We have presented the Graphical Abstract text and image for your article below. This brief summary of your work will appear in the contents pages of the issue in which your article appears.

Externally driven molecular ratchets on a periodic potential surface: a rate equation approach

Hongqian Sang,* David Abbasi-Pérez, José Manuel Recio and Lev Kantorovich
The long time dynamics of molecular ratchets on a 1D periodic potential energy surface (PES) subjected to an external stimulus is studied using the rate equation method.

Please check this proof carefully. Our staff will not read it in detail after you have returned it.

Please send your corrections either as a copy of the proof PDF with electronic notes attached or as a list of corrections. Do not edit the text within the PDF or send a revised manuscript as we will not be able to apply your corrections. Corrections at this stage should be minor and not involve extensive changes.

Proof corrections must be returned as a single set of corrections, approved by all co-authors. No further corrections can be made after you have submitted your proof corrections as we will publish your article online as soon as possible after they are received.

Please ensure that:

- The spelling and format of all author names and affiliations are checked carefully. You can check how we have identified the authors' first and last names in the researcher information table on the next page. Names will be indexed and cited as shown on the proof, so these must be correct.
- Any funding bodies have been acknowledged appropriately and included both in the paper and in the funder information table on the next page.
- All of the editor's queries are answered.
- Any necessary attachments, such as updated images or ESI files, are provided.

Translation errors can occur during conversion to typesetting systems so you need to read the whole proof. In particular please check tables, equations, numerical data, figures and graphics, and references carefully.

Please return your final corrections, where possible within 48 hours of receipt, by e-mail to: pccp@rsc.org. If you require more time, please notify us by email.

Funding information

Providing accurate funding information will enable us to help you comply with your funders' reporting mandates. Clear acknowledgement of funder support is an important consideration in funding evaluation and can increase your chances of securing funding in the future.

We work closely with Crossref to make your research discoverable through the Funding Data search tool (http://search.crossref.org/funding). Funding Data provides a reliable way to track the impact of the work that funders support. Accurate funder information will also help us (i) identify articles that are mandated to be deposited in PubMed Central (PMC) and deposit these on your behalf, and (ii) identify articles funded as part of the CHORUS initiative and display the Accepted Manuscript on our web site after an embargo period of 12 months.

Further information can be found on our webpage (http://rsc.li/funding-info).

What we do with funding information

We have combined the information you gave us on submission with the information in your acknowledgements. This will help ensure the funding information is as complete as possible and matches funders listed in the Crossref Funder Registry.

If a funding organisation you included in your acknowledgements or on submission of your article is not currently listed in the registry it will not appear in the table on this page. We can only deposit data if funders are already listed in the Crossref Funder Registry, but we will pass all funding information on to Crossref so that additional funders can be included in future.

Please check your funding information

The table below contains the information we will share with Crossref so that your article can be found via the Funding Data search tool. Please check that the funder names and grant numbers in the table are correct and indicate if any changes are necessary to the Acknowledgements text.

Funder name	Funder's main country of origin	Funder ID (for RSC use only)	Award/grant number
Engineering and Physical Sciences Research Council	United Kingdom	501100000266	EP/J019844/1
Fundación para el Fomento en Asturias de la Investigación Científica Aplicada y la Tecnología	Spain	501100008430	FC-GRUPIN-IDI/2018/ 000177
Ministerio de Economía y Competitividad	Spain	501100003329	CTQ2015-67755-C2-2-R
China Scholarship Council	China	501100004543	201608420186
National Natural Science Foundation of China	China		21603086

Researcher information

Please check that the researcher information in the table below is correct, including the spelling and formatting of all author names, and that the authors' first, middle and last names have been correctly identified. Names will be indexed and cited as shown on the proof, so these must be correct.

If any authors have ORCID or ResearcherID details that are not listed below, please provide these with your proof corrections. Please ensure that the ORCID and ResearcherID details listed below have been assigned to the correct author. Authors should have their own unique ORCID iD and should not use another researcher's, as errors will delay publication.
Please also update your account on our online manuscript submission system to add your ORCID details, which will then be automatically included in all future submissions. See here for step-by-step instructions and more information on author identifiers.

First (given) and middle name(s)	Last (family) name(s)	ResearcherID	ORCID iD
Hongqian	Sang	P-3987-2014	$0000-0003-2738-8861$
David	Abbasi-Pérez		$0000-0003-1035-9458$
José Manuel	Recio	$\mathrm{H}-1343-2015$	$0000-0002-3182-7508$
Lev	Kantorovich		$0000-0001-9379-6834$

Queries for the attention of the authors

Journal: PCCP
Paper: c9cp03478a
Title: Externally driven molecular ratchets on a periodic potential surface: a rate equation approach
For your information: You can cite this article before you receive notification of the page numbers by using the following format: (authors), Phys. Chem. Chem. Phys., (year), DOI: 10.1039/c9cp03478a.

