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1 Introduction

The concept of observer has had an important role in the Physics history. Nevertheless the
case of General Relativity with its intrinsic general covariance, has sometimes been able to
develop the false belief that all observers are physically equivalent. As a consequence of this
error, the concept of observer has been deprived of part of its meaning. So, if we think that
all observer are physically equivalent, the concept of observer the concept is irrelevant in the
description of a physical scenario.

The reality is that the covariant character of the General Relativity allows that its funda-
mental equations hold for all observer. In the cae of several relativistic model, the description
of the physical scenario is jointed to the election of a distinguished congruence of observers. So
for example, the Friedmann Robertson-Walker model, whose fiber is flat represent a perfect
fluid solution for the called commoving observer, which are at rest respect to the molecules of
the fluid. But, this model also can be exact solutions of the field equation for a vicous fluid,
with or without an electromagnetic field, as seen by observers moving relative to the previ-
ously mentioned commoving observers and that these solutions can be physically acceptable
(see [10]).
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In relativistic spacetimes, each observer can establish local coordinates around him, via
the exponential map, however they cannot extract measurable quantities from a test particle
or compare frame dependent information with another observer unless they meet at the
same point or come close enough so that the spacetime can be considered, effectively, as flat
and then a Special Relativity like situation is recovered. In general relativity, the Lorentz
transformation between two frames is only possible locally. This is quite a different situation
than in Special Relativity. And indeed this limits the role of observer notion in general
relativity and cosmology. That is the reason why in General Relativity the meaningful physical
quantities are those which are observer independent, like, the Lorentzian metric, proper time
and the other tensorial quantities (electromagnetic strength tensor F, etc.). Nevertheless, this
is quite a realistic situation; because real life observers can only measure physical quantities
locally. The measurable quantites such as electric field strength, magnetic field strength, and
in general energy-momentum tensor are local quantities.

The different nature between observers from Special to General Relativity is a purely
mathematical question, since a differentaible manifold, in general, do not have vector space
structure. The position vector and hence the coordinates asociated to him, only make sense
in a vector space, but in a manifold the position vector loses its meaning. In a generald-
ifferentiable manifold, to talk about coordinates we need to focus on a localised region of
the manifold, the chart, dipheomorphic to Rn, being n the dimension of the manifold. Thus
observes cannot set up reference frames which explore the whole spacetime, making the role
of the observer strongly local and can measure only local observations.

Therefore, observers’s measurements are local, but this does not imply that global infer-
ences are impossible. The key here is the concept of simmetrry. If the quantities which we
are interested in, follow a pattern then the whole spacetime needs not be explored, a study
over a local region can be extrapolated to figure out the global structure of the spacetime.
From the information of metric tensor, one can also find out, if possible, the conformal space
transformation and study a great deal about the global properties of spacetime.

More precisely, In general relativity, symmetry is usually based on the assumption of
the existence of a one-parameter group of transformations generated by a Killing or, more
generally, conformal vector field. In fact, a usual simplification for the search of exact solutions
to the Einstein equation is to assume the existence a priori of such an infinitesimal symmetry
(see [11], [14] for instance). A complete general approach to symmetries in general relativity
can be found in [24] (see also [13] and references therein). Although the same causal character
for the infinitesimal symmetry is not always assumed, the timelike choice is natural, since the
integral curves of such a timelike infinitesimal symmetry provide a privileged class of observers
or test particles in the spacetime. Moreover, this choice is supported by very well-known
examples of exact solutions.

