(z)).

Fig. 4.47: Graphical representation of the product of two isocomplex numbers τr and τg (τr · τg)
and the corresponding operation (zr · zg) in the complex plane.

Keeping these properties and rules in mind, the multuplication of two isocomplex numbers results
much more intuitive.
The following example serves to illustrate the product of two isocomplex numbers and the corre-
spondence in the complex plane.

The isocomplex numbers form a group with the product with some interesting properties to split
the dependence on the parameterizations, and also for exaplaining graphically their influence for
composing any expression in terms of their product.
Moreover, the direct relation with complex numbers allows for defining an alternative way to rep-
resent complex values, very useful for the graphical analysis.

Physical interpretations: The definition of isocomplex numbers is clearly related to the pa-
rameterizations of the TL. In fact, these numbers split up for parameterizing the TL, making use of
the geometrical interpretation underlying their definition an the intuitive graphical representation.
However, the use of isocomplex numbers should be explained in the contexto of both the direct
and inverse characterization of the TLT.
This section is intended to explain the relationship between the definition of isocomplex numbers
together with the geometry in the ”space” of isocomplex numbers and the physical interpretation
based on the parameters of the TL. Making this connection explicit is crucial for using the isocom-
plex numbers with practial purposes in the analysis of TLs. As a result of this relation, the space
of isocomplex numbers is addressed as the space of parameters.

As it has been presented in the CTLT, the ”universal” analysis of basic parameters in terms of
parameterizations of losses or frequency parameterizations for the ffa and the vfa, respectively, can
be afforded by two parameterizations for each case: r and g, and c and ωn.
As it has been seen in the definition and geometrical analysis of isocomplex numbers, these pa-
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rameterizations has direct representation as angles in the ”space” of isocomplex numbers (see Figs.
4.43 and 4.44):

r ↔ ϕr,

g ↔ ϕg,

c↔ θc,

ωn ↔ ϕc.

Thus, it can be said that angles in the space of isocomplex numbers parameterize different analysis
of the TL, and so this ”space” is addressed as the space of parameterizations.
The reason of these angle parameterizations is found in the parameterization of the analysis in
the frequecy domain. Since the problem is parameterized by ω, any parameter so it is, with the
exception of that parameter which parameterizes the TL in the whole frequency band (c). This is
the reason for stablishing jω as orthogonal axis in the ”space”, in order to have the possibility of
being each angle parameterization shared with frequency.
In this sense, notice that angles in general universalize the study in themselves because they fix
the relation between two parameterizations, for example conductor losses and frequency in r (ϕr).

The ”space” of isocomplex numbers shows all the possible combinations of line parameters which
lead to characteize the TL uniquely. Each one of the two parameterizations regarding any TL
analysis is represented by a surface in the space of parameters. For example, the parameterization
of the conductor losses is represented as the ”plane” inclined ϕr:

Fig. 4.48: Example of graphical representation of the r-plane, that is the points in the space of
parameters numbers parameterized by r.

Since the parameterizations concerning any TL analysis are defined by pairs representing surfaces,
their intersection is a curve which represents all the TLs parameterized by both parameterizations.
For example, a straight line arising from the origin of the space of parameterizations represents all
the TLs parameterized by r and g (the intersection between the r- and g-planes) for the ffa:

Fig. 4.49: Example of graphical representation of the r- and g-planes, and the intersection denoted
as the rg-curve which represents all the possible TLs parameterized by r and g in the ffa.
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In this example, the curve which results by the intersection of the r- and g-planes is denoted as
the rg-curve.
This geometrical interpreation of the parameterizations in the space may be extended for every
pair of parameterizations. In particular, the c-planes are those planes which are folded θc from the
g = 0-plane. Since the jω-axis is completely contained within these c-planes, c is the parameteri-
zation used for describing all the TLs in the whole frequency band. In this sense, the sum of the
tuples parameterizing r and g weighted by the same coefficients leads to the curves (the c-rays in
eq. (4.A.13)) which define the vfa.

The arrangement of all the curves intersectioning the surfaces can be plotted in a plane whose axis
are the parameterizations (then angles) under study. Following the example above, the rg-plane
is the ”plane” whose axis are the parameterizations of losses for the ffa. Rememeber that this
plane (see it in Fig. 4.A.15) is algebraically defined by the linear combination of the unitary tuples
following eq. (4.A.14) –in this example when parameterizing the TL with r and g–, whose third
components are the inverse of the parameterizations of losses in the ffa.

Furthermore, the definition of the basic parameter of the TL in terms of different types of parame-
terizations for each intended analysis using complex quantities, together with the ”isocomplexifica-
tion” of these complex parameters, lets to define the parameters of the TL in terms of isocomplex
numbers in the same space of parameters. The process of ”complexifying” these isocomplex num-
bers is, esentially, the way to see the parameters of the TL as transformations.
The main advantage of this physical interpretation is on seeing some physical properties mapped
on the parameters graphically, for example the parameters (including frequency) which leads to
the same phase of the characteristic impedance:

Fig. 4.50: Example of graphical analysis of the curves in the space of parameterizations which keep
the angle of the characteristic impedance constant and its compact representation in the rg-plane.

In the graphical example above, the points that conserve the difference between the ϕr and ϕg
constant represent the TLs with the same ϕZ0

.
These interpretations reveals some interesting practical uses of isocomplex numbers when charac-
terizing TLs.

Practical uses The isocomplex numbers, as they have been defined and interpreted playing the
role of parameterizations of any TL, show great advantages when parameterizing it.
In this section the practical uses of these numbers in relation to the characterization of TLs are
detached.
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The definition of isocomplex numbers results crucial when seeing the basic parameters as complex
transformations from different parameterizations in the ”space” of these numbers.
Moreover, these numbers are important for extending the analysis to the characterization of wave
parameters, as it is exemplified in Chpt. 5, by means of examples of use of them in the inverse
characterization, at the same time the analysis concerning the direct characterization is used.
In this sense, any curve in the space of parameters, or equivalently in the rg-plane, can be trans-
formed by means of the definition of TL parameters as functions whose domain is these regions.
In particular, the rg-plane as defined in eq. (4.A.15) and represented in Fig. 4.45, just as it
has been interpreted in the previous section in terms of the parameterizations for characterizng
the TL, is especially useful for depicting in a simple plane the curves which are the origin of the
transformations in the direct characterization. Thus, this representation offers a ”compact tool”
for characterizing TL.

Because of the physical interpretation the rg-plane has in terms of parameterizations, it explains
geometrically the origin different kinds of them. Thus, this plane (in fact, it is an hyperplane if
spliting the axis in its real and imaginary parts) is useful for determining which parameterizations
lead to specific behaviors of TL parameters, for example, which parameterizations make constant
the phase of the characteristic impedance, as it is graphically presented in Fig. 4.50. In this sense,
the greatest usefulness of these numbers is in characterizing the TL inversely.

Related to the inverse characterization, the rg-plane is the region in which not only the parameter-
izations appear explained, but also from which the TL parameters, especially the basic parameters,
are characterized as functions.
For the purpose of characterizing the basic parameters of the TL in the rg-plane, the curves rep-
resenting orthogonal parameterizations of the basic parameters, e.g. real and imaginary parts of
basic parameters, are depicted on this plane playing the role of curve levels of the functions which
represent them.
This inverse characterization can be done by solving the inverse function related to the one origi-
naly defined in the direct characterization for each parameter under study. This anlysis is done in
the inverse characterization of the CTLT (CTLT-v1.0b) in Sect. 4.4.2 presented in this chapter.

Since the rg-plane may act as the domain of the complex functions parameterized in different ways,
for example parameterizing the losses in the ffa, or the frequency in the vfa, it gives raise to define
functions which, acting together with those ones related to the inverse analysis of the parameters
of the TL, solve integrally a particular problem.
This can be seen clearly when presenting practical uses of the inverse characterization, but here
the role of the rg-plane is intended to be detached as the domain where doing these calculus: not
only integral, but also differential, geometrical, etc.

Moreover, both the graphical and geometrical analysis help solving the inverse function, while see-
ing graphically the properties of the TLs at the same time.
Many times finding the solution related to a problem is not feasible by analytical procedures but
graphical or geometrical. For example, the definition of the rg-plane in the analysis of HPWs lets
to solve the inverse function of basic parameters in an easy way when representing g vs. r in the
rg-plane, which is based on solving the related functions in the ffa, to be then extended to any
type of parameterizations becuase their geometrical reprsentation in rg-planes is well known as a
consequence of the physical interpretation.

In addition, multiple physical interpretations of TLs which are a priori disconnected with the rg-
plane could be mapped on it. For example, the TL’s length is able to be ”simulated” by means of
the imaginary part of the axis in the rg-plane when complexifying them. This is a clear example of
the usefulness and application (see it in Applications) of the ”space of parameterizations” (and,
in particular, the rg-plane) when parameterizing the TL completely.
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Remark 29. The rg-plane is the region defined from the ”space” of isocomplex numbers useful
for the analysis of TLs in different ways: (i) it explains the parameterizations of losses or fre-
quency, and many others like anglular parameterizations, or even the length of the TL; (ii) it is
the domain for defining the (direct) functions representing different TL parameters regarding the
direct characterization; and (iii) it is the region of the range of the defined inverse functions for the
inverse characterization. Moreover, it presents some graphical and geometrical properties regard-
ing the definitions of TL parameters both directly and inversely, which makes it a very interesing
”analytical tool” for supporting the CTLT.
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Appendix 4.B

The maximum value of Z0n1 is on the curve parameterized by r = 0 so n = 1. Particularizing the
general equation in eq. (4.8):

|Z0n1| |r=0 =
√

cos (2ϕZ0), (4.B.18)

so
Z ′′0n1 =

√
cos (2ϕZ0) sin (ϕZ0) . (4.B.19)

If differentiating eq. (4.B.19), the maximum is obtained when it verifies

cos (2ϕZ0) cos (ϕZ0) = sin (2ϕZ0) sin (ϕZ0) . (4.B.20)

Now applying trigonometric identities, it leads to the equivalent condition for obtaining the maxium
of Z ′′0n1 when

tan (ϕZ0) =
1

3
, (4.B.21)

so ϕZ0
= π/6 for Z ′′0n1 to be the maximum. Substituying this value of ϕZ0

in eq. (4.B.19), the
maximum of Z0n1, Z0n1,max = 1/

(
2
√

2
)
.

On the curve parameterized by r = 0 it means that g =
√

3 so in eq. (4.3), this makes Z0n1 =
1/
√

1− j3.
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Appendix 4.C

The minimum of βn1 = 1. It is interesting to known at which angle ϕγ this minimum happens.
The expression of βn1 in terms of ϕγ and one of the parameterizations of losses (remember that
this expression has the same form for the r- and g-parameterized curves) is

βn1 =

√
|n|√

− cos (2ϕγ − ϕn)
sin (ϕγ) , (4.C.22)

having choose the parameterization for r, for example.

If differentiating 4.C.22, the minium is obtained when

sin (2ϕγ − ϕn) sin (ϕγ) = − cos (2ϕγ − ϕn) cos (ϕγ) (4.C.23)

verifies.
Now if applying some trigonometric identities, the equation before reduces to

− cos (ϕγ − ϕn) = cos (ϕγ − ϕn) , (4.C.24)

which is fulfilled if and only if

ϕγ =
π

2
+ ϕn. (4.C.25)

As a consequence, the value of γn1 for the curve parameterized by n (d) in which βn1 is minimum
is γn1,r−tan = tan (|ϕn|) + j ≡ r + j (γn1,g−tan = tan (|ϕd|) + j ≡ g + j).
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Appendix 4.D

The general equation of the curves which result from the geometrical analysis of basic parameters
regarding the vfa is here obtained.

Starting with the expression of the characteristic impeance in eq. (4.20), the square of Z0n1 leads
to identify the real and imaginary parts,

{
Z ′

2

0n1 − Z ′′
2

0n1 =
ω2
n+sin(θc) cos(θc)
ω2
n+sin2(θc)

2Z ′0n1Z
′′
0n1 = ωn(sin(θc)−cos(θc))

ω2
n+sin2(θc)

. (4.D.26)

From the first case, ω2
n is easily solved as

ω2
n =

sin (θc) cos (θc)− sin2 (θc)
(
Z ′20n1 − Z ′′20n1

)
Z ′20n1 − Z ′′20n1 − 1

, (4.D.27)

to be replaced in the expression of the 4th power of the modulus of Z0n1:

(
Z ′20n1 + Z ′′20n1

)2
=
ω2
n + cos2 (θc)

ω2
n + sin2 (θc)

, (4.D.28)

which, after operating and substituying tan (ϕc) = 1/c leads to obtain the general expression of
the characterisic impedance parameterized by c(

Z ′20n1 + Z ′′20n1

)2
= (c+ 1)

(
Z ′20n1 − Z ′′20n1

)
− c. (4.D.29)

Eq. (4.26) is the general equation of the Cassini ovals [Law72]. It can be written in polar form as

|Z0n1| =



√√√√√(c+ 1

2

)cos (2ϕZ0) +

√(
c− 1

c+ 1

)2

− sin2 (2ϕZ0)


if ϕZ0 >

1

2
sin−1

(
|c− 1|
c+ 1

)
√√√√√(c+ 1

2

)cos (2ϕZ0
)−

√(
c− 1

c+ 1

)2

− sin2 (2ϕZ0
)


if ϕZ0 <

1

2
sin−1

(
|c− 1|
c+ 1

)
for which (4.D.30)

ϕZ0
∈
[
0,
π

4

[
.

On the other hand, the expression of the general equation of the propagation constant parameter-
ized by c from eq. (4.28) may obtained by similar procedure: identifying the real and imaginary
parts of the square of γn2 for solving ωn to be substituyed into the 4th power of its modulus; leading
to (

α2
n2 + β2

n2

)2
= 4

α2
n2β

2
n2

(cos(θc)+sin(θc))
2

[
1 +

α2
n2β

2
n2

(cos(θc)+sin(θc))
2

]
+ 4 cos2 (θc) sin2 (θc), in which (4.D.31)

ϕc = tan−1
(

1
c

)
.

The general equation of γn2 parameterized by c does not fit any set of (quartic) curves, but specific
curves for particular cases of c. For example, the curve parametrized by c = 0 (c �), is the so
called Bullet nose, [Law72].
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The expression of the general equation of the propagation constant parameterized by ωn is obtained
by solving c from the system of the separated real and imaginary parts of gamman2 square, leading
to

α2
n2 − β2

n2 =
1

ω2
n

(
α2
n2β

2
n2

)
− 2ω2

n − 1. (4.D.32)

This equation describes a set of quartic curves parameterized by ωn which are unknown in the
literature regarding planar curves.
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Appendix 4.E

An exaplanation of the notation used for the normalizations using in this chapter (and througout
the Thesis book) is given. The purpose of explaining the symbols in the notation will serve to the
better understanding the text.

Fig. 4.51: Generic notation for a normalized parameter X(x) whose normalization is done with
respect to Y .

In Fig. 4.51, a generic typography of the notation of a normalized parameter is presented to explain
each of the particular notations used in this book:

(i) The symbol X(x) refers to the parameter to be normalized (the ”normalized”). The subscript
is sometimes ommited (e.g. the generic wave impedance, Z), but normally it refers to one
specific parameter (e.g. the characteristic impedance, Z0).

(ii) The subscript n (”n”) has to be read as ”normalized with respect to” (or ”normalized over”)
to be the notation well interpreted.

(iii) The subscript Y (”Y ”) refers to the ”normalizer” parameter (the ”normalizer”, which is
always real in the analysis presented in this book for the angle conservation of the ”normal-
ized”). It may refer to: (i) a particular case of the ”normalized” (in this case the ”normalizer”
is represented by a number different from ”0”, e.g. ”1” refers to the lossless case); (ii) another
parameter (in this case the ”normalizer” is a letter or ”0”, e.g., ”L” refers to the normaliza-
tion with respect to the modulus of the impedance at the load); or (iii) the modulus of the
”normalized” (in this case the ”normalizer” is omitted).

The followng chart lists the possible and useful values of the ”normalized” and the ”normalizer”,
and their meanings:

Normalized (X(x)) Normalizer (Y )
Z0 (characteristic impedance);
γ (propagation constant);
α (attenuation constant);
β (phase constant);
Z (wave impedance);
Y (wave admittance);

ZL (wave impedance at the load)

1: lossless case;
2: (real part of) non dispersive case;
3: (real part of) low losses approx.;

0: modulus of the characteristic impedance;
L: modulus of the impedance at the load;
(omitted): modulus of the ”normalized”;

Table 4.5: Summary of the ”normalized” and ”normalizer” parameters used in the CTLT-v1.

Some examples of use of this notation:
Z0n1: The characteristic impedance (Z0) normalized with respect to (n) the lossless case (1);
γn2: The propagation constant (γ) normalized with respect to (n) the non dispersive case (2);
Z0n: The characteristic impedance (Z0) normalized with respect to (n) its modulus (omitted);
ZLn0: The wave impedance at the load (ZL) normalized with respect to (n) the modulus of the
characteristic impedance (0);
among others used throughout the analysis.
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Appendix 4.F

It is required to prove the following statement: ”Given the modulus parameterization regarding a
parameter (lets name it as χ) normalized with respect to a (real) parameter (lets call it A ∈ R, so
χ normalized with respect to a is χnA) which is inversely characterized in the rg-plane, the inverse
analysis of another normalization (with respect to B ∈ R, so χ normalized with respect to B is
χnB), follows the same form but accordingly rescaled”.

Lets state this sentence analytically: Both the direct and inverse functions are supposed to be
known: χ = f(r, g) ∈ C and (r, g) = f−1(χ) ∈ H (being H the space of isocomplex numbers),
respectively.
Moreover, the definitions of χnA and χnB are writte as:

χnA =
χ

A
and (4.F.33)

χnB =
χ

B
, (4.F.34)

respectively; so, their modulus are:

|χnA| =
|χ|
A

and (4.F.35)

|χnB | =
|χ|
B

, (4.F.36)

also respectively.
As the statement above formulates the function

f−1(χnA) ≡ f−1(|χnA|ejϕχ) ∀|χnA| (4.F.37)

is known, so there exists a function which relates r and g in such a way that they lead to |χnA|:

f|χnA|(r, g) = |χnA| = B
A |χnB |, (4.F.38)

in which the latter equality has been obtained by relating eqs. 4.F.35 and 4.F.36.

The questions is: is f−1(χnB) a function such that f|χnB |(r, g) is a scaling of f|χnA|(r, g)? In order
to prove this, it is assumed by defintion that:

f−1(f|χnA|(r, g)ejϕχ) = (r, g)||χnA| , (4.F.39)

in which (r, g)||χnA| are those (r, g) in the rg-plane which lead to |χnA| constant.
Then,

f−1(χnB) ≡ f−1(|χnB |ejϕχ) = f−1(AB |χnA|e
jϕχ) = f−1(AB f|χnA|(r, g)ejϕχ), (4.F.40)

and, since f−1 is defined in eq. (4.F.37) for all |χnA|, then there exists

fA
B |χnA|

(r, g) (4.F.41)

such that
f−1(fA

B |χnA|
(r, g)ejϕχ) = (r, g)|A

B |χnA|
≡ (r, g)||χnB | . (4.F.42)

Since is required that (r, g)||χnA| are the same (r, g) tuples that (r, g)||χnB |, then

fA
B |χnA|

(r, g) ≡ f|χnB |(r, g) = A
B f|χnA|(r, g), (4.F.43)

which is a scaling of the original curve f|χnA|(r, g).
Notice that ϕχnA = ϕχnB ≡ ϕχ is used throughout the proof.
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Let’s see an example of this scaling to change the parameterization of the curves from the normal-
ized γ for the ffa, γn1 as defined in eq. (4.10) to the normalized γ for the vfa, γn2 as defined in eq.
(4.27). The generic parameters and functions are:

A ≡ βsp = ω
√
LC

B ≡ αnd = R
√
C√
L

χnA ≡ γn2 = γ
αnd

f|χnA|(r, g) ≡ f|γn1|(r, g) = |γn1| = 4
√

(1 + r2)(1 + g2)

. (4.F.44)

The labels of the normalized modulus |γn2| are obtained from the labels of |γn1| as:

|γn2| = |γn1|
ωL

R
. (4.F.45)
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Appendix 4.G

The mathematical procedure for solving the inverse function of real and imaginary parts lies in
separating these parts from the original parameterized (direct) funtions.
Here the expression function which relates r with g parameterized by the real part of the nor-
malized characteristic impedance, Z0n1, is obtained, but the similar procedure can be followed to
obtain this relation for the imaginary parameterization, and also the ones for characterizing the
real-imaginary parameterizations regarding the propagation constant (which are even more inter-
esting because of its physical interpretation).

The square of Z0n1 leads to

Z2
0n1 = Z ′20n1 − Z ′20n1 + j2Z ′0n1Z

′2
0n1 =

1− jr
1− jg

=
1 + rg + j(g − r)

1 + g2
. (4.G.46)

Identifying the real-imaginary parts, it leads to:{
Z ′20n1 − Z ′20n1 = 1+rg

1+g2

2Z ′0n1Z
′2
0n1 = g−r

1+g2

. (4.G.47)

Solving r as function of Z ′0n1, Z ′20n1 and g from the second equation in the system of functions
above, the following equation is obtained

r = g − 2(1 + g2)Z ′0n1Z
′
0n1. (4.G.48)

In order to solve Z ′′0n1, r in eq. (4.G.48) is substituyed into the second equation of system in (XIII),
leading to the 2nd order equation which relates Z ′0n1, Z ′′0n1 and g. Solving Z ′′0n1 from this equation,

Z ′′0n1 = gZ ′0n1 +
√
Z ′20n1(1 + g2)− 1, (4.G.49)

and substituying it into eq. (4.G.48), it leads to

r = g − 2Z ′0n1

(
1 + g2

)(
gZ ′0n1 +

√
Z ′20n1(1 + g2)− 1

)
, (4.G.50)

which is ready to be parameterized making Z ′0n1 = a.
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Appendix 4.H

The mathematical procedure for solving the inverse function of modulus and phase of basic pa-
rameters lies in separating them from the original definition of them as functions.
Here the expressions which relates r with g parameterized by, on one hand the modulus and, on
the other hand the phase of the normalized characteristic impedance, Z0n1, are obtained.
A similar procedure can be followed to obtain these expressions regarding the propagation con-
stant, parameterized in modulus and phase, which are as interesting as the ones decribed here for
the study and parameterization of lossy TL, especially the wave parameters.

On one hand, the 4th power equals

|Z0n1|4 =
1 + r2

1 + g2
. (4.H.51)

Solving r from the expression above, it leads to

r =
√
|Z0n1|4 (1 + g2)− 1 ≥ 0, (4.H.52)

which is the expression r written as a function of g parameterized by the modulus of the charac-
teristic impedance.
For being r ≥ 0, g ≥

√
(1/m4)− 1.

On the other hand, the tangent of the double-angle of the characteristic impedance is:

tan(2ϕZ0
) =

g − r
1 + gr

. (4.H.53)

By solving r from this equation, the following equation which realtes r to g parameterized by the
angle of the characterstic impedance is obtained:

r =
g − tan(2ϕZ0

)

1 + g tan(2ϕZ0)
≥= 0. (4.H.54)

For being r ≥ 0: g ≥ tan(2ϕZ0
) if ϕZ0

> 0; and g < 1/ tan(2ϕZ0
) if ϕZ0

< 0.
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Appendix 4.I

Here mathematical developments for obtaining the parameterized curves in the ρ-plane from: (i)
the real-imaginary parameterized parts; and (ii) the modulus-phase parameterizations; in the Z0nL-
plane are explained.

Regarding the real-imaginary parameterized parts, the inverse function (from ρ to Z0nL), Z0nL(ρ),
is splitting into its real and imaginary parts, which are parameterized as in eq. (4.66):a =

cL(1−ρ′2−ρ′′2)+2ρ′′sL

(1+ρ′)2+ρ′′2

b =
sL(1−ρ′2−ρ′′2)−2ρ′′cL

(1+ρ′)2+ρ′′2

, (4.I.55)

in which cL and sL are defined as in eq. (4.61).

Operating the first equation in eq. (4.I.55) algebraically, and grouping the resultant terms, it leads
to: (

ρ′ +
a

a+ cL

)2

+

(
ρ′′ − sL

a+ cL

)2

=

(
1

a+ cL

)2

, (4.I.56)

which is the equation of a circumference parameterized by a, cL, and sL:(
− a

a+ cL
,

sL
a+ cL

)
:

1

a+ cL
, (4.I.57)

written by using the habitual reduced notation ”(center):radious”.

