
Comparison of Different Approaches in Reflectarray
Synthesis Based on Intersection Approach
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Abstract—This work presents a comparison between a number
of numerical techniques for the copolar synthesis of reflectar-
ray antennas. These techniques are based on the generalized
intersection approach. The classical phase-only synthesis (POS)
is considered using different methodologies to compute the
gradient: the analytical approach by exactly calculating the
derivative and two numerical methods based on finite differences,
one using the FFT and another the technique of differential
contributions (DFC). In addition, a direct layout optimization
(DLO) for copolar synthesis is also considered. In order to make
the DLO efficient, a surrogate model of the unit cell is employed.
A computing time study is presented, showing that for copolar
only synthesis at a single frequency, the POS technique using
DFC has superior performance. Finally, a large reflectarray
with European footprint for satellite broadcasting is synthesized,
comparing the results obtained with all techniques.

Index Terms—Reflectarray antenna, phase-only synthesis, nu-
merical technique, differential contributions, contoured-beam,
satellite broadcasting

I. INTRODUCTION

Antenna pattern synthesis is important in any application
that requires non-canonical patterns. It can be considered as
the reverse of antenna analysis [1]: given a set of requirements
on the radiated field, the antenna structure is sought. In
practice, many of the antenna features are fixed beforehand
and usually only the excitation is synthesized. In this regard,
there are many techniques for the synthesis of antennas,
including global and local search algorithms. For the case
of reflectarray antennas, since they may be comprised of
thousands of elements, local search, gradient-based algorithms
are preferred [2], [3]. The computation of the gradient is the
slowest operation, and thus it is interesting to provide solutions
to accelerate computations. When possible, the best strategy
is to analytically obtain the derivatives so computations are
faster. However, there might be situations in which this is not
possible, such as when performing the direct optimization of
the layout [2]. Then, finite differences must be used, slowing
computations.

In this work, we compare a number of techniques for the
synthesis of reflectarray antennas. All of them are based on the
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use of the generalized intersection approach (IA) [1] and aim
at improving its computational performance without losing
accuracy. The baseline algorithm of [4] is considered, which
employs finite differences to calculate the gradient and the
FFT to efficiently obtain the far field. Then, the analytical
derivative of the gradient is developed and compared with
the baseline algorithm, showing superior computational perfor-
mance. In addition, the technique of differential contributions
[5] (DFC) to the far field is briefly introduced and considered
in this study. Finally, support vector machines (SVMs) [6]
are employed to perform a direct optimization of the layout
to synthesize the required radiation pattern. Afterwards, a
thorough computational study is carried out comparing all
previous techniques to analyse their performance. Finally,
they are applied to a large reflectarray for direct broadcast
satellite (DBS) application with a European coverage, giving
an overview of the performance of different approaches to
synthesize reflectarrays.

II. GENERALIZED INTERSECTION APPROACH

The reflectarray synthesis is carried out using a local-search
gradient-based algorithm known as generalized IA [1], which
has been particularized for reflectarray phase-only synthesis
(POS) in [4]. It is an iterative algorithm that performs two
operations on the radiated field at each iteration:

~Ei+1 = B
[
F
(
~Ei

)]
, (1)

where F is the forward projector, which computes the radiated
field and then trims it according to some specifications given
in the form of lower and upper masks; and B is the backward
projector, which minimizes the distance between the current
radiated field by the reflectarray and the field trimmed by the
forward projector that complies with the specifications [3].

