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Abstract: In order to compete with traditional manufacturing processes, Additive Manufacturing
(AM) should be capable of producing medium to large batches at industrial-degree quality and
competitive cost-per-unit. This paper proposes a systematic framework approach to the problem of
fulfilling dimensional and geometric requirements for medium batch sizes of AM parts, which has
been structured as a three-step optimization methodology. Firstly, specific work characteristics are
analyzed so that information is arranged according to an Operation Space (factors that could have an
influence upon quality) and a Verification Space (formed by quality indicators and requirements).
Standard process configuration leads to characterization of the standard achievable quality. Secondly,
controllable factors are analyzed to determine their relative influence upon quality indicators and the
optimal process configuration. Thirdly, optimization of part dimensional and/or geometric definition
at the design level is performed in order to improve part quality and meet quality requirements. To
evaluate the usefulness of the proposed framework under quasi-industrial condition, a case study is
presented here which is focused on the dimensional and geometric optimization of surgical-steel tibia
resection guides manufactured by Laser-Power Bed Fusion (L-PBF). The results show that the proposed
approach allows for part quality improvement to a degree that matches the initial requirements.

Keywords: additive manufacturing; quality enhancement; process parameters; design optimization

1. Introduction

Additive Manufacturing (AM) is defined as “the process of joining materials to make objects
from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing fabrication
methodologies” according to ISO 17296-1 [1] and ASTM 2792-12 [2]. This definition encompasses a
wide variety of processes used to manufacture three-dimensional objects by means of vertical stacking
of bi-dimensional layers. Most of the technologies involved have gained maturity in recent years. This
has allowed AM applications to evolve from prototype manufacturing to small-batch-size production.
Nevertheless, according to Gartner´s hype cycle, consistent adoption of AM in manufacturing
operations will still take 5 to 10 years of development [3]. There are many factors that influence
AM’s difficulties to match the requirements of medium and high batch-size production. Some are
related to working volumes and production rates of machines at the current state of development.
Others reflect the difficulty of producing parts with similar mechanical behavior to those obtained
by traditional manufacturing processes. Finally, dimensional and geometric quality deficiencies of
AM parts have also been highlighted as common disadvantages [4,5], which explains their relevance
as research subjects during the last decade [6–10]. Quality improvement is a sine qua non condition
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for the generalized industrial adoption of AM processes, since cost-per-unit reduction would not be
enough by itself. Research in the field of dimensional and/or geometric quality improvement of AM
parts could be grouped according to three different approaches: error analysis, error prevention and
error correction.

Error analysis pays attention to the influence of process parameters on the dimensional or
geometrical accuracy of parts. The usual error analysis approach involves comparing the theoretical
values of the design parameters and their correspondent values measured upon the manufactured
part [11–13]. Consequently, these works provide useful information regarding the expected results of
an AM process in terms of quality and accuracy. Research under this approach shows a wide variety
of factors influencing the accuracy of AM parts. This is related to the variety of physical principles
and implementations available, which lead to specific research solutions for each individual case.
These studies also show a lack of uniformity regarding the indicators used to compare the results of
modifying process configuration. Researchers sometimes use indicators with no real meaning from
an industrial point of view [11,13]. Tests are also frequently carried out upon test specimens and
geometries designed ad hoc [11,12].

Approaches based on error prevention aim to establish the optimal process configuration to
manufacture parts with the highest achievable quality. This goal is commonly based on the analysis of
possible error sources and their relative influence upon quality, so that their effects could be minimized
by means of parameters adjustment. Once again, the variety of physical principles and configuration
parameters used in different AM processes hinders the adoption of a unified methodology for error
prevention. Deposition speed or scanning energy are among the factors considered under this approach,
but factors related to practical decisions like part location and orientation [6,14] are also used. This last
category aims to provide useful recommendations on the best way to place the parts on the working
volume. Finally, internal part model parameters, like raster angle or layer thickness [15], are also
analyzed. This approach could explore the possibilities of a given technology to improve quality
by acting upon influence factors. Nevertheless, this could also be its main limitation, since once the
optimal configuration has been determined and errors still exceed tolerance requirements, there is no
margin for further improvement.

Finally, error correction approaches act upon accuracy by working on the strategies used to convert
3D geometry into a series of flat layers (slicing), on the generation of material deposition paths and
tool trajectories, or directly upon the CAD model. Therefore, this group is formed by those approaches
that intend to overpass the limitations derived from the combination of process, technology and
geometry to improve part dimensional or geometrical quality. This global objective could be achieved
by different solutions. Some works just compensate deviations from the theoretical values [16]; others
aim to compensate mechanical errors in the machine [17]; some works elaborate complex models to
compensate the influence of different parameters upon the overall quality [18]. In recent years, there
has been a tendency to apply machine-learning methods to provide error correction in AM [10,19,20].
Some works focus on compensating in-plane shape deformation [20,21]. Other approaches work with
the 3D geometry, mainly compensating thermal deformations that have previously been modelled via
finite elements (FE) simulation [22] or by means of virtual manufacturing models [23,24]. These types
of works build “predictive” mathematical models that could be based on experimental data [10,20]
or build from theoretical models [21,23]. Although Artificial Neural Networks (ANN) are frequently
used for building predictive models [10,21,22], alternative mathematical modelling is also used for
this purpose (e.g., Gaussian process multi-task learning [20] or particle swarm optimization [25]. The
information provided by predictive models could be later used to change input parameters in order to
fulfil tolerances.

In sum, the objective of improving dimensional and geometric quality in AM parts is frequently
addressed without a recognizable methodology or a standardized procedure, mainly due to the variety
of processes and influence factors. This situation is even more pronounced since most of the research
has been carried upon “laboratory specimens”, neglecting the relevance of industrial tolerances or
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the problems derived from medium to large batch productions. Additionally, most of the research
has been carried out upon parts designed ad hoc, with different levels of complexity, that greatly differ
between studies. These artefacts frequently consist of a collection of basic geometries (planes, cylinders,
spheres) arranged in one unique part. There are also examples of dimensional quality comparison
between biological-type parts (usually bones) in the fields of surgical reconstruction. Organizations
like the American National Institute of Standards and Technology (NIST) have even proposed their
own round-robin artefacts for establishing repeatability or reproducibility values for a particular AM
technology or machine [26]. Accordingly, there are huge differences between quality indicators: some
could be considered as artificial indicators, since they are calculated through complex mathematical
expressions that ponder a series of individual parameters; others are usually referred to as “volumetric
errors” although they lack a standardized physical meaning. Both types of indicators are useful to
provide an impression of the overall manufacturing accuracy or for comparison between different
process configurations, machines or technologies. Nevertheless, they tend to ignore the fact that
dimensional tolerances in industry are limited to Features of Size (FoS) [27], as they are related to fit
purposes. Finally, another frequent problem is that error is sometimes assumed to be linear, whereas, in
AM processes, there are many factors that could have a non-linear influence upon error, like volumetric
shrinkage of thermoplastic in Material Extrusion (ME) processes.