Operating the second equation in eq. (4.I.55) in the same way as in eq. (4.I.58), the resultant
equation is: (

ρ′ +
b

b+ sL

)2

+

(
ρ′′ +

cL
b+ sL

)2

=

(
1

b+ sL

)2

, (4.I.58)

which is the equation of a circumference parameterized by b, cL, and sL:(
− b

b+ sL
,− cL

b+ sL

)
:

1

|b+ sL|
. (4.I.59)

On the other hand, regarding the modulus-phase parameterizations, the inverse function (from ρ
to Z0nL), Z0nL(ρ) is written spliting its modulus and phase, which are parameterized as in eq.
(4.68): m2 =

(1−ρ′)
2
+ρ′′2

(1+ρ′)2+ρ′′2

p = ϕZL − tan−1
(

ρ′′

1−ρ′

)
− tan−1

(
ρ′′

1+ρ′

) . (4.I.60)

Operating the first equation in eq. (4.I.60) algebraically, and grouping the terms accompanying ρ′

and ρ′′, it leads to: (
ρ′ +

m2 + 1

m2 − 1

)2

+ ρ′′2 =

(
2m

m2 − 1

)2

, (4.I.61)

which is the equation of a cicumference centered in the real axis, which may be written compactly
as: (

−m
2 − 1

m2 + 1
, 0

)
:

2m

m2 − 1
. (4.I.62)

Now operating the second equation in eq. (4.I.60) algebraically: first solving p − ϕZL to then
calculate the tangent on both sides applying the angle sum identity; it leads to:

ρ′2 +

(
ρ′′2 − 1

tan (p− ϕZL)

)2

=

(
1

|sin (p− ϕZL)|

)2

, (4.I.63)
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which is the equation of a cicumference centered in the imaginary axis, which may be compactly
written parameterized by p and ϕZL as:(

0,
1

tan (p− ϕZL)

)
:

1

| sin (p− ϕZL) |
. (4.I.64)



Chapter 5

Examples of use of the Complex
Transmission Line Theory

5.1 Introduction

The CTLT presented in Chpt. 4 to rigorously analyze the effects of losses on TLs which support
the propagation of HPWs (CTLT-v1.0) has set up the basis of the methodology based on complex
transformations between the parameters characterizing these TLs at different levels: the line pa-
rameters, basic parameters, and wave parameters.
The intuitive idea underlying the CTLT is connecting these groups of parameters in such a way
that they allow for characterizing the propagative solutions in the TLs under study.

Fig. 5.1: Scheme of characterizations described within the context of the complex analysis of the
LTLT regarding HPWs (CTLT-v1.0): the direct characterization (CTLT-v1.0a, in continuous lines)
and the inverse characterization (CTLT-v1.0b, in dashed lines).

Two ways of ”guiding” the analysis of the cited transformations have been presented concurrently:
the direct and the inverse characterizations of the CTLT (CTLT-v1.0a and CTLT-v1.0b, respec-
tively, within the CTLT-v1.0).
The direct characterization refers to the analysis describing the TL parameters in terms of losses.
Its physical meaning is direct (this gives its name): it is the direct characterization of the TL
parameterizing the losses; and, because this physical interpretation, it is clearly connected with
the type of waves (HPWs) which are studied.
On its behalf, the inverse characterization refers to the analysis ”guided” for the characterization
of losses in terms of specifications on the TL parameters. Although this definition is clearly based
on the inverse interpretation of the direct characterization (and this is enough for the comprehen-
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sion of its role within the CTLT-v1.0), the inverse characterization is the basis and origin for the
analysis of different mode solutions in equivalent TLs, which lets to define the GTLT-v1 in Chpt.
3. For this extended purpose, its ”analytical” inverse connotation (more than the physical) is clear
when trying to answer ”which values parameterize a specific wave solution”. This characterization
is ”more universal” than the inverse characterization in the sense that it gathers different mode
solutions within the same analysis. However, each analysis has its own particularizations, as for
example the inverse characterization of line parameters regarding HPWs in the CTLT-v1.0b, which
takes into account that the parameterizations should be positive real or zero.

In Fig. 5.1, a scheme representing the transformations between the groups of TL parameters is
shown. These transformations are represented by arrows starting at the group of parameters to be
transformed and finishing at the transformed group.
Both the direct and the inverse characterization are represented in the same scheme by arrows in
opposite direction.
For the study of the parameter transformations it is required for the analysis to be bi-parameterized
in such a way that each of those transformations can be described both analytically and graphically
by keeping fixed one parameter while varying the other one, and viceversa. This fact allows for
analyzing the transformations in planes, an thus geometrically characterizing the resultant plane
curves.
For the purpose of bi-parameterizing the transformations, the appropriate normalizations have to
be chosen depending on the transformations to be analyzed and the physical interpretations the
analysis is expected to describe.

Fig. 5.2: Scheme of groups of normalized parameters and the transformations between them,
included in the direct normalization (continuous arrows) and in the inverse normalization (dahed
arrows).

In Fig. 5.2, a scheme representing the normalizations for describing the groups of parameters and
the transformations between them is shown. It should be noted that: (i) the line parameters are
differently parameterized depending on the ffa/vfa. However, these parameterizations are directly
related in the plane which describes the line parameters: the rg-plane, where they are directly
represented by the cartesian and the polar coordintates, repectively; (ii) on one hand, the basic pa-
rameters parameterize the wave parameters by means of the phase of the characteristic impedance,
ϕZ0

, that is, the direct characterization of wave parameters. The remaining parameterization is
inner: it is the complex parameterization (real-imaginary or modulus-phase) of any of the wave pa-
rameters. As a result, the direct characterization of wave parameters involves half transformations
in the sense that the analysis is based on keeping fixed the parameterization regarding the basic
parameters while varying the complex parameterizations of wave parameters. On the other hand,
the wave parameters statically (this means at a fixed point in the TL, so the kinematics –studied
by means of the propagation constant– are not characterized) parameterize the basic parameters
by means of the phase of the wave impedance at the load, ϕZL , that is, the inverse characterization
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of the basic parameters. The remaining parameterization is inner: it is the complex parameteriza-
tion (real-imaginary or modulus-phase) of any of the (by definition, static) basic parameters; and
(iii) the duality in the role of the reflection coefficient, ρ, which may be addressed in the group
of wave paramters or as a basic parameter depending on the characterization is direct or inverse,
respetively.
These facts (i-iii) should be taken into account for the subsequent extensions of the analysis, when
solving TL-related problems, and also when dealing with the applications in the analysis or circuit
design based on the results of the CTLT.

Fig. 5.3: Scheme of groups of normalized parameters and the transformations between them in-
cludying those that represent the examples of use analyed in this chapter.

The basic transformations presented in Fig. 5.2 within the context of the CTLT-v1 lets to analyze
all the possible problems which are interesting to be solved as examples of use of the CTLA.
Among of them, there are some of special interest because the analytical expressions of the under-
lying LTLT is not able to answer them directly (without numerical computation). In this sense,
the CTLT would be able to overcome this limitation and, which is even more important, provide
the appropriate physical meaning to the analysis.
The following questions leave some interesting open problems which are required to be solved in
the context of the CTLT:

(i) How the TL parameters behave along the TL?
The TL’s length, l, is the main variable of the problem (the unique in the ffa). Thus, it is
important to characterize all the parameters of the TL when l varies.
By definition (regarding the achieved solution of the problem), the only parameters which
depend on the TL’s length are the wave parameters (see the equations of ρ(l), Z(l), and Y (l)
in eqs. (2.83), (2.85), and (2.86), respectively). Notice that, among of them, the expressions
of Z(l) and Y (l) present great complexity and, for example, they do not have immediate
inverse function to solve the l at which a given Z or Y produces, if any (nevertheless, in
[VG17-I], a trigonometric complex function whose argument is a logarithmic reparameteri-
zation of ρ(l) (ρlog(l)) has been solved for describing Z and Y , so it may be used inversely to
solve the ρlog(l)). Thus, it is required to characterize this variation of wave parameters along
the TL in the context of the CTLT in order to solve the problem analytically.
Notice that the problem of characterizing the wave parameters is strictly a direct character-
ization. That is because it is intended to describe the parameters along the TL’s lenght, so
its nature is clearly physical, and thus typical of direct characterizatons.
In Fig. 5.3 this characterization is framed among the transformations involved in the CTLT
(marked as Ex. 01).

(ii) How the wave parameters behave in terms of losses and frequency?
The immediate (in the sense of direct) analysis in terms of losses/frequency affects the ba-
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sic parameters. But now the question is how the wave parameters are affected by these
lossy/frequency parameterizatons.
In order to make this dependence explicit, the analysis should be referred at any fixed point
along the TL. In this way, the parameterization of the wave impedance is fixed and, on the
other hand, the initially complex parameterization of basic parameters is physically realizable
when describing it in terms of any type of losses or frequency.
Moreover, just as this problem has been posed here, it combines both the direct character-
ization of the complex parameterizations regarding the basic parameters, and the inverse
characterization of these basic parameters in terms of the (fixed) wave impedance.
In Fig. 5.3 this analysis is framed among the transformations defined in the CTLT (marked
as Ex. 02).

(iii) Which TLs keep the phase of the characteristic impedance fixed?
It has been seen in Chpt. 4 that the angle ϕZ0

is crucial for the direct characterizaton of
wave parameters when losses are fixed. Moreover, it has been seen that the inverse charac-
terization of this angle lead to the losses/frequencies that parameterize it. But, how the rest
of parameters: the propagation constant and the wave parameters; behave in terms of these
changes?
And reciprocally: Which TLs keep the phase of the propagation constant fixed?
Consequently: How can these phases combined for characterizing the TL?
It might be advanced that these angles will serve to parameterize how the losses affect the
wave parameters along the TL once the appropriate parameterizations of them are chosen.
Of course, the scenario in this problem is much less specific than the two Ex. 01 and Ex. 02
before, which means a loss of specificity on the analysis in favor of the ”universalization” of
the analysis (two analysis are carried out at the same time).
This analysis combines the inverse characterization used when analyzing ρ (playing the role
of basic parameter) in terms of angles, and the direct characterization when obtaining the
rest of wave parameters from ρ (changing its role to wave parameter, previously).
In Fig. 5.3 this analysis is contextulized within the transformations of in the CTLT (marked
as Ex. 03).

In this chapter the examples explained above: Ex. 01, Ex. 02, and Ex. 03; are presented.
Notice that these examples are the combination of basic transformations analyzed in the context
of the CTLT which together describe a physical problem.
Each example is presented emphasizing: (i) the definitions and parameters (normalizations in-
cluded) that lead to the intended analysis; (ii) the mathematical analysis of the problem, guided to
the subsequent graphical analysis; (iii) the graphical analysis in itself. This analysis is presented
gathering all the involved planes in order to be then compared. Sometimes the analysis in one
plane is represented by a point, but in many cases the analysis is a complex set of curves, de-
pending on the type of problem to be described. The planes which are more significative to the
study are properly highlighted in size; (iv) the geometrical analysis of the curves based on both the
mathematical notes and the graphical representations; (v) the physical interpretations regarding
the analysis, while emphasizing the conclusions which are found in the physical behavior of TLs
analyzed as in the example in question; and (vi) the possible practical uses for the analysis of
TL-related problems and the applicability with practical-design purposes.
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5.2 Analysis along the TL when losses and frequency are
fixed

5.2.1 Definitions and parameters

The most immediate issue the CTLT has to deal with is the description of the total voltage and
current waves along the TL, that is, the study of the wave equation solutions in terms of the TL’s
length, l.
The expressions of these total voltage and current waves as functions of z have been obtained in
eqs. 2.72 and 2.73, respectively. For obtaining the expressions in terms of l, the following change
is proposed:

z = D − l, (5.1)

in which D (expressed in [m]) is the total length of the TL measured from the generator (z = 0[m],
so l = D[m]) to the load (z = D[m], so l = 0[m]), so the total voltage and current waves result:

v(l) = V +
L e

γl + V −L e
−γl, and (5.2)

i(l) = I+
L e

γl − I−L e
−γl, (5.3)

being V ±L and I±L the phasors of the incident (+) and reflected (−) voltage and current waves,
respectively.

Remember that the reflection coefficient defined as a function of l in eq. (2.83), ρ(l), fixes the
relation between the phasors of the incident and reflected waves.
Moreover, the wave impedance defined as a function of l in eq. (2.85), Z(l), fixes the relation
between the total voltage wave in eq. (5.2) and the total current in eq. (5.3); whereas the wave
admittance, Y (l), fixes the inverse relation.
The expressions of these wave parameters are here recalled for their subsequent analysis:

re
fl

.
co

eff
. ρ(l) = v−(l)

v+(l) = ρLe
−2γl

(
≡ i−(l)

i+(l)

)
, ρL =

V −L
V +
L

=
I−L
I+L

, (4)

w
av

e
im

p
.

Z(l) = v(l)
i(l) =

V +
L e

γl+V −L e
−γl

I+L e
γl−I−L e−γl

= Z0
1+ρ(l)
1−ρ(l) , Z0 =

V +
L

I+L
=

V −L
I−L

, (5)

w
av

e
ad

m
.

Y (l) = 1
Z(l) = Y0

1−ρ(l)
1+ρ(l) , Y0 = 1

Z0
. (6)

The wave parameters described along the TL: ρ(l), Z(l), and Y (l); are used for determining the
voltage and current waves in the TL.

Remark 30. The wave parameters described along the TL completely determine the incident and
reflected voltage and current waves if the basic parameters are known.
In fact, the characteristic impedance is not necessary to be known since the inverse characterization
of basic parameters leads to solve it if ρ and Z at the load (ρL ≡ ρ(l = 0) and ZL ≡ Z(l = 0)) are
know.

Thus, the issue of characterizing the voltage and current waves focuses on studying the wave pa-
rameters in eqs. (5.4)-(5.6).
The starting point is the data that characterizes the TL: (i) the line parameters when the frequency
is fixed, which, in turn, determine the basic parameters by means of the direct characterization; as
well as (ii) the impedance at the load, which sets the BCs at l = 0.
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Fig. 5.4: Scheme of parameters and transformations ( 1 - 4 ) to be followed for finally achieving
the characterization of the wave parameters along the TL. The parameters which are the data for

this example of analysis are marked with the * symbol.

Once the basic parameters are known and fixed (for any l) the wave parameters are accordingly
normalized with respect to them. Thus, the modulus of the characteristic impedance (which
is fixed in this analysis) normalizes the wave impedance and wave admittance as in the direct
characterization of wave parameters presented in Sect. 4.3.2 in Chpt. 4, leading to:

Zn0(l) =
Z(l)

|Z0|
= ejϕZ0

1 + ρ(l)

1− ρ(l)
, and (5.7)

Yn0(l) = Z0 · Y (l) = e−jϕZ0
1− ρ(l)

1 + ρ(l)
, (5.8)

while ρ(l) remains invariant, as in eq. (5.4).
On the other hand, ZL ≡ Z(l = 0) is also normalized when particularizing eq. (5.7) in such a way
that:

ZLn0 =
ZL
|Z0|

≡ Zn0(l = 0), (5.9)

and consequently ρL in eq. (5.4) is defined as:

ρL =
ZL − Z0

ZL + Z0
≡ ZLn0 − ejϕZ0

ZLn0 + ejϕZ0
. (5.10)

The characterization of ρL lets studying the expression of ρ(l) in eq. (5.4), which is also included
in the expression of Zn0(l) and Yn0(l) in eqs. (5.7) and (5.8), respectively, leading to their study
and so to fully characterize the wave parameters along the TL.

In Fig. 5.4, a scheme gathering all the parameters and the steps which ”guide” the analysis along
the TL is shown.

5.2.2 Mathematical analysis

The mathematical expressions of the total voltage and current waves in eqs. 5.2 and (5.3) are
functions of l, rigorously defined as:

v, i: [0, D] ⊂ R+ ∪ {0} → C
l 7→ v(l), i(l).

These functions v(l) and i(l) are –at least– in C2, because they are a linear combination of solutions
to the wave equation.
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Likewise, the functions ρ(l), Z(l), and Y (l), which come from the quotient of continuous functions,
are also functions in C2, except in those points that make zero the denominator. The problem of
solving the points l at which the wave parameter complex functions are not continuous is an inter-
esting exercise of application of some Complex Analysis theoremas (in particular Cauchy-Riemann
equations and ), [BC90], which has been addressed in Appendix 5.A. The result of this analysis is
such that the continuity of the wave parameter complex functions is verified if D <∞ and (being
l > 0), which is an obvious condition for the physical interpretation of the TL.
Moreover, it is possible to pose the problem of finding the discontinuities of a function that gives
the l’s at which some of the wave parameter complex functions equals a specific value.

Example 5.2.1. A trivial example of using the Cauchy-Riemann equations for determining the
l’s at which a lossless TL behaves as an open circuit is shown. For this purpose, the ρ(l) function
is used, which is set as

ρ(l) = e−2γl, (5.11)

for the sake of simplicity and solvavility of the problem reviewed here as example.
The values at which the TL determined by ρ(l) particularized to the lossless case is equivalent to
an open circuit (ρ(l) = 1) are l = kπ/β ≡ kλ/2.
However, in this example, an alternative method based on solving the discontinuities regarding a
defined ”characteristic function” f(α, β; l) is shown.
The characteristic function f(α, β; l) is, in this case, defined as

f(α, β; l) =
1

ρ(l)− 1
=

1

e−2γl − 1
=

=
e−2αl cos(2βl)− 1

e−4αl + 1− 2e−2αl cos(2βl)
+ j

e−2α sin(2βl)

e−4αl + 1− 2e−2αl cos(2βl)
=

=u(α, β; l) + jv(α, β; l)

. (5.12)

The Cauchy-Riemman equations particularized to this lossless case (α = 0) are:{
uα|α=0 = 0

.
= vβ |α=0 = 4β [−1 + cos(2βl)]

uβ |α=0 = 4β [−1 + cos(2βl)]
.
= − vα|α=0 = 0

. (5.13)

The points in which the singularties are able to occur are those in which the characteristic function
verify the Cauchy-Riemann equations. Those are the predicted l = kπ/β ≡ kλ/2.

As it may be foreseen, the complexity of applying this analytical method increases with lossy TLs
and the examination of other wave parameter functions.

The alternative analysis lies in addressing the wave parameter complex functions as curves, which
is possible thanks to the isomorphism between the complex numbers (C) and the real numbers in
the plane (R2).
In this context, the wave parameters should be seen as curves in the plane parameterized by l:

ρ, Z, Y : (0, D) ⊂ R+ ∪ {0} →R2 (C)

l 7→(ρ′, ρ′′), (Z ′, Z ′′), (Y ′, Y ′′).

Notice that the curves are defined over a open interval l ∈ (0, L), for the rigorous definition of them
as a regular parameterization of curve, [MP77].

On the other hand, the expressions of the wave impedance and wave admittance in eqs. (5.5)
and (5.6), and also its normalized versions in eqs. 5.7 and 5.8, respectively, may be seen as the
transformations of the curve ρ(l).
These transformations are rigorusly defined as:

TZ : R2 (C)→R2 (C) (5.14)

ρ(l) 7→TZ [ρ(l)] = Z0
1 + ρ(l)

1− ρ(l)
= Z(l),
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and

TY : R2 (C)→R2 (C) (5.15)

ρ(l) 7→TY [ρ(l)] =
1

Z0

1− ρ(l)

1 + ρ(l)
= Y (l),

for representing the wave impedance and wave admittance, respectively.
These transformations are conformal mappings, [BC90], studied in the context of complex trans-
formations introduced in Sect. 4.3.2 in Chpt. 4.

Remark 31. The study of the wave parameters along the TL is addressed in the context of the
curve transformations taking advantage of the complex transformations defined for the direct char-
acterization of wave parameters.

Keeping this idea in mind, it is about characterizing the reflection coefficient along the TL in order
to be then transformed by means of the transformations TZ and TY defined in eqs. (5.14) and
(5.15) to obtain the wave impedance and wave admittance, respectively, also described along the
TL.

Remark 32. The reflection coefficient described along the TL corresponds with its direct charac-
terization in terms of the TL’s length, which is equivalent to characterize the basic parameters in
terms of losses, for example, and thus the same analysis based on: (i) obtaining the normalizations
and parameterizations; (ii) the graphical and geometrical analysis; and (iii) the subsequent physical
interpretations; may be done.
As said before, (iv) the practical uses mainly come when describing the rest of wave parameters by
means of complex transformations from the characterization of ρ.

Direct characterization of the reflection coefficient along the TL

In this section, the normalizations and parameterizations for the characterization of ρ along the
TL, followed by the graphical and geometrical analysis of the curves representing ρ, to finally ob-
tain the most important physical interpretations regarding this characterizations are outlined.
The purpose is ”preparing” the characterization of the wave impedance and wave admittance along
the TL, when see these latter parameters as complex transformations from ρ.

Normalizations and parameterizations: As it has been seen several times, the reflection co-
efficient does not hold any normalization for the analysis of wave parameters in neither the direct
characterization nor the invere characterization. Thus, the expression which describes ρ in terms
of the TL’s length is the one in eq. (5.4).

Nevertheless, the parameter which parameterizes ρ along the TL (l) may be normalized in different
ways leading to different parameterizations of the TL’s length.
Among the possible parameterizations of the length, it is common to take the electrical length og
the TL (denoted as le), which is no more than the physical length referred to the wavelength which
characterizes the propagative waves (denoted as λ), so

le =
l

λ
=
βl

2π
. (5.16)

As a result, the expression of the reflection coefficient parameterized by the electrical length, le, is

ρ(le) = ρLe
− 4πγle

β = ρLe
−4π αβ lee−j4πle ∈ C, (5.17)

in which ρL = |ρL|ejϕρL ∈ Dρ ⊂ C.
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Notice that le, just as it has been defined in eq. (5.16), is dimensionless.
Moreover, ρL is given by the previous analysis of ZL in the ρ-plane (the transformation of ZL to
the ρ-plane by usng the GSC).
For the (complex) parameterization of ρ along the TL, it is interesting to split it in its modulus
and phase: {

(|ρ| ≡) |ρ|(le) = |ρL|e−4π αβ le

(ϕρ ≡) ϕρ(le) = −4πle + ϕρL
. (5.18)

Notice the complex parametric expression of ρ(le) in eq. (5.17), or the one written in polar form in
eq. (5.18), are parameterized by the electrical length le and ρL, besides the ratio α/β, which plays
the role of the extra parameterization. In this sense, recall that for the complete characterization
of ρ, a pair of parameterizations is required. For the analysis along the TL, one of them must be
a parameterization of the TL’s length, for instance, the electrical length. The other one is fixed
by the specification of the line parameters in the TL and the impedance at the load, which are
reflected in the definition of ρL and the ratio α/β.
The issue of finding a couple of parameterizations that parameterize the analysis of wave parame-
ters in terms of losses and along the TL is specifically addressed in Ex. 03.

For the next basic graphical and geometrical analysis of the curves regarding ρ along the TL, ρL
is supposed to be known.

Graphical and geometrical analysis: A graphical example of the curve representing ρ(l) (or
ρ(le), since this expression is a reparameterization of the original equation that conserves its shape)
is shown below:

Fig. 5.5: Graphical example of the curve which represents ρ along the TL when ρL = 1ej
π
3 and

α/β = 1/ tan(ϕγ) = 1/ tan(Ψ) = 1.

This curve is a logarithmic spiral, [Law72], represented in the ρ-plane. Since the coefficient ρL is
arbitary chosen in the example above, the spiral may have one end (parameterized by l = le = 0)
in any point within the domain Dρ. The other end tends to ρ = 0 as long as l = le →∞.

The general equation of this logarithmic spiral is obtained when eliminating the parameterization,
for example, le in eq. (5.18) by solving le from the phase ϕρ and substituying it into the modulus
|ρ|:

|ρ| = |ρL|e−
α
β (ϕρL−ϕρ), (5.19)

in which ϕρ ≤ ϕρL .
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This expression will be useful for parameterizing the reflection coefficient in modulus-phase to be
then transformed to the wave impedance and admittance.

Notice that the general equation of the logarithmic spiral is determined by the ratio α/β once the
scaling provided by ρL is known.
This ratio equals the cotangent of the phase of the propagation constant, so

α

β
=

1

tan (ϕγ)
. (5.20)

When analyzing the logarithmic spiral which represents ρ along the TL geometrically (see Appendix
5.B), it can be concluded that the angle between the radious and the tangent of the logaritmic
spiral (denoted as Ψ) is exactly the phase of the propagation constant:

Ψ ≡ ϕγ . (5.21)

In Fig. 5.5 this significant angular indentity is detached and used for representing the spiral graph-
ically.
As a reault, it may be stated that the angle of the propagation constant determines the variation
of ρ along the TL.

Remark 33. Just as ϕZ0
is the parameter which determine the influence of losses at any fixed

point in the TL, the parameter ϕγ determines the movement of wave parameters along the TL.
As a consequence, both angles ϕZ0

and ϕγ seem to determine the dependence of the TL on both
losses and the TL’s length for the complete characterization of the wave parameters.

Physical interpretations: In this section, the main physical interpretations regarding the spi-
ral that represents the reflection coefficient along the TL are detached, giving special emphasis to
the geometrical properties and its usefulness for characterizing the rest of wave parameters.