Editor's queries are marked on your proof like this Q1, Q2, etc. and for your convenience line numbers are indicated like this $5,10,15, \ldots$

Please ensure that all queries are answered when returning your proof corrections so that publication of your article is not delayed.

Query reference	Query	Remarks
Q1	Please confirm that the spelling and format of all author names is correct. Names will be indexed and cited as shown on the proof, so these must be correct. No late corrections can be made.	
Q2	The article title has been altered for clarity. Please check that the meaning is correct.	
Q3	Do you wish to add an e-mail address for the corresponding author? If so, please provide the relevant information.	
Q4	Please check that the inserted Graphical Abstract text is suitable. If you provide replacement text, please ensure that it is no longer than 250 characters (including spaces).	
Q5	The meaning of the phrase "If the external stimulus is time- dependent and of zero mean" in the sentence beginning "If the external stimulus is time-dependent. ." is not clear - please provide alternative text. o mean	
Q6	Ref. 14: Please provide the last name for the 3rd author.	

Cite this: DOI: 10.1039/c9cp03478a

Received 20th June 2019,
Accepted 21st August 2019
DOI: 10.1039/c9cp03478a

30 rsc.li/pccp

Externally driven molecular ratchets on a periodic potential surface: a rate equation approach

Hongqian Sang, (iD) *a David Abbasi-Pérez, (iD ${ }^{\text {b }}$ José Manuel Recio (iD ${ }^{c}$ and Lev Kantorovich (10) ${ }^{\text {b }}$

Abstract

The long time dynamics of molecular ratchets on a 1D periodic potential energy surface (PES) subjected to an external stimulus is studied using the rate equation method. The PES consisting of repeated waveforms made of two peaks is considered as an example of a spatially symmetric or asymmetric PES. This PES may, for example, correspond to diffusion of a bipedal molecule that moves along an atomic track via an inchworm walk mechanism [Raval et al., Angew. Chem., Int. Ed., 2015, 54, 7101]. Generalisation to a PES consisting of an arbitrary number of peaks of various heights is straightforward. Assuming the validity of the transition state theory (TST) for the calculation of the transition rates between neighbouring potential wells, the probability of occupying each type of potential well on the PES is obtained analytically, and then the net current for the molecules to move preferentially in a particular direction under application of external fields over a long time is derived. Note that different to methods based on solving numerically the corresponding Fokker-Plank equation, our method is entirely analytical in the limit of weak external fields. The results of the analytical calculations are compared with the exact numerical solution of the derived rate equations. The following external stimuli are considered: constant, sinusoidal and shifted sinusoidal fields due to either a spatially uniform thermal gradient or an electrostatic field. The possible applications of the method for extracting energy from the Brownian motion under load and separating molecules of different chiralities on the surface are also discussed.

1 Introduction

35 Various applications such as purification of mixtures, separation of molecules, sensors, etc. require the development of new methods for controlling molecular diffusion on surfaces. This direction of research is attributed to an exciting field of molecular motors or ratchets, ${ }^{1-3}$ which has become a topic of of such ratchets are molecular motors such as kinesin, ${ }^{4}$ myosin ${ }^{5}$ or dynein ${ }^{6}$ that, driven by a chemical reaction, can walk along one-dimensional tracks in the cells performing specific tasks. ${ }^{7,8}$ Many more examples of such ratchets are inorganic sciences where the unidirectional motion of the ratchets is stimulated by external fields, temperature gradient, light, chemical reactions or a combination of these.

Fundamental principles governing the diffusion of molecules under different external stimuli (or the absence of these)

Q3 ${ }^{a}$ Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056,
${ }^{b}$ Department of Physics, King's College London, London, WC2R 2LS, UK
$55{ }^{c}$ MALTA-Team and Department of Analytical and Physical Chemistry, University of

China Oviedo, Oviedo, 33016, Spain
are well understood. ${ }^{3,9-11}$ In thermal equilibrium a Brownian particle placed in the 1D periodic potential of a lattice would diffuse in both directions (to the 'right' and 'left') with the same probability. This statement is valid no matter whether the waveform, the repetition of which comprises the corresponding potential energy surface (PES), is spatially symmetric or asymmetric. This is due to the principle of detailed balance, as otherwise the second law of thermodynamics would be violated. To enforce diffusion in a particular direction and therefore create a unidirectional net transport, one has to break the thermal equilibrium, e.g., by applying an external stimulus such as external fields ${ }^{12,13}$ or temperature fluctuations. ${ }^{14,15}$ If the external stimulus is time-dependent and of zero mean, however, the unidirectional movement requires a broken spatial symmetry, e.g. manifested by asymmetric periodic waveforms in the PES.

To the best of our knowledge, mainly the Fokker-Plank equation method ${ }^{3,10}$ has been used in theoretical studies on Brownian ratchets. Apart from some simple examples, investigations of specific external fields require numerical solutions of this partial differential equation. Recently we proposed a kinetic Monte Carlo approach to study Brownian molecular ratchets on surfaces ${ }^{16}$ which has the advantage of considering realistic molecules and surfaces at a reasonable computational