In the present work, a systematic framework for the minimization of dimensional and geometrical
errors and tolerance fulfilment in AM parts is presented. This methodology has been specially
developed to be applied upon FoS and medium to large production batches. In the following sections,
a description of the framework will be presented. The systematic approach is structured in three
consecutive steps: Work Analysis, Process Optimization and Design Optimization. The methodology
has been evaluated using a case study under quasi-industrial conditions, which is the dimensional and
geometric optimization of surgical-steel tibia resection guides manufactured by L-PBF.

2. Systematic Framework Description

The proposed framework has been designed to be used when production of a given part
simultaneously fulfils two conditions:

• At least one of its features is a Feature of Size. Consequently, part geometry must include at least
one cylinder or two parallel opposite planes [27] affected by a dimensional tolerance;

• Batch size and part-added value justify a proportional investment of test specimens and
optimization effort.

Therefore, parts with features used for fitting purposes would be candidates for optimization
via the proposed approach, whereas parts with features affected only by general tolerances would
not be worth of such optimization efforts. Similarly, small batch sizes would not justify the effort of
a systematic optimization. In these cases, alternative improvement strategies (e.g., trial-and-error)
should be considered. Three consecutive stages have been proposed for the optimization: Work
Analysis, Process Optimization and Design Optimization (Figure 1).
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2.1. Work Analysis

Firstly, a preliminary analysis of the work to be done would be carried out, with the objective of
achieving a full description of the problem and evaluating lack-of-quality issues. This implies collecting
all the information regarding part, process, production and equipment to elaborate an initial problem
statement, defining an operational space and performing an initial quality characterization (Figure 2).
Input information should be collected and structured according to three categories—production
requirements, design specifications and process characteristics:

• Production requirements encompass information about expected production rates, batch size,
maximum profitable manufacturing cost-per-unit and all additional requirements—like expected
strength or hardness—that would not be related to geometrical requirements;

• Design specifications would comprise the geometrical information of the 3D CAD file, along with
dimensional and geometric tolerances requirements. Information about shapes and dimensions
should be taken into account even if they are not directly affected by tolerances. Part material
should also be included in this category;

• Process characteristics should include all data regarding AM processes and equipment within
the scope of the problem. Depending on each particular situation, process and/or machine could
be previously set or included in the problem (which implies that process would be considered
as an additional factor). At the process level, staff in charge of the optimization must analyze
the information about the fundamentals of the process, including physical principle, range of
materials or common manufacturing defects. At the equipment level, attention should be paid
to the characteristics of machines, like workspace dimensions, axes speed, operation limits, or
appropriate ranges for configuration parameters (layer thickness, building speed, etc.). Batch size
and part-added value justify a proportional investment on test specimens and optimization effort.
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Once all the relevant information has been collected, a statement of the problem should be
performed. The objective of this task is to define both an Operation Space and a Verification Space.
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• The Operation Space would consist of all those factors that could have an influence upon part
quality. This means that every single factor whose modification would presumably affect, to a
certain degree, the quality of the part, must be included in the Operation Space. Factors could
be subject to modification (controllable factors) or not (non-controllable factors). Controllable
factors are those that can be modified according to production decisions. This category includes
discrete factors (e.g., selecting “glossy” or “matte” finishing in a Material Jetting process) and
continuous factors (e.g., nozzle temperature in ME of thermoplastics) that could adopt many
different values within a certain range. On the other hand, non-controllable factors are those that,
having an influence upon part quality, should not be modified. This category would include
design decisions of requirements (shape, dimensions, material, etc.) that have been set during the
design stage. It also should include production decisions (batch size, process, production machine,
etc.) that are not subjected to possible modifications. Process parameters could be also considered
non-controllable factors when their values have been set according to material or machine supplier
recommendations, workshop procedures or workforce experience. Categorization of influence
factors into non-controllable and controllable groups is a key task. Most factors undoubtedly
belong to one of these groups, but special attention should be paid to those factors that do not
have a significant influence upon quality according to previous know-how, since there is a risk of
neglecting their influence upon a particular part or feature, despite their actual significance;

• The Verification Space would be formed by Quality Indicators (QI) and Quality Requirements
(QR). QI would be used for evaluating the degree of compliance of the tolerances imposed during
the design stage. They would usually match FoS quality requirements, like dimensions (diameter
of a cylindrical feature or distance between parallel flat surfaces) or geometrical deviation of
controlled features (flatness, parallelism, cylindricity or concentricity). Nevertheless, QI could
also be defined as relative differences between those parameters and their optimal values (e.g.,
the difference between the measured diameter and the middle value of the tolerance interval).
During the definition of QI, it would also be necessary to define the verification procedure. This
means that an inspection plan should be elaborated, including the materials and methods used
for verifying each part and calculating actual values for each QI. Finally, QR are defined as the
range of acceptable values that each single QI should adopt to enable batch production.

Once information has been structured into the Operating Space and the Verification Space, the
objective of this first step is to determine if a standard process configuration could ensure the fulfilment
of QR. In order to check this condition, a test set must be manufactured and verified. This implies that
staff in charge of improving part quality must decide which process configuration should be used, by
setting all controllable factors. This task should be performed taking into account previous experiences,
good practices and workforce know-how.

The size of the test set must be determined in order to properly check QR fulfilment and,
simultaneously, minimize the number of test specimens to be manufactured. Robustness of this
task will increase with the number of replicas, whereas test size is conditioned by experimental cost.
Nevertheless, a minimum of two building trays for each particular manufacturing configuration
should be demanded, in order to contemplate experimental error. In accordance, calculation of QI
values should also be done by means of arithmetic average values of repeated measurements. Staff are
encouraged to consult the available literature regarding Design of Experiments (DOE) and Quality
Assessment [28].

Manufactured test specimens would then be measured by means of the verification procedure, so
that measured values for QI would be calculated and compared with QR. If the results indicate that
those requirements would be fulfilled for an acceptable number of parts (defined as the percentage of
valid parts per total production), then parts would be considered suitable for batch production and the
procedure would finish. If requirements are not appropriately fulfilled, then the strategy continues
through its second step. An intermediate situation could also occur when some of the QR are fulfilled
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but not all of them. In this case, the efforts during Process Optimization should be focused on those
requirements that have not been properly fulfilled.