At the load, the reflection coefficient is completely determined by the impedance and the charac-
teristic impedance or, equivalently, the normalized impedance (at the load) and the phase of the
characteristic impedance (see the equivalence in eq. (5.10)).
In addition, once the reflection coefficient at the load is known, its variation along the TL is deter-
mined by the phase of the propagation constant, which puts into relation the attenuation constant
and the phase constant as in eq. (5.20).
As a consequence, there are multiple TLs (parameterized by different line parameters and fre-
quency) with the same variation of ρ along the TL (those given by the inverse characterization of
line parameters parameterized ϕγ), but different starting points and shiftings (given by ρL).

Moreover, the reflection coefficient tends to be zero when l = le → ∞, provided that α 6= 0 (and
so ϕγ 6= π/2). This means that the (theoretically) infinite lossy TL matches the characteristic
impedance at the beginning.
Thus, reciprocally, the TL only mathes the characteristic impedance at the load if the load is just
the characteristic impedance.

As shown in Appendix 5.B, the arc length of the lossy TL (α 6= 0) is not proportional to neither the
physical length nor the electrical length. However, the phase of the reflection coefficient measured
from the starting point of the curve is proportional to the electrical length (see the phase ϕρ in eq.
5.18) and so to the physical length (because their linear relation defined in eq. (5.16)).
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Practical uses: From the general equation of the logarithmic spiral that represents ρ along the
TL, the modulus and phase parameterizations of ρ are physically related, as well as the trans-
formations to the wave impedance and wave admittance complex planes by means of an intuitive
graphical analysis.
Then, the resultant transformations are geometrically analyzed, also based on this direct char-
acterization of the reflection coefficient. For example, the length scales over the resultant curve
transfomations are given by means of the transformation of the phase constant curves in the ρ-plane.

5.2.3 Graphical and geometrical analysis

For the graphical analysis of wave parameters, the transformations from the modulus-phase pa-
rameterizations of the curve that represents ρ along the TL in the ρ-plane concerning the direct
characterization of wave parameters presented in Sect. 4.3.2 in Chpt. 4 are used in last resort (see

this step marked as 4 in the scheme that summarizes the analysis of this example in Fig. 5.4).
Prior to the parameterized transformations from the ρ-plane, the reflection coefficient at the load
is numerically calculated or graphically located in the ρ-plane using the transformation from the
Zn0-plane, that is, the GSC, [GDG06], once the basic parameters are calculated by means of their
direct characterization presented in Sect. 4.3.1 in Chpt. 4.
These analysis (summarized in the scheme in Fig. 5.4) are presented simultaneously in their re-
spective complex planes for their proper comparison and the appropriate understanding of all of
them together.

The datum for this example (marked with the symbol 99 in Fig. 5.4) are the line parameters
and frequency, and the wave impedance at the load. In order to see the differences in the graphi-
cal analyis when taking different combinations of these parameters, several examples are presented.

On the other hand, the modulus-phase parameterizations directly parameterize the general equa-
tion written in polar form of ρ along the TL (the modulus of ρ as a function of the angle of ρ:
|ρ| (ϕρ)) presented in eq. (5.19) in the following form:{

ϕρ = p

|ρ| = e−
α
β (pL−p) = m

, (5.22)

in which mL = |ρL|, pL = ϕρL ,

and p ∈
[
pL −

4πL

λ
, pL

]
, so p ≤ pL.

The transformations of the m-p parameterized curves from the ρ-plane are the circunferences1
(
c0

1+m2

1−m2 , s0
1+m2

1−m2

)
: 2m
|1−m2|(

−s0
tan(p) ,

c0
tan(p)

)
: 1
| sin(p)|

(5.23)

in the Zn0-plane, and 
(
c0

1+m2

1−m2 ,−s0
1+m2

1−m2

)
: 2m
|1−m2|(

s0
tan(p) ,

c0
tan(p)

)
: 1
| sin(p)|

(5.24)

in the Yn0-plane, [Gag01], whose intersection following the relation given by eq. (5.22) lead to the
curves representing Zn0 and Yn0 along the TL, respectively.
The parametric expression of the intersection of these curves results hard-to-analyze. Nevertheless,

1The well-known notation for refering the center:radious of circumferences, which has been employed throughout
this Thesis book, is again used here.
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in [VG17-I], a compact expression of these curves is given by using complex functions when the
length of the TL is ”complexified” (see this explanation in the 1).

Some graphical examples are studied throughout the following pages. Then the appropriate con-
clusions based on geometrical analysis are pointed out.
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5.2.4 Some examples of graphical analysis of wave parameters along the
lossy TL

Example I

Numerical values of the transmission line parameters

Physical parameters Line parameters

f = 1[MHz]

λ = 8.6018[cm]

ce = 8.6018 · 104[m·s−1]

D/λ = 2

Param. Normalizations

R = 75[Ω]

r = 0.1194

g = 1.5915

L = 0.1[mH]

G = 10[Ω−1]

C = 1[uF]

Basic Parameters

Param. Normalizations

Z0 = 6.6053 + j3.1542 =

= 7.3198∠25.5256◦
Z0n1 = 0.6605 + j0.3154 =

= 0.7320∠25.5256◦

γ = 46.2349 + j73.0446 =

= 86.4476∠57.6675◦
γn1 = 0.7359 + j1.1625 =

= 1.3759∠57.6675◦

Wave parameters at the load

Param. Normalizations

ρL = 0.7540− j0.0543 =

= 0.7560∠− 4.1175◦
-

ZL = 50 + j10 =

= 50.9902∠11.3099◦
ZLn0 = 6.8308 + j1.3662 =

= 6.9661∠11.3099◦

YL = 0.0192− j0.0038 =

= 0.0196∠− 11.3099◦
YLn0 = 0.1408− j0.0282 =

= 0.1436∠− 11.3099◦

Table 5.1: Numerical values of line parameteres, basic parameters, and wave parameters at the
load. All of them parameterize the analysis of wave parameters along the transmission line analyzed
by means of this first example I.
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Transmission line scheme and parameterizations

(a) (b)

Fig. 5.6: Transmission line scheme with (a) the line parameters and (b) the parameterizations.

Direct characterization of basic parameters

Fig. 5.7: Lossy parameterizations
r = 0.12 and g = 1.59 in the rg-
plane.

(a)

(b)

Fig. 5.8: The (a) Z0n1- and (b) γn1-planes pa-
rameterized by r = 0.12 and g = 1.59.
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Direct characterization of wave parameters along the TL

Fig. 5.9: Analysis of ρ along the TL.

(a)

(b)

Fig. 5.10: Graphical analysis of (a) Zn0 and
(b) Yn0, both along the TL.
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Example II

Numerical values of the transmission line parameters

Physical parameters Line parameters

f = 2[MHz]

λ = 4.7322[cm]

ce = 9.4644 · 104[m·s−1]

D/λ = 3.6347

Param. Normalizations

R = 75[Ω]

r = 0.0597

g = 0.7957

L = 0.1[mH]

G = 10[Ω−1]

C = 1[uF]

Basic Parameters

Param. Normalizations

Z0 = 8.4416 + j2.6694 =

= 8.8537∠17.5482◦
Z0n1 = 0.8442 + j0.2669 =

= 0.8854∠17.5482◦

γ = 50.8711 + j132.7752 =

= 142.1869∠69.0363◦
γn1 = 0.48048 + j1.0566 =

= 1.1315∠69.0363◦

Wave parameters at the load

Param. Normalizations

ρL = 0.7052− j0.0274 =

= 0.7057∠− 2.2282◦
-

ZL = 50 + j10 =

= 50.9902∠11.3099◦
ZLn0 = 5.6474 + j1.1295 =

= 5.7592∠11.3099◦

YL = 0.0192− j0.0038 =

= 0.0196∠− 11.3099◦
YLn0 = 0.1703− j0.0341 =

= 0.1736∠− 11.3099◦

Table 5.2: Numerical values of line parameteres, basic parameters, and wave parameters at the
load. All of them parameterize the analysis of wave parameters along the transmission line analyzed
by means of this second example II.
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Transmission line scheme and parameterizations

(a) (b)

Fig. 5.11: Transmission line scheme with (a) the line parameters and (b) the parameterizations.

Direct characterization of basic parameters

Fig. 5.12: Lossy parameteriza-
tions r = 0.06 and g = 0.80 in
the rg-plane.

(a)

(b)

Fig. 5.13: The (a) Z0n1- and (b) γn1-planes
parameterized by r = 0.06 and g = 0.80.
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Direct characterization of wave parameters along the TL

Fig. 5.14: Analysis of ρ along the TL.

(a)

(b)

Fig. 5.15: Graphical analysis of (a) Zn0 and
(b) Yn0, both along the TL.
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Example III

Numerical values of the transmission line parameters

Physical parameters Line parameters

f = 2[MHz]

λ = 4.7322[cm]

ce = 9.4644 · 104[m·s−1]

D/λ = 3.6347

Param. Normalizations

R = 75[Ω]

r = 0.0597

g = 0.7957

L = 0.1[mH]

G = 10[Ω−1]

C = 1[uF]

Basic Parameters

Param. Normalizations

Z0 = 8.4416 + j2.6694 =

= 8.8537∠17.5482◦
Z0n1 = 0.8442 + j0.2669 =

= 0.8854∠17.5482◦

γ = 50.8711 + j132.7752 =

= 142.1869∠69.0363◦
γn1 = 0.48048 + j1.0566 =

= 1.1315∠69.0363◦

Wave parameters at the load

Param. Normalizations

ρL = 0.5011− j0.6231 =

= 0.7996∠− 51.1921◦
-

ZL = 10− j15 =

= 18.0278∠− 56.3099◦
ZLn0 = 1.1295− j1.6942 =

= 2.0362∠− 56.3099◦

YL = 0.0308 + j0.0462 =

= 0.0555∠56.3099◦
YLn0 = 0.2724− j0.4086 =

= 0.4911∠56.3099◦

Table 5.3: Numerical values of line parameteres, basic parameters, and wave parameters at the
load. All of them parameterize the analysis of wave parameters along the transmission line analyzed
by means of this third example III.
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Transmission line scheme and parameterizations

(a) (b)

Fig. 5.16: Transmission line scheme with (a) the line parameters and (b) the parameterizations.

Direct characterization of basic parameters

Fig. 5.17: Lossy parameteriza-
tions r = 0.06 and g = 0.80 in
the rg-plane.

(a)

(b)

Fig. 5.18: The (a) Z0n1- and (b) γn1-planes
parameterized by r = 0.06 and g = 0.80.
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Direct characterization of wave parameters along the TL

Fig. 5.19: Analysis of ρ along the TL.

(a)

(b)

Fig. 5.20: Graphical analysis of (a) Zn0 and
(b) Yn0, both along the TL.
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Three different examples (examples I-III in Sect. 5.2.4-5.2.4, respectively) has been graphically
presented varying some specific parameters summarized in the following table:

Example I Example II Example III
Frequency, f 1[MHz] 2[MHz] 2[MHz]

Load, ZL 50+j10[Ω] 50+j10[Ω] 10-j15[Ω]

These a priori minor changes on frequency (from example I to example II) and the impedance at
the load (from example II to example III) produce large variations on the basic and wave param-
eters.
For example, varying the frequency keeping the rest of parameters fixed (also the impedance at the
load) makes the basic parameters vary, affecting both the propagative behavior of the equivalent
waves and the relation between them. In this sense, notice how the TL becomes electrically larger
when doubling the frequency, for instance. Moreover, the basic parameters afect the analysis of
wave parameters in both the matching at the load and the behavior along the TL (although com-
paring the examples I and II, this change is hardly appreciable).
It is more significative the change when the impedance ath the load varies. In this case, even the
sign of curvature of the curve in the Zn0- or Yn0-plane may change depending on the load (in order
to be the resultant curve a representation of a real case: Z ′n0 ≥ 0 and Y ′n0 ≥ 0).

(a) (b)

Fig. 5.21: Example of locating the real values of the wave impedance in the Zn0-plane and the
transformations to the ρ-plane, at l1 = 2.9793[mm] (≡ |ϕρL − ϕρ| = 9.70◦) and l2 = 32.7293[mm]
(≡ |ϕρL − ϕρ| = 106.76◦) on the curve that represents ρ along the TL.

Notice that the transformed curves in the Zn0- and Yn0-planes are also spiral-type, which are
asymptotic to Z0n and Y0n, respectively. This is just as expected because the physical interpreta-
tions regarding the behavior of the reflection coefficient discussed before.

The graphical analysis lets to see at first sight some interesting points regarding the direct charac-
terization of wave parameters.
For example, in examples I and II two real values of the wave impedance and wave admittance are
expected to be achieved along the TL, whereas in example III only one real value (pure resistive)
of the wave impedance or wave admittance can be found.
Furthermore, the distances where these real values can be solved, for instance, by using the trans-
formation from the wave impedance complex to the ρ-plane, in which the angle measured from the
load is proportional to the seeked electrical length corresponding to these points. In Fig. 5.21, the
location of the points where the wave impedance is resistive is shown in the ρ-plane regarding the
example I, which lets to measure the lengths at which these values are met.
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(a) (b)

Fig. 5.22: Example of locating the admittances at which the imaginary part is the same as in
the characteristic admittance: Yn0,1 = 0.9024 + j0.1442 and Yn0,2 = 0.9024 − j0.5386; whose
corresponding lengths are measured in the ρ-plane: l1 = 24.5470[mm] (≡ |ϕρL −ϕρ| = 79.92◦) and
l2 = 73.9266[mm] (≡ |ϕρL − ϕρ| = 240.69◦), respectively.

In the same sense, another interesting example of use (for practical purposes) of this graphical
analysis could be locating those points at which the real part of the wave admittance is the same
as the real part of the characteristic admittance. In Fig. 5.22, this analysis concerning the data of
the example I has been carried out.

Remark 34. The graphical analysis is really useful to analyze the wave parameters along the TL.
On one hand, it lets to characterize the wave impedance and wave admittance in an easy way by
using transformations from the reflection coefficient expressed along the TL, which is described by
a well-known logarithmic spiral.
On the other hand, it serves to solve the length where some interesting points related to the wave
impedance and wave admittance behaviors. For this purpose, the angular measurements in the
reflection coefficient complex plane directly gives the seeked lengths.

Based on the properties of the transformations from the ρ-plane, some important geometrical char-
acteristics of the curves in the Zn0- and Yn0-planes are detached.
Since the transformations in eqs. (5.14) and (5.15) are conformal mappings, the angles are pre-
served after their application. On the other hand, the angle Ψ is preserved along the TL in the
ρ-plane. Thus, this angle between radius and the tangent in each point of the logarithmic spi-
ral is preserved (in magnitude and orientation) between the transformation of the radious and the
transformation of the tangent. Moreover, both transformations are circumferences passing through
Zn0 = ejϕZ0 and (the non existing) Zn0 = −ejϕZ0 in the Zn0-plane, and Yn0 = e−jϕZ0 and (the
non existing) Yn0 = −e−jϕZ0 in the Yn0-plane, which has been easily proved in Appendix 5.C, so
the center of them are in the radious whose angle is ϕZ0 + π/2 in the Zn0-plane, and −ϕZ0 + π/2
in the Yn0-plane. The tangents of these circumferences also preserve the angle Ψ between them,
and the tangent of the circumference which represents the tangent in the ρ-plane is the tangent of
the transformed spiral.
In Fig. 5.23 a graphical example of the curve in the Zn0-plane representing the wave impedance
along the TL is shown while detaching the angle between the tangent of the curve and the tangent
of the transformations of the radious in the ρ-plane.

The property of preserving the angles in conformal mappings lets to draw the curves in the wave
parameter complex planes in an easy way. For this purpose, both ϕγ and ϕZ0 should be used, once
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Fig. 5.23: Graphical example of the curve which represents Zn0 along the TL constructed by the
preservation of Ψ = π/4 between the transformation of the radious and the transformation of the
tangent from the ρ-plane.

the impedance or the admittance at the load are located in the Zn0-plane or Yn0-plane.

Remark 35. The graphical analysis and the geometrical properties of this graphical analysis let
to see that the angles ϕZ0 and ϕγ suffice to determine the wave parameters along the TL once the
impedance at the load is known.

The fact that ϕZ0
and ϕγ completely characterize the wave parameters along the TL when the

load is fixed is crucial for posing the analysis of the wave parameters along the TL in terms of
losses in Ex. 03 in Sect. 5.4.
Moreover, this analysis is supported by the inverse characterization of line parameters, which allows
for knowing which losses are with the angles of the basic parameters which appear in the study
reviewed here.

5.2.5 Physical interpretations

The analysis of wave parameters along the TL should be understood in the context of describing
the equivalent voltage and current waves along the TL. For this purpose, the basic parameters have
to be known, just as it has been considered in this example.
The reflection coefficient along the TL serves to describe how the total voltage or current waves are
expanded from the individual waves. On their behalf, the wave impedance and wave admittance let
to obtain the total current and total voltage waves from the total voltage and total current, respec-
tively. In this sense, since the wave impedance and admittance relate the total waves, only these
wave parameters have true physical meaning in the description of waves along the TL, whereas the
reflection coefficient is a ”mathematical tool” for obtaining each of these total waves.
In this sense, recall an important result for the physical interpretation of lossy TLs, which is possi-
ble thanks to the combination of graphical analysis and Complex Analysis theoremas: in Appendix
5.A it is concluded that the short circuit or open circuit are only possible at the load if the TL
is loaded like that. Otherwise, these particulr behaviors can not be found at any point along the
TL. That is because these points belong to the limit in the ρ-plane (for example, the GSC). As a
consequence, these particular behaviors are not possible along the lossy TL.
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Remark 36. The short circuit and open circuit can not be found at any point of the lossy TL,
unless they are loaded. In this latter case, these particular behaviors of lossy TLs can only be found
at the load.
This result disagrees with the case of the lossless TL, in which any reactive load can be transformed
to a short circuit or an open circuit in less than λsp/2, and periodically it repeats every λsp/2.

Nevertheless, the reflection coefficient may be used for analyzing the true physical behaviors of
total voltage and current waves –and their relation by means of the
impedance/admittance– if this parameter is interpreted as the transformation from the rest of wave
parameter complex planes. For example, in Fig. 5.21 it has been shown how the points in which
the wave impedance is real (and thus, the phase between the total voltage and current waves is
null) transform into some specific points in the curve which represents ρ along the TL, and with
that these points adquire physical meaning.

In addition, it should be detached the capability of ρ for the length measurements.
Recall that the angle measured from the reflection coefficient at the load, ϕm ≡ ϕρL − ϕρ, is
proportional to both the electrical length and physical length in the following form:

ϕm = 4πle = 4πl/λ ≡ 2βl. (5.25)

Thus, this angle ϕm may be directly used for measuring lengths, something which is not possible
in the wave impedacnce or wave admittance complex planes.

On the other hand, the fact that the description of the reflection coefficient along the TL directly
depends on the phase of the propagation constant, and so the ratio between the attenuation con-
stant and the phase constant (instead of the absolute values of them), suggests that measuring
the attenuaton per wavelength is more effective that do it in metres, for the appropriate physical
interpretation of this parameter.

Fig. 5.24: Example of wave parameter graphical analysis along the TL when the TL is lossless
(r = 0, g = 0 → ϕZ0 = 0, ϕγ = π/2). The curves that represent the wave parameters are
circumferences in each wave parameter complex plane (also in the Yn0-plane).

Moreover, notice that the analysis presented before concerning lossy TLs differs significantly from
the one particularized for the lossless case represented in Fig. 5.24 above. This particularization
results much more easy to study because the resultant curves are circumferences.
Nevertheless, the geometrical analysis presented before allows for addressing the curves in the same
graphical way, but generalizing the presence of losses (something which is required in the CTLT
analysis) for the rigorous application.
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5.2.6 Practical uses

The direct characterization of wave parameters along the TL has been presented emphasizing the
graphical results and the underlying geomtry based on the properties of conformal transformations.
It has been seen that the complex transformations between the wave parameter complex planes
serve to describe these parameters along the TL in a different way, which suppose an efficient
alternative to the analysis of the underlying mathematical expressions.
In this sense, the curves are geometrically characterized in such a way that it could be represented
for any analysis along the TL. For example, it is common to use the analysis along the TL for
load matching, using parallel stubs and/or adjusting the length of the TL. For these pruposes, the
analysis presented in this CTLA example set the basis for the requiried characterization along the
TL.
In addition, this example adds a new variable in the analysis which can be also used in the design
of TLs and stub tuning: the losses. These losses (”controlled” by the angle of the basic parameters)
have demonstrated being useful for matching loads, [VG17-I], [VG17-II], [VG17-III].

Furthermore, it has been seen the influence of the the phase of basic parameters in the graphical
and geomtrical analysis of the wave parameters along the TL. The fact that angles directly appear
in the graphical analysis can be used to obtain the line parameters of the equivalent TL by using
the inverse characterization (in order to see an example of this inverse characterization refer to the
rg-planes in Figs. 5.7, 5.12, and 5.17). Moreover, since the TL is completely characterized by the
phases of the basic parameters, besides the load, by only knowing two values of, for example, the
reflection coefficient at different positions along the TL (for example, at the load (l = 0) and at
the generator (l = D)) suffices for characterizing the equivalent lossy TL.

But probably the most interesting result regarding this example is that the phase of both basic
parameters determines the behavior of the wave parameters along the TL once the losses and the
impedance at the load are fixed.
On one hand, notice that fixing the losses means fixing the normalization of wave parameters and
the GSC by means of ϕZ0

, which are useful for locating the reflection coefficient at the load. Then,
on the other hand, fixing that losses supposes fixing the propagation constant, and so the variation
of the reflection coefficient along the TL and the rest of wave parameters, characterized by ϕγ .
This result suggests parameterizing the TL by means of these phases, which leads to establish a
new useful parameterization based on angles analyzed in Ex. 03 in Sect 5.4.
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5.3 Analysis at the load in terms of losses and frequency

5.3.1 Definitions and parameters

In this example, the influence of the variation of losses and frequency over the parameters that
characterize the lossy TL is explicitly studied.
This analysis in terms of losses and frequency is intended to complete the direct characterization
of basic parameters for the ffa and the vfa, both presented in Sect. 4.3.1 in Chpt. 4. Thus, the
parameters that make explicitly the lossy and frequency analysis are those used for the ffa: r and
g, defined in eq. (4.1); and those used in the vfa: ωn and c defined in eq. (4.19); so the subsequent
characterizations in this example are splitted into the same way.
In addition, the interpretations regarding the analysis in this example should be understood as for
the direct characterization of basic parameters: (i) the parameterizations of losses or frequency are
defined to ”universalize” the ffa or the vfa, respectively, so that multiple TLs are represented by
the same parameterization which describes any specific behavior of the parameters under study
(not only the basic parameters); (ii) the graphical analysis should be interpreted in terms of the
transformations from the plane of parameterizations: the rg-plane depicted in Figs. 4.2 and 4.10
for the ffa and the vfa, respectively; to the planes that represent the normalized version of those
parameters under study, for example the Z0n1-plane. The resultant analysis in this example are
not ”basic” transformations (in the sense of there is not a single function which directly maps the
lossy/frequency parameterizations to the complex plane under study) but composed transforma-
tions (multiple transformations are used). As a consequence, the geometrical characterizations that
supports the graphical analysis should be studied taking into account the transformation compo-
sition; and, in the same way, the (iii) physical interpretations and possible practical uses have to
be understood in terms of the lossy/frequency parameterizations used: the ffa is the analysis in
the frequency domain in which the harmonic characterized by ω normalizes the parameterizations,
whereas the vfa makes reference to the spectral analysis, [Her14], for the subsequent expansion of
the harmonics in the time domain.

Remark 37. Despite the analysis in terms of losses and frequency are addressed as transformations
from the same space of parameters to the complex planes associated to the parameters which are
of interest, each analysis should be interpreted in a different way: the analysis in terms of losses
refers to the influence of losses in the description of the TL parameters, whereas the analysis in
terms of frequency has to be understood as the spectral analysis.
Each analysis also has its own uses. For example, the analysis in terms of losses is useful for
studying some particular cases or approximations regarding how they affect the TL parameters,
whereas the analysis varying the frequency is useful for describing how the voltage and current
waves behave in the frequency domain.

Both the anlysis in terms of losses and frequency must be referred at the load (or any fixed point
along the TL), whose impedance is supposed known for the analysis carried out by this example.
This premise lets to eliminate the dependence of voltage and current waves on the length of the
TL, l, something that is study in detail in Ex. 01 in Sect. 5.2.
In this way, after setting l = 0, the total voltage and current waves to be studied are:

V = V +
L + V −L = V +

L (1 + ρL) , and (5.26)

I = I+
L + I−L = I+

L (1− ρL) , (5.27)

for the ffa, and

V (ω) = V +
L (ω) + V −L (ω) = V +

L (ω) (1 + ρL(ω)) , and (5.28)

I(ω) = I+
L (ω) + I−L (ω) = I+

L (ω) (1− ρL(ω)) , (5.29)

for the vfa, in the dependence on ω is explicitly pointed out.
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The TL parameters which let to describe the voltage and current waves for both the ffa and the
vfa are:

The impedance at the load and the admittance at the load belong to the datum for this study,
which are not affected by neither the parameterization of losses nor the frequency parameterization
in the ffa or the vfa, respectively.