For the present case, a far field pattern synthesis is per-
formed, and the generalized IA works with the squared field
amplitude, or equivalently, the gain. We consider a single-
offset reflectarray antenna (see Fig. 1) comprised of N ele-
ments and whose far field is computed at M points. Assuming
that S variables are optimized, and denoting with GT (~r)
the trimmed gain by the forward projector, and with G(~r; ξ̄)
the current gain pattern radiated by the reflectarray, the cost
function which is minimized by the backward projector is [3]:

F (~r; ξ̄) =

M∑
m=1

{
C(~r)

[
GT (~r)−G

(
~r; ξ̄
)] }2

, (2)
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Fig. 1. Sketch of a single-offset reflectarray geometry.

where ~r ∈ {~r1, . . . , ~rt, . . . , ~rM} is an observation point where
the far field is computed; C(~r) is a weighting function
and ξ̄ = (ξ1, . . . , ξi, . . . , ξS) is a vector of S optimization
variables, which for the POS will be the phase-shift introduced
by the reflectarray elements. The cost function in (2) is
minimized by the Levenberg-Marquardt Algorithm (LMA),
which requires the computation of the Jacobian matrix formed
with the derivatives of the residuals:

R
(
~r; ξ̄
)

= C(~r)
(
GT (~r)−G

(
~r; ξ̄
))
. (3)

Since we consider S optimizing variables, the LMA will
require to compute S derivatives of (3).

III. PHASE-ONLY SYNTHESIS

A. Analytical Derivative

From here on, we drop the dependence on ~r to alleviate
notation and to focus only on the optimization variables ξ̄.
Since for POS the optimization variables are the phase-shifts
introduced by the reflectarray elements, there is an easy way to
obtain the derivative analytically. For the computation of the
Jacobian matrix (gradient), we need to obtain the following
derivative:

R′i
(
ξ̄
)

=
∂R
(
ξ̄
)

∂ξi
=
∂
[
C ·
(
GT −G(ξ̄)

)]
∂ξi

. (4)

where R is defined in (3) and R′i indicates a partial derivative
with respect to variable ξi. For the computation of the residual,
the gain is proportional to the squared far field amplitude (G ∝
|Eff

(
ξ̄
)
|2). Thus, taking into account that Eff

(
ξ̄
)

is complex,
and that it can be written as the sum of its real and imaginary
parts, using the chain rule it follows:

R ′
(
ξ̄
)

= −2C2

[
Eff,R

(
ξ̄
)
E′ff,R

(
ξ̄
)

+ Eff,I
(
ξ̄
)
E′ff,I

(
ξ̄
)]
, (5)

where C2 = 2πC/η0Pt, η0 = µ0c is the intrinsic impedance
of vacuum and Pt the power radiated by the feed.

For the far field, we consider the copolar component in two
linear polarizations, which are:

EXff
(
ξ̄
)

= EXCP

(
ξ̄
)

= cosϕEXθ
(
ξ̄
)
− sinϕEXϕ

(
ξ̄
)
, (6a)

EYff
(
ξ̄
)

= EYCP

(
ξ̄
)

= sinϕEYθ
(
ξ̄
)

+ cosϕEYϕ
(
ξ̄
)
. (6b)

The superscript indicates the linear polarization of the feed
(see Fig. 1). In addition, since the POS is done independently
for each linear polarization, we will focus on polarization X.
The steps for polarization Y will be identical. Thanks to the
linearity of the differential operator, (5) can be written as:

R ′ (ξ̄) =− 2C2

[
EXCP,R

(
ξ̄
) (

cosϕE′
θ,R

(
ξ̄
)
− sinϕE′

ϕ,R

(
ξ̄
))

+ EXCP,I
(
ξ̄
) (

cosϕE′
θ,I

(
ξ̄
)
− sinϕE′

ϕ,I

(
ξ̄
)) ] (7)

For POS, the far field in spherical coordinates for polariza-
tion X are [4]:

EXθ
(
ξ̄
)

= A
[
PXx

(
ξ̄
)

cosϕ− η0 cos θ
(
QXx

(
ξ̄
)

sinϕ−

QXy
(
ξ̄
)

cosϕ
)]
,

(8a)

EXϕ
(
ξ̄
)