2.2. Process Optimization

Process Optimization (Figure 3) determines if quality requirements could be fulfilled by just
acting upon controllable factors. The complexity of testing the significance on quality of variations in
Controllable Factors sharply increases with their number. Checking their influence could be simple
when few factors have to be considered, but turns to be extremely complex when the number of
factors that should be tested increases. To minimize this problem, factors could be ranked according
to their level of significance by means of statistical tools, like Design of Experiments (DOE). This
Significance Analysis would be performed as an iterative task to reduce experimental effort, since
considering all possible Controllable Factors for DOE could be an inefficient approach when some initial
restrictions based on previous know-how have been incorporated into the analysis. Consequently, an
initial appreciation of each factor significance could be established based on research papers results,
reference books, workforce know-how, etc. This approach would help to fix some factors and reduce
experimental effort.
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For instance, it is widely accepted that layer thickness affects geometric quality in ME, since coarse
layers increase the staircase effect of sloped surfaces. Consequently, although layer thickness is usually
a controllable factor and could be considered during Process Optimization, it can be assumed that
increasing layer thickness would not improve geometric quality, and thus this factor should not be
included in the optimization step.

Once the number of factors has been initially reduced by means of previous know-how,
further decisions should be sustained by experimental testing and supported by statistical analysis.
Experimental designs could demand huge experimental effort when a high number of factors are
considered. In these cases, the use of fractional factorial designs is widely recommended. Fractional
designs would allow for reducing the experimental error by minimizing the number of experiments
(and, consequently, the cost of manufacturing and measuring test specimens) by running a fraction
of a full factorial design. This approach has the disadvantage of confounding effects of higher-order
interaction, but it will be useful to characterize main effects and low-order interactions at a reduced
experimental cost. Accordingly, an analysis of variance could provide an ordered list of factors,
reflecting their relative influence upon each QI variance. Factors that show no influence upon QI
should no longer be considered for Process Optimization. On the other hand, those factors that show a
significant influence upon QI results should be ranked according to their relative importance. This
procedure could lead directly to an optimized process configuration if only categorical factors (fan
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on/fan off) have been considered. Nevertheless, if continuous and discrete factors have been included
in the DoE, further research could be demanded. In any case, analysis of variance would provide a
regression equation that models how QI behaves according to changes in the influence factors. This
equation should be used to optimize a particular QI, whereas multiple response regression optimization
methods could be used for simultaneous optimization of multiple Qls.

This optimization effort should lead to a newly optimized process configuration and, once this
initial optimization has been established, a new test set should be manufactured in order to check if
the QR are fulfilled. A positive result would lead to starting batch production under the optimized
configuration, whereas a negative result would lead to revising the significance analysis. If no
completely positive result could be achieved, staff should take the decision to finish this step and move
onto the Design Optimization step.

2.3. Design Optimization

Part manufacturing after Process Optimization may still produce features that do not fulfil
expected QR. Consequently, part errors (deviations between QI values and optimal QR) should be
mathematically modeled and design parameters that could have an influence on the results must
be identified. It has to be noted that, in this methodology, design factors are limited to those that
could be modified at the CAD definition step. This means that inner-part characteristics like layer
thickness or wall thickness are considered process factors, since they are defined at the Computer-Aided
Manufacturing (CAM) step.

There are clear differences regarding the level of complexity of error modelling for the
non-fulfilment of dimensional QR and geometrical QR:

• Dimensional non-fulfilments could be corrected if the observed variability of QI is comparatively
lower than the range of acceptable values defined by each correspondent QR. In these cases,
Design Optimization searches for a model where the values of design parameters related to QI
could be modified to improve quality. This means that optimization could be conducted without
modifying the initial parameterization of the part, since only the values of existing parameters
would be modified according to the correspondent inverse model;

• Geometrical non-fulfilments, on the other hand, demand the change of part parameterization at
the design stage, which could be a more complex task. In this situation, a model of geometric
distortion would be necessary. The ideal situation at this point is that analysis of part geometric
distortion leads to a recognizable pattern that could be easily parameterized—e.g., if a theoretically
cylindrical feature resembles an elliptic cylinder once manufactured, the geometric distortion
model should determine the orientation of the major and minor axis, and the correspondent
equation coefficients and re-parameterization turns, to be almost direct. Nevertheless, in other
situations, modelling the deformed geometry would require methods of higher complexity. E.g.,
if the deformation does not resemble any common primitive, the theoretical cylinder could be
modelled by means of a free-form adjustment based on Non-Uniform Rational Basis Splines
(NURBS). Research efforts should be conducted in order to select the most appropriate fitting
model, minimizing as much as possible the model complexity and taking into account each
particular CAD suite capability for manipulating different types of parameterization. In both
cases, original parameterization should be substituted with a new parameterization that follows
actual manufactured geometries. Once this objective is achieved, the problem is similar to that
described for dimensional non-fulfillments (defining a predictive model and an inverse model)
with the difference that, in this case, alternative design parameters are used.

Additionally, it must be taken into account that, although geometrical re-parameterization could
influence dimensional results, it is possible that dimensional optimization would not significantly
influence geometrical QR fulfilment. This fact leads to the proposal that geometrical optimization, if
necessary, should be carried out before dealing with dimensional optimization.
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Once an adequate parameterization has been defined, it would be used to predict the most
probable value that each QI would adopt in the final part as a function of controllable factors and
design factors. Consequently, a new set of test specimens that include variations in the values of
those design parameters that influence QR fulfillment would be manufactured and measured, and QI
measures would be used to elaborate a “predictive” model.

There are many mathematical models that could be used at this step, ranging from simple linear
regression to complex computing systems (response surfaces, artificial neural networks, etc.). The staff

in charge of optimization should evaluate, in each case, which would be the best option for building a
predictive model, pondering the required experimental effort and model complexity.

Once the predictive model has been made available, the objective is to define a new mathematical
model that answers the inverse question: what should the proper values of design parameters be to
obtain a QI as close as possible to the optimal QR? This new model should be known as an “inverse”
model. The inverse model would provide new values for design parameters, so that a newly optimized
design could be obtained. Ideally, new parts manufactured with this optimized design would be closer
to the design theoretical objective, fulfilling the desired QR. Figure 4 contains a graphical explanation
of this strategy.Materials 2019, 12, x FOR PEER REVIEW 8 of 24 
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2.4. Practical Recommendations

Once the different steps of the methodology have been described, there are some practical
recommendations that should be taken into account:

• Optimization steps should be carried out using the minimal number of experiments and also
minimizing the number of test specimens that would be manufactured;

• Subjective decisions regarding process configuration should be avoided whenever possible;
• Several tasks could have an iterative application when results suggest that additional research

could be worthwhile;
• Factors categorized as non-controllable by following previous know-how or good-practices

recommendations could have a more significant influence than previously thought for certain
geometries. Accordingly, if QI variance could not be put under control by means of
controllable-factor adjustment, such categorizations must be carefully revised.