Remark 38. The fact that the wave impedance at the load is not affected by neither the variation
of losses for the frequency says a lot about this parameter regarding its physical interpretation and
also as BC in any specific point along the TL: it determines the relation between the total voltage
and current waves and so the characteristic impedance and the reflection coefficient.

As a consequence, the wave impedance at the load, which does not depend on neither the losses
nor the frequency, (extra) parameterizes the ffa or the vfa.
As said before, the rest of the parameterizations used depend on the type of analysis.

The modulus of the wave impedance normalizes the parameters under study (those in eqs. (5.30)-
(5.32)), just as it is done for the inverse characterization of the basic parameters presented in Sect.
4.4.2 in Chpt. 4, leading to:

Z0nL =
Z0

|ZL|
= ejϕZ0

1− ρ
1 + ρ

, for the ffa, or (5.34)

Z0nL(ω) =
Z0(ω)

|ZL|
= ejϕZ0

(ω) 1− ρ(ω)

1 + ρ(ω)
, for the vfa, (5.35)

whereas ρ and ρ(ω) remain invariant, as it is usual because of their role relating the characteristic
impedance and wave impedance in a linear fractional transformation, which makes the common
normalizations result simplified.

In this case, ρ and ρ(ω) are addressed as basic parameters, just as it has been introduced for the
inverse characterization.

In addition, Z0 in eq. (5.34) characterized in terms of losses may be obtained when denormalizing
the direct characterization of Z0n1 in eq. (4.3) studied for the ffa. Thus Z0nL for the ffa may be
rewritten in terms of Z0n1 as:

Z0nL =
Z0,sp

|ZL|
Z0n1, (5.36)

which only supposes a real scaling of Z0n1.
Reciprocally, Z0(ω) in eq. (5.35) described in terms of frequency may be obtained from the de-
normalization of Z0n2(ωn) ≡ Z0n2(ω) defined in eq. (4.20) for the vfa. In this case, Z0(ω) may be
rewritten as in terms of Z0n2(ω) as:

Z0nL(ω) =
Z0,nd

|ZL|
Z0n2(ω) ≡ Z0,sp

|ZL|
Z0n2(ω), (5.37)

which is a real scaling of Z0n2(ω).
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(a)

(b)

Fig. 5.25: Schemes of parameters and transformations ( 1 - 2 ) to be followed for finally achieving
the characterization of the basic parameters in terms of (a) losses (for the ffa) and (b) frequency

(for the vfa). The parameters which are the data in each analysis are marked with the 99 symbol.

On the other hand, although the propagation constant may be studied for both the ffa and the vfa,
its characterization is not significant in this case in which the analysis are carried out in a fixed
point of the TL, making the analysis in this example ”static” (notice that γ is not present in eqs.
(5.26)-(5.29)).

In Fig. 5.25 two schemes gathering all the parameters which are involved in the analysis in terms
of both losses (Fig. 5.25a) and frequency (Fig. 5.25b) are shown together with the normalizations
to be used in each analysis.
Notice the step in which (and how) the normalized characteristic impedance appears for each case.
The direct characterization of the characteristic impedance presented in Sect. 4.3.1 in Chpt. 4 lets
to characterize the mathematical analysis of the curves in the respective Z0n1- and Z0n2-complex
planes. From this analysis, the main new characterization in terms of losses or frequency affects
the reflection coefficient, whereas the rest of wave parameters are invariant and so single points in
their respective complex planes.

5.3.2 Mathematical analysis

When analyzing the problem of characterizing the TL parameters in terms of losses or frequency
for the ffa or the vfa, which relate the equivalent voltage and current waves, the parametric analysis
of the expressions involved in the underlying LTLT are mainly addresed. In this sense, notice that
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the expressions V and I in eqs. (5.26) and (5.27) used for the ffa and those V (ω) and I(ω) in
eqs. (5.28) and (5.28) used for the vfa are not explicit functions of one or more variables2 but
expressions parameterized by losses/frequency.
Nevertheless, in the direct characterization of the basic parameters introduced in Sect. 4.3 in
Chpt. 4, in particular for the interpretation of the graphical analysis as complex transformations,
the appropriate functions representing the basic parameters whose domain is in the space of pa-
rameterizations, in particular in the rg-plane, have been rigorously defined.
This is the way to mathematically follow the analysis presented in this example.
Instead of operating with the voltage and current functions defined over the rg-plane, it is better
to deal with the parameters of the TL, seen as functions, in the same way as in the direct charac-
terization of basic parameters.

Firstly notice that, by definition, the wave imepdance and wave admittance in this problem (at the
load) do not depend on none of the variables in the rg-plane, and so their respective normalized
functions are constant in this domain3:

ZLn, YLn: R+ ∪ {0} ⊂ H→ C

(r, g) 7→

{
ZLn(r, g) = ZL

|ZL| = ejϕZL = cL + jsL

YLn(r, g) = YL|ZL| = e−jϕZL = cL − jsL
,

(ωn, c) 7→

{
ZLn(ωn, c) = ZL

|ZL| = ejϕZL = cL + jsL

YLn(ωn, c) = YL|ZL| = e−jϕZL = cL − jsL
,

in which cL = cos(ϕZL), and sL = sin(ϕZL).

(5.38)

On the other hand, the function Z0nL is defined from Z0n1(r, g) in eq. (4.7) and Z0n2(ωn, c) in eq.
(4.23), used in the direct characterization of basic parameters for the ffa and the vfa, respectively:

Z0nL: R+ ∪ {0} ⊂ H→ C

(r, g) 7→ Z0nL(r, g) =
Z0,sp

|ZL|
Z0n1(r, g),

(ωn, c) 7→ Z0nL(ωn, c) =
Z0,nd

|ZL|
Z0n2(ωn, c) ≡

Z0,sp

|ZL|
Z0n2(ωn, c).

(5.39)

Notice that, for both the ffa and the vfa, each function is point by point (in the rg-plane) the
same. This means that ZL (also YL) and Z0nL behave in the same way in the (r, g) or the (ωn, c)
coordinates provided that they represent the same point in the rg-plane.
The main difference between these analysis comes from the parameterization of the curves in the
rg-plane.

The usual way to see these functions in their respective complex planes is as curves, represented
when keeping fixed one parameter and varying the other one, leading to the curve parameterized
by the parameter which is kept fixed. For example, the curve which represents Z0nL in the whole
frequency band results from keeping fixed c while varying ωn (equivalently,varying ω). In this
example, the resultant curve is rigorously defined as:

Z0nL: (0,∞) ≡ R+ ∪ {0} →R2 (C)

ωn 7→(Z ′0nL(ωn), Z ′′0nL(ωn)),

2Even in the expressions V (ω) and I(ω) used for the vfa the dependence on ω is not clear. For example, despite
ω appears in γ ≡ γ(ω), this parameter does not have any influence in the volatage and current waves analyzed at the
load, and thus analyzing what happens with the total waves in terms of frequency where the load is fixed supposes
an interesting problem here addressed.

3As usual throughout this Thesis book, the functions defined over the isocomplex numbers are written boldfaced.
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in which ωn plays the role of the parameter for the regular parameterization of the planar curve
which characterizes Z0nL in the whole frequency band.

The following transformation, Tρ, transforms the curves from the Z0nL-plane (parameterized by
either losses or frequency) to the ρ-plane:

Tρ: R2 (C)→R2 (C) (5.40)

Z0nL(par.) 7→Tρ [Z0nL(par.)] =
ZLn − Z0nL(par.)

ZLn + Z0nL(par.)
,

in which ”par.” indicates any of the possible parameterizations r, g, ωn, or c, all of them defined
in R+ (analogously to how ”l” parameterizes the length of the TL in Ex. 01).

Since the curves in the Z0nL-plane are real scalings of the curves in the Z0n1-plane and the Z0n2-
plane, their graphical and geometrical analysis, as well as their physical interpretations have already
been studied in detail in the direct charactrization presented in Sect. 4.3.1 in Chpt. 4.
The resultant general equations of Z0nL written in polar form used for the ffa analysis are:

|Z0nL| =
Z0,sp

|ZL|
√
|n| cos (2ϕZ0

− ϕn), (5.41)

ϕZ0
∈
[ϕn

2
,
π

4
+
ϕn
2

[
,

in which |n| =
√

1 + r2, and ϕn = − tan−1(r),

for the curves parameterized by r, and

|Z0nL| =
Z0,sp

|ZL|
1√

|d| cos (2ϕZ0
+ ϕd)

, (5.42)

ϕZ0
∈
[
−ϕd

2
− π

4
,−ϕd

2

[
,

in which |d| =
√

1 + g2, and ϕd = − tan−1(g),

for the curves parameterized by g.
In both cases, the phase of the characteristic impedance, ϕZ0

, may act act as the parameter which
describes the curves.
For the vfa, only the curves parameterized by c are described by a general equation in polar form.
Nevertheless, these c-curves, which represent the TL in the whole frequency band, may be obtained
from the intersection of those r- and g-curves that keep the ratio c = r/g constant, making unnce-
sary reparameterizing the analysis.

From this point, the complete graphical analysis can be done by using the complex parameteri-
zations presented in the CTLT-v1. In particular, the inverse analysis of basic parameters lets to
describe the curves parameterized by r and g, or ωn and c, in the ρ-plane. As a result, the function:

ρL: R+ ∪ {0} ⊂ H→ C
(r, g) 7→ ρL(r, g) = Tρ[Z0nL(r, g)],

(ωn, c) 7→ ρL(ωn, c) = Tρ[Z0nL(ωn, c)],

(5.43)

in which Tρ would be strictly an operator defined over the function Z0nL to get ρ in eq. (5.43),
will be analyed by means of the subsequent graphical examples.



218 CHAPTER 5. EXAMPLES OF USE OF THE COMPLEX TRANSMISSION LINE THEORY

5.3.3 Graphical and geometrical analysis

In this section, a complete graphical analysis of losses and frequency for the ffa and the vfa, re-
spectively, is carried out, to be then characterized from the geometrical point of view.

On one hand, recall the basic parameters which have been described in terms of losses and fre-
quency in Sect. 4.4.2 in Chpt. 4. From these analysis, the appropriate normalizations concerning
the characteristic impedance are proposed in eqs. (5.36) and (5.37), in order to obtain the curves
in the Z0nL-plane. For this purpose, both Z0,sp and ZL are supposed be part of the datum (marked
with the symbol in Fig. 5.25) for each of the examples which are graphically solved.
On the other hand, once Z0nL is characterized for both the ffa and the vfa, it is transformed by
using the modulus-phase parameterizations of the inverse characterization of basic parameters, in
particular the transformation from the Z0nL-plane to the ρ-plane. In this way, Z0nL is parameter-
ized as: {

ϕZ0
= p

|Z0nL| = Z0nL,sp

√
|n| cos (2p− ϕn)

, (5.44)

in which Z0nL,sp =
Z0,sp

|ZL|
, |n| =

√
1 + r2, and ϕn = − tan−1(r),

for the curves parameterizing r, andϕZ0
= p

|Z0nL| = Z0nL,sp√
|d| cos(2ϕZ0

+ϕd)
, (5.45)

in which |d| =
√

1 + g2, and ϕd = − tan−1(g),

for the g-parameterized curves.
The c-parameterized curves are given by the intersection of the r- and g-cuves which verify r/g = c.
In addition, the wave parameters Zn and Yn, which are part of the datum in this example, are
represented in their respective complex planes as (”fixed”) single points.

The following examples, parameterized by different loads and lossless characteristic impedances,
serve to see the process of the curve construction based on the transformations from the Z0nL-plane
to the ρ-plane for the ffa, constituting an example of use of the inverse characterization.
From this lossy characterization, the intersections between those curves that keep the ratio c con-
stant lead to the graphical analysis for the vfa.
Varying the parameterizations of losses r and g and gathering the intersections in c-curves, a com-
plete analysis of the TL parameters in terms of losses and frequency is graphically obtained.
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5.3.4 Some examples of graphical analysis of basic parameters in terms
of losses

Example I

Numerical values of the transmission line parameters

Physical parameters Line parameters

f , λ, ce, D/λ

Param. Normalizations

R = 0, L,
G 6= 0, C

r = 0, g = 1,
c = 0.5, c = 2

Basic Parameters

Param. Normalizations

Z0,sp = 50[Ω] -

Z0 = 38.8443 + j16.0899 =

= 42.0448∠22.5000◦
Z0nL = 0.7769 + j0.3218 =

= 0.8409∠22.5000◦[Ω]

γ
γn1 = 0.4551 + j1.0987 =

= 1.1892∠67.5000◦[m−1]

Wave parameters at the load

Param. Normalizations

ρL -

ZL = 50 + j0 = 50∠0◦ ZLn = 1 + j0 = 1∠0◦

YL = 0.0200 + j0.0000 =

= 0.0200∠0◦
YLn = 1 + j0 = 1∠0◦

Table 5.4: Numerical values of the TL parameters: Z0,sp and ZL; for the analysis in this first
example.
The values of the normalized basic parameters, Z0nL and γn1, result from the intersection of the
curves r = 0 and g = 1, which are studied as examples of curve transformation from the Z0nL-plane
to the ρ-plane in the ffa.
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Fixed frequency analysis

Fig. 5.26: Modulus and phase parameterizations of
the r = 0 and g = 1 curves in the Z0nL-plane.

Fig. 5.27: Transformations of the r = 0 and g = 1
curves to the ρ-plane.

(a)

(b)

(c)

(d)

Fig. 5.28: The supportive (a)
rg-, (b) γn1-, (c) ZLn-, and
YLn-planes.
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Fig. 5.29: Curves paramterizing the confuctor and di-
electric losses in the Z0nL-plane

Fig. 5.30: Transformation of the curves parametriz-
ing losses to the ρ-plane.

(a)

(b)

(c)

(d)

Fig. 5.31: The supportive (a)
rg-, (b) γn1-, (c) ZLn-, and
YLn-planes.
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Variable frequency analysis

Fig. 5.32: Curves with constant c = 0.5 and c = 2 ratio
from the intersections of the curves with parameterized
by conductor and dielectric curves in the Z0nL-plane.

Fig. 5.33: Transformation of the interections of lossy
curves with constant c = 0.5 and c = 2 lossy ratio to
the ρ-plane.

(a)

(b)

(c)

(d)

Fig. 5.34: The supportive (a)
rg-, (b) γn2-, (c) ZnL-, and
YnL-planes.
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Fig. 5.35: Curves parameterized by c in the Z0nL-
plane.

Fig. 5.36: Transformation of the curves with constant c
ratio in the ρ-plane.

(a)

(b)

(c)

(d)

Fig. 5.37: The supportive (a)
rg-, (b) γn2-, (c) ZnL-, and
YnL-planes.
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Example II

Numerical values of the transmission line parameters

Physical parameters Line parameters

f , λ, ce, D/λ

Param. Normalizations

R 6= 0, L,
G = 0, C

r = 5, g = 0,
c = 0.2, c = 5

Basic Parameters

Param. Normalizations

Z0,sp = 50[Ω] -

Z0 = 87.3142− j71.5805 =

= 112.9050∠− 39.3450◦
Z0nL = 0.8731− j0.7158 =

= 1.1291∠112.9050◦[Ω]

γ
γn1 = 1.4316 + j1.7463 =

= 2.2581∠50.6550◦[m−1]

Wave parameters at the load

Param. Normalizations

ρL -

ZL = 0 + j100 = 100∠90◦ ZLn = 0 + j1 = 1∠90◦

YL = 0.0000− j0.0100 =

= 0.0100∠− 90◦
YLn = 0− j1 = 1∠− 90◦

Table 5.5: Numerical values of the TL parameters for the analysis in this second example: Z0,sp

and ZL.
The values of the normalized basic parameters, Z0nL and γn1, result from the intersection of the
curves r = 5 and g = 0, which are studied as examples of curve transformation from the Z0nL-plane
to the ρ-plane in the ffa.
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Fixed frequency analysis

Fig. 5.38: Modulus and phase parameterizations of
the r = 5 and g = 0 curves in the Z0nL-plane.

Fig. 5.39: Transformations of the r = 5 and g = 0
curves to the ρ-plane.

(a)

(b)

(c)

(d)

Fig. 5.40: The supportive (a)
rg-, (b) γn1-, (c) ZnL-, and
YnL-planes.
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Fig. 5.41: Curves paramterizing the confuctor and dielec-
tric losses in the Z0nL-plane

Fig. 5.42: Transformation of the curves parametrizing
losses to the ρ-plane.

(a)

(b)

(c)

(d)

Fig. 5.43: The supportive (a)
rg-, (b) γn1-, (c) ZnL-, and
YnL-planes.



5.3. ANALYSIS AT THE LOAD IN TERMS OF LOSSES AND FREQUENCY 227

Variable frequency analysis

Fig. 5.44: Curves with constant c = 5 and c = 0.2 ratios.

Fig. 5.45: Transformation of the interections of lossy
curves with constant c = 5 and c = 0.2 lossy ratio
to the ρ-plane.

(a)

(b)

(c)

(d)

Fig. 5.46: The supportive (a)
rg-, (b) γn2-, (c) ZnL-, and
YnL-planes.
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Fig. 5.47: Curves parameterized by c in the Z0nL-plane.

Fig. 5.48: Transformation of the curves with constant c
ratio in the ρ-plane.

(a)

(b)

(c)

(d)

Fig. 5.49: The supportive (a)
rg-, (b) γn2-, (c) ZnL-, and
YnL-planes.
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Example III

Numerical values of the transmission line parameters

Physical parameters Line parameters

f , λ, ce, D/λ

Param. Normalizations

R = 0, L,
G = 0, C

r = 0, g = 0,
c>>, c=0

Basic Parameters

Param. Normalizations

Z0sp = 75[Ω] -

Z0 = 75 + j0 =

= 75∠0◦
Z0nL = 3 + j0 =

= 3∠0◦[Ω]

γ
γn1 = 0 + j1 =

= 1∠90◦[m−1]

Wave parameters at the load

Param. Normalizations

ρL -

ZL = 17.6777− j17.6777 =

= 25∠− 45◦
ZLn = 0.7071− j0.7071 =

= 1∠− 45◦

YL = 0.0283 + j0.0283 =

= 0.0400∠45◦
YLn = 0.7071 + j0.7071 =

= 1∠45◦

Table 5.6: Numerical values of the TL parameters for the analysis in this third example: Z0,sp and
ZL.
The values of the normalized basic parameters, Z0nL and γn1, result from the intersection of the
curves r = 0 and g = 0, which are studied as examples of curve transformation from the Z0nL-plane
to the ρ-plane in the ffa.
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Fixed frequency analysis

Fig. 5.50: Modulus and phase parameterizations of the r =
0 and g = 0 curves in the Z0nL-plane.

Fig. 5.51: Transformations of the r = 0 and g = 0 curves
to the ρ-plane.

(a)

(b)

(c)

(d)

Fig. 5.52: The supportive (a)
rg-, (b) γn1-, (c) ZnL-, and
YnL-planes.
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Fig. 5.53: Curves paramterizing the confuctor and dielectric
losses in the Z0nL-plane

Fig. 5.54: Transformation of the curves parametrizing
losses to the ρ-plane.

(a)

(b)

(c)

(d)

Fig. 5.55: The supportive (a)
rg-, (b) γn1-, (c) ZnL-, and
YnL-planes.
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Variable frequency analysis

Fig. 5.56: Curves with constant c = 0 and c>>ratios.

Fig. 5.57: Transformation of the interections of lossy
curves with constant c = 0 and c>>lossy ratio to the
ρ-plane.

(a)

(b)

(c)

(d)

Fig. 5.58: The supportive (a)
rg-, (b) γn2-, (c) ZnL-, and
YnL-planes.
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Fig. 5.59: Curves parameterized by c in the Z0nL-plane.

Fig. 5.60: Transformation of the curves with constant c
ratio in the ρ-plane.

(a)

(b)

(c)

(d)

Fig. 5.61: The supportive (a)
rg-, (b) γn2-, (c) ZnL-, and
YnL-planes.
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Three different examples (examples I-III in Sects. 5.3.4-5.3.4, respectively) has been presented,
varying both the lossless characteristic impedance and the impedance at the load in the following
manner:

Example I Example II Example III
Z0,sp 50[Ω] 50[Ω] 75[Ω]
ZL 50 + j0[Ω] 0 + j100[Ω] 25e−j

π
4 [Ω]

Notice how ”slight” changes on the impedance at the load makes that characteristic impedance
and the reflection coefficient vary a lot.
In particular, if the ratio Z0nL,sp = Z0,sp/|ZL| is kept constant, Z0nL would be the same, but not
ρL, which depends individually on Z0,sp and ZL (with the phase ϕZL included).

If analyzing the properties of the graphical analysis geometrically, it is possible to characterize the
resultant curves and parameters when varying the losses and frequency.

On one hand, the curves in the Z0nL-plane parameterized by losses are lemniscates of Bernouilli,
[Law72], just as they have been classified and studied in the direct characterization of Z0n1, but in
this case scaled by the factor Z0nL,sp. The curves parameterized by c used in the vfa are Cassini
ovals, [Law72], just as they are presented in the direct characterization of Z0n2, but multiplyed by
the same factor Z0nL. The general equations of these curves are well-known, [Law72].
Moreover, the curves in the γn1-plane and γn2-plane for the ffa and the vfa remain the same,
because they are not affected by the ”static” normalization with respect to the load.

On the other hand, the most interesting geometrical results to be described in the analysis in terms
of losses and frequency concern the reflection coefficient at the load.
By means of the graphical examples presented in this section (Examples I-III), it can be seen at
first sight that the curves in the ρ-plane are topologically equal to those in the Z0nL-plane. In fact,
the transformation between these planes supposes a strong contraction with respect to the original
analysis of the characteristic impedance in terms of losses or frequency. In fact, this transformation
given by Tρ in eq. (5.40) is conformal, so the angles between the curves are preserved in magnitude
and orientation.
As a result of this contraction, the curves in the ρ-plane are delimited by, on one hand, the same
curves parameterized by g = 0 and r = 0 in the ffa or c = 0 and c� in the vfa and, on the other
hand, by the curves parameterized by r � and g � or ωn = 0 and ωn � for the ffa or the vfa,
respectively. These latter limits coincide with the curve parameterized by ϕZ0 = 0 (”universal”,
because angles in general do not depend on the normalization), which transforms to the arc of the
circumference given by (

0,
1

tan(ϕZL)

)
:

1

| sin(ϕZL)|
, (5.46)

which only depends on the phase of the load that parameterizes this analysis, ϕZL .
Notice that this analysis in terms of losses/frequency reduces the limits that the GSC originally
predicts, just as it can be seen in Figs. 5.30, 5.42 and 5.54 for the ffa, or equivalently in Figs. 5.36,
5.48 and 5.60 for the vfa.

Furthermore, some remarkable points, which meet some specific physical behaviors, are located on
the ρ-plane, being these useful for further geometrical analysis in the ρ-plane.
These points are the perfect conductor, (pc), the perfect dielectric, (pd), and the non dispersive
case, (nd)4. Notice that this latter non dispersive case generalizes the lossless case.
The (pc) is located at ρ = ρpc = 1 + j0, whereas the (pd) is at ρ = ρpd = −1 + j0, whatever the

4These names are explained by the physical interpretation of the reflection coefficient in terms of some specific
behaviors of the characteristic impedance, just as it has been explained in the inverse characterization of the basic
parameters presented in Sect. 4.4.2 in Chpt. 4.
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impedance at the load would be. These are the only points which reamin fixed in the ρ-plane when
varying the impedance at the load.
As it has been said, the analysis of ρL in terms of losses and frequency (generally) depends on both
the load and the lossles characteristis impedance, and so the (nd) does.
In Appendix 5.D, the location of (nd) in the ρ-plane is solved using geometrical analysis. As a
result of this analysis, it is known that this point is located at

ρ = ρnd = |ρnd|ejϕnd , (5.47)

in which


ϕρnd

= tan−1
(

2Z′′L
|ZL|2−Z2

0,sp

)
|ρnd| = 1

tan(ϕZL )

(
sin(ϕρnd) +

√
tan2(ϕZL) + sin2(ϕρnd)

) .

The (nd) point, which is common to every curve in the ffa and the vfa, may be used for locating
any point in the Z0nL-plane to be transformed to the ρ-plane.
For this purpose, it is about ”triangulating” the point which is interesting the be transformed using
the angle ϕZ0

and the angle which forms the ray which has its origin in the (nd) point, ϕZ0,nd
, in

the Z0nL-plane.

Fig. 5.62: Example of ”angular trinagulation” using the angles ϕZ0 and ϕZ0,nd
in the Z0nL-plane

for locating some random points on it.