In general relativity, symmetry is usually based on the assumption of the existence of a
one-parameter group of transformations generated by a Killing or, more generally, conformal
vector field. In fact, a usual simplification for the search of exact solutions to the Einstein
equation is to assume the existence a priori of such an infinitesimal symmetry (see [11],
[14] for instance). A complete general approach to symmetries in general relativity can be
found in [24] (see also [13] and references therein). Although the same causal character for the
infinitesimal symmetry is not always assumed, the timelike choice is natural, since the integral
curves of such a timelike infinitesimal symmetry provide a privileged class of observers or test
particles in the spacetime. Moreover, this choice is supported by very well-known examples
of exact solutions.
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A spacetime M admitting a timelike Killing vector field is called stationary. It can be
easily seen that if a spacetime M has a timelike conformal vector field, then it is globally
conformal to a stationary spacetime. This is a reason to call M conformally stationary (CS).
Clearly, a CS spacetime is time orientable. In general, the orthogonal distribution defined by
a timelike conformal vector field K in a spacetime is not integrable. If the 1-form metrically
equivalent to the vector field is closed, or equivalently, if K is locally the gradient of some
function, then this distribution is integrable and provides the spacetime with a distinguished
foliation by spacelike hypersurfaces. The presence of such a vector field is not enough to
prevent the existence of closed nonspacelike curves, i.e. CS spacetimes fail to be causal,
in general. However, if the timelike vector field K is globally the gradient of some smooth
function (K is then called a gradient vector field), then the (clearly noncompact) spacetime
admits a global time function. Therefore, it is stably causal [16], i.e. there is a fine C0
neighborhood of the original metric of the spacetime such that any of its Lorentzian metrics
is causal[2]. The existence of a gradient conformal vector field in a spacetime has been used
to study certain cosmological models [20] and plays a relevant role for vacuum and perfect
fluid spacetimes (see [11]). Spacetime admitting a timelike gradient conformal vector field,
have been widely studied in [6].

An interesting subclass of GCS spacetimes is the family of generalized Robertson-Walker
(GRW) spacetimes. A GRW spacetime is a warped product, with base a negatively defined
line, fiber a general Riemannian manifold and arbitrary warping function. Note that, in this
definition, the fiber is not assumed to be of constant sectional curvature, in general. When
this assumption holds and the dimension of the spacetime is 3, the GRW spacetime is a (clas-
sical) Robertson-Walker spacetime. Thus, GRW spacetimes widely extend Robertson-Walker
spacetimes, and they include, for instance, the Einstein?de Sitter spacetime, Friedmann cos-
mological models, the static Einstein spacetime and the de Sitter spacetime. Observe that
conformal changes of the metric of a GRW spacetime, with a conformal factor which only
depends on universal time, produce new GRW spacetimes. Moreover, small deformations of
the metric on the fiber of Robertson-Walker spacetimes also fit into the class of GRW space-
times. Thus, a GRW spacetime is not necessarily spatially homogeneous, as in the classical
cosmological models. Recall that spatial homogeneity seems appropriate just as a rough ap-
proach to consider the universe in large. However, in order to consider it in a more accurate
scale, this assumption is not realistic. Thus, GRW spacetimes could be suitable spacetimes
to model universes with inhomogeneous spacelike geometry [19].

In this work we study two diiferent ways to stablish in a accurate mathematical form the
concept of the infinitesimal relative position vector field respect to fixed observer in a congru-
ence or vector field of observers (Section 3). Moreover, we show it mathematical equivalence
(see Theorem 4). The chage of position taht this observer measures for other nearby observer
is given mathematically thank to the Fermi-Walker dervative. At this point, we ask ourselves
when the observer measures that the nearby observers (for a given congruence), do not ro-
tate. It is clear, that this situation hold when the Fermi-Walker derivative of the infinetesimal
relative vector fields is colinear to these vector fields. In Proposition 7, we characterize this
condition via the Lie derivative of the metric and Curl tensors. As aconsequence of this
characterization it is clear that in a conformaly stationary spacetime, the position vector
fileds stablished by the obsevers determined by the timelike conformal vector field satisfy the
colinearity condition.

A natural mathematical question arises, if the colineary condition holds asociated to a
field of observers, when the spacetime will be conformaly stationary. This question is widely
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studied in Theorem 8 and Theorem 9.
Finaly, we applied our results to characterize the relevant class of cosmological model

called generalized Robertson-walker spacetimes, under the existence of a distinguished family
of observers (see Theorem 11).