To evaluate the usefulness of the proposed framework, a case study is presented in the next section.

3. Case Study: Optimization of Surgical-Steel Tibia Resection Guides

Evaluation case studies must fulfil two conditions: the design must contemplate at least one FoS
affected by a dimensional tolerance, and optimization effort must be in accordance with potential batch
size. Under both premises, several alternatives were considered until a surgical-steel tibia resection
guide was finally selected. This part is a metallic insert used for the guidance of resection instruments
during knee arthroplasty, a surgical procedure that is carried out approximately 600,000 times a year in
Europe according to EUROSTAT statistical reports [29]. Among different alternatives for resection
tool guidance, the one considered here (Figure 6) is a bi-component design, consisting of a polyamide
customized alignment part (single-use) and a surgical steel insert (multiple-uses).

    
 

   
   o

    
 

   
   

Tibia

Surgical Steel Insert

PA Customized part

Figure 6. Parts of a bi-component tibia resection guide.

From a functional point of view, metallic inserts must fit into the PA part and become a single
element (no relative movement allowed). At the same time, the theoretical resection plane should be
accurately oriented with respect to the alignment features. Guidance is achieved by means of a deep and
narrow through slot, defined by two parallel opposite flat surfaces and two slightly tapered lateral sides,
resembling an arrow slit, to facilitate instrument handling. This geometry can be obtained through
traditional manufacturing processes in two stages. Firstly, basic geometry could be manufactured
directly by milling a metal plate or a casting preform; secondly, although external geometry could
be completed by milling, the slot is so narrow and deep that it should be manufactured by means of
Wire EDM (Electro Discharge Machining) or Sinker EDM. The combined manufacturing costs of these
processes could range from 100 to 300 € per unit according to TEKNOS experts. Nevertheless, such
geometry could be also manufactured by means of metal AM processes at a competitive cost.
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In following sections, the consecutive steps of the proposed methodology applied to such geometry
will be explained and discussed.

3.1. Step 1: Work Analysis

Work analysis starts by gathering together all available information about production requirements,
design specifications and process characteristics. Firstly, inserts must be manufactured in a material
suitable for biomedical applications, like surgical stainless steel or titanium, by means of a process
capable of achieving good quality. This condition led to selecting L-PBF for manufacturing the knee
resection inserts included in this work. This process uses the energy of a focused laser beam (typically
Nd-YAG) to locally melt metal powder into a solid part [30]. An EOSINT M270 machine has been
chosen to manufacture test specimens. This machine has a 250 × 250 mm working area, whereas
building height could reach up to 215 mm. A 200 W Yb-Fiber is used alongside with F-Theta precision
lens. Layer thickness could range from 20 to 100 µm, whereas other process parameters (scanning
speed or effective power consumption) are material-dependent and established according to the
indications of the manufacturer. Parts have been manufactured at PRODINTEC Technological Center.
The estimated batch size was established at 1000 units per year, and parts must be manufactured
according to the design shown in Figure 7. Tolerances were defined by the research team taking into
account part functionality and meaningfulness regarding the objectives of this particular case study,
but they are not intended to be applicable to other resection guide designs, since present design values
for geometric tolerances values could possibly be too restrictive.

Figure 7. Part design (a) Perspective view; (b) Main tolerances in mm.

This part includes two FoS affected by tolerances: external width (nominal value 4.5 mm with
a symmetric tolerance of ±0.05 mm) and slot width (nominal value 1.35 mm with an asymmetric
tolerance of +0 to +0.05 mm). Internal surfaces of the slot are also affected by a 0.15 mm flatness
tolerance, whereas parallelism between those surfaces and the external ones has to be under 0.15 mm.
Other part features do not demand specific tolerances, so it can be assumed that usual manufacturing
quality would be adequate, since non-compliance of general tolerances related to these features would
not critically affect instrument guiding during surgery. Verification will be carried out using a DEA
Global Image 09-15-08 Coordinate Measurement Machine (CMM). This machine has been calibrated
according to EN 10360-2:2001, with a maximum permissible error in length measurement (MPEE)
of 2.2 + 3·L/1000 µm (L in mm) and a maximum permissible error in probing repeatability (MPEP)
of 2.2 µm. PC-DMIS metrology software was used to perform verification operations. Temperature
in the laboratory during verification procedures is maintained within 20 ± 2 ◦C. Once information
has been gathered and the main features of the problem have been stated, the sequence of tasks
continues with the definition of the Operation and Verification Spaces and the subsequent Standard
Quality Assessment.

3.1.1. Operation Space

Influence Factors should be grouped in two categories: controllable and non-controllable (Table 1).
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Table 1. Operation Space.

Category Factor–Level 1 Factor–Level 2 Controllable Non-Controllable

Production
Batch Size X

Type of process X
Equipment X

Design
Geometry X

Dimensions X
Material X

Process
Process Parameters

Layer Thickness X
Volume Rate X
Scan Speed X

Power X
Ambient

Parameters X

Base Temperature X
Part Orientation X

Part Location X
Type of Support X

Post-Processing
Support Removal X

Thermal/Heat
Treatment X

Sand Blasting X

Since L-PBF has been selected as the most appropriate AM process for this work, and
production shall be carried out in an EOS M270, neither process type nor machine could be initially
considered as controllable factors. These decisions would also condition subsequent ones, since other
possible influence factors, like the type of material, should be accordingly limited to those that the
process/machine combination can handle. Therefore, since EOSINT M270 uses proprietary materials,
possible materials are reduced to stainless steel PH1 or titanium Ti64. Since weight is not a crucial
parameter, SS PH1 has been selected as the construction material, and therefore should be considered
as a non-controllable factor. Geometry and dimensions have been set at the design stage. Consequently,
all features, geometries and dimensions in the CAD have been also considered as non-controllable
factors. Exceptions to this rule are those FoS affected by tolerances since, even when not subjected
to modifications at this stage, they could be modified during the Design Optimization stage. Layer
thickness in this machine ranges from 20 to 100 µm, so it is a controllable factor. Nevertheless, once
layer thickness has been selected, volume rate, scanning speed and effective power are also defined
according to material technology specifications. This implies that they cannot be modified by the
operator and, consequently, they must be considered as non-controllable factors. This is also applicable
to ambient parameters like nitrogen atmosphere (1.5% oxygen), building platform model, or base
temperature (40◦). Part orientation has a great influence upon processing time, which usually implies
that parts are oriented so that minimum Z travelling is required. Nevertheless, issues regarding
manufacturing of slot surfaces were taken into account to avoid excessive overhanging, which would
require support structures inside the slot. This concern involved selecting a vertical orientation for the
slot and, consequently, orientation has been labelled as a non-controllable factor.