In Fig. 5.62, an example of use of the angles ϕZ0
and ϕZ0,nd

is depicted.
Using the ”angular triangulation” (named phase-phase parameterization) instead of the modulus-
phase parameterizations has two main advantages: (i) the scaling produced by Z0nL,sp does not
affect the angles at all, so this phase-phase parameterization is ”universal” in the Z0nL-plane; and
(ii) the phase-phase parameterization takes full advantage of the conformability of the transfor-
mation from the Z0nL-plane to the ρ-plane. In this way, the points in the ρ-plane belonging the
curves depicted for the analysis in terms of losses and frequency can be explained.
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Fig. 5.63: Example of transformation of a point belonging the curve parametrized by r = 0 by
using the phase-phase parameterization from the Z0nL-plane to the ρ-plane.

In Fig. 5.63 above, an example of use of the phase-phase paramterization for locating a point
in the ρ-plane is represented. Regarding this transformation, some interesting geometrical facts
should be detached: (i) since the tansformation from the Z0nL-plane to the ρ-plane is Möbius-type,
the transformations of the rays characterized by ϕZ0

and ϕZ0,nd
are circumferences in the ρ-plane;

moreover, (ii) since Z0nL =∞ is located at ρpd = −1+j0 in the ρ-plane, the angles ϕZ0
and ϕZ0,nd

”measured” at infinity can be geometrically represented in the ρ-plane; (iii) both angles ϕZ0 and
ϕZ0,nd

are measured from the curve limit in eq. (5.46), and the orientation is preseved from the
references in the Z0nL-plane; and (iv) since ϕZ0

is measured from both the (pd) and (pc) points,
the center of the circumference which represents the ray characterized by ϕZ0

is in the imaginary
axis, which confirms the geometrical representation based on circunferences parameterized by the
phase in the inverse characterization of basic parameters.

By repeating the process of parameterizing each of the points belongin the curve which is intended
to be transformed, the resultant curve in the ρ-plane is depicted and geometrically characterized
based on angular transformations.

Remark 39. The main advantages of using the phase-phase parameterization instead of the
modulus-phase parameterization are in: (i) reducing the parameterizations regarding load to the
process of locating the non dispersive point (nd) in the ρ-plane; and (iii) keeping the analysis
purely geometrical based on angular translations.
In this way, the resultant curves in the ρ-plane are geometrically characterized.
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Fig. 5.64: Example of construction of the curve parameterized by r = 0 when Z0,sp = ZL ∈ R+,
so Z0nL,sp = 1 and ϕZL = 0.

In Fig. 5.64, an example of use of the phase-phase parameterization for representing the curve
parameterized by r = 0 with the data in Example I (Sect. 5.3.4) is shown.

On their behalf, the points in the ZLn- and YLn-planes are geometrically characterized by the
phases ϕZL and −ϕZL , respectively.

5.3.5 Physical interpretations

The analysis presented in this example should be interpreted in terms of varying the losses or the
frequency at any point of the TL, loaded by the wave impedance ZL, to see how the TL parameters
consequently change.

This analysis is equivalent to the one presented in Example I but, instead of varying the length of
the TL, here the losses and frequency vary for the ffa and the vfa.
Thus, the true physical interpretation comes with the parameterizations used to describe the anal-
ysis in terms of losses/frequency which, in turn, clearly delimit the original analysis: the charac-
teristic impedance and the reflection coefficient at any fixed point along the TL is given by this
analysis, which has physical meaning by itself, and it is within the a priori possible values of them.
For example, the original limit is parameterizd by the angle ϕZ0 . However, not all the possible val-
ues of Z0 are physically realizable, and the limits of Z0 are given by means of this characterization
in terms of the physical parameters –losses or frequency– under study.

This analysis reveals the parameters which have true physical meaning. The parameters which
change with losses/frequency at any fixed point along the TL are not true physical parameters.
In fact, those paramaters which change with losses/frequency may be addressed as ”analytical
parameters” which vary according to the parameters which are fixed in this analysis, because they
have true physical meaning. Moreover, the parameters which varies with losses/frequecy describe
only certain parts of the total waves, and so they are potentially dimensionless5.

On the other hand, this analysis serves to explain the particular cases or approximations, just
as it has been done for the characteristic impedance and the propagation constant in the direct

5Even the normalized characteristic impedance is dimensionless.
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characterization of basic parameters.
The lossless and the non dispersive cases, as well as the low losses approximation, are located in
the (nd) point in the ρ-plane, which depends on the load, just as it has been explained among the
geometrical analysis.
Moreover, two additional particular cases arise from this analysis:

Lossy parameterizations
Perfect conductor (pc) r = 0 and g →∞ (g �)
Perfect dielectric (pd) g = 0 and r →∞ (r �)

Table 5.7: Values of the parameterizations regarding the ffa which define the particular cases:
perfect conductor and perfect dielectric.

The perfect conductor (pc) and the perfect dielectric (pd) cases, which mix the lossless and high
lossy cases of each parameterization of losses, are fixed points in the ρ-plane. Notice that the (pd)
point corresponds to Z0nL =∞ in the extended Z0nL-complex plane, so the ρ-plane is the way for
making this point collapse to the fixed point (pd).

5.3.6 Practical uses

The analysis introdced by means of this example presents many potential practical uses in the
analysis of TLs: some of them are directly related to the application of the achieved analytical
results, also together with the analysis along the TL presented in Example I, and other ones would
be related to describe the behavior of real electromagnetic systems, basing the analysis on charac-
terizing their equivalent TL.

Firstly notice the capacity of ρ described at any fixed point along the TL in terms of losses in
”varying” the reflection coefficient, which revals the possibility of using losses for matching load
purposes.
However, only if the (nd) point (regarding this analysis at the load) is located at the origin in the
ρ-plane the TL would match the load. That is because the signaled point (nd) represents the point
in which |ZL| = |Z0| and, if this point is at the origin in the ρ-plane, it means that ϕZL = ϕZ0

,
leading to the desired matching.
As a consequence, the analysis of ρ in terms of losses/frequency is not useful for matching loads
by itself, but it hints the capacity of using losses/frequency combined with the analysis along the
TL for this purpose. In effect, this is shown in [VG17-I], and explained as application in 1.

According to this latter interpretation of losses, frequency may be specifically used to achieve the
matching by using the GSC in combination with the iGSC, because it is a controllable parameter
in practice when the TL works in time harmonic regime, just as it is done in RF and microwave
Engineering.
In any case, the analysis ”along the frequency” for a fixed ratio c involving the line parameters is
given by the analysis presented in this section, becoming especially important those geometrical
analysis presented before in this example.

Finally, it should be detached the possibilities of this analysis when dealing with the TL parameters
seen them as functions (in this case functions of losses/frequency).
For example, let’s look at the possibilities of the defined functions Z0nL(r, g) and ρL(r, g), or
Z0nL(ωn, c) and ρL(ωn, c) for characterizing any electromagnetic system (circuit) in which HPWs
propagate.
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Fig. 5.65: Scheme of the port L (L-port) loaded by ZL representing any circuit in which the
parameters Z0nL and ρL are to be characterized.

The circuit in Fig. 5.65 is characterized at a port L (L-port) loaded with ZL (physically measure-
able), as schematized in the figure above.
Then, at the L-port, the circuit presents a characteristic impedance and a reflection coefficient
measured with respect to the characterstic load ZL, so it has its own Z0nL and ρL.
These parameters are given in integral form as:

Z0nL =

ˆ
rg-plane

f(r, g)Z0nL(r, g)dµ(r, g) , and (5.48)

ρL =

ˆ
rg-plane

f(r, g)ρ(r, g)dµ(r, g), (5.49)

in which the functions Z0nL(r, g) and ρ(r, g) are the ones studied for this examples in eqs. (5.39)
and (5.43), and they play the role of the kernel of the integral operator acting in the rg-plane with
the measure µ(r, g) (to be defined) based on the definition of f(r, g), which is the characteristic
function of the circuit to analyze.
A trivial example of this circuit would be the any lossy TL:

Example 5.3.1. A lossy TL parameterized by r = r0 and g = g0 is generically defined by:{
f(r, g) = δ(r − r0, g − g0)

dµ(r, g) = drdg
,

in which δ(r, g) would be the bivariate Dirac’s delta, so the integrals in eqs. (5.48) and (5.49) above
have to be understood within the frame of the Theory of Distributions, [Sch51], or the Theory of
Generalized Functions, [GS64].
As a result, Z0nL and ρL are defined as Z0nL(r0, g0) and ρL(r0, g0), respectively, or equivalently
by the intersection of the curves parameterized by r = r0 and g = g0 in the graphical analysis
described in this example.

Reciprocally, the analysis could be done in terms of frequency, becoming much more intuitive for
practical purposes.
In this sense, the equivalent Z0nL and ρL at the L-port could be measured in a specific bandwidth,
for instance, by keeping fixed c while varying ωn accordingly.
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5.4 Analysis along the TL in terms of losses and frequency

Before dealing with the analysis in this example, it is highly convenient to indroduce it taking
into account the results achieved by means of the two previuous examples, which are part of the
conclusions of the analysis of lossy TLs studied under the context of the CTLT.
At the same time, the objectives related to this example are intended to be clearly posed.

On one hand, by means of Ex. 01 presented in Sect. 5.2, it has been seen that the phase of the
propagation constant, ϕγ , determines the analysis along the TL once the reflection coefficient at
the load is known.
It means that all the possible combinations of losses that lead to the same ϕγ , present the same
variation of the reflection coefficient along the TL.
In this way, the phase of the propagation constant adquires great relevance in those analysis which
are posed along the TL.

On the other hand, it has been seen by means of Ex. 02 presented in Sect. 5.3 that the phase of
the characteristic impedance, ϕZ0

, has special influence on describing the curves parameterized by
losses or frequency at any fixed point along the TL where the impedance is known.
In particular, it has been seen that ϕZ0 may be used as the parameterization for the curves param-
eterized by losses/frequency (see, for example, the curves parameterized by the conductor losses in
eq. (5.41)). Furthermore, by means of the direct characterization of wave parameters, for example
in the GSC, it has been seen that ϕZ0

determines the influence of losses on the wave parameter
transformations.
In this way, the phase of the characteristic impedance results crucial for parameterizing losses/frequency
at any fixed point along the TL.

Keeping in mind the behaviors of the TL regarding the phases of the basic parameters, the issue
of studying how the parameters of the TL behave when ϕγ or ϕZ0

are constant and what type of
problems these analysis would solve result of special interest. In this way, the questions posed at
the beginning of this chapter are totally motivated by the previous examples of use of the CTLT
in regards to the analysis along the TL and in terms of losses.

Remark 40. The analysis along the TL and in terms of frequency/losses reveal that they are
determined by the phases of basic parameters. Conversely, if studying the influence of these angles
in different scenarios, both the analysis along the TL and in terms of frequency/losses may be
completely characterized.

Fig. 5.66: Sheme of possible transformations between the normalized basic parameters based on
the definition of the direct and inverse functions from the domain of parameterizations (r, g).

From this point forward, the study of the TLs parameterized by the phase of both the characteris-
tic impedance and the propagation constant will determine the analysis along the TL in terms of
losses/frequency.
Notice that this study is feasible thanks to the definition of basic parameters in terms of line pa-
rameters, which leads to the subsequent definition of their respective functions in terms of line
parameters and thus the inverse functions for the inverse characterization of line parameters.
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In Fig. 5.66 the transformations between the basic parameters having the domain of parameter-
izations (r,g) as the link of them are shown. This connection between basic parameters may be
explicitly accomplished by parameterizing their phase, for example obtaining those pairs (r, g) that
lead to the same ϕZ0

(denoted as (r, g)ϕZ0
≡ Z−1

0n1,ϕZ0
(Z0n1)), so that the TL which keep this an-

gle constant is characterized by the propagation constant γ = γn1[(r, g)ϕZ0
] ≡ γ[Z−1

0n1,ϕZ0
(Z0n1)].

Remark 41. The fact that the basic parameters may be seen as functions of the line parameters
(functions defined on the rg-plane) makes that all the TL parameters are mutually connected. This
allows, in turn, their analysis in terms of the phase of each basic parameter, that is, the analysis
using ”cross angular parameterizations”.

For the issue of parameterizing the analysis in terms of angles, notice the great advantage the an-
gular parameterizations have when normalizing the parameters under study: they are not affected
by any of the proposed normalizations.

Remark 42. The fact that angles are able to parameterize the analysis both in terms of losses/freq-
uency and along the TL makes the analysis ”universal” in itself, because the angles trascend the
(real) normalizations proposed throughout the CTLT.

The seeked parameterizations are explained for different purposes regading the analysis in terms
of the phase of basic parameters.
Then the subsequent mathematical analysis are addressed to obtain the expressions of the TL
parameters written in terms of the angular parameterizations.
The graphical and geometrical analysis are presented in the usual way: comparing the planes as-
sociated to each parameter under study, and indicating the fixed parameters in each case.
In this case, the physical interpretations underlying the analysis have even further importance
because (i) the parameterizations of angles have non direct physical meaning in the description of
losses/frequency and the TL’s length, and (ii) the results are often non trivial to be understood,
at least at first sight from graphical analysis, which is also a consequence of the use of angles as
parameterizations.
At the end, the practical uses of this example are outlined, emphasizing the conclusions and the
manner the angles can generalize the TL analysis. Moreover, the main limitations to this analysis
are pointed out, suggesting at the same time the appropriate alternatives to overcome them, if the
same basis of this study are intended to be recycled for future analysis or applications.

5.4.1 Definitions and parameters

As it has been mentioned in the introduction of this example, the angles of basic parameters, ϕZ0

and ϕγ , may act as the parameterizations for the analysis combining the influence of losses/frequency
and the studies along the TL.

Moreover, an important fact to take into account for the subsequent mathematical analysis is that
any of the normalizations regarding the basic parameters used in the CTLT is valid for the analysis
”crossing” the parameterizations of their angles. That is because the angle parameterizations do
not depend on the normalization chosen, as it has been explained before.
Nevertheless, studying the influence of angles from the normalizations regarding the lossless case
(used for the ffa in terms of losses) has clear advantages with respect to rest of normalizations:
(i) the basic parameters presents compact expressions in terms of r and g, and they are given by
the product or quotient of the complex values n and d, as they have been originally defined in eqs.
(4.5) and (4.6), respectively; and (ii) the inverse characterization of line parameters in terms of the
phases of the line parameters has been done using the (r, g) coordinates.
In any case, this ”lossless normalization” may be easily denormalized a posteriori, to be then renor-
malized as the subsequent analysis requiere.
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The first question to be addressed in order solve the problem of parameterizing the losses/frequency
and the TL’s length by means of the phases ϕZ0

and ϕγ is related to answer which losses/frequency
and lengths corresponds to these angles.

Remark 43. The original question of which TL’s leads to the same phase of each of the basic
parameters is posed inversely to see which losses correspond to these angles. The reason for pos-
ing the inverse problem is founded in the previous analysis either along the TL or in terms of
losses/frequency, which suggest that the phases of basic parameters serve to describe these analysis
provided that the appropriate BCs are setted on.
As a consequence, the inverse characterization appears as the required method for solving these
issues on the parameterization.

As suggested, the inverse characterization of line parameters in terms of the phases of the basic
parameters presented in Sect. 4.4.1 in Chpt. 4 directly answers which parameterizations of losses
and frequency correspond to these angles.
On the other hand, it about solving which lengths along the TL (measured from the load) corre-
spond to the angles of basic parameters.
Answering this question directly depends on (i) the normalization of the length which is chosen
and (ii) how it is embedded in the parameters which describe the TL along its length.
As it has been studied in Ex. 01 presented in Sect. 5.2, the parameter from which the analysis
along the TL are addressed is the reflection coefficient, expressed as a function of the TL’s length
in eq. (5.4) or in case of normalizing the TL’s legth in eq. (5.17).
Moreover, one of the most important conclusions regarding the analysis along the TL is that the
angle ϕγ determines the analysis of ρ along the TL when the reflection coefficient at the load is
known. Also notice that the (positive real) normalization of the length is a factor accompanying the
propagation constant. These facts suggest that there exists a normalization of the TL’s length for
which the expression of the reflection coefficient depends explicitly on the angle of the propagation
constant.
The normalization in question is6:

ln =
|γ|l
2π

. (5.50)

Notice that this normalization is the same as the electrical length defined in eq. (5.16) only in case
the TL is lossless.
The resultant reflection coefficient along the TL is reparameterized as:

ρ(ln) = ρLe
−2πejϕγ |γ|l = ρLe

−4πejϕγ ln ≡ ρLe−4π cos(ϕγ)lne−j4π sin(ϕγ)ln , (5.51)

in which ρL ∈ is supposed to be known.
Notice that this expression represents the same spiral as in eq. (5.19) in the ρ-plane, so only the
dependence on ϕγ has been made explicit by means of eq. (5.51).
By means of the definition of ln in eq. (5.50), it is clear that varying the modulus of the propaga-
tion constant (or any normalization related to this) is equivalent to change l, and so ”moving” the
reflection coefficient along the TL, provided that ρL is fixed. This means that the curves param-
eterized by ϕγ , which are represented by keeping fixed ϕγ while |γ| (or any normalization of this)
varies, are able to represent ”shiftings” along the TL, providing that (i) the appropriate BCs are
satisfied (for example, in the expression of ρ(ln), ρL must be fixed) and (ii) the analysis is properly
interpreted, which has implicit knowing the limitations7.
In any case, using losses for (partially) representing the TL’s length has implicit ”universalizing”
the analysis of the TL parameters along the TL in terms of losses, which is the purpose of the
example presented here.

6The usual notation employed in this Thesis book is extended for this case. Then ”ln” is ”the length normalized
with respect to its modulus”.

7These limitations are studied when physically interpreting the analysis, but anyone can already realize the
modulus of γ can not be from 0 to ∞ if it is intepreted in terms of (real) losses. This suggests, in turn, introduceing
the complex losses for having a complete parameterization of length in the (complex) rg-plane.
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Fig. 5.67: The rg-plane parameterized by the phases of the basic parameters.

In Fig. 5.67 the hyperbolas parameterized by the phases of the basic parameters are shown (re-
member this study has been done in Sect. 4.4.1 in Chpt. 4). These curves form an non orthogonal
coordinate system which is useful for parameterizing the basic and wave parameters along the TL
in terms of losses/frequency.
Reciprocally, this analysis gives the physical interpretation of the analysis parameterized by the
angles of the basic parameters based on line parameters.
Also notice that the analysis in the rg-plane gives the limits of the phase of one of the basic param-
eters when the other angle is fixed, and thus the restrictions in the analysis along the TL in terms
of losses. In particular, each curve parameterized by ϕγ represents the variation along the TL
which, in turn, are described in terms of losses. In this sense, ϕZ0 may be used for representing the
TL’s length on the coordinate system in the rg-plane in Fig. 5.67. However, neither all the values
of losses are represented by the curve parameterized by ϕγ in the rg-plane, nor all the possible
phases ϕZ0

decribe this curve. This means that the analysis in terms of angular parameterizations
supposes a partial analysis of both losses and lengths, at least when using real parameterizations
in the rg-plane.

Remark 44. The analysis in terms of angular parameterizations has clear limitations in the anal-
ysis along the TL in terms of losses/frequency, which mainly come with the initial assumption that
lossy parameterizations are real, which is, on the other hand, natural because the physical interpre-
tation of losses.
Nevertheless, the analysis in terms of the angles of the basic parameters turns out to be the ap-
propriate way to address the analysis of all the possible parameterizations: losses/frequency and
length; at the same time, and the rg-plane gridded by the curves representing the phases the origin
of the parameterizations in which the limits of this analysis are found.

In any case, this analysis is an adequate starting point for combining the analysis along the TL
and the analysis in terms of losses/frequency.
The subsequent mathematical analysis are aimed to describe the rest of the TL parameters in
terms of angular parameterizations.
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Fig. 5.68: Scheme of parameters and transformations ( 1 - 4 ) to be followed for finally achieving
the characterization of the TL parameters both along TL and in terms of losses/frequency. The

parameters which are the data for this example of analysis are marked with the 99 symbol.

Specifically, for the direct graphical representation of the reflection coefficient along the TL, it is
neccesary to know its value at the load, ρL, which is the data in this example (see the scheme that
summarizes the trasformations used in this example in Fig. 5.68).
Moreover, the use of the phase of the characteristic impedance for describing the reflection coeffi-
cient along the TL (Z0 is not constant), besides the fact of forcing ρL to be fixed, makes the wave
impedance and wave admittance vary along the TL in a different way of how they are described
along the TL when Z0 is fixed in Ex. 01. Notice that for this final purpose of obtaning the wave
parameters from the reflection coefficient (step 4 in Fig. 5.68), their normalization is chosen with
respect to the lossless case:

Zn1 =
Z

Z0,sp
, and (5.52)

Yn1 = Z0,spY ; (5.53)

because (i) this normalization does not depend on the angle ϕZ0
, which describes the analysis,

and (ii) the characteristic impedance normalized with respect to the lossless case is the parameter
chosen for solving the (lossy) parameterizations which characterize the angle ϕZ0 .

5.4.2 Mathematical analysis

This section is intended to obtain and define the functions and transformations to characterize
every TL parameter in terms of the phases of the basic parameters.
In many occasions, the inverse characterization of line parameters will help this analyis. In par-

ticular, this occurs in step 1/2 in the scheme Fig. 5.68 (which is equivalent to find the functions

schematized in Fig. 5.66), in which it is required solving the line parameters which lead to fixed
angles ϕZ0

and ϕγ in order to replace them in γn1 and Z0n1, respectively, for obtaining the basic
parameters ”cross parameterized” by angles.

Due to both the normalized characteristic impedance and the normalized propagation constant
used for the ffa, Z0n1 and γn1, are described by the complex quantities n and d defined in eqs.
(4.5) and (4.6), respectively, their phases are the quotient and the product of the phases of these
complex numbers, also respectively.
In Appendix 5.E the general polar equations of Z0n1 and γn1 describes in terms of angles are
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obtained, leading to:

|Z0n1| =

√
sin (ϕγ − ϕZ0

)

sin (ϕγ + ϕZ0
)
, (5.54)

in which

{
ϕγ − π

2 ≤ ϕZ0
≤ π

2 − ϕγ if ϕγ ≥ π
4

−ϕγ < ϕZ0
< ϕγ if ϕγ <

π
4

,

and

|γn1| =

√
1

sin (ϕγ − ϕZ0
) sin (ϕγ + ϕZ0

)
, (5.55)

in which

{
−ϕZ0

< ϕγ ≤ ϕZ0
+ π

2 if ϕZ0
< 0

ϕZ0
< ϕγ ≤ π

2 − ϕZ0
if ϕZ0

≥ 0
,

rescpetively.
In the mathematical developments, notice how the inverse characterization is crucial for obtaining
the limits of the phase of each parameter in terms of the cross angle parameterization.
Also from the mathematical notes it is important to detach the two conditions than the phases of
the basic parameters simultaneosly verify:

0 < ϕZ0
+ ϕγ ≤

π

2
, and (5.56)

−π
2
≤ ϕZ0

− ϕγ < 0, (5.57)

which are called the ”realizability conditions”, [VG17-I], of the TL in which HPWs propagate.

Notice that, by means of eqs. (5.E.21) and (5.E.27) the basic parameters may be completely char-

acterized crossing the angular parameterizations, just as the steps 1/2 in the analysis scheme

presented in Fig. 5.68 suggest.
From this point, the angular parameterizations are used for complete the analysis of wave param-
eters.

On one hand, for the analysis of the reflection coefficient along the TL, ρ(ln), in eq. (2.83), ϕγ is
fixed, which gives the limits of ϕZ0

by means of eq. (5.E.21). Consequenlty, these limits affect the
variation of γn1 in eq. (5.E.27), which determines the denormalized propagation constant γ and
thus the normalized length ln in eq. (5.50).
Notice that this normalized length is universal in the sense that it gathers different γ’s and l’s
(physical lengths) under the same value, which makes possible the analysis along the TL and in
terms of losses/frequency at the same time. Thus, the analysis of ρ both along the TL and in terms
of losses/frequency is limited by means of the angular characterization of ϕZ0

.
In this sense, the critical value is the lossless TL in which ϕγ = π/2, so the phase of the charac-
teristic impedance is always ϕZ0

= 0. Consequently, γn1 is fixed so the analysis along the TL in
terms of losses (only the lossy case is possible in this case) results in a single point in the ρ-plane.
The process of obtaining the reflection coefficient along the TL in terms of losses corresponds with
the step 3 in Fig. 5.68.

On the other hand, once ρ is characterized, the transformations to Zn1 and Yn1 defined in eqs.
(5.52) and (5.53), respectively, are given by the linear fractional transformations:

Zn1 = Z0n1
1 + ρ

1− ρ
, and (5.58)

Yn1 =
1

Zn1
=

1

Z0n1

1− ρ
1 + ρ

, (5.59)
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also respectively.
These transformations are conformal so the graphical analysis facilitates their understading when
ρ(l) is parameterized in modulus-phase, for instance, to be transformed to the Zn1- and Yn1-
complex planes.
The process of obtaining the wave impedance and wace admittance which leads to the analysis
along the TL in terms of losses corresponds with the step 4 in Fig. 5.68.