= −A
[
PXx

(
ξ̄
)

sinϕ cos θ + η0
(
QXx

(
ξ̄
)

cosϕ+

QXy
(
ξ̄
)

sinϕ
)]
,

(8b)

where the subscript in P and Q indicate the component of
the field with regard to the reflectarray coordinate system (see
Fig. 1), and A = jk0 exp (−jk0r) /4πr. At this point, A is a
complex number, as well as the spectrum functions P and Q.
Since we need the real and imaginary parts of (8), it seems
that we need to consider the multiplication of A with P and
Q. However, A is a common factor to all equations and does
not depend on the optimization variables. Thus, we can extract
it from (8) and add it to C2 in (5) so the following operations
are simplified. With that, the real and imaginary parts of Eθ
are:
EXθ,R

(
ξ̄
)

= cosϕPXx,R
(
ξ̄
)
− η0 cos θ sinϕQXx,R

(
ξ̄
)

+

η0 cos θ cosϕQXy,R
(
ξ̄
)
,

(9a)

EXθ,I
(
ξ̄
)

= cosϕPXx,I
(
ξ̄
)
− η0 cos θ sinϕQXx,I

(
ξ̄
)

+

η0 cos θ cosϕQXy,I
(
ξ̄
)
.

(9b)

And similarly for EXϕ .
For the computation of the derivatives of the real and

imaginary parts of EXθ and EXϕ , we need to compute the
derivatives of the real and imaginary parts of the spectrum
functions P and Q, by virtue of the linear property of the
differential operator. For instance, a generic spectrum function
P takes the form:

P
(
ξ̄
)

= K

N∑
l=1

exp (jξl)Einc,l exp (jk0(uxl + vyl)) , (10)

where K ∈ R is the amplitude of the element pattern, Einc,l
is the complex incident field on reflectarray element l and
ξl the phase-shift introduced by that element, which is the
optimization variable for the POS. After extracting the real
and imaginary parts of (10), we have:

PR
(
ξ̄
)

= K

N∑
l=1

[
cos ξl Einc,l,R cos kl − sin ξl Einc,l,I cos kl−

cos ξl Einc,l,I sin kl − sin ξl Einc,l,R sin kl

]
,

(11a)



PI
(
ξ̄
)

= K

N∑
l=1

[
cos ξl Einc,l,R sin kl − sin ξl Einc,l,I sin kl+

cos ξl Einc,l,I cos kl + sin ξl Einc,l,R cos kl

]
,

(11b)

where kl = k0(uxl+vyl). Thus, the derivative for any element
l = i is:

P ′
i,R

(
ξ̄
)

= −K
[

sin ξi Einc,i,R cos ki + cos ξi Einc,i,I cos ki−

sin ξi Einc,i,I sin ki + cos ξi Einc,i,R sin ki

]
,

(12a)

P ′
i,I

(
ξ̄
)

= −K
[

sin ξi Einc,i,R sin ki + cos ξi Einc,i,I sin ki+

sin ξi Einc,i,I cos ki − cos ξi Einc,i,R cos ki

]
.

(12b)

The derivatives in (12) can be used for the four cases PX/Yx/y
by simply using the adequate incidence field. For instance,
the spectrum function PXy would need the field EXinc,y . For
the spectrum functions Q, which use the magnetic field [4],
a similar process is carried out, yielding similar derivatives
as in (12). Finally, as it can be seen, the computation of
the derivative only considers the contribution of the element
depending on variable ξi, and thus the time complexity of
computing one derivative analytically is O(M).

B. Derivative using Finite Differences with the FFT

A widely employed numerical method for the computation
of derivatives are finite differences. In this way, (4) may be
expressed, e.g., using the backward lateral difference [7]:

R′i =
R(ξ̄)−R(ξ̄ − hêi)

h
+O(h), (13)

where h is a small positive scalar [7] and êi the ith unit vector.
The term R(ξ̄) is common to all derivatives, while the other
term, R(ξ̄ − hêi), is computed for each derivative.