On the other hand, the location of parts within the workspace can be modified by the operator with
minimal restrictions (like minimum allowed space between adjacent parts), so it should be considered
as a controllable factor. Support structure type is also a controllable factor. Finally, post processing
operations could also have an influence upon quality. A support removal operation is unavoidable if
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support structures are used. Other post-processing operations, like sand blasting or thermal treatments,
are optional, and so they should be considered as controllable factors.

3.1.2. Verification Space

QI would be related to part FoS, affected by dimensional and geometric tolerances. They would
also be ranked according to their relevance to part functionality.

Accordingly, the distance between parallel surfaces of the slot (DS) has been considered as the most
relevant QI, since it critically affects resection instrument performance during surgery. An excessive
distance would cause noticeable clearance between the slot and the resection instrument, whereas
an insufficient distance would make its movement difficult. The second most relevant, Flatness of
Slot parallel surfaces (FSR for the Rear surface and FSF for the Frontal surface) could also have an
influence during resection, while Parallelism between these Slot surfaces (PS) must be controlled
in order to allow uniform behavior of the instrument with independence in its orientation during
resection. Finally, Distance between External surfaces (DE) has a relatively lower relevance, since
its insertion in the alignment part would be favored by PA flexibility. QR have been defined as the
acceptable range of values that each QI should adopt. These limits have been established during the
design stage, as reflected in Table 2.

Table 2. Quality indicators with their correspondent quality requirements sorted by relevance.

Priority Order QI Lower Limit (mm) Upper Limit (mm)

1 DS 1.350 1.400
2 FSR - 0.150
3 FSF - 0.150
4 PS - 0.150
5 DE 4.450 4.550

3.1.3. Standard Quality Assessment

Standard Quality Assessment implies manufacturing a test set and checking if the QI values
measured during verification fulfil QR. In order to manufacture the test set, all controllable factors
must be revised, and a Standard Process Configuration defined. This task should be done by taking
into account existent know-how, which should include the literature or research works, supplier
recommendations or personnel’s previous experience. Consequently, layer thickness was set at
20 µm, according to the recommended value for SS PH1. Layer thickness selection determines other
variables that, like Volume Rate, fixed at 1.8 mm3/s, are included in the technology files provided by
the manufacturer. Part location could also affect quality but, since the objective is to manufacture
medium-to-high batches, it is necessary to accommodate the maximum possible number of units in
each tray. Accordingly, it was decided that parts within the test set would be distributed along the
whole work area. A lightweight supporting structure was selected, since it is the easiest to remove and
minimizes removal cost. The same criterion was used to decide that no thermal processing would be
applied for the standard configuration. On the other hand, since sand blasting is used to minimize
the effect of metallic projections upon surface quality, this post-processing operation was included
as part the process. Once the values and alternatives for all these factors have been defined, Process
Configuration could be considered complete.

Regarding the Verification Procedure, it has to be noted that QI could be calculated using just four
planes adjusted to slot parallel surfaces and external parallel surfaces. To digitize each internal surface,
a regular grid with 284 points was used. The distance between adjacent points is 1.4 mm in the same
column and 1.6 mm in the same row. Due to slot restricted accessibility, a spherical-end stylus probe
with 0.7 mm diameter and 20 mm length was used. In the case of external surfaces, regular grids with
171 digitized points were used. The distance between adjacent points was 2.2 mm in the same column
and 2.26 mm in the same row. Complete digitizing of each part in this work (including alignment
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routine) was repeated thrice, and, each time, four planes were adjusted to each set of digitized points
(Figure 8). Consequently, QI was calculated thrice, and average values were obtained.
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The test set used to check part quality under standard process configuration was arranged as a
series of sixteen test specimens, manufactured in four independent trays (four units each). These parts
were located on the corners of the tray, so that the effect of part location upon QI could be observed
through results’ analysis. Once the specimens were manufactured, parts were removed by mechanical
means and sand blasted before CMM verification at the laboratory. Table 3 collects the average values
of the three measurements performed for each QI and each part.

Table 3. Standard Quality Assessment results.

Item Tray Location DS
(mm)

FSR
(mm)

FSF
(mm)

PS
(mm)

DE
(mm)

1 01 1 1.359 0.135 0.266 0.278
2 01 2 1.378 0.188 0.113 0.193 4.504
3 01 3 1.398 0.121 0.378 0.382 4.572
4 01 4 1.405 0.160 0.331 0.406 4.561
5 02 1 1.450 0.140 0.275 0.374 4.555
6 02 2 1.400 0.177 0.109 0.219 4.477
7 02 3 1.397 0.120 0.103 0.209 4.467
8 02 4 1.440 0.317 0.127 0.425 4.600
9 03 1 1.429 0.123 0.397 0.435 4.568

10 03 2 1.396 0.125 0.167 0.194 4.479
11 03 3 1.381 0.141 0.170 0.189 4.453
12 03 4 1.495 0.295 0.137 0.469 4.572
13 04 1 1.485 0.338 0.257 0.636 4.668
14 04 2 1.359 0.120 0.190 0.201 4.482
15 04 3 1.424 0.116 0.076 0.193 4.489
16 04 4 1.405 0.112 0.128 0.148 4.487

Average (mm) 1.413 0.171 0.201 0.309 4.527
Standard Deviation (mm) 0.040 0.076 0.103 0.140 0.060

QR Fulfilment 43.7% 62.2% 43.7% 6.25% 56.2%

Results clearly indicate that QR would not be fulfilled under standard manufacturing conditions.
DS average value (1.413 mm) indicates that slots tend to be wider than expected (13 µm wider than
the correspondent QR upper limit). Additionally, DS standard deviation (0.040 mm) indicates an
unexpectedly high variability. This indicates that the process is not under control and standard
configuration would not allow for batch production. Similar conclusions can be derived from the
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analysis of the other QR, since none of them are fulfilled under standard conditions. Geometric
indicators (PD, FSD and FSF) clearly exceed the desired limits, while simultaneously presenting
very high values for the standard deviation. Finally, DE achieves the desired quality in nine out of
sixteen parts. Nevertheless, DE standard deviation (0.060 mm) clearly indicates that an unacceptable
percentage of parts would not fulfil this condition during batch manufacturing.

Consequently, Standard Quality Assessment reveals that QR are far from being fulfilled. This
means that the methodology should move onto the second step: Process Optimization.