5.4.3 Graphical and geometrical analysis

As is it usual in the CTLA, the description of the TL parameters is graphicall addressed trans-
forming the parameterized curves between the associated complex planes.

In this case, the curves in the Z0n1- and γn1-planes parameterized by angles follow eqs. (5.E.21)
and (5.E.27), respectively.
Rigorously, the curves are generaically defined as:

Z0n1: DϕZ0
(ϕγ) ∈ R→ C

ϕZ0
7→ Z0n1,ϕγ (ϕZ0

) =

√
sin (ϕγ − ϕZ0)

sin (ϕγ + ϕZ0
)
ejϕZ0

, (5.60)

which is the curve of Z0n1 characterized by ϕγ whose descriptive parameter is ϕZ0
; and

γn1: Dϕγ(ϕZ0
) ∈ R→ C

ϕγ 7→ γn1,ϕZ0
(ϕγ) =

√
1

sin (ϕγ − ϕZ0
) sin (ϕγ + ϕZ0

)
ejϕγ

, (5.61)

which is the curve of γ0n1 characterized by ϕZ0 whose descriptive parameter is ϕγ ; which may be
directly depicted in the Z0n1- and γn1-planes, respectively.

The curves in the ρ-plane come from the expression in eq. (5.51). These curves are parameterized
by ϕγ , so ϕZ0

is the parameter which describes the losses and the TL’s length.
For this purpose, the parameter ϕZ0

in the curve γn1 in eq. (5.61) changes its role to be the
descriptive parameter, whereas ϕγ characterizes the analysis.
This is equivalent to define the bivariate function:

γn1: D(ϕZ0
,ϕγ) ∈ R2+ ⊂ H→ C

(ϕZ0
, ϕγ) 7→ γn1(ϕZ0

, ϕγ) =

√
1

sin (ϕγ − ϕZ0) sin (ϕγ + ϕZ0)
ejϕγ

, (5.62)

in which is D(ϕZ0
,ϕγ) coincides with the rg-plane depicted in Fig. 5.67, every points in this plane

verifies the ”realizability conditions”; and parameterize ϕγ to define the curve:

γn1: DϕZ0
∈ R→ C
ϕZ0 7→ γn1,ϕγ (ϕZ0) ≡ γn1(ϕZ0 ;ϕγ)

. (5.63)

From eq. (5.63), the curve which represents the reflection coefficient is defined as:

ρ: DϕZ0
∈ R→ C

ϕZ0
7→ ρ = ρLe

−2γn1,ϕγ (ϕZ0
)βspl ≡ ρLe−2(ejϕγ )ln(ϕZ0

)
. (5.64)

In eq. 5.64 ρ is described along the TL varying ln, which depends on the angle ϕZ0
, while ϕγ is kept

fixed. This is equivalent to vary losses in the whole rg-plane. As a result, ρ is being characterized
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both along the TL and in terms of losses.

In order to obtain the rest of wave parameters, notice that the transformations in eqs. (5.58) and
(5.59) are of the same type of those for the direct characterization of wave parameters, [Gag01],
described from the ρ-plane to the Zn0-plane and the Yn0-plane.
Taking into account that:

Zn0 =
Zn1

|Z0n1|
, andYn0 = |Z0n1|Yn1; (5.65)

the modulus-phase parameterizations of the curve representing ρ:{
m = |ρ| = |ρL|e−2 cos(ϕγ)ln

p = ϕρ = −2 sin(ϕγ)ln + ϕρL
; (5.66)

transform to the circumferences:
(
Z ′n1 − c0|Z0n1|m

2−1
m2+1

)2

+
(
Z ′′n1 − s0|Z0n1|m

2−1
m2+1

)2

=
(
|Z0n1|2m
m2−1

)2(
Z ′n1 + s0|Z0n1|

tan(p)

)2

+
(
Z ′′n1 −

c0|Z0n1|
tan(p)

)2

=
(
|Z0n1|
sin(p)

)2 , (5.67)

and 
(
Y ′n1 − c0

|Z0n1|
m2−1
m2+1

)2

+
(
Y ′′n1 + s0

|Z0n1|
m2−1
m2+1

)2

=
(

2m
|Z0n1|(m2−1)

)2(
Y ′n1 − s0

|Z0n1|(tan(p))

)2

+
(
Y ′′n1 − c0

|Z0n1|(tan(p))

)2

=
(

1
|Z0n1|(sin(p))

)2 , (5.68)

in the Zn1- and the Yn1-planes, respectively.
These are the circumferences:

(
c0|Z0n1|m

2−1
m2+1 , s0|Z0n1|m

2−1
m2+1

)
: |Z0n1|2m
|m2−1|(

− s0|Z0n1|
tan(p) ,

c0|Z0n1|
tan(p)

)
: |Z0n1|
| sin(p)|

, (5.69)

and 
(

c0
|Z0n1|

m2−1
m2+1 ,−

s0
|Z0n1|

m2−1
m2+1

)
: 2m
|Z0n1||m2−1|(

s0
|Z0n1|(tan(p)) ,

c0
|Z0n1|(tan(p))

)
: 1
|Z0n1|| sin(p)|

, (5.70)

when they are written using the compact notation of circumferences.
Making use of these transformations from the ρ-plane, the curves in the Zn1-plane and the Yn1-
plane can be represented.

An example of the analysis of the TL parameters characterized in terms of angles for the simulta-
neous charactrization of the TL along its length and interms of losses is next presented.
Accompaniying the example is some numerical data, which serves to see how different lossy and
length parameterizations given by this analysis lead to the same TL parameter, which demonstrates
its duality for the TL characterization.
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5.4.4 Example of the graphical analysis along the TL in terms of losses

Example I

Numerical values of the transmission line parameters

Complete analysis Particular case analysis

ρL = 0.8 + j0.2

ϕγ = π
4 −

π
16 = 3π

16

Particular case numerical values

ϕZ0 [rad] (r, g) l[µm] ρ(l) Zn1(l)[Ω]

0.000 (1.497, 1.497) 3.398

0.779 + j0.177

4.511 + j4.412

0.044 (1.217, 1.836) 3.344 3.490 + j4.164

0.087 (1.014, 2.366) 3.197 2.678 + j3.857

0.131 (0.821, 3.294) 2.898 1.861 + j3.390

0.175 (0.668, 5.031) 2.463 1.200 + j2.809

0.219 (0.539, 9.803) 1.828 0.651 + j2.041

Table 5.8: Parameter ρL which characterizes the analysis along the TL in terms of losses in this
example and some numerical values which characterize the analysis when ϕγ = 3π/16.
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Complete analysis along the TL in terms of losses

Transmission line scheme and parameterizations

Fig. 5.69: Scheme of the TL for the parameter analysis along the length and in terms of losses.

Inverse characterization in terms of the phase of the propagation constant

Fig. 5.70: The rg-plane parame-
terized by ϕγ .

(a)

(b)

Fig. 5.71: The (a) Z0n1- and (b) γn1-planes
parameterized by ϕγ .



250 CHAPTER 5. EXAMPLES OF USE OF THE COMPLEX TRANSMISSION LINE THEORY

Direct characterization of wave parameters along the TL in terms of losses

Fig. 5.72: Analysis of ρ along the TL in
terms of losses (parameterized in ϕγ).

(a)

(b)

Fig. 5.73: Graphical analysis of (a) Zn1

and (b) Yn1 along the TL and in terms of
losses (parameterized in ϕγ .
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In Example I, a graphical analysis when ρL = 0.8 + j0.2 is shown in the context of the CTLA.
Moreover, some numerical values which characterize the curve ϕγ = 3π/16 have been outlined in
Table 5.8.

The angle ϕZ0
, which serves to describe losses and the TL’s length at the same time, varies along

the ϕγ-curves.
Some of those values of (r, g) and l which lead to the same reflection coefficient along the TL are
gathered in Table 5.8 together with the wave impedance.
In Fig. 5.71a the Z0n1-plane is parameterized by ϕγ . This analysis is the graphical representation
of the curves obtained by means of eq. (5.E.21). This Z0n1-plane together with the rg-plane serve
to characterize the TL graphically, under the context of the inverse characterization.
Then, from this inverse charactrization, ρ is a direct transformation of the curves (lines) in the
γn1-plane, given by the exponential in eq. (5.51).
At the end, the conformal transformations from the ρ-plane to the Zn1- and Yn1-planes are carried
out by means of the intersection of those circumferences which result from parameterizing the
spirals in the ρ-plane.

Notice that the graphical example is presented for those values of ϕγ < π/4. That is because the
lines in the γn1-plane parameterized by these ϕγ ’s tend to inifity, which makes possible represent
ρ→ 0 + j0 for any lossy TL.
Moreover, since the ϕγ-parameterized curves in the Z0n1-plane pass through Z0n1 = 0 + j0, then
the these curves also passes through Zn1 = 0 + j0, something which brings important physical
consequences.
In addition, the non dispersive point in the Zn1-plane is also common for every ϕγ-parameterized
curve, which means that there is a load common for these curves, ZLn1, which is also obtained
when l = 0 (and thus the notation using the subscript L, read as ”at the load”).

Undoubtely, the possibilty of mixing losses and the analysis along the TL in the same analysis
makes the analysis more difficult to understand from the physical point of view. Thus, the follow-
ing interpretations result helpful to this issue.
But, on the other hand, this ”shared analysis” suggest new practical uses and applications in which
this study may help achieving ans/or interpreting other results.

5.4.5 Physical interpretations

The analysis presented by means of this example answers which TL’s –characterized by specific
line parameters (losses and frequency included)– lead to the same variation along the length which
describes them. This is equivalent to group all the possible lossy TLs in classes, in such a way that
each of the values of the parameters that characterize the TL describe multiple TLs at differents
lengths.

Taking into account the reduction in the analysis, which is ”multiparameterized” in origin, it is
obvious that the physical interpretations are not as direct as in previous examples, but also in
favour of the compaction in the graphical analysis.
In this sense, the analysis presented by means of the rg-plane results crucial when supporting
graphically the analysis in the rest of the planes for its physical interpretation. The analysis of
the curves parameterized by ϕγ meets in the graphical analysis in the rg-plane the possible com-
binations of lossy/frequency parameterizations which present the same variation of the rest of
parameters along the TL.

This analysis is clearly limit by the physical interpretation of the parameters involved in the anal-
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ysis. For example, while the basic parameters are the same for each point along the TL, the
reflection coefficient is not. Conversely, this means that each point in the basic parameter complex
planes admits any parameterization of the length. However, each point in the wave parameter
complex planes does not admit any parameterization of length. Just as the possible values of the
lossy parameterizations are given by the inverse characterization in the rg-plane, those possible
values of the TL’s length are given by the analysis in any plane which represents γ (in the example
presented in this section the γn1-plane) and in particular the parameterizations with ϕγ constant.
One immediate example which serves to prove that not every point in the ρ-plane parameterizes
any length is the reflection coefficient at the load. At the load, there is no possible combination
of losses that makes the modulus of the propagation constant zero, so none of them makes the
normalized length, ln, zero, because |γn1| ≥ 1. As a result, the value of the (fixed) reflection coef-
ficient at the load only is achieved at the load (which is trivial indeed, but it proves the statment
regarding the limits of this analaysis).

There is an additional physical limitation to this analysis, which is about the ”realizability” of
fixing a reflection coefficient (which has no physical meaning in itself) at the load, and keep it non
dependent on the characteristic impedance, for instance.
The ”trick” of this analysis is precisely on varying accordingly the wave impedance at any point
along the TL for obtaining the ρ at this point together with the characteristic impedance parame-
terized by certain losses. In this way, also the characteristic impedance would be referred at certain
point (besides the losses) when looking for a specific reflection coefficient when the impedance is
fixed at this point. This is because the effects of varying the TL’s length are translated to variations
on losses, and so changes on the characteristic impedance which would be able to change along the
TL in certain way under this interpretation.

As it may be seen, this analysis may have multiple interpretations depending on both the parame-
ter which is analyzed and those which parameterize it. Depending on the practical uses for which
this analysis is intended to, one viewpoint or another will be chosen.

5.4.6 Practical uses

The analysis presented by means of this example gathers both the analysis in terms of losses/freque-
ncy and the analysis along the TL. In this way, one analysis or the other can be analyzed under the
same context. For example, if the losses of the TL are fixed, the γ (and thus the ϕγ) is fixed, and
the analysis along the TL is found in the ρ-plane, over the curve characterized by ϕγ . Otherwise, if
losses are variable, the analysis changes between the parameterized curves. Thus, there is a duality
in the analysis when seeing on one hand, the analysis in terms of losses and, on the other hand,
the analysis along the TL.

This analysis reveals an interesting property of lossy TLs: each point in the ρ-plane is not uniquely
parameterized by one pair of losses-length, but infinite. This means that it is possible to think
about a TL which keeps the reflection coefficient along the TL when both losses and the wave
impedance vary in certain way (see the numerical example in Table 5.8, for instance).
Conversely, imagine a TL in which the pair (r, g) varies along the TL in certain way (for example
imagine that the dielectric varies along the TL’s length). Then, there is a ρ constant along TL
and a specific function Zn1(l) which leads to that profile of losses along the TL. As a result, this
analysis can be used for characterizing non homogeneous lossy TLs.

Finally, the limitations to this analysis along the TL in terms of losses suggest looking for new
parameterizations of losses that avoid them. Since ϕγ is the parameter which characterizes the
losses along the TL, these new parameterizations of losses must keep this angle constant.
These useful parameterizations are found in complex numbers.
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5.5 Conclusions

In this chapter the analysis which the CTLA of HPWs had been left in previous chapter for finally
establishing the CTLT-v1 has been carried out as examples of use of the analysis presented in the
previous chapter. In this way, the CTLT-v1 is complete. Here a summary of what the CTLT-v1
means is given outlining the differences with the classic analytical procedure:
Recall that this version of the CTLT (CTLT-v1) refers to the study of HPWs (those are a type of
TEM modes) in lossy media in the frequency domain by means of equivalent TL in which the influ-
ence of arbitary losses is fully considered. The underlying Theory which comes to be reinterpreted
is the LTLT (presented in Chpt. 2 and obtained particularized from the GTLT-v1 presented in
Chpt. 3).
With this objective of offering an alternative viewpoint of the LTLT, the analysis and the sub-
sequent physical interpretations of them have been carried out in this chapter together with the
”basic” characterizatios in Chpt. 4.
Despite the analytical expressions of the paramters that characterize the lossy TL have been ob-
tained in the LTLT, a thorough analysis has been possible thanks to the CTLT-v1 culminated in
this chapter.
In this sense, it is important to change the conception of the analysis. For this purpose, some
equivalences between the classical analysis and the complex analysis of TLs are given as examples
for the right understanding of this Theory: (i) when giving the expressions of the paremeters along
a specific TL (those ρ(l), Z(l), and Y (l) when Z0 and γ are fixed), they have to be understood as
in Ex. 01; (ii) when giving the expressions of the TL parameters at the load (those ρL, Z0, and γ,
when ZL and YL are fixed), they have to be understood as in Ex. 02; and (iii) when the expressions
are set in general form (those Z0 and γ as well as ρ(l), Z(l), and Y (l)) the corresponding general
analysis is in Ex. 03.
In any case, it is important to detach that all the planes regarding the parameters involved in
the study of the TLs have to be understood together as a part of the methodology of the CTLT
based on CTLA. Moreover, that planes in which the associated parameters is a point fix the type
of analysis that is being done, for example in each of the examples in Ex. 01 the basic parameters
are represented by a single point because the TL is known, whereas in Ex. 02 the impedance and
admittance are the planes in which the represented points parameterize the analysis.

Remark 45. When giving the solutions of a TL-related problem (in this case, the HPWs) in the
context of the CTLT (in this case, the CTLT-v1), those do not have to be understood as an isolated
value or function but a points (if the analysis is parameterized) or, in general, curves in the planes
associated to the TL parameters, all of them visualized together.

This viewpoint lets to see all the planes interconnected. In fact, they are by the transformation
between them studied in the CTLT-v1.

Remark 46. Is not possible to see planes associated to each parameter in the CTLT disconnected.
Each point in the allowed regions of any plane has an image in another plane. This justifies the
transformations between the TL parameters.

This graphical and geometrical conception of the interconnected planes lets to see the influence
of the parameters in the analysis, something that is absolutely non trivial when analyzing the
mathematical expressions individually.
In this sense, some interesting conclusions may be obtained from the CTLT-v1 viewpoint: the
angle of the propagation constant, ϕγ determines the analysis along the TL, so the influence of
the TL’s length, whereas the angle of the characteristic impedance, ϕZ0

, parameterizes the losses.
Thus, the use of the angles of basic parameters serve to characterize the TL along its length and
in terms of its losses and frequency.
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These angles have inverse representation in terms of lossy parameterizations, which reveals the rg-
plane (and in general the ”space of parameterizations”) as the domain from which all the possible
parameterizations (the TL’s length included) come from.
In this way, the subsequent versions of the CTLT will use the same ”domain” for parameterizing
the solutions and analyzing them by means of the CTLA following the same steps of the examples
presented in this chapter.
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Chapter 5

Appendices

Appendix 5.A

The Cauchy-Riemann equations,[BC90], are neccesary conditions for any complex variable function
to be analytic. Since these equations are necessary (but not sufficient) to fulfilled for a function to
be continuous, conversely they can be used for determining the values in which any function is not
differentiable, and so exploring the function singularities.
Remember that the singularties of Z(l) and Y (l) come from the denominator so this may be is
isolated in a fuction D(l):

D∓(l) =
1

1∓ ρ(l)
=

1

1∓ ρLe−2γl

for the Z(l) and Y (l) cases, respectively. Thus, the singularities of D∓(l) are the singularities of
Z(l) and Y (l).

The function D(l) is then complexified as:

D(l)→ D : C→ C
γ → D(γ; l).

In abuse of notation, the function denoted as D∓ is also in this complexified version, but now
it differs on the complex variable. The original length variable l is used as a parameter in the
complexified version.
Separating the real and imaginary parts denoted as u(γ) ≡ u(α, β) and v(γ) ≡ v(α, β) (both
parameterized by the real parameter l), respectively:

u(α, β) =
1∓ |ρL|e−2αl cos(2βl − ϕρL)

1∓ 2|ρL|e−2αl cos(2βl − ϕρL) + |ρL|2e−4αl
,

v(α, β) = ∓ |ρL|e−2αl sin(2βl − ϕρL)

1∓ 2|ρL|e−2αl cos(2βl − ϕρL) + |ρL|2e−4αl
,

the Cauchy-Riemann equations

∂u(α, β)

∂α
=
∂v(α, β)

∂β

∂u(α, β)

∂β
= −∂v(α, β)

∂α
,

have to be fulfilled at those points at which D(γ; l) is differentiable and therefore continuous. Thus,
the points that not verify the Cauchy-Riemann conditions are singularities.

After operating, every (α, β) verifies the Cauchy-Riemann equations for every l except to those
points in which |D(γ; l)| is not defined, which happens when ρ(l) = ±1.
As a consequence, only the lossy TLs that passes throught the open circuit (oc) and the short
circuit (sc) presents singularties in Z(l) and Y (l), respectively.
Although this seems to be a trivial result it will bring important conclusions: only the lossy TLs
which are loaded by a (oc) or a (sc) present that (oc) or (sc) at the load. Otherwise, the (oc) or
(sc) can not be achieved at any point along the TL, something that is physically explainable.
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Appendix 5.B

Here the geometrical properties of the (logarithmic-type) spiral in eq. (5.19) which represents the
reflection coefficient along the TL are analyzed.

The expression in eq. (5.19) may be rewritten as:

|ρ| = |ρL|e−
α
β ϕ, (5.B.1)

in which ϕ = ϕρL − ϕρ ∈ [0, 2βD],

being D the physical length of the TL.

The tangential angle (denoted by φ(ϕ)) of the logarithmic spiral is differentially defined as φ(ϕ) =
ϕ, [Law72].

The length of the spiral (denoted as s(ϕ), measured from the load: ϕ = 0) is:

s(ϕ) = |ρL|

√(β
α

)2

+ 1

(1− e−
α
β ϕ
)

, (5.B.2)

so the total length of the curve which represents ρ along the TL is

L = |ρL|

(√(
β
α

)2

+ 1

)(
1− e−2αD

)
.

Notice that if α→∞ the spiral degenerates to the radious which goes from the origin to |ρ| = |ρL|,
so the length of the spiral is, accordingly to definition of the arc length, s(ϕ) = |ρL|.

The curvature (denoted as κ(ϕ)) is defined as:

κ(ϕ) =
dφ(ϕ)

ds(ϕ)
≡

dφ(ϕ)
dϕ

ds(ϕ)
dϕ

=
e
α
β ϕ

|ρL|

(√(
1 + α

β

)2
) . (5.B.3)

The most important property of the spiral in eq. 5.B.1 is that th angle between the radious and
the tangent is constant:

Ψ = tan−1

(
ρ

−d|ρ|(ϕ)
dϕ

)
=

1

α/β
=
β

α
, (5.B.4)

which means that this angle is the phase of the propagation constant:

Ψ ≡ ϕγ . (5.B.5)

As it may be foreseen, this latter geometrial result will bring many interpretations to the graphical
and physical characterization of the wave parameters along the TL, as well as the possibility of
using the angle of the propagation constant for parameterizing the TL in future analysis.
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Appendix 5.C

In this section, a couple of points for locating the circumferences in the Zn0- and Yn0-planes, which
are the transformations from the radious in the ρ-plane, are found.

On one hand, the transformation from the Zn0-plane to the ρ-plane is given by the following
expression:

ρ =
Z0n − eϕZ0

Z0n + eϕZ0
. (5.C.6)

Two points for any of the radious in the (extended) ρ-plane8 are ρ = 0 and ρ = ∞. These points
correspond to the points Zn0 = eϕZ0 and Zn0 = −eϕZ0 , which are the zero and the pole of the
expression in eq. (5.C.6).
Thus, these points belong to the circunference which is the transformation of any of the radious in
the ρ-plane to the Zn0-plane.

On the other hand, the transformation from the Yn0-plane to the ρ-plane is given by the following
expression:

ρ =
1− Yn0e

ϕZ0

1 + Y0ne
ϕZ0

. (5.C.7)

Two points for any of the radious in the (extended) ρ-plane are ρ = 0 and ρ = ∞. The points
ρ = 0 and ρ =∞ correspond to the points Yn0 = e−ϕZ0 and Yn0 = −e−ϕZ0 in the Yn0-plane, which
are the zero and the pole of the expression in eq. (5.C.7).
Thus, these points belong to the circunference which is the transformation of any of the radious in
the ρ-plane to the Yn0-plane.

As a consequence, the center of the circumference which represents the transformation of the ra-
dious is on the bisector of the segment which goes from the solved points in the Zn0- and the
Yn0-planes.

8The extended ρ-plane refers to the extended complex plane C̄ ≡ C ∪∞.
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Appendix 5.D

In this section, the location of the reflection coefficient which corresponds to the non dispersive
case, ρnd (labeled as (nd) in the Z0nL-plane and the ρ-plane), is solved by combining geometrical
characterizations and some basic calculus.
It shoud be that this non dispersive case includes the lossless case, and also the low losses apprxi-
mation. Moreover, ρnd is the asymptotic value of ρ when ω →∞.

The point (nd) in the ρ-plane is given by its phase, ϕρnd , and the modulus, |ρnd|.
Lets start with solving the phase: ρnd is the result of:

ρnd =
ZL − Z0,nd

ZL + Z0,nd
=

ZL
|Z0| − 1

ZL
|Z0| + 1

≡ ZLn0 − 1

ZLn0 + 1
, (5.D.8)

when using the normalization of the impedance at the load, ZLn0, of the direct characterization of
wave parameters.
Graphically, the operation in eq. (5.D.8) in the ZLn0-plane:

Fig. 5.74: Graphical representation of the geometrical analysis concerning angles and modulus
involved in the obtaining of ρnd in the Z0nL-plane.

Geometrically analyzing the figure above, it leads to the seeked angle :

ϕρnd
= ϕZLn0−1 − ϕZLn0+1 = tan−1

(
2Z ′′Ln0

|ZLn0|2 − 1

)
≡ tan−1

(
2Z ′′L

|ZL|2 − Z2
0,sp

)
. (5.D.9)

The modulus of ρnd is obtained by the intersection of the line whose slope is ϕρnd in eq. (5.D.9)
and the arc of the circunference in eq. (5.46) which is the limit in the ρ-plane and contains the
(nd): ρ

′′ = tan(ϕρnd)ρ′

ρ′2 +
(
ρ′′ − 1

tan(ϕZL )

)2

= 1
sin(ϕZL )2

. (5.D.10)

Substituying ρ′′ of the line into the eqution of the circunference and operating algebraically, it
leads to solve ρ′nd:

ρ′nd =
cos(ϕρnd

)

tan(ϕZL)

(
sin(ϕρnd) +

√
tan2(ϕZL) + sin2(ϕρnd)

)
. (5.D.11)

Moreover, since:

ρ′nd = |ρnd| cos(ϕρnd), (5.D.12)
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the modulus of the reflection coefficient for the non dispersive case results:

|ρnd| =
1

tan(ϕZL)

(
sin(ϕρnd) +

√
tan2(ϕZL) + sin2(ϕρnd)

)
, (5.D.13)

written as a function of the solved ϕρnd .
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Appendix 5.E

The phase of the characteristic impedance and the phase of the propagation constant can be written
in terms of the phases of the complex n and d defined in eqs. (4.5) and (4.6) as:

ϕZ0
=

1

2
ϕn −

1

2
ϕd, and (5.E.14)

ϕγ =
π

2
+

1

2
ϕn +

1

2
ϕd, (5.E.15)

respectively.