For the computation of the residual, the far field is computed
using the first principle of equivalence in electromagnetics [8],
which requires the computation of the electric and magnetic
spectrum functions. They may be expressed as a 2-D Inverse
Discrete Fourier Transform (IDFT2) of the electromagnetic
reflected tangential field, which is efficiently evaluated by the
FFT algorithm [3]. The electric reflected tangential field is:

~E
X/Y
ref (xi, yi) = Ri · ~EX/Yinc (xi, yi), (14)

with Einc the incident field impinging from the feed and

Ri =

(
ρxx,i ρxy,i
ρyx,i ρyy,i

)
(15)

is the matrix of reflection coefficients. The reflected tangen-
tial magnetic field is obtained from ~Eref assuming a locally
incident plane wave [3]. Finally, in POS (15) is simplified
assuming no losses (|ρxx| = |ρyy| = 1) and no cross-
polarization (ρxy = ρyx = 0):

Ri =

(
exp (jξxx,i) 0

0 exp (jξyy,i)

)
, (16)

where ξxx,i and ξyy,i are the phase-shift introduced by the
element for polarization X and Y, respectively.

Using this methodology, the time complexity of computing
the derivative is approximately O (M logM) due to the use
of the FFT.

C. Numerical Derivative using Differential Contributions

An alternative numerical method for the computation of the
gradient is the DFC technique [5]. It is based on the linearity of
Maxwell’s equations. This property provides a linear relation
between the tangential field at the aperture (14) and the
radiated field. In this way, each derivative expressed with finite
differences in the form of (13) can be efficiently computed by
only taking into account the differential contribution of the
reflectarray element depending on variable ξi. Thus, for the
derivative calculation, the time complexity of computing the
far field is reduced from O(M logM) when using the FFT to
O(M) using the DFC technique. This time complexity is the
same as for the analytical derivative.

For a thorough mathematical description, the reader is
referred to [5], where the DFC technique is detailed for both
far field and near field. In this work, the DFC is applied for a
far field pattern synthesis.

IV. DIRECT LAYOUT SYNTHESIS

Another approach for the synthesis of reflectarray antennas
is to perform a direct layout synthesis (DLS). For instance, in
[3] a method of moments based on local periodicity (MoM-
LP) was employed to analyse the reflectarray element and
obtain its electromagnetic response in the form of the reflection
coefficient matrix of (15). However, using MoM-LP results in
slow computations. There are several approaches to accelerate
this analysis, including the use of artificial neural networks
[9], support vector machines (SVMs) [6] or databases [2].
They require the use of a full-wave analysis of the unit cell
to generate samples of the reflection coefficients, but this
operation is only performed once and the samples can be
reused for multiple designs. Here, we have opted to employ
the SVM described in [6].

The main difference between a POS and a DLS is the com-
putation of the Ri matrix. For POS, the matrix is simplified as
shown in (16), while a DLS uses the full matrix in (15). Let
ρR,I be the real or imaginary part of any reflection coefficient
of (15). Then, the SVM provides an estimation of ρR,I as:

ρ̃R,I(~x) =

Ns∑
k=1

[(
α−k − α

+
k

)
Ke( ~xk, ~x)

]
+ b, (17)

where ~x is the vector with geometrical features of the unit cell
used as variables for the training; ~xk is the kth support vector;
Ns is the number of support vectors; α−k and α+

k are the kth
optimal Lagrange multipliers; b is the offset; and Ke is the
kernel function, which in this case is a Gaussian function [6].
Thus, each reflection coefficient is expressed with the SVM
as a linear combination of Ns Gaussian functions.

Since the use of SVMs only deals with the computation
of the reflection coefficient matrix, the previously described
techniques may be used for the computation of the gradient.
However, the analytical derivative is cumbersome to obtain, so
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Fig. 2. Reflectarray unit cell consisting of two layers of parallel and coplanar
dipoles divided in two sets of four dipoles per linear polarization.

only finite differences with FFT and DFC will be employed.
For the first case, the time complexity of computing the
derivative is O (Ns +M logM) while for the second case it
is O (Ns +M).

