

CONVOLUTIONAL LAYERS with Keras

[1]

Conv1D: Input and output shapes

Example

Convolution operation

$$\mathbf{x}_{l}^{(m)} = \sigma \left(\sum_{c=1}^{C} \mathbf{W}_{l}^{(c,m)} * \mathbf{x}_{l-1}^{(c)} + \mathbf{b}_{l}^{(m)} \right)$$

In this equation we see that the convolution (*) of the channel c of the input $\mathbf{x}_{l-1}^{(c)}$ and the m^{th} filter of such channel $\mathbf{W}_{l}^{(c,m)}$ results in the m^{th} output feature map $\mathbf{x}_{l}^{(m)}$, being $\mathbf{b}_{l}^{(m)}$ the bias vector.

We perform the convolution operation by means of the Keras Conv1D layer, being c = channels and m = filters.

Conv1D layer

InputOutput3D tensor with shape
(batch, steps, channels)3D tensor with shape
(batch, new steps, filters)

[1] González-Muñiz, A., Díaz, I., & Cuadrado, A. A. (2020). DCNN for condition monitoring and fault detection in rotating machines and its contribution to the understanding of machine nature. *Heliyon*, 6(2), e03395.

[2] Dumoulin, V., & Visin, F. (2016). A guide to convolution arithmetic for deep learning. arXiv preprint arXiv:1603.07285.