2 Preliminaries: relativistic spacetimes, synchronizability and
Fermi-Walker connection

A relativistic spacetime is an oriented (n+1)−dimensional Lorentzian manifold (M, g), n ≥ 1,
endowed with a fixed time orientation, [18]. Along this paper the signature of a Lorentzian
metric is considered to be (−,+, ...,+). The points of M are also named events. A tangent
vector v ∈ TpM is named spacelike if g(v, v) > 0 or v = 0, timelike if g(v, v) < 0 and lightlike
otherwise. A hypersurface in M is called spacelike if its tangent vectors are spacelike, i.e.,
the induced tensor metric from (M, g) is Riemannian. An observer in M is mathematically
represented by a (smooth) curve γ : I ⊆ R −→ M such that its velocity γ ′(t) is future
pointing and g(γ ′(t), γ ′(t)) = −1 for any t ∈ I, (see [21]). The parameter t is called the
proper time of the observer.

The Levi-Civita connection ∇ of (M, g), induces a connection along the observer γ, such

that its corresponding covariant derivative is given by
DY

dt
= ∇γ′(t)Y ∈ X(γ) for Y ∈ X(γ),

where X(γ) denotes the space of smooth vector fields along γ. The covariant derivative
Dγ ′

dt

of γ ′, is understood as the (proper) acceleration of the observer γ. When
Dγ ′

dt
≡ 0, γ is a

timelike geodesic in M , and the observer γ is in free falling.

For each event γ(t) the tangent space Tγ(t)M splits as

Tγ(t)M = Tt ⊕Rt,

where Tt = Span{γ ′(t)} and Rt = T⊥t . Endowed with the restriction of g, Rt is a spacelike
hyperplane of Tγ(t)M . It is interpreted as the instantaneous physical space observed by γ
at t and it is called the infinitesimal rest space of the observer at γ(t), (see[18]). Clearly,
the observer γ is able to compare spatial directions at t. In order to compare v1 ∈ Rt1 with
v2 ∈ Rt2 , t1 < t2 and |v1| = |v2|, the observer γ could use, as a first attempt, the parallel
transport along γ defined by the Levi-Civita covariant derivative along γ,

P γt1,t2 : Tγ(t1)M −→ Tγ(t2)M.

This linear isometry satisfies P γt1,t2(Rt1) = Rt2 if γ is free falling (i.e., it has null proper
acceleration). But, unfortunately, this property does not remain true for any general observer.
In order to solve this difficulty, for each Y ∈ X(γ) put Y T

t , Y
R
t the orthogonal projections of

Yt on Tt and Rt, respectively, i.e., Y T
t = −g(Yt, γ

′(t)) γ ′(t) and Y R
t = Yt − Y T

t . In this way,
we define Y T , Y R ∈ X(γ). We have, [21, Prop. 2.2.1],

Proposition 1 There exists a unique connection ∇̂ along γ such that

∇̂XY =
(
∇XY T

)T
+
(
∇XY R

)R
,

for any X ∈ X(γ) and Y ∈ X(γ).
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This connection ∇̂ is called the Fermi-Walker connection of γ. It has the suggestive property

that if Y ∈ X(γ) satisfies Y = Y R, then
(
∇̂XY

)
t
∈ Rt for any t.

Denote by
D̂

dt
the covariant derivative corresponding to ∇̂. Then, we have [21, Prop.

2.2.2],

D̂Y

dt
=
DY

dt
+ g(γ ′, Y )

Dγ ′

dt
− g(

Dγ ′

dt
, Y ) γ ′, (1)

for any Y ∈ X(γ). Note that
D̂

dt
=
D

dt
if and only if γ is free falling.

The acceleration
Dγ ′

dt
satisfies

Dγ ′

dt
(t) ∈ Rt, for any t. Therefore, it is observed by γ

whereas the velocity γ ′ is not.

A field of observers or reference frame on (M, g) (see [18] or [21]), is a unit timelike vector
field Z ∈ X(M) pointing to the future. Note that each integral curve of Z is an observer in
M . If, in addition, Z is a geodesic vector field, i.e. ∇ZZ ≡ 0, then every observer in Z will
be in free falling. A field of observers Z induces a smooth distribution in M , denoted by Z⊥,
which is given by the kernel of the 1-form Zb = g(Z, ·) metrically equivalent to Z. When this
distribution is integrable, i.e., Zb∧dZb = 0, then Z is said to be locally synchronizable [4], and
making use of the Frobenius Theorem (see [23]), we deduce that it is foliated by a family of
spacelike hypersurfaces F = {Fλ} and each leaf Fλ of the induced foliation F represents the
“space” for the family of observers in Z. It is well-known that being locally synchronizable
is equivalent to assert that each p ∈ M has a neighborhood where dZb = f dt, for certain
smooth functions f > 0, t, and so, the hypersurfaces {t = constant} locally coincide with the
leaves of the foliation F . Thus, any observer may be synchronized through the “compromise
time” t, obtained rescaling its proper time. In the more restrictive case Zb is closed, i.e.,
dZb = 0, it is said that the field of observer Z is proper time locally synchronizable.