Adding ϕZ0
and ϕγ in eqs. (5.E.14) and (5.E.15), it is possible to solve ϕn as:

ϕn = ϕZ0
+ ϕγ −

π

2
. (5.E.16)

Reciprocally, if substracting eqs. (5.E.14) and (5.E.15), it leads to solve ϕd as:

ϕd = ϕγ − ϕZ0 −
π

2
. (5.E.17)

Looking at the expressions in eqs. (5.E.16) and (5.E.17), two important inequalities useful for the
TL analysis may be deduced taking into account that π/2 < ϕn (ϕd) ≤ 0:

0 < ϕZ0
+ ϕγ ≤

π

2
, (5.E.18)

−π
2
≤ ϕZ0 − ϕγ < 0, (5.E.19)

which are ”realizability conditions” for TLs in which HPWs propagate.

On one hand, the modulus of the normalized characteristic impedance in eq. (4.3) can be written
in terms of both the phase of the complex numbers n and d as:

|Z0n1| ≡

√
cos(ϕd)

cos(ϕn)
. (5.E.20)

Now substituying ϕn and ϕd in eq. (5.E.20) before, it leads to expression of the modulus of Z0n1:

|Z0n1| ≡

√
cos(ϕγ − ϕZ0

− π
2 )

cos(ϕγ + ϕZ0 − π
2 )

=

√
sin(ϕγ − ϕZ0

)

sin(ϕγ + ϕZ0)
. (5.E.21)

Notice that the ”realizability conditions” guarantee the arguments of the cosines in eq. (5.E.21)
both are in ]− π/2, 0], which means that the equivalent sines are both negative and so their signs
cancel.

Furthermore, the closed analytical expression of modulus |Z0n1| in terms of the angles ϕZ0 and ϕγ ,
(5.E.21) is intended to be used for analyzing the characteristic impedance when ϕγ is seen as a
parameter. Thus, it is required knowning in which range ϕZ0

varies when parameterizing ϕγ . For
this purpose, ϕZ0

is solved from the parametric eq. (5.E.16) leading

ϕZ0
=
π

2
+ ϕn − ϕγ =

π

2
− tan−1(r)− ϕγ . (5.E.22)

The next step is to relate the range in which the parameter r varies to ϕγ when seeing this a
parameter.
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The inverse characterization of line parameters parameterized by ϕγ facilitates this purpose. Re-
calling the parametric equation of r obtained in eq. (4.58):

r =
g − tan(π − 2ϕγ)

g tan(π − 2ϕγ)− 1
=

g + tan(2ϕγ)

g tan(2ϕγ)− 1
; (5.E.23)

two different cases when analyzing the limit of r may be distinguished:{
r ∈ [0, tan(π − 2ϕγ)] if ϕγ ≥ π

4

r ∈
(
− 1

tan(π−2ϕγ) ,∞
)
≡
(
− tan

(
2ϕγ − π

2

)
,∞
)

if ϕγ <
π
4

. (5.E.24)

Substituying the r limits for each case of eq. (5.E.24) into eq. (5.E.22), it leads to the limits of
ϕZ0

: {
ϕγ − π

2 ≤ ϕZ0
≤ π

2 − ϕγ if ϕγ ≥ π
4

−ϕγ < ϕZ0
< ϕγ if ϕγ <

π
4

. (5.E.25)

The modulus of Z0n1 seen as function of the angle ϕZ0
and parameterized by the angle ϕγ in

eq. (5.E.21), together with the limits for ϕZ0
also parameterized by ϕγ , leads to complete the

mathematical characterization of the characteristic impedance when the phase of the propagation
constant is fixed.
Since the normalization of the characteristic impedance is the same for both the ffa and the vfa,
the curves on the Z0n1-plane parameterized by ϕγ would be exactly the same as in the Z0n2-plane.

On the other hand, the modulus of the normalized propagation constant in eq. (4.10) can be
written as:

|γn1| ≡

√
1

cos(ϕd) cos(ϕn)
. (5.E.26)

Substituying ϕn and ϕd in eq. (5.E.26), it leads to:

|γn1| ≡
√

1

cos(ϕγ − ϕZ0 − π
2 ) cos(ϕγ + ϕZ0 − π

2 )
=

√
1

sin(ϕγ − ϕZ0) sin(ϕγ + ϕZ0)
. (5.E.27)

The expression of modulus |γn1| in terms of the angles ϕγ and ϕZ0 , (5.E.27) is intended to be
used for analyzing the propagation constant when ϕZ0

is seen as a parameter. Thus, it requires
knowing in which range ϕγ varies when ϕZ0

is parameterized. For this purpose, ϕγ is solved from
the parametric eq. (5.E.16), for instace, leading to:

ϕγ =
π

2
+ ϕn − ϕZ0

=
π

2
− tan−1(r)− ϕZ0

. (5.E.28)

The inverse characterization of line parameters in terms of the phase ϕZ0
gives the range in which

r in eq. (5.E.22) may vary. Recalling the expression of r parametrized by ϕZ0 introduced in eq.
(4.55):

r =
g − tan 2ϕZ0

1 + g tan 2ϕZ0

. (5.E.29)

Two different cases may be distinguished:{
r ∈

[
0, 1

tan(2ϕZ0
)

)
if ϕZ0 < 0

r ∈ [− tan(2ϕZ0
),∞) ≡

(
− tan

(
2ϕγ − π

2

)
,∞
)

if ϕZ0
≥ 0

. (5.E.30)

Substituying the r limits for each case of eq. (5.E.30) into eq. (5.E.28), it leads to the limits of
ϕγ : {

ϕZ0 < ϕγ ≤ ϕZ0 + π
2 if ϕZ0 < 0

ϕZ0 < ϕZ0 ≤ π
2 − ϕZ0 if ϕZ0 ≥ 0

. (5.E.31)
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The limits of ϕγ together with the expression of the modulus in eq. (5.E.27), both paramterized
by the angle of the characteristic impedance, lead to the analysis of the propagation constant when
the phase of ϕZ0

is fixed.
This analysis has been carried out when the normalization regarding the propagation constant is
considering the frequency fixed. From this analysis, it is relatively easy to generalize to the variable
frequency case. Notice that while the angle of every normalizations of γ is the same, the modulus
is a transformation depending on this angle and the parameterized ϕZ0 . In this way, the modulus
of the propagation constant when frequency is variable:

|γn2| =
|γn1|
r

= tan(ϕγ + ϕZ0
)

√
1

sin(ϕγ − ϕZ0
) sin(ϕγ + ϕZ0

)
=

=
1

cos(ϕγ + ϕZ0)

√
sin(ϕγ + ϕZ0

)

sin(ϕγ − ϕZ0)
≡ 1

cos(ϕγ + ϕZ0)

1

|Z0n1|
,

(5.E.32)

for which the limits in (5.E.31) have been taken into account, and r has been written in terms of
the angles using eq. (5.E.16).

The graphical analysis of these mathematical results lets to explain them in an intuitive way as
well as showing the usefulness of the inverse analysis of line parameters.
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Applications

The following sections refer to the possible applications of the CTLA to solve TL-related problems
at the same time they complete the analysis based on complex parameterized transformations. The
applications are splitted into four fields of use:

(i) the graphical tools which arise from the TL comlex analysis, just as they have been presented
within the context of the CTLT but detaching the practical uses and how to work with them;

(ii) the extension of the parameterizations to complex values for different purposes: ”simulating”
the TL’s length, parameterize higher modes, etc.;

(iii) the analysis of non trivial and non pure analytical EM problems in waveguides, combining
numerical analysis; and

(iv) the exemplification the CTLT supposes to the GSST, and the possible contributions to future
versions, mainly focused on finally achieving Complex GSST.

These application may be object of study in future research, as well as they have been/may be
scientific contributions.

5.6 Graphical tools based on the CTLA

In this section, the use of the most representative graphical analysis in the CTLA are outlined while
emphasizing their practical purposes and the advantage they have in comparison with analytical
and nummerical techniques.

5.6.1 The logarithmic reparameterization of the GSC: the log-GSC

Recalling the analysis of the TL parameters along the TL’s length, the logarithmic spirals are the
curves that represent the reflection coefficient in this variable. Thus, a logarithmic reparameteri-
zation of the reflection coefficient along the TL presented in [VG17-I]9 serves to transform these
spirals into lines making the analysis much more affordable in graphs.

Following the steps in the analysis, the graphical representation of the logarithmic of ρ, denoted
as ρlog, in one of the branch of the complex logarithmic function, leads to the ρlog-plane. In this
plane, the representation of the transformation of the real-imaginary parts from the normalized
impedance leads to the curves that sketches the log-GSC.

In the ρlog-plane, the reflection coefficient along the TL is represented by means of lines whose
slope is directly related to the angle of the propagation constant. As a consequence, this plane
is really useful to connect points along the TL in an easy way, and so matching loads using lossy
TLs, [VG17-I, VG17-III].
Moreover, the representation of the impedance along the TL is a different spiral analytically repre-
sented by the complex cotangent function taking its argument on the ρlog-plane, and so a complex
transfroamtions from this plane given by this well-known complex function.

9This paper is available online in http://www.jpier.org/PIERL/pierl68/08.17022009.pdf.

http://www.jpier.org/PIERL/pierl68/08.17022009.pdf
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5.6.2 Using the direct and inverse characterizations in the ρ-plane com-
bined for analyzing the lossy TL

In this section, the fundamentals of combining the direct and inverse characterizations in the ρ-
plane for analyzing lossy TL’s in terms of both the TL’s length and frequency are outlined. The
analysis presented here reduces to graphical operations in the ρ-plane, so it is about of extending
the use of the GSC using the direct and inverse characterizationn together. This possibility is
due to the reflection coefficient is invariant when representing different normalizations of wave and
basic parameters, and thus the asociated plane adquires the ”universal” nature that makes it the
most appropriate when combining different analysis.
A very simple but representative example of this analysis will be analyzed graphically.

Mathematical analysis

Recall the normalizations chosen in the direct and inverse normalizations of wave parameters and
basic parameters, respectively.
On one hand, the direct characterization of the wave impedance and admittance along the lossy
TL supposes Z0 is fixed an so the normaliations are Zn0 = Z/|Z0| ≡ Z(l)/|Z0| and Yn0 = Y |Z0| ≡
Y (l)|Z0|, respectively. In this case, the angle of the characteristic impedance, ϕZ0

, determines the
analysis along the TL.
On the other hand, the inverse characterization of the characteristic impedance in terms of fre-
quency suppoes the load ZL fixed and so the normalization used is Z0nL = Z0/|ZL| ≡ Z0(ω)/|ZL|.
In this case, the angle of the impedance at the load, ϕZL , determine the analysis in terms of fre-
quncy when the losses of the TL are known. Also notice that the notation ZL (and ϕZL is only
a name to refer the impedance at fixed point along the TL, ans so it may be extended to any Z
(and ϕZ).

In the ρ-plane, both the real-imaginary parameterized parts and modulus-phase paramterizations of
the wave parameters in the direct characterization and the characteristic impedance in the inverse
characterization, are circumferences that have been characterized in their respective analysis.
When comparing the normalized parameters it may be seen that:

|Z0nL| = |YLn0|, (I)

and so the modulus parameterizations of the characteristic impedance for the inverse analysis are
mapped onto the same curves as the modulus parameterizations of the wave admittance for the
direct characterization.
Furthermore, the curves which parameterize the phase of the wave impedance in the direct charac-
terization (determined by ϕZ0) are the same as those parameterized by the phase of the characteris-
tic impedance in the inverse characterization (determined by ϕZL). They follow the circumferences:(

0,
1

tan (ϕZ0
− ϕZL)

)
:

1

| sin (ϕZ0
− ϕZL) |

, (II)

for which ϕZ0
and ϕZL are parameterizations which depend on either frequency or the TL’s length,

respectively.

As it has been outlined, the ρ-plane lets stu study both analysis at the same time without rescaling
the reflection coefficient. In addition, because of the identity between the modulus and phase pa-
rameterizations of the normalized characteristic impedance and the normalized admittance, these
parameterizations are ”universal” and very useful for the analysis in terms of frequency and along
the TL carried out at the same time.
When it is required to sum series impedances or parallel admittances, the modulus-phase param-
terizations should swith to the real-imaginay parameterized parts in the ρ-plane, that is, the GSC.
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Example of graphical analysis using direct and inverse characterizations

The following TL scheme represents the example to be solved by using the direct and inverse
characterizations in the ρ-plane:

Fig. I: Scheme of the TL-related example solved using graphical analysis.

It is about finding the load ZL separated l0 = 0.1[µm] from a lossless medium characterized by
Z0,sp which provides matching in this lossless medium. In this case, the frequency is not specified,
but the lossy ratio of the lossy TL which separates the lossless medium and the load is c = 2. The
phase velocity in the lossless medium is vp = 107[m·s−1].

The reflection coefficient at the boundary between the lossless medium and the lossy TL, ρin,
analyzed in terms of losses when the impedance at this input, Zin, is the desired Z0,sp = 50[Ω], so
Zin ≡ Z0,sp, is analyzed as in Ex. 02 presented in Chpt. 5:

Fig. II: Variable frequency analysis of ρin when Zin = Z0,sp = 50[Ω].

In Fig. II, the analysis of the reflection coefficient at the boundary in terms of frequency, ρin(ω) is
represented. Since there are no restrictions in the frequency of operation, ω0 = 1[MHz] is selected,
for instance, and so a single ρin ≡ ρin(ω0).

Once the frequency is chosen and ρin is known, ϕZ0
is completely determined. The curve which

passes through the selected ρin determines this angle.
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Fig. III: Analysis of ρin and the equivalent Z0 when ω = ω0 = 1[MHz].

Moreover, ϕγ is also determined by the lossy ratio c of the lossy TL and the normalized frequency
ωn. Thus, the tangential angle of the spiral and so the analysis along the TL:

Fig. IV: Analysis of ρ along the TL from the input to the load.

Notice that the analysis is reverse with respect to the one carried out in Ex. 03 presented in
Chpt. 5, in the sense is that this analysis goes from the input to the load, and so the spiral rotates
counterclockwise.

By means of simple graphical and geometrical analysis it is possible to obtain the circunferenes
which represent the real and imaginary parts of of ZL in the associated GSC:
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Fig. V: Analysis of ZL in the GSC.

Although this example is quite simple, it clearly reveals that lossy TLs are useful for matching
loads, and specially in practice using the frequency at the same time as the length of the TLs when
losses are fixed.

5.7 Complex parameterizations in the CTLA

In this section, the use of complex parameterizations is presented with two main purposes: (ii.a)
parameterizing the length of the TL into the ”space of parameterizations”; and (ii.b) parameteriz-
ing mode solutions different from HPWs into this same ”space”.
The parameterization of these TL behaviors is expected to ease the analysis at the same time it
explains and exemplifies the use of the ”space of parameterizations”, already used in Chpt. 4 (the
rg-plane) and formally defined in Appendix 4.A in that chapter. As a result, it may be continued
stating that this ”space” is the origin of every parameterization useful for the TL analysis, so not
only losses are parameterized there10.

Notice that the use of complex parameterizations makes the real rg-plane insufficient for the graph-
ical representations of new complex curves. Nevertheless, whenever the graphical analysis are pos-
sible they will be used for the sake of clariying the complex and possible geometrical analysis.

5.7.1 Using complex parameterizations of losses for parameterizing the
TL’s length

It has been seen that the phase of the propagation constant, ϕγ , determines the analysis along
the TL. As a consequence, all the parameterizations of losses that keep this angle constant lead
to the same variation of wave parameters along the TL. The term ”variation” makes reference to
a relative reference, which supposes knowing the differential, or geometrically the tangent of the
curve which represents the analysis of any parameter along the TL. However, only when imposing
the BCs along the TL, the analysis is complete.
This may be clearly seen in the analysis of the reflection coefficient along the TL in terms of losses,
analyzed in Ex. 03 presented in Sect. 5.4 in Chpt. 5, in which the reflection coefficient at the load

10This has been already proved when parameterizing, for example, the relative frequency scales or the phase of
basic parameters in the rg-plane.
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is supposed to be (a priori) known (playing the role of BC along the TL). In that example of use
of the CTLA for characterizing the TL in terms of losses and along its extension at the same time,
inverse analysis of ϕγ in terms of losses lets to solve the losses that, keeping this phase fixed, vary
the modulus of γ. As a consequence, the normalized length, ln, defined in eq. (5.50) varies so that
the analysis along the TL in terms of losses was able to be done.

This incipient example, although it was revealing for the possibility of combning the analysis in
terms of losses and those carried out along the TL, and in particular the use of lossy parameter-
izations for simulating the TL’s length, it shows a lot of important limitations: (i) the grade of
abstraction is high because the resultant curves in the ρ-plane parameterized by ϕγ ”universalize”
within the same curve losses and the TL’s length, in the sense that each point belonging to the
ϕγ-curve represents multiple TLs parameterized by different losses at multiples lenghts measured
from the load. This also happens with the curves which represent the basic parameters in the vfa
in which losses and frequency are combined within the same analysis; (ii) supposing the reflection
coefficient at the load as BC is not physically realistic but mathematically efficient for this analysis.
Instead of that, the impedance at the load is more feasible as (physical) BC, just as it is considered
in Ex. 01 presented in Sect. 5.2 in Chpt. 5, but the analysis along the can not be ”unversalized”
in terms of losses; and (iii) not all the possible values of ln are possible since it depends on the
modulus of the propagation constant. This fact clearly limits the analysis along the complete TL.

With the aim of: (i) overcoming these limitations; and (ii) showing that the ”space of parameteri-
zations” also holds the length parameterization in certain way; the following complex parameteri-
zation is proposed for studying the inflcuence of losses over the TL’s length.

Mathematical analysis

Recall the expression of the normalized propagation constant with respect to the lossless case, γn1,
in eq. (4.10) used for the ffa. From this expression, the complexified propagation constant is:

¯γn1 = j
√

(1− jr̄)(1− jḡ), in which (III)

r̄, ḡ ∈ C.

Because the equivalent role of complex conductor and dielectric losses, r̄ and ḡ, respectively, in
eq. (III), it is assumed ḡ = g0 ∈ R+ ∪ {0}, for instance, the parameter which determines the
source of losses without lost of generality. This would help the general analysis and, especially, the
representation.
Thus, the conductor losses have been complexified in the following form:

r ∈ R+ ∪ {0} → r̄ = rR + jrI ∈ C\rR ≡ r ≥ 0, (IV)

with the purpose11 of describing the complex parameterizations that lead to the same ϕγ so that
they represent different modulus of γ and thus different normalized lengths ln.
In these terms, the phase of the propagation constant is written as:

ϕγ =
π

2
− tan

(
rR

rI + 1

)
− tan (g0) . (V)

Solving rI in terms of rR from this equation, it leads to the following expression:

rI =

(
1

tan
(
π − 2ϕγ − tan−1 (g0)

)) rR − 1, in which (VI)

rR ∈ [0,∞);

11When a complexification of any a priori real parameter (because of its physical interpretation) is performed, the
underlying purpose (a priori analytical) is required to be outlined.
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which is a expression of a line in the r̄-complex plane12.
Notice that the slope of the line in eq. (VI) depends on ϕγ and g = g0. All the combinations of
these parameters that keep the slope invariant, describe the same curve along the TL in terms of
losses. In fact, if this parameterization is seen de-complexified, the slope

1

tan
(
π − 2ϕγ − tan−1 (g0)

) = r ≡ rR, (VII)

leding to rI = 0, as it is originally supposed and physically makes sense.
Thus, this complexification has to be seen as an extension of the real case: a deformation of the
original parameters line parameter for parameterizing the length into them.

Graphical analysis and related physical interpretations

A graphical analysis imposing the BC on the reflection is shown. Then this is physically interpreted
briefly for the appropriate understanding of the graphs and what they represent within the context
of the CTLT.
When imposing the BCs on the relfection coefficient at any point of the TL (referred as ”at the
load”), the expression of the reflection coefficient is the same as in eq. (5.51), in which ρL is known.
In this case, the graphical transformation is from the ”complex lines” in the rg-space following eq.
(VI) to the ρ-plane:

(a) (b)

Fig. VI: Complex parameterizations of losses in the (a) rg-space (g = 0.1) and the transformations
to the ρ-complex plane for the study of the reflection coefficien along the TL.

In Fig. VI, different ϕγ-parameterized curves, which represent both losses and the TL’s length
by means of the complexification of r when g = 0.1 is kept fixed in the rg-complex space, are
transformed to the ρ-plane ”simulating” the variation of the reflection coefficient along the TL.
Although the curves are in the real constant g-plane in the rg-space, the same behavior of ρ may
be obtained in the real contant r-plane, just because the equivalent role of r̄ and ḡ in the expression
of γ̄.
Notice that the curves starts in r̄ = 0− j (equivalently, ḡ = 0− j), and thus:

r̄ ∈ C\rR ≥ 0, rI ≥ −1 (symmetrically, ḡ ∈ C\rR ≥ 0, rI ≥ −1) (VIII)

This point represents the point ln =≡ l = 0, that is the position of the load.

With this analysis: (i) it is possible to see directly which losses are parameterized in the ρ-plane,
only by examining the rg-space of parameterizations, instead of doing the inverse analysis of γ

12This plane is the complex extension of the r-axis in the rg-plane.
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in the rg-plane as in Ex. 03 presented in Sect. 5.4 in Chpt. 5; (ii) having parameterized all the
possible values of ln and thus l from the load to infinity, leading to no restrictions in the analysis as
a consequence of real lossy parameterizations, just as they are found in Ex. 03; and, additionally,
(iii) proving that in the ”space of parameterizations” the TL’s length can be parameterized using
equivalent losses.

This analysis could be extended to the analysis of the wave impedance when imposing BCs on the
load. For this purpose, the losses on the chracteristic impedance would ”simulate” the TL’s length.
However, this analysis is not as direct as the one with BC imposed on the reflection coefficient.

5.7.2 Using complex parameterizations of losses for characterizing high
order mode solutions

In Chpt. 5, it has been seen how generalizing the equivalent telegrapher’s equations by means of
the complexification of the a priori real line parameters, the rest of mode solutions (beyond HPWs
belonging to TEM modes) could be parameterized using the same form of the expressions of the
characteristic impedance and the propagation constant. In other words, it has been seen that it
is not necessary to solve the individual propagative waves for obtaining the mode impedance and
the propagation constant. Furthermore, it was assumed working in the so called ”propagative
domain”, which is no more than parameterizing the propagation constant γ from the (Laplace)
complex exponentials that form a basis of propagative waves in the waveguide (in the same way
as using the frequency ω for parameterizng time exponentials). Nevertheless, since the nature of γ
seen as a parameter is complex, this needs to be characterized in its respective complex plane in
terms of losses, BCs, and frequency. In this sense, recall the equivalent characterization of γ in the
ffa done in the CTLT-v1 presented in Sect. 4.3.1 in Chpt. 4, in which the analysis of HPWs in
terms of losses and frequency is carried out. In this case, the BCs does not appear explicitly. This
does not mean that they are not present but they are normalized as a part of the line parameters.
This fact is direct consequence of imposing zero Laplacian, which is equivalent to consider a null
eigenvalue for the Laplacian that acts over the potential functions in eqs. (3.25) and (3.26).
Keeping these particular results in mind, it may be said that the eigenvalues of the Laplacian are
addressed like the losses gathered in k. Thus, the Laplacian eigenvalues (denoted by the square of
kc, as usually cited in books for the particular analysis of E- and H-modes, [Mar51], and in general
TM and TE modes, respectively) are considered as additional sources of losses.

Remark 47. Generalizing the influence of losses allows for interpreting the eigenvalues of the
Laplacian affecting the pontentials employed in the generalized LC of modes used when integrating
Maxwell equations. In this sense, studying one isolated mode supposes analyzing one particular
case, in the same way as for example studying the lossless case as a particular case within the
general lossy case.
As a result, dealing wtith BCs and the associated modes follows the same scheme as the analysis
of the influence of losses in TL’s, so the CTLT may be used to describe this mode analiysis.

In order to exemplify the analysis of E- and H-modes, the inverse analysis of the propagation
constant in terms of losses and BCs is next presented. Recall that γ acts as a parameter in the
”propagative domain”, in which it should be characterized in terms of generalized losses13. The
following analysis is carried out when only conductive losses represented by finite non zero con-
ductivity σ affects the complex constitutive parameters. This assumption is taken for the sake of
simplicity.