V. RESULTS FOR THE GRADIENT COMPUTATION

A. Specifications

A thorough computational study was performed to compare
the techniques described previously. Simulations were carried
out in a computer with an Intel Core i7-7700 CPU at 3.60 GHz.
In addition, computations are fully parallelized, computing one
derivative per available thread. Also, the grid in which the far
field is obtained with the FFT has 512× 512 points.

For the DLS with the SVM, a unit cell geometry must
be specified. In particular, the reflectarray element shown in
Fig. 2 is employed. It consists of two sets of parallel and
coplanar dipoles in two layers of metallization. Each set of
four dipoles controls the phase-shift for a linear polarization.
For the present case, only the lengths of the dipoles are
considered as optimizing variables. Moreover, they are reduced
from eight variables per element to two using the following
relations [10]:

La4 = Tx ; Lb1 = Lb3 = 0.63Tx ; Lb2 = 0.93Tx,

Lb4 = 0.95Ty ; La1 = La3 = 0.58Ty ; La2 = Ty.
(18)

Thus, only Tx and Ty will be considered when training the
SVM following the guidelines presented in [6] and when
performing the DLS in this work. Following this approach,
the vector ~x in (17) is ~x = (Tx, Ty).

The rest of the parameters of the unit cell are fixed,
including the working frequency at 11.85 GHz, periodicity
a = b = 14 mm, the width of the dipoles is 0.5 mm, the
separation between dipoles is Sa = Sb = 4 mm, the substrate
for the bottom layer has a height of hA = 2.363 mm and a
complex permittivity of εr,A = 2.55 − 2.295 · 10−3, while
the top layer has a height of hB = 1.524 mm and a complex
permittivity of εr,B = 2.17− 1.953 · 10−3.
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Fig. 3. Measured computing time of the Jacobian matrix computation with
different methods: analytical derivative (black), finite differences with FFT
(blue) and finite differences with DFC (red) for phase-only synthesis; and
direct layout synthesis (DLS) with the FFT (green) and with DFC (yellow).

B. Numerical Results

The baseline scenario corresponds to the algorithm pre-
sented in [4], using the POS with finite differences to calculate
the derivatives and the FFT to efficiently compute the radiation
patterns as described in Section III.B. It corresponds to the
blue line in Fig. 3. The POS may be improved by analytically
calculating the derivatives, which in principle would provide
the optimal scenario. Indeed, computing time using the analyt-
ical derivative improve those of the finite differences using the
FFT by around 54%, as it can be seen in Fig. 3 comparing the
blue and black lines. However, when using the DFC technique
for the computation of the derivatives in POS, it offers faster
computations than the analytical derivative. In fact it is around
66% faster than when using the FFT and 27% faster than the
analytical derivative. The latter is possible due to the fact that,
although both techniques present the same time complexity for
the computation of the derivative, O (M), the DFC has less
operations in the loop sweeping all points where the radiation
pattern is computed.

The DLS using the SVMs is a slightly different scenario,
although it was tested in the same conditions as the POS.
Now, the optimizing variables are not the required phase-
shift, but the length of the dipoles of the chosen unit cell. In
addition, the use of the SVMs requires additional computation
to obtain the reflection coefficient matrix. Thus, time cost is
higher than for POS. This is evident when using the SVM
to analyse the reflectarray element and using the FFT in the
computation of the radiation pattern with finite differences
(green line). However, when the DFC is used together with
the SVM (yellow line), computations are faster than the POS
using FFT, even though using the SVM a direct optimization
is carried out.

C. Discussion

From the results shown in Fig. 3 it is clear that the POS
with DFC is the best strategy to carry out copolar synthesis in
reflectarray antennas. The result of this synthesis is a phase-
shift distribution for each reflectarray element. The following
step would be to adjust, element by element, its dimensions so
they produce the required phase-shift. This is done by using a



zero-finding routine [11] and it may take a significant amount
of time if using a MoM-LP tool, but using SVMs it only
takes a few seconds for very large reflectarrays comprised of
thousands of elements [12].