3.2. Step 2: Process Optimization

The objective of Process Optimization is to work exclusively upon process configuration parameters
to fulfil quality requirements. This means that the level of significance that variations in controllable
factors exert upon variation in QI values must be established. At this stage, controllable factors have
been reduced to Layer Thickness, Part Location, Type of Support, Thermal Treatment and Sand Blasting.
A DOE considering five parameters could be performed at this point to gain a statistical assessment of
each factor’s relative influence upon QI. Nevertheless, an analysis of factor influence likeness has been
previously performed, to evaluate if the number of factors could be reduced in the first iteration of
Process Optimization

• Layer Thickness value was set during the Standard Quality Assessment at the minimum achievable
level (20 µm). Delgado et al. [31] have not found a statistically significant effect of Layer Thickness
upon dimensional error in L-PBF for test specimens with non-sloped surfaces (like the one
analyzed in the present work). On the other hand, Nguyen et al. [32] reported an increase
in dimensional accuracy with decreasing layer thickness, and this result seems to have been
confirmed by Maamoun et al. [33]. Although it is sometimes difficult to compare results, no
research has been found supporting the hypothesis that thicker layers could improve dimensional
quality. Accordingly, since the minimum achievable value for Layer Thickness has already been
used for the Standard Process Configuration, this factor should not be included during the Process
Optimization step;

• Sand blasting is the usual finishing process in L-PBF, since it is intended to remove metallic
projections that appear as spikes on part surfaces. Consequently, sand blasting is presumed to
reduce the unevenness of surfaces. This means that suppressing sand blasting would probably
cause an increment in flatness and parallelism deviations and also could affect dimensional quality.
These arguments led to the consideration of sand blasting as an unavoidable step;

• Part location within the working area could influence quality results, and this hypothesis could
be tested using data from the previous step. Analyzing how DS measures are related to part
location within the trays, the Pearson Correlation provides a p-value of 0.721. This value reveals
an extremely low probability of a linear relationship between DS and part location for the standard
process configuration. Additionally, none of the other indicators (FSR, FSF, PS and DE) show any
correlation with part location according to their p-values. This means that variability in QI cannot
be explained by part location within the tray, and, thus, modifying location would not allow for
fulfilment of QR;

• Lightweight supporting structures were preferred during the Standard Quality Assessment
because part removal was easier and did not demand subsequent machining. Nevertheless,
manual removal of support could have an influence upon observed lack of quality [34], so Type of
Support should be included as a possible influence factor in the Process Optimization step;

• Similarly, thermal stresses accumulated during manufacturing operations (in-layer and
layer-upon-layer) could provoke a noticeable distortion in the part, after they are released from
support [35]. Accordingly, thermal treatment should be included in the Process Optimization step.

As a result of the analysis, only two factors were left for Process Optimization: Type of Support
and Thermal Treatment. In order to check if those factors have a real influence upon Quality Indicators,
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it was decided that two additional trays (Tray 05 and Tray 06) should be manufactured using solid
support (instead of a lightweight one) and applying a thermal treatment before releasing parts from
the tray. Thermal treatment was intended to release thermal residual stresses of parts and was carried
out following the recommendations of the material supplier (EOS) and manufacturer (PRODINTEC),
by maintaining the tray at a 482 ◦C during four hours in a Nabertherm oven. Then, the parts and
tray were left to cool at room temperature before being taken to a sawing operation. Once each part
was released from the tray, it was taken to a Computer Numerical Control (CNC) milling machine to
complete support removal. An ad hoc designed jig was used to prevent part deformation during milling.
When the overall process had finished, parts were verified with the CMM using the same procedure
as for trays 01 to 04. Comparisons between values of QI calculated from trays 01 to 04 (lightweight
support/no thermal treatment) and 05 to 06 (solid support/thermal treatment) are provided in Figure 9.
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Figure 9. Comparison of QI measures for trays 01 to 06: (a) DS; (b) DE; (c) FSR; (d) FSF; (e) PS.
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Results indicate that the variability observed during the first step was related to the factors
included in this Process Optimization step, since the QI measured for parts from trays 05 and 06 are
clearly more uniform. This result is especially remarkable in the case of QI derived from geometric
tolerances, since all the parts in the new trays fulfil QR for FSR, FSF and PS.

In the case of dimensional requirements, none of the new parts fulfil QR for DS, whereas only six
parts fulfil the requirement for DE (although DE values are particularly close to the lower acceptable
value). Nevertheless, the most important fact about measured dimensions is that variability seems to be
significantly lower than that observed during the first step. Standard deviation results for dimensional
QI pointed to the possibility of fulfilling QR by means of an optimization of design parameters.

Table 4 provides the measurement results of these eight specimens. The conclusion of this analysis
is that the resection guide must be manufactured using solid support structures and that a thermal
treatment, like the one described above, must be applied, and both elements have been thereafter
incorporated to the Optimized Process Configuration. Manufacturing using this configuration directly
allows the fulfilment of geometrical QRs, but it is still clearly unsuccessful in the case of the dimension
of the slot and external width.

Table 4. Optimized Quality Assessment results.

ID DS (mm) FSR (mm) FSF (mm) PS (mm) DE (mm)

Average 1.427 0.095 0.077 0.096 4.456
Standard Deviation 0.009 0.013 0.016 0.011 0.012

QR Fulfilment 0% 100% 100% 100% 75%

Reaching this point, no additional QI improvement could be reasonably achieved by means of
process parameters without acting upon design. Consequently, the methodology moved to the third
step: Design Optimization.

3.3. Step 3: Design Optimization

Design Optimization can affect both dimensional and geometric tolerances, and the level of
complexity required depends on the results observed during the previous stages. In this case study,
geometric QR have been fulfilled via Process Optimization, so Design Optimization must focus
on dimensional QR. Dimensional optimization implies building a mathematical model capable of
accurately predicting the value that each QI would reach, as a function of those controllable factors
whose significance has been considered relevant within the scope of the problem. In this case, study of
both DS and DE present low variability after the Process Optimization step (DS standard deviation is
9 µm and DE standard deviation is 12 µm). This suggests that a unique linear compensation of designed
theoretical values for all the parts within a tray could be applied. In the simplest formulation, the
average deviation of both QI with respect to correspondent theoretical dimensions could be calculated
and the design parameters modified accordingly, assuming linear behavior of results.

Nevertheless, although this could be the optimal approach for DE, it would not be equally
recommended for DS. Quality Requirement for DE has a 100 µm range; consequently, uniform
compensation should reasonably get most of the parts within QR. However, the Quality Requirement
for DS has a 50 µm range. In order to achieve further improvements of DS, it was decided that the level
of significance of remaining controllable factors (part location on the tray, with respect to X and Y axis)
upon DS measures variability has to be verified. Although these factors have not shown significance
for parts manufactured under Standard Process Configuration, the reduction in variability achieved
via Optimized Process Configuration could have modified this circumstance.

Accordingly, a two-level full-factorial 22 DOE has been defined. Possible curvature effects have
been taken into account by including two central points. This design allows for using data from trays
05 and 06. Part location has been coded according to a virtual XY origin ideally placed at the geometric
center of the tray.
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Parts located on the left side of the tray have been coded as X = −1, whereas those on the right
side have been coded as X = 1. Similarly, parts located closer to the door have been coded as Y = −1,
whereas those far from the door have been coded as Y = 1. Central locations have been coded X = 0
and Y = 0. Table 5 contains the structure of experiments for the DOE and the measured values for QI.