13The term ·”generalized losses” refer to those losses produced by constitutive parameters and losses due to BCs
and the eigenvalues they generate.
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Mathematical analysis

The general expression of γ for E- and H-modes in a conductive medium, [Mar51], characterized
by the eigenvalues kc is

γ =
√
k2
c − k2, (IX)

in which kc ∈ N ∪ {0}, k = ω
√
µε ∈ C, and in this case εeq ≡ ε′ − j σω ∈ C, and µ ≡ µ′ ∈ R.

As it has been mentioned, the eigenvalue kc = 0 corresponds to the study of HPWs.

The expression of γ in eq. (IX) expands as:

γ =
√
k2
c − ω2(µ′ε′) + jωσµ′. (X)

On the other hand, the generalized expression of γ obtained from the generalized telegrapher’s
equations in eq. (3.37) may be written as:

γ =
√
R̄Ḡ− ω2L̄C̄ + jω(L̄Ḡ+ R̄C̄). (XI)

The coefficients of the polynomials within the square root in eqs. (IX) and (XI) are identified as
follows: 

R̄Ḡ = k2
c

L̄C̄ = µ′ε′

L̄Ḡ+ R̄C̄ = µ′σ

. (XII)

Operating with them, the following system is obtained:{
R̄
L̄

+ Ḡ
C̄
≡ ḡ′ + r̄′ = σ

ε′

R̄
L̄
Ḡ
C̄
≡ ḡ′r̄′ =

k2c
µ′ε′

. (XIII)

Notice that r′ and g′ are the conductor and dielectric losses used in the vfa, so scaling them with
respect to ω leads to the r and g used in the ”space of parameters”.
Solving r̄′ and ḡ′ from the system in eq. (XIII), it leads to:

r̄′ =

σ
ε′ +

√(
σ
ε′

)2 − 4
k2c
ε′µ′

2
, and (XIV)

ḡ′ =

σ
ε′ −

√(
σ
ε′

)2 − 4
k2c
ε′µ′

2
. (XV)

Some interesting results and physical behaviors may be deduced from analyzing the expressions of
r̄ and ḡ: (i) When the conductivity is zero, that is when the medium is a perfect dielectric, the
higher order modes are represented by pure imaginary parameterizations of losses; (ii) when the
expression is particularized for kc = 0, the parameterizations reduce to real values, as it is expected
in case of dealing with HPWs. In this case, r̄′ ≡ r′ = 0, because of the approrpaite selection of the
sign in the expressions above; and (iii) in general r̄′ and ḡ′ are complex conjugate.

As a result, it may be foreseen that the H- and E- modes use complex conjugate parameterizations
of losses to be described using the CTLA. The corresponding analysis and physical interpretations
of this (complex conjugate) parameterized analysis would lead to the associated CTLT of these
modes.
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5.8 The CTLA combined with numerical analysis

The definition of the space of parameterizations, and in particular the rg-plane, and the functions
which transform the parameterizations in these domains to the complex planes associated to each
parameter under study, allows for discretizing them and integrating the seeed solution.

In this way, notice that the integral solution to a problem may be posed in a Green’s function
inspired form, [Sta79]. Nevertheless, the concept changes significantly:

(i) Any problem which is solved in an integral way using the associated Green’s function, needs
to solve previously the so called Green’s problem, which lies in finding the corresponding
Green’s function. This problem is associated to find the impulse response of an inverse
operator by using the delta of Dirac, from the SST perspective.
From the CTLT point of view, each analyzed TL parameter in terms of the parameterizations
in the rg-plane would play the role of a Green’s function. Equivalentely, a physical problem
would be represented by integrating the behavior of multiple lossy TL’s.

(ii) In this case, the operator is not clearly represented by a mathematical expression but for a
physical problem/behavior which is described by the parameter involved.

(ii) The integrals are not defined a priori in the rg-plane but the inverse characterization serves
to define the paths of integrations depending on the problem to be solved.

Let’s see a simple but representative example of this integral description in the CTLT.
The physical problem under study is about solving the reflective wave in a fixed point (l = 0) in
which an incident wave comes to a impedance which is different to the characteristic impedance
of the lossy medium where the incident wave initially propagates (characterized by r′ and g′, and
thus a c = r′/g′).
The scheme of the problem is:

Fig. VII: Scheme of the problem which is about solving the reflective wave, v−(t) from the incident
wave v+(t).

In this case, the reflection coefficient characterized by c and analyzed when the frequency varies
(so the normalized frequency ωn also does) is useful to solve the problem of finding the reflective
wave v−1(t) from an incident wave v+(t). Notice that the vfa of ρ is the impulse responsonse
of this operator. However, this parameter is adressed in a different domain (the rg-plane) so it
comes from an inverse analysis. Thus, the solution uses ρc(ωn)ejωnt as the Green’s function of the
problem, which lets to find the reflective wave:

v−(t) = Re

[ˆ
ωn

V +(ωn)ejωntρc(ωn)
√
r′2 + g′2dωn

]
, (XVI)

in which V +(ωn) is the spectrum of the incident wave.

This method would help the solution of more TL-related problems when paraticularizing different
behaviors. For example, one intersting problem to solve is soling the wave impedance when inte-
grating different modes. Since it has been proved that modes may be addressed as complex losses,
the integral would be in curves in complex domains.
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5.9 The CTLT as example of use of the GTLT

It has been seen that the CTLT may be explained in different aspects from the GTLT.
Furthermore, the GTLT uses some solid definitions generalizations, e.g. the scalar product defined
from potentials, that may extend the current version of the GSST.
Thus, it is expected that the analysis in both the GTLT and the CTLT serve as example of appli-
cations of future versions of the GSST.





General Conclusions

In this Thesis, the Complex Transmission Line Theory (CTLT) has been presented as a
solid methodology of analysis alternative to the classic Transmission Line Theory (TLT), at
the same time that it has been provided with the general mathematical definitions which serve to
complete any of the possible versions of the CTLT under the same theoretical framework.
In particular, the first version of the CTLT (denoted as CTLT-v1), which has been originally posed
to reinterpret the analysis of the Lossy Transmission Line Theory (LTLT) (i.e. the rigorous
characterization of wave solutions in lossy Transmission Lines (TLs)) has served to exemplify the
use of the Complex Transmission Line Analysis (CTLA) while obtaining the appropriate
physical interpretations from the complex analysis to validate and remplace the underlying –in
this case– LTLT.
However, the CTLT should not be exclusively set aside for studying a specific type of solutions un-
der certain conditions (e.g. the LTLT) but for analyzing any type of EM system, either theoretical
in origin or real systems modeled theoretically. This is an ambicious but actually achievable goal
by using of the CTLT (subject to the increasing of the complexity in the analytical developments
and physical interpretations).

An emerging theory requires us to redefine our mindset...

The interpretation of the CTLT requires a change of mindset, something which has been thoroughly
exaplined in this thesis book through different definitions, graphs, schemes, remarks, and examples
of use. Among of them, the most important and general interpreatations are next outlined and
summarized as conclusions in order to base this new perspective of analysis:

(i) Since the solutions in the equivalent TLs are completely define by means of their parameters,
studying them is as acceptable as giving the expressions of voltage and current waves.
In addition, despite these latter mathematical expressions of waves are a relatively compact
manner of giving the solutions in the TL, they lack of the analysis of the parameters involved
on them and thus the related physical interpretations, so analyzing the TL parameters is
definitely more ”revealing” than simply giving a closed mathematical expression of waves.
Thus, the CTLT bases its analysis on the characterization of the TL parameters.

(ii) Keeping this idea of focusing the analyis on the TL parameters in mind, it is neccesary
to see all the parameters gathered together in order to give an idea of the behavior of
the solutions, prior to be physically interpeted. In this sense, each value of any TL pa-
rameter is also mapped on the rest, so they all are connected. This fact inherently intro-
duces the idea of transformation between the TL parameters involved in the analysis. Thus,
the CTLT is focused on the study of those transformations between the TL parameters.
Each version of the CTLT is considered analytically complete when all of those possible
transformations of the underlying TLT are characterized.
These transformations may be seen:

(ii.1) analytically as complex transformations;

(ii.2) graphically involving the planes associated to each parameter; and

(ii.3) geometrically as plane curves equally parameterized (e.g. the circumferences parame-
terized by the real and imaginary parts of the wave impedance describing the reflection
coefficient: the GSC, [GDG06]).

For the purpose of defining the transformations from these viewpoints, it has been needed to
define the domains of the parameters over which the tranformations operates from/to. There
are two ways to deal with this issue:
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a. using the complex planes which naturally appear when operating with complex param-
eters (e.g. the plane associated with the characteristic impedance), or

b. conveniently defining new domains from the (ii.1) analytical (algebraic), (ii.2) graphical,
and (ii.3) geometrical perspectives (e.g the rg-plane in which the line parameters are
mapped).

(iii) While defining the transformations between the TL parameters lets to study all of them to-
gether leading to their complete analytical characterization, the general study still lacks of the
physical meaning. Thus, the CTLT is finally complete when selecting the curves which meet
specific physical criteria in the plane of parameterizations (the rg-plane) and transforming
them to the rest of complex planes associated to the TL parame-
ters. The selection of these curves manily meets two purposes:

(iii.1) describing the parameters physically, i.e. studying their physical behavior in terms of
the variation of the physics of the EM system parameterized into the equivalent TL (e.g.
the waveguide losses, sizes, etc.), and

(iii.2) describing the solutions in terms of the original variables: time14 and length; in certain
way by means of the parameters in use.

A lot of times, these purposes of the CTLT are not tackled independently (e.g. the analysis
along the TL’s length and losses may be coped together by using the parameterizations of
angles of basic parameters).

(iv) In order to keep the analysis using complex parameterizations, in complex planes, and regard-
ing plane curves, the adequate normalizations of the TL parameters are chosen, also depend-
ing on the goal of the analysis (e.g. for the analysis of the TL parameters in terms of losses, i.e.
a physical analysis of the parameters, the noramalizations are chosen with respect to the loss-
less case). In this way, the normalizations lead to ”universalize” the behavior of the param-
teters, which means grouping the parameters in terms of the parameterizations used (an-
alytically, it means forming equivalence classes), representing all the possible values of the
normalized parameter onto the same parameterized point, and using the parameterizations
for representing ”universal” plane curves.

Under these considerations the CTLT-v1 has been satisfactorily posed. The following general
conclusions regarding the resultant analysis may be outlined:

(i) The underlying LTLT in which the CTLT-v1 settles its basis leads to known the parameters
under study and how they are directly connected. Nevertheless, it has been seen that the
most efficient manner to obtain these relations for the CTLA is neither following the usual
order: (from) line parameters → basic parameters → wave parameters (i.e. the so called di-
rect characterization); even for the simplest mode solutions (HPWs within the TEM modes);
nor characterizing the parameters inversely: (until) line parameters ← basic parameters ←
wave parameters (i.e. the so named inverse characterization). This latter characterization,
although it works fine for charactrizing a single mode (e.g. HPWs), is not efficient for ob-
taining the parameters of a set of solutions.
The most efficient way to obtain the parameters of the TL for the CTLA lies in combining
both the direct and inverse characterizations: (generalized) line parameters← basic parame-
ters → wave parameters15. In this way, each of the mode solutions is inversely mapped onto
the (generalized) line parameters, from which the direct characterization lets to obtain the
wave parameters. As a result, not only the constitutive parameters but also the BCs are ta-
ckled as part of (generalized) line parameters in certain way, and so the analysis in terms of
losses exemplified in this book adquires greater relevance.

14The way of parameterizing time is, indirectly, by means of the frequency, analyzed in the variable frequency
analysis.

15The complete procedure would be:

(generalized) line parameters ← basic parameters (from potentials)
↓

line parameters → basic parametrs → wave parameters.
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And that’s not all. The parameterizations for the CTLT become such relevant that the origin-
al variables are addressed as part of these parameterizations in two different ways:

(i.1) Limiting the analysis to specific domains, which means operating in the domain of the
coefficients that expands the solutions in certain basis set (e.g. the expressions in the
frequency domain belong to the set of coefficients when time exponentials ejωt are chosen
as basis). In this sense, the spectral variable transforms to a parameter together with
its corresponding analysis (in the frequency domain, there is a corresponding variable
frequency analysis); and/or

(i.2) Complexificating and/or geometrizing the problem (e.g. the angle of the propagation
constant, ϕγ , determines the variation along the TL so the modulus may be used to
describe the TL’s length under their relative normalization).

Inspired in this efficient description of the parameters by combining direct and inverse anal-
ysis, the first version of the Generalized Transmission Line Theory (GTLT-v1) arises
up as the Theory which better supports the CTLT for the parameter characterization. This
GTLT does not deal with solving the waves but with characterizing the basic parameters of
the solutions in terms of losses, BCs, etc. In particular, HPWs have been object of the study
in the GTLT-v1 showing that the inverse characterization completely remplaces the direct
characterization originally used in the LTLT.
In addition, the inverse characterization has demonstrated being very useful for finding alter-
native parameterizations of losses and the TL’s length based on the angles of basic parameters.

(ii) The curves in the (not Euclidean) rg-plane and in general in the ”space of parameterizations”,
both defined and explained algebraically, graphically and geometrically, completely define the
transformations which are of interest in the CTLT:

(ii.1) the curves with contsant r and g in the rg-plane16 define the lossy parameterizations
for the fixed frequency analysis;

(ii.2) the curves with modulus constant (ωn) in the rg-plane and the curves with constant
angle (θc), define the parameterizations for the variable frequency analysis; and

(ii.3) different sets of hyperbolas in the rg-plane define the complex parameterizations of basic
parameters.

As a consequence, the rg-plane gathers all the parameterizations which are of interest in the
CTLT for the full desciption of the TL parameters.
Moreover, the complex parameterizations are tackled as only one, instead of splitting them
into its real and imaginary parts or modulus and phase. That is because there is always a
physical parameter in the analysis regarding the CTLT which relates the a priori separated
parameterizations (e.g. the parameterizations in the ρ-plane are related by means of the TL’s
length for the analysis along the TL).

One important final result regarding the analysis of the transformation involved is that
the angles of basic parameters, ϕγ and ϕZ0 , completely define the behavior of the TL param-
eters in terms of losses/frequency and along the TL, provided that the appropriate normal-
izations are chosen for each parameter under study depending on the type of study –in terms
of the losses/frequency/TL’s length– it is being analyzed. That is mainly because of the
angles go beyond the normalizations (they keep the same after the normalizations) for each
of those analysis in the TL.

In the same sense, the reflection coefficient, ρ, is the only parameter which keeps the same
after the normalizations for each study. Thus, ρ is proved to be the parameter which de-
scribes the analysis in terms of losses, frequency and along the TL at the same time, and
thus in the same complex plane. This makes the GSC (the ρ-plane complex parameterized

16Since the rg-plane is not Euclidean they are not parallel curves in the ”space of parameterizations”
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by the wave impedance/admittance) and the iGSC (the ρ-plane parameteized by the charac-
teristic impedance) the most useful graphical tools for dealing with that duality the analysis
along the TL and in terms of losses/frequency suppose in the CTLT.

Remark. The planes which ”universally” gather all the parameterizations which
are useful for describing the CTLT are, on one hand the rg-plane and, on the other
hand, the ρ-plane.

In conclussion, the CTLT just as it has been presented and exemplifyed in the present Thesis
supposes a novel way to see the usual TLT and also generalized versions of the TLT. The method-
ology of analysis based on CTLA analysis the CTLT uses analytic methods which result greatly
intuitive once the mindset has been changed for understanding the parameters as transformations
between planes. This persepective leads to geometrize the problem. Thus, the graphical representa-
tions adquire important relevance for both explaining the analysis and solving TL related problems.

... but the change may become really worth when dealing with rigorous analysis.



Future Lines

The most important research that it has not tackled in the Thesis is left as possible future lines to
continue the analysis.
On one hand, some of these possible future analysis are related to the Applications of the CTLA
which have been previously presented. In this sense, the analysis presented in the Thesis will serve
as example of use of the methodology based on complex transformations for the full description of
the TL parameters. For the purpose of extending the CTLA to different mode solutions, the GTLT-
v1 presented in Chpt. 3 has been posed. Thus, it is about particularizing this GTLT to different
modes in order to do the corresponding CTLA obtaining the subsequent physical interpretations.
On the other hand, future versions of the GTLT could be posed leading to different perspectives
of the guided wave analysis.
Thus, the process of bulding up future versions for the TL analysis seems to be clearly guided.
Generaly speaking, it would follow the scheme:

Fig. VIII: Scheme of succesive versions to be follow for the achievement of the General TLT analysis.
Any TLT should be study in generalized versions of the TLT (GTLT). Notice that the GTLT-vi
is within the GTLT-vi+ 1. The last GTLT would represent the General TLT. Moreover, different
families of modes are studied as particular cases of each GTLT. In turn, different analysis within a
family of modes may be carried out. These analysis are characterized directly and inversely. The
analysis presented in the Thesis correspond to the CTLT-v1.0-a and CTLT-v1.0b applied to the
characterization of HPWs obtained from particularizng the GTLT-v1.

Keeping in mind this scheme, the following analysis are proposed as future research lines:

(1) The most immediate analysis would be part of the characterizations of HPWs within the
context of the GTLT-v1, and so witihin the CTLT-v1. This analysis is suggested to deal
with frequency dependent line parameters. This mainly affects the vfa.
Notice that the lossy case particularized in Chpt. 2 takes ε′′ and µ′′ as inverse functions of
frequency, whereas σ is linear function of frequency, both in order to make the line param-
eters non frequency dependent. Thus, the line parameters would have to be generalized to
functions of frequency, mainly polynomials on frequency, to deal with all the possible cases of
frequency dependent constitutive parameters. In this way, the analysis would become more
realistic and so capable to be applied to real EM systems.
On the other hand, and related to the frequency dependence, the analysis in terms of fre-
quency at the load, would have to take into account the frequency dependence of impedance/admittance
at the load. This would also make the analysis more realistic. For example, a capacitor which
varies its admittance linearly with frequency would be able to be analyzed if the frequency
dependence of the load is rigorously analyzed.
The associated CTLA considering the frequency dependence of line parameters would lead
to the CTLT-v1.1.
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(2) Different mode solutions using the GTLT-v1 will be studied using CTLA. Among of them, it
is interesting to particularize the complex analysis to: (i) those waves that come from the curl
of vector potentials instead of the gradient of scalar potentials, and analyze the differences
with repect to this latter case. This case could be added to the existing CTLT-v1.0, which
generally would refer TEM modes; (ii) those waves which come from potentials that form a
basis of eigenfunctions of the Laplacian. These are the E- and H-modes whose first approach
has been introduced among the Applications. Depending on the space of numbers the
eigenvalues belong to, the corresponding subversions of the CTLT-v2 will be addressed, for
example, as CTLT-v2.1 for integers, CTLT-v2.2 for real eigenvaleus, etc. Notice that each
of these versions would involve the previous ones, as well as the CTLT-v1. As a result
the CTLT-v2 would refer TE and TM modes; and (iii) those modes that combine different
assumtions posed over the Laplacian, as for example zero Laplacian for electric scalar potetials
(∆φe = 0) at the same time that the magnetic scalar potentials are eigefunctions of the
Laplacian (∆φh = −k2

c,hφh). These ”hybrid modes” (HM) could be gather in the CTLT-v3.

(3) Finally, posing future versions of the GTLT in order to make the general analysis of the TLT
more affordable would be the method to extend the Theory. To achieve this goal, different
domains (not only the frequency domain) could be used to expand the previous solutions
while bringing the analysis of more. This step supposes a reinterpretation of both the way
to deal with the TLT from Maxwell equations and the use of the CTLA which, in any case,
appears bound to the general analysis either in the use of complex functions/parameters or
the complex variable.
From this point, it is suggested working in the velocity domain; in fact, the phase velocity
domain. In this domain the waves would be grouped by the phase velocity, so this is the
way of relating first time derivatives and the derivatives in z (the direction of propagation).
That is the key of this analysis, so it is not about finding the eigefunctions of time derivatives
(complex exponentials parameterized by frequency) but a constant relations between time
and z- derivatives. Thus, the concept of analysis changes completely.
One additional possibility is working in the propagative domain from the beginning. Recall
that the propagative domain is referred in Chpt. 3 when dealing with those solutions whose
propagative term e∓γz is assumed as basis. In this domain, which is tackled within the fre-
quency domain, γ is taken as a parameter and, as such, it has been characterized in terms of
frequency. Then, conversely, the idea of working in the propagative domain from the begin-
ning (out of the frequency domain) lies in using ∓β ∈ R as the parameter in z-exponentials
e∓βz which would describe the analysis a priori. As a consequence, ω ∈ C is addressed as
complex frequency, which would have to be characterized a posteriori in terms of constitutive
parameters and ∓β. A brief example of use of this generalization based on operating in the
propagative domain is next presented to clarify the underlying idea.

Example. Let’s transform the Faraday’s law to the propagative domain.
For this purpose, on the l.h.s. the curl of the electric field in general cylindrical (one unitary
vector is ẑ) coordintes may be written as:

∇× E = 1
h1h2

∣∣∣∣∣∣
h1t̂1 h2t̂2 ẑ
∂
∂t1

∂
∂t2

∂
∂z

h1Et1 h2Et2 Ez

∣∣∣∣∣∣ = t̂1

[
1
h2

∂Ez
∂t2
− ∂Et2

∂z

]
+

+t̂2

[
− 1
h1

∂Ez
∂t1

+
∂Et1
∂z

]
+ 1

h1h2
ẑ
[
∂h2Et2
∂t1

− ∂h1Et1
∂t2

]; (XVII)

in which t1 and t2 are the coordinates on the transverse of the structure that is z-invariant
(the waveguide), and h1 and h2 are their respective scale factors.

In the propagative domain the z-derivatives transform as:

∂(◦)
∂z → ∓jβ,



FUTURE LINES 283

so the curl of E (the electric field expressed in the propagative domain) may be written as:

∇×E = t̂1

[
1
h2

∂Ez
∂t2
± jβEt2

]
+ t̂2

[
− 1
h1

∂Ez
∂t1
∓ jβEt1

]
+ 1

h1h2
ẑ
[
∂h2Et2

∂t1
− ∂h1Et1

∂t2

]
. (XVIII)

On the other hand, the r.h.s. of the Faraday’s law may be written in the propagative domain
as:

−∂B
∂t
≡ −∂µ(β)H

∂t
≡ −µ(β)

∂Ht1

∂t
t̂1 − µ(β)

∂Ht2

∂t
t̂2 − µ(β)

∂Hz

∂t
ẑ; (XIX)

in which µ(β) ≡ µ ∈ C is the magnetic permeablity of the medium, which depends on z in
the time domain and so in β in the propagative domain.

The l.h.s. and r.h.s. are matched component by component, so that:
1
h2

∂Ez
∂t2
± jβEt2 = −µ∂Ht1

∂t
1
h1

∂Ez
∂t1
± jβEt1 = µ

∂Ht2

∂t
1

h1h2

[
∂h2Et2

∂t1
− ∂h1Et1

∂t2

]
= −∂Hz∂t

. (XX)

Notice that the z-components of the system above may be obtained from the transversal
components.
For the sake of simplicity in this example, let’s consider the seeked wave solution is plane,
so Ez = Hz = 0. Imposing this condition, and adding the first and second equations of the
system in eq. (XX) leads to:±jβ (−Et2 + Et1) = µ

∂(Ht1+Ht2)
∂t

1
h1h2

[
∂h2Et2

∂t1
− ∂h1Et1

∂t2

]
= 0

. (XXI)

Using vector identities, the first equation in the system in eq. (XXI) may be rewritten as:

±jβ (ẑ ×Et) = µ
∂Ht

∂t
(XXII)

On its behalf, the second equation in eq. (XXI) indicates that ∇t×Et = 0, so that Et comes
from a scalar potential, and so Ht does. Thus, eq. (XXII) is of the form of telegrapher’s
equations but in the propagative domain and thus the derivative is with respect to the time.
It may be foreseen that the pair of telegrapher’s equations would be:

ε∂v(t)
∂t + σv(t) = ±jβi(t), (XXIII)

∂i(t)
∂t = ±j βµv(t). (XXIV)

When decoupling these equations by differentiating the first one and substituying the second
equation on it, it leads to a 2nd order ODE for v(t). Solving this ODE, the volatage wave
results in:

v(t) = ejω1t + ejω2t, in which (XXV)

ω1 =
−σε +

√(
σ
ε

)2 − 4β
2

µε

2
, and ω2 =

−σε −
√(

σ
ε

)2 − 4β
2

µε

2
,

so the pair of frequencies ω1 and ω2 are complex conjugate in general.
These solutions should be analyzed by CTLA and interpreted in the corresponding version
of the CTLT.

Studying the CTLT from both different particularizations of the GTLT-v1 and also new versions
of the GTLT will lead to new research on the topic presented in the Thesis.
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