On the other hand, using SVM to carry out a copolar
synthesis is slower than POS when using the DFC technique.
Although using the SVM for the synthesis directly provides
the reflectarray layout and thus there is no need to further
adjust the element dimensions, as it is the case for POS, it
is still slower than carrying out a POS since the reflectarray
design using SVM is very fast [12], in the order of seconds.
Thus, in light of the previous results, the best strategy to carry
out a copolar synthesis at a single frequency is a POS with
the DFC technique, in light of the results shown in Fig. 3.

VI. COPOLAR SYNTHESIS OF A LARGE REFLECTARRAY
FOR CONTOURED-BEAM APPLICATION

A. Antenna specifications

The considered reflectarray is elliptical and comprised of
4068 elements in a regular grid with 74 × 70 elements in
the main axes. The working frequency is 11.85 GHz and the
periodicity is 14 mm×14 mm, which is 0.553λ0. The feed
phase center is placed at ~rf = (−358, 0, 1.070) mm with
respect to the center of the reflectarray (see Fig. 1). For the
feed, an ideal model based on a cosq θ function is employed,
with q = 23 generating an illumination taper of −18.5 dB.
The antenna is placed in a satellite in geostationary orbit at
10° E longitude. The same coverage as in [13] is considered,
where Europe is divided into two zones. The interior area
(zone 1) presents a copolar specification of 28.5 dBi while the
exterior area (zone 2) has a copolar requirement of 25.5 dBi.
The coverage requirements take into account typical satellite
pointing errors: 0.1° in roll and pitch, and 0.5° in yaw.

B. Phase-Only Synthesis

The starting point for the POS is a phase-shift distribution
that generates a pencil beam pattern pointing at (θ, ϕ) =
(16.6°, 0°), which is approximately the center of zone 1 of the
European footprint. After the POS, the synthesized phase-shift
was compared with the one obtained using the DFC and the
FFT, and the differences are shown, respectively, in Fig. 4(a)
and Fig. 4(b). As it can be seen, the differences after 255
gradient evaluations using different numerical techniques is
very low. In fact, for Fig. 4(a) the mean absolute deviation
(MAD) is only 0.14°, while for Fig. 4(b) is 1.82°.

Fig. 5 shows the copolar and crosspolar patterns for po-
larization X obtained for the POS carried out with the three
techniques. As it can be seen, the little differences in phase
shift shown in Fig. 4 lead to virtually the same radiation
patterns. In fact, the minimum copolar gain for zone 1 is
29.34 dBi for the three cases, while for zone 2 is 26.29 dBi
for the analytical derivative and DFC technique, and 26.28 dBi
for the FFT: a difference of only 0.01 dBi, due to the larger
difference in the final obtained phase-shifts, but still negligible.
The crosspolar pattern was also obtained, simulating the three
designed reflectarrays with a MoM-LP [14]. The simulated
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Fig. 5. (a), (c), (e) Copolar and (b), (d), (f) crosspolar patterns for polarization
X in gain (dBi) of the synthesized European footprint obtained with (a),
(b) analytical derivatives, (c), (d) the DFC technique and (e), (f) the FFT.

crosspolar patterns are very similar. The maximum difference
is 0.02 dB when comparing the different crosspolar patterns.

C. Direct Layout Synthesis

A DLS for copolar synthesis using SVMs was also carried
out for polarization X. Now, the optimizing variables are no
longer the phase-shifts introduced by the reflectarray elements,
but the lengths of the dipoles (Tx and/or Ty). Thus, the
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Fig. 6. For the Direct Layout Synthesis, obtained (a) copolar and (b)
crosspolar patterns for polarization X.

search space which the algorithm has to navigate is completely
different. In addition, since the SVM models the full matrix
of reflection coefficients in (15), it includes the losses of the
substrate, which are not taken into account in the POS.