Table 5. Design of experiments (DOE) structure and results.

ID X Y DS (mm) FSR (mm) FSF (mm) PS (mm) DE (mm)

1 −1 −1 1.431 0.080 0.091 0.108 4.454
2 −1 1 1.426 0.117 0.062 0.084 4.432
3 0 0 1.421 0.078 0.057 0.070 4.458
4 0 0 1.423 0.089 0.082 0.089 4.453
5 1 −1 1.413 0.086 0.092 0.103 4.458
6 1 1 1.420 0.096 0.062 0.088 4.466
7 −1 −1 1.443 0.094 0.084 0.105 4.450
8 −1 1 1.433 0.085 0.090 0.097 4.473
9 0 0 1.428 0.088 0.077 0.080 4.452

10 0 0 1.428 0.092 0.083 0.101 4.455
11 1 −1 1.424 0.092 0.083 0.101 4.461
12 1 1 1.423 0.110 0.052 0.078 4.457

DS results (Table 5) have been processed using Minitab 17 statistical software to obtain variance
analysis. Results are reflected in Table 6.

Table 6. DS Variance Analysis.

Source DF Adj SS Adj MS f -Value p-Value

Model 5 0.000592 0.000118 23.11 0.001
Blocks 1 0.000169 0.000169 32.93 0.001
Linear 2 0.000361 0.000181 35.24 0.000
X 1 0.000351 0.000351 68.51 0.000
Y 1 0.00001 0.00001 1.98 0.209
2-Way Interactions 1 0.000055 0.000055 10.76 0.017
X*Y 1 0.000055 0.000055 10.76 0.017
Curvature 1 0.000007 0.000007 1.37 0.286
Error 6 0.000031 0.000005
Lack-of-Fit 4 0.000029 0.000007 7.19 0.126
Pure Error 2 0.000002 0.000001
Total 11 0.000623
Model Summary

S R-sq R-sq(adj) R-sq(pred)
0.0022638 95.06% 90.95% 73.96%

Analysis of variance points out that the location along the X axis has a significant influence upon
DS values. Additionally, although the Y location appears non-significant, the interaction of X and Y
has also been found to be significant. This means that variance in DS could be modelled by considering
the location of parts within the manufacturing tray, with respect to both X and Y axes, since a linear
relationship between them could not be discarded. Figure 10 contains an explicative Pareto chart of
standardized effects, where the relative significance of factors A (X), B (Y) and interaction A*B (X*Y)
can be observed. Additionally, the interaction plot for DS helps to explain the effect of each factor
upon DS. Parts located to the left tend to have a wider slot than parts located to the right. Parts located
closer to machine door are expected to have wider slots than parts located far from the door when the
left side of the tray is analyzed, but this behavior is flipped (wider slots for distant parts) when parts
manufactured on the right area of the tray are analyzed.
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Figure 10. DS statistical graphs: (a) Pareto chart of the standardized effects; (b) Interaction plot.

This behavior illustrates the significance of X*Y interaction, and indicates that modelling DS
variability would have to include both X and Y locations as parameters.

Additionally, values for center points indicate that a linear relationship between location and DS
should be expected, since there is no evidence of curvature. Although there was no need to analyze X*Y
significance upon DE, this task could be carried out without additional experiments. Consequently, an
additional analysis of variance has been performed for DE using data from Table 5. Results indicate that
neither X nor Y have any significance on DE variability. This result implies that observed variability
cannot be explained by means of part location within tray, so these factors should not be taken into
account when building a predictive model for DE. Figure 11 provides a Pareto chart for DE.
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In sum, although the part location according to X and Y axes should be taken into account when
predicting DS variability (values would differ significantly for different locations), they should not be
considered for DE (values would be similar, independent of part location). Accordingly, no predictive
model is required for DE. Instead, a simple linear compensation of the average values of correspondent
QI will be used in the present case study.

3.3.1. Predictive and Inverse Models

To elaborate the predictive model for DS, some considerations must be given:
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• Design values for DS will be thereafter denoted as DSD, whereas the correspondent values
measured after part manufacturing will be denoted DSM. Equivalent notation will be used for
DED and DEM;

• Modifying DSD could not only affect DSM, but also DEM and, vice versa, modifying DED could
have and influence upon DSM;

• Predictive model should include design factor (DSD) as part of its parameterization. To achieve
better results, the set of data that would be used to adjust such models should also include
variations in design factors.

Cross-influence of DSD and DED has been addressed in this case study by focusing on the
predictive model for DSM, and calculating DED compensation from average values of DEM obtained
from those parts used to construct the DSM model. Since the distribution of DSM with part location
have previously shown no curvature, a simple polynomial expression has been used for predictive
model DSM = f1(X, Y, DSD) Consequently, DSM values should be predicted as a function of X location,
Y location and DSD, being a1, a2, a3 and a4 coefficients that minimize the adjustment error of such a
function (1).

DSM = a1 + a2 ×X + a3 ×Y + a4 ×DSD (1)

To calculate these coefficients, a new tray arrangement was defined so that the theoretical distance
between slot parallel surfaces could also be taken into account. Consequently, two additional trays
were defined and manufactured: the first one includes six parts, four located at the corners of the
tray and the other two at the center, with a nominal DE of 1.350 mm. The second one follows the
same distribution, but the width of the slot has been reduced to 1.250 mm. These limits have been
selected according to previous results, which show that DEM tends to be noticeably higher than DED.
Consequently, optimized values for this parameter could be reasonably expected to be smaller than the
initial ones and probably within the 1.350 to 1.250 mm range. Parts were thereafter measured and
results can be found in Table 7.

Table 7. DS values used for predictive model construction.

ID X (mm) Y (mm) DSD (mm) DSM (mm)

1 −77.25 −90.58 1.25 1.311
2 −77.25 90.58 1.25 1.307
3 −12.25 0 1.25 1.329
4 12.25 0 1.25 1.331
5 77.25 −90.58 1.25 1.319
6 77.25 90.58 1.25 1.306
7 −77.25 −90.58 1.35 1.437
8 −77.25 90.58 1.35 1.430
9 −12.25 0 1.35 1.424

10 12.25 0 1.35 1.426
11 77.25 −90.58 1.35 1.418
12 77.25 90.58 1.35 1.421

Model coefficients have been calculated by means of a least square iterative method and results
are provided in Table 8.
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Table 8. Predictive model coefficients.

Coefficient Estimated Value

a1 −4.32500 × 10−2

a2 −3.25450 × 10−5

a3 −2.89799 × 10−5

a4 1.08833 × 10−0

Once the predictive model was defined, an inverse model was constructed. This inverse model
should provide an optimized design value for DS (DSO), so that the correspondent measured value
DSM of the manufactured part is as close as possible to the theoretical (optimal) value for DS (DST).
This objective could be achieved by means of an optimization problem (2). Note that, in the original
design, DST and DSD were equivalent, whereas, after optimization, each part would have a different
DSO.

minerror = min(DSM −DST)
2 = min( f (X, Y, DSD) −DST)

2 (2)

Consequently, the value that minimizes such functions should be an optimized DSD (denoted as
DSO for clarification purposes). This problem could be efficiently solved by means of an interior-point
method, taking advantage of the easily calculable derivatives of the function. In the present work,
MATLAB fmincon command has been used to determine the optimal design values for DS.

Finally, DE compensation value was calculated from DEM results obtained from Table 7 parts,
so that the average value reflects possible variations derived from DED modification. Accordingly, a
DEM average value of −0.043 mm has been calculated and linear compensation should provide an
optimized value of 4.532 for DEO.

3.3.2. Optimized Design Quality Assessment

To evaluate fulfilment of QR once the design was optimized, an inverse model was used to
design a verification tray with nine parts. This tray included six positions that had already been
used to elaborate the prediction model and four additional intermediate ones (never used before).
According to the predictive and inverse models, the design dimensions of slots were different for every
individual part, whereas DEO is unique (4.543 mm) for all parts. Table 9 includes design values and
measured results.

Table 9. Optimized Design Quality Assessment results.

ID X (mm) Y (mm) DSO (mm) DSM (mm) DEO (mm) DEM (mm)

1 −77.25 −90.58 1.298 1.374 4.543 4.507
2 −77.25 90.58 1.303 1.378 4.543 4.508
3 −38.625 −45.29 1.301 1.383 4.543 4.506
4 −38.625 45.29 1.303 1.380 4.543 4.503
5 0 0 1.303 1.371 4.543 4.488
6 38.625 −45.29 1.303 1.374 4.543 4.508
7 38.625 45.29 1.305 1.380 4.543 4.514
8 77.25 −90.58 1.303 1.381 4.543 4.514
9 77.25 90.58 1.308 1.387 4.543 4.521

As can be observed, QR have been fulfilled for every manufactured part in both DE and DS. To
illustrate the evolution of QI from the Standard Process Configuration to the last step of the optimization
procedures, Figures 12 and 13 provide two comparative histograms of DSM and DEM.
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Figure 12. Histograms of DSM values: (a) Initial; (b) Optimized.
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Figure 13. Histograms of DEM values: (a) Initial; (b) Optimized.

It can be observed that improvement was achieved by two effects: centering the average value
of slot width with respect to the limits of the correspondent QR, and reducing initial variability to
the extent that an extremely high percentage of parts should fulfil required quality. In fact, standard
deviation within the verification tray has been reduced to only 5 µm, whereas its value calculated
for the Optimized Process Quality Assessment was 9 µm. QR for DE has also been achieved via
Design Optimization but, since the same dimensional compensation has been used, standard deviation
presents a similar value (9 µm).

According to these results, batch production could commence once the implications of Process
and Design optimization steps have been incorporated into production configuration.

4. Discussion

The proposed framework allows for combining the advantages of different approaches analyzed
in the literature review. Some of the works related to the error analysis and error prevention [6,7,14]
could be incorporated under our approach to the Process Optimization stage. In fact, once consolidated,
their conclusions on factors’ influence upon part quality could be part of an intensive knowledge base
to simplify decision-making procedures in AM. Similarly, the mathematical methods proposed for
error prediction used in works devoted to error correction [17,18,22] could be easily incorporated into
the Design Optimization stage. However, the definition of this framework makes it unnecessary to
apply optimization to the whole part, but instead is focused on FoS affected by dimensional tolerances
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and their related geometrical tolerances. A global compensation of geometric distortions [22,23]
could be researched, to see if it is preferable to our proposal of a specific compensation, but there is
a risk of orientating efforts to models that, despite being able to improve overall dimensional and
geometric quality, failed to fulfil a specific tolerance. Nevertheless, both approaches should not be
considered exclusive, since it is possible to anticipate that, in the future, machine learning and artificial
intelligence approaches [10,21] will both be incorporated to machine control systems. The proposed
framework would check if specific QR have been fulfilled once optimization procedures have been
incorporated into machine technology and, in case embedded optimization rules are still not enough
to match tolerances, it would provide a methodology that manufacturers could easily follow. The
degree of complexity of the tasks included in the proposed framework is highly dependent on each
particular part’s design and process characteristics, but it encourages taking advantage of available
knowledge to simplify experimental effort. Models capable of accurately predicting dimensional
and geometric errors grow in complexity with the number of factors contemplated, so an approach
that delays simulation efforts until problem complexity has been reduced (minimizing factors) will
probably be more useful to end-use manufacturers in the short term. Further research should be done
in order to provide detailed rules on how some decisions should be adopted. Quantitative evaluation
of the possible consequences of opting for one process configuration alternative could help staff to
reach higher levels of objectivity while minimizing subjective decisions. Moreover, defining a model
that describes all available possibilities in terms of statistical analysis and mathematical modelling,
while simultaneously helping staff to decide which of these tools should be preferable for a particular
situation, would be of great use.

5. Conclusions

The achieved results support the usefulness of a systematic framework for dimensional and
geometric quality enhancement of additively manufactured parts. Work Analysis has permitted a
reasonable understanding of the role of different influence factors, grouped according to controllable and
non-controllable categories, to define both the Operating Space and the standard process configuration.
An initial evaluation of QR fulfilment by means of a verification procedure and a test set provides an
idea of the differences between measured QI values and QR objectives. Sorting controllable factors
according to their relative influence upon QI values helps to simplify the Operational Space and drives
testing to the most promising configurations. This contributes to a reduction in experimental effort
and helps save costs and time. A balance between know-how and experimental effort should allow
for an improvement in part quality that could eventually make further development unnecessary.
Nevertheless, once the process’s capabilities have been exhausted, the possibility of working upon
the design parameters, or even upon the parameterization model itself, could take part quality to a
higher level. The application of this framework to a quasi-industrial case, involving dimensional and
geometrical optimization of surgical-steel tibia resection guides, helps explain the proposed workflow
in more detail. In fact, L-PBF manufacturing of these inserts has an approximate cost-per-unit of 37 €,
according to PRODINTEC, with an approximate production rate of 1.6 units per hour (based on 50
specimen trays). This cost is truly competitive with the conventional manufacturing alternatives,
ranging from 100 to 300 €. These results help to reinforce the idea that the proposed framework could
contribute to the global objective of AM quality improvement.
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