The widely known Poincaré Lemma (see [5]) asserts that any closed 1-form is locally
exact, which means that it is locally the differential of a smooth function. Therefore, locally,
dZb = dt. Hence, observers are synchronized directly by its proper time (up to a constant).

3 Infinitesimal relative position vector fields in relativistic space-
times

Let (M, g) be a relativistic spacetime, and Z a field of observers on M . Fix an observer
γ : I −→ M in Z such that γ(0) = p, and take an orthonormal basis {e1, . . . , en} of the
Euclidean vector subspace {γ′(0)}⊥ of TpM . Consider the Fermi-Walker parallel reference
frame {E1(t), . . . , En(t)} through γ, such that Ei(0) = ei, i = 1, ..., n and define a coordinate
system on a tubular neighborhood of γ,

(t, x1, . . . , xn) 7→ expγ(t)
( n∑
i=1

xiEi(t)
)
.

This coordinate system arround γ, describes a new parametrization of the worldlines
of the observers in Z close to γ and, as consequence, a new local timelike vector field Z,
obtained reparametring the local flux of Z, and such that Zγ(t) = Zγ(t). The local flux of
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Z, Ψs, does preserve the spacelike character of the basis {v1, . . . , vn}, i.e., now we have that
dΨt

∣∣
p
(vi) ∈ {γ ′(t)}⊥ for all t and i = 1, . . . , n. Let {v1, . . . , vn} be a basis of {γ′(0)}⊥,

therefore, we may construct the following (adapted to γ) coordinate system in a tubular
neighborhood of γ, V ⊆M ,

φ : U ⊆ R −→ V, (t, x1, . . . , xn) 7→ expγ(t)
( n∑
i=1

xi Vi(t)
)
,

where {Vi}ni=1 are the only Z-Lie parallel vector fields along γ verifying Vi(0) = vi, i = 1, . . . , n.

Now, let E be a sufficiently small open set around of
−→
0 ∈ {γ′(0)}⊥ and let q ∈ Sp ≡

expp
(
E
)

(i.e., the spacelike hypersurface {t = 0} in the adapted tubular neighborhood, which
γ perceives when its proper time is 0) be an event, and σ an observer in Z such that σ(0) = q.
Hence, there exists a unique spacelike vector field along γ, V (t) satisfying σ(t) = expγ(t)

(
V (t)

)
.

This vector field will be considered the relative position vector field of the nearby observer σ
with respect to γ. Next we expose a formal version version of this notion.

Definition 2 We define the infinitesimal position vector field associated to v with respect
to γ as the only Ψ-invariant vector field along γ with V (0) = v,

V (t) = dΨt|γ(0)(v).

Equivalently, given any spacelike vector field along γ, V , we say V is an infinitesimal
relative position vector field for γ if it is invariant under Ψ, equivalently if it is Lie-parallel
with respect to Z.

Next, we proceed to characterize the infinitesimal position vector fields. Notice that,
taking into account the previous construction, there exists necessarily, a positive smooth
function on a tubular neighborhood of the observer γ, with (h ◦ γ)(t) = 1, ∀t ∈ I, such that

Z := hZ.

Given v ∈ (γ′(0))⊥, a vector field V may be defined on a neighborhood of γ(0) such that
V γ(0) = v and [Z, V ] = 0. Hence, a direct computation shows that along γ

Z
(
g(V , Z)

)
= V (h) + g(∇ZZ, V ).

Then, we may claim that

Lemma 3 Let Z be a field of observers on the spacetime (M, g), γ : I −→ M an observer
in Z and h a smooth positive function, defined on a tubular neighborhood of γ . Then, the
flux of hZ defines infinitesimal relative position vector fields with respect to γ if and only if
h satisfies,

(a) (h ◦ γ)(t) = 1, ∀t ∈ I.

(b) ∇h
∣∣
γ(t)

= −∇γ ′(t)Z
∣∣
γ(t)

, ∀t ∈ I.

There is another procedure to obtain infinitesimal position vector fields. It may be de-
scribed as follows.
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Theorem 4 Let Z be a field of observers on the spacetime (M, g), γ : I −→ M an observer

in Z and v ∈
(
γ ′(0)

)⊥
. Let h ∈ C∞(M) satisfy hypothesis (a) and (b) of the previous Lemma.

Consider the only Z-Lie parallel vector field W (t) along γ, such that W (0) = v. Then, the

orthogonal projection of W onto
(
γ ′(t)

)⊥
, ∀t ∈ I, is an infinitesimal relative position vector

field for the observer γ

Proof. Let W be a vector field defined on a neighborhood U ⊆M of γ extending to W . We
may decompose W = V + f Z, with f ∈ C∞(U) and V the Z-Lie parallel vector field in a
neighborhood of γ such that V (0) = v. So

0 = [Z,W ] = [Z, V ] + Z(f)Z.

Thus, taking into account that Z = hZ,

[Z, V ] = h[Z, V ]− V (h)Z = −
(
hZ(f) + V (h)

)
Z.

Taking a function f satisfying Z(f) = −V
(
log(h)

)
, we conclude that V (t) = V

∣∣
γ(t)

is an

infinitesimal position vector field.
�

Taking into account the previous result, the Fermi-Walker derivative D̂V
dt of an infinitesimal

relative position vector field V ∈ X(γ), represents the velocity of nearby neighboring observers
in Z with respect to the observer γ. This Fermi-Walker derivative admits another geometrical
interesting expression, as it follows from the next result.

Proposition 5 Given a field of observers Z in the spacetime (M, g), and γ a observer in Z.
For any infinitesimal relative position vector V ∈ X(γ), the following identity holds

D̂V

dt
= −A′Z(V ) := ∇V Z. (2)

Proof. By using that Z = hZ and LZV = 0, we get

g
(D̂V
dt

, U
)

= g
(
∇ZV,U

)
= g
(
∇ZV ,U

)
= g
(
∇V Z,U

)
= g
(
∇V Z,U

)
,

for any U ∈ X(γ) orthogonal to Zγ(t). Where we have had into account that h ◦ γ ≡ 1 and
D̂V
dt ⊥ Z.

�

Next, we analyse the geometry of the linear operator A′Z : Γ(Z⊥) ⊂ Γ(TM) −→ Γ(Z⊥).

This linear operator may be decomposed in its symmetric Ŝ and skew-symmetric ω̂ parts,

−A′Z = Ŝ + ω̂,

where Ŝ is self-adjoint for g, and ω̂ skew-adjoint. Denote by S and ω the corresponding fields
of 2-covariant associated tensors,

S(V,W ) = g(Ŝ(V ),W ) =
1

2

(
g(∇V Z,W ) + g(∇WZ, V )

)
, (3)
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ω(V,W ) = g(ω̂(V ),W ) =
1

2
Curl(Z)(V,W ), (4)

where V,W are spacelike vector fields in Z⊥, and ω is the vorticity or Coriolis tensor field
defined in (??). The name “vorticity” means that, if the observers of Z represent the wordlines
of the particles of a fluid and γ is the trajectory of one of them, ω(γ ′) gives certain measure

about how γ see the others turn around. Notice that ω =
1

2
Curl(Z) can also be expressed as

ω = dZb, being Zb = g(Z, ·) the 1-form metrically equivalent to Z.
On the other hand,the symmetric operator Ŝ can be decomposed as

Ŝ =
div(Z)

n
I + Θ,

where I denotes the identity endomorphism of Γ
(
Z⊥
)

and Θ is the traceless part of Ŝ (the

shear tensor) and θ(Z) = div(Z). The term div(Z)
n I represents the expansion or contraction,

i.e., fixed an observer in Z, it measures how nearby neighboring observers go away on average,
while Θ measures the deviations of this average.

It seems natural to think that an observer γ in Z will affirm that his neighboring observers
do not rotate if the Fermi-Walker derivative of each infinitesimal relative position vector
field on γ is proportional to the proper infinitesimal relative position vector field. As it is
immediate to show, this condition assures the irrotational character of Z. Nevertheless, If a
field of observer Z is irrotational, it is not possible in general assures the condition on the
Fermi-Walker derivative. Indeed,

Example 6 The condition (6) can not be derived from the irrotational character of Z. For
instance, let us consider the Lorentz-Minkowski spacetime L3 with its standard coordinates
(u, x, y). Take the field of observers Z =

√
1 + u2 ∂u + u ∂x. Any vector field orthogonal to Z

takes the form

V =
uV1√
1 + u2

∂u + V1∂x + V2∂y,

for arbitrary smooth functions V1, V2. We can compute

〈∇V Z,W 〉 =
u

(1 + u2)3/2
V1W1,

for any V,W orthogonal to Z. From which we get that Z is irrotational.
Now, we fix p ∈ L3 and we denote by E1 and E2 the infinitesimal position vector fields

along the integral curve of Z through p such that E1(p) =
u√

1 + u2
∂u(p) + ∂x(p) and E2(p) =

∂y(p). Then,

D̂E1

du
(p) =

u

(1 + u2)3/2
E1(p), while

D̂E2

du
(p) = 0.

4 Irrotational and spatially conformal Killing fields of observers
in relativistic spacetimes

The notions of spatially conformal Killing field of observers and conformal Killing vector field
have been reviewed in Section ??. Anyway it is useful to note that a field of observers Z is

8



spatially conformal Killing if and only if

g(∇V Z,W ) + g(∇WZ, V ) = 2λ g(V,W ), ∀V,W ∈ Γ
(
Z⊥
)
,

i.e., Ŝ = λ I, with λ = 1
ndiv(Z) (the shear tensor of Z is identically zero).

Moreover, Z satisfies the condition LZg = 2λ g if and only if

g(∇XZ, Y ) + g(∇XZ, Y ) = 2λ g(X,Y ), ∀X,Y ∈ Γ
(
TM

)
. (5)

On the other hand, a field of observers Z is said to be irrotational if ω̂ = 0, i.e.,

g(∇V Z,W ) = g(∇WZ, V ), ∀V,W ∈ Γ(Z⊥).

From this observation, using (2) and the previous remark, we conclude that,

Proposition 7 Let Z be a field of observers in a spacetime (M, g). Then, Z is irrotational
and spatially conformal if and only if

D̂V

dt
=

div(Z)

n
V, (6)

for any infinitesimal position vector field V ∈ X(γ), for any γ observer of Z.
Under the same hypothesis, Z will be rigid if and only if

D̂V

dt
= 0, (7)

for any infinitesimal position vector field V ∈ X(γ).

The importance of conformaly stationary spacetimes has been described in the previous
section. that if (M, g) is a conformaly stationary spacetime, whose timelike comformal Killing
vector field X is irrootational, then it is not difficult to see, that the field of observer X

||X||
determined by X is irrotational and spatially conformal. So, the following question arises
naturally: if Z is a field of observers in a spacetime (M, g), under which conditions on the
geometry of M and Z does a function ϕ exist such that the vector field ϕZ is a conformal
Killing vector field?

Suppose that Z satisfies condition (6). It is clear that ϕZ is irrotational and spatially

conformal for any ϕ > 0, with conformal factor ϕ div(Z)
n . Let γ be an observer of Z, and

v ∈
(
γ ′(t)

)⊥
. We have

g
(
∇v(ϕZ), γ ′(t)

)
+ g
(
∇γ ′(t)(ϕZ), v

)
= v(ϕ) + ϕg

(
∇γ ′(t)Z, v

)
, (8)

g
(
∇γ ′(t)(ϕZ), γ ′(t)

)
= γ ′(t)(ϕ). (9)

From (5), we deduce that ϕ must verify

v
(
log(ϕ)

)
= −g

(
∇γ ′(t)Z, v

)
, and Z

(
log(ϕ)

)
=

div(Z)

n
,

for any v ∈ (Zγ(t))
⊥. Both conditions may be summarize as

∇log(ϕ) = −∇ZZ −
div(Z)

n
Z. (10)

Hence, from a direct application of the converse to Poincar’s Lemma, we get the following
result.
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Theorem 8 Let Z be a field of observers in a spacetime (M, g) such that condition (6) holds
for any observer γ of Z and for every infinitesimal position vector field V ∈ X(γ).

(a) If the following condition holds

Curl
(
∇ZZ +

1

n
div(Z)Z

)
= 0, (11)

then for each point p ∈ M there exists a neighborhood Up and a positive function ϕ ∈
C∞(Up) such that ϕZ is conformal Killing.

(b) If M is contractible to a point, then the function ϕ is globally defined.

(c) If there exists a positive function ϕ ∈ C∞(M) such that ϕZ is conformal Killing, then
(11) is satisfied.

In addition, note that if (11) holds, from (8) we have

ϕ
(
γ(t)

)
= ϕ

(
γ(0)

)
exp
( 1

n

∫
γ

div(Z)
)
,

for each observer γ in Z. Thus, if we know the function ϕ on a hypersurface orthogonal to Z
passing through a point p, we also know the function ϕ on a neighborhood of p.

Finally, we assume that D̂V
dt = 0 for any observer γ of Z and for all infinitesimal position

vector field V ∈ X(γ). We know that Z is irrotational and rigid, but, what must Z satisfy
so that ϕZ is Killing for some positive function ϕ? The answer is contained in the following
corollary of Th.8.

Theorem 9 Let Z be a field of observers in a spacetime (M, g) such that D̂V
dt = 0 for any

observer γ of Z and for every infinitesimal position vector field V ∈ X(γ).

(a) If the following condition holds

Curl
(
∇ZZ

)
= 0, (12)

then for each point p ∈ M there exists a neighborhood Up and a positive function ϕ ∈
C∞(Up) such that ϕZ is Killing.

(b) If M is contractible to a point, then the function ϕ is globally defined.

(c) If there exists a positive function ϕ ∈ C∞(M) such that ϕZ is conformal Killing, then
(12) is satisfied.

Remark 10 Given an observer γ of Z and an infinitesimal position vector field V ∈ X(γ),
a straightforward computation shows that condition (12) is satisfied if and only if ∇ZZ is
irrotational and g(∇ZZ, V ) is constant along the worldline of γ.
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5 Characterizations of GRW spacetimes spacetimes

There is a particularly interesting class of spacetimes admitting an irrotational and spatially
conformal field of observers, the Generalized Robertson-Walker (GRW) spacetimes. A GRW
spacetime with base (I,−dt2), fiber (F, gF ) and warping function f is the product manifold
M = I × F endowed with the Lorentzian metric

gf = −dt2 + f2(t)gF ,

see [1]. GRW spacetimes are particular cases of warped products, which have been widely
used in General Relativity (see Introduction). For any GRW spacetime, the vector field ∂t
is a field of observers which is geodesic (the observers in Z are free falling), irrotational,
spatially conformal Killing and divergence non-spacelike depending, see [22]. Indeed, given
a simply connected relativistic spacetimed (M, g) with a complete vector field Z satisfying
the previously cited properties, then (M, g) is (globally) a GRW spacetime with ∂t = Z,
[22, Theorem 2.1]. If the global hypotheses (simply connection of M and completeness) are
removed, then (M, g) is locally a GRW spacetime. From this results together with Proposition
7 we get the following theorem.

Theorem 11 Let (M, g) be a simply connected relativistic spacetime with a complete vector
field of observers Z and suppose that the observer in Z are in free falling, the gradient of div(Z)
is pointwise parallel to Z and the Fermi-Walker derivative of any infinitesimal position vector
field along any of its integral curves is proportional to the infinitesimal position vector field.
Then (M, g) is (globally) a GRW spacetime with ∂t = Z. If M is not asked to be simply
connected and Z is not needed to be complete, then (M, g) is locally a GRW spacetime.

This last result, constitutes a new characterization of the GRW spacetimes through be-
havior of the infinitesimal relative position vector field associates to certain class of observers
in them. Others recent characterizations of this relevant family of spacetiemes can be found
in [15], [9] and [17] and references thereim.
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