The optimization was carried out with the SVM using
the DFC technique. The copolar and crosspolar pattern were
simulated, after the synthesis with SVM, using the MoM-LP
of [14] and the radiation patterns of Fig. 6 were obtained.
For the copolar pattern, zone 1 presents a minimum gain of
29.32 dBi while zone 2 has a minimum gain of 26.06 dBi.
Both are slightly lower than the POS. However, if a layout
is obtained from the phase-shift obtained with POS including
the losses, zone 1 presents a minimum gain of 29.25 dBi while
for zone 2 is 26.18 dBi. Thus, the results of a DLS and a POS
plus a design to obtain the layout are similar. In any case, the
patterns are very similar in the four cases.

VII. CONCLUSIONS

This work has presented a thorough comparison between a
number of numerical methods for the synthesis of reflectarray
antennas using the generalized intersection approach (IA)
algorithm. The generalized IA is a gradient-based local search
algorithm. For a POS, three numerical techniques are consid-
ered: the computation of the derivatives with finite differences
using the FFT, the technique of differential contributions
(DFC) and the analytical derivative. Support vector machines
(SVMs) were also considered for a direct synthesis of the
reflectarray using finite differences with FFT and DFC. The
equations show that the time complexity of the DFC technique
is the same as the analytical derivative, while the use of the
FFT is the slowest. A numerical study shows that the use of
the DFC technique is 27% faster than the analytical derivative
and 66% faster than the baseline scenario using the FFT for
the computation of the far field. Regarding the direct layout
optimization, the overhead of the SVM computations to obtain
the full matrix of reflection coefficients makes this approach
slower than the other two, specially when using the FFT.
However, the combination of SVM plus the DFC technique
provides faster computations than the baseline scenario, while
directly obtaining the final reflectarray layout.

Finally, the techniques were applied in the same conditions
to the synthesis of a very large reflectarray for DBS application
with a European footprint with two coverage zones having

different gain requirements. The results obtained with the
analytical derivative are considered as reference. It has been
shown that the synthesized phase-shifts with the three methods
are very similar, with a mean absolute deviation of just 0.14°
when using the DFC technique and 1.82° when using the FFT.
Regarding the direct layout synthesis, the results in the antenna
performance are very similar to those obtained with the POS
after the layout is obtained to take into account the losses of
the substrate.

For single frequency optimization it can be concluded that
the best approach for reflectarray synthesis is to employ a
phase-only synthesis with the differential contributions tech-
nique and use SVM in a later stage to obtain the final layout
or improve other parameters of the antenna.

REFERENCES

[1] O. M. Bucci, G. D’Elia, G. Mazzarella, and G. Panariello, “Antenna
pattern synthesis: a new general approach,” Proc. IEEE, vol. 82, no. 3,
pp. 358–371, Mar. 1994.

[2] M. Zhou, S. B. Sørensen, O. S. Kim, E. Jørgensen, P. Meincke, and
O. Breinbjerg, “Direct optimization of printed reflectarrays for contoured
beam satellite antenna applications,” IEEE Trans. Antennas Propag.,
vol. 61, no. 4, pp. 1995–2004, Apr. 2013.

[3] D. R. Prado, M. Arrebola, M. R. Pino, R. Florencio, R. R. Boix,
J. A. Encinar, and F. Las-Heras, “Efficient crosspolar optimization of
shaped-beam dual-polarized reflectarrays using full-wave analysis for
the antenna element characterization,” IEEE Trans. Antennas Propag.,
vol. 65, no. 2, pp. 623–635, Feb. 2017.

[4] D. R. Prado, M. Arrebola, M. R. Pino, and F. Las-Heras, “Improved
reflectarray phase-only synthesis using the generalized intersection ap-
proach with dielectric frame and first principle of equivalence,” Int. J.
Antennas Propag., vol. 2017, pp. 1–11, May 2017.

[5] D. R. Prado, A. F. Vaquero, M. Arrebola, M. R. Pino, and F. Las-Heras,
“Acceleration of gradient-based algorithms for array antenna synthesis
with far field or near field constraints,” IEEE Trans. Antennas Propag.,
vol. 66, no. 10, pp. 5239–5248, Oct. 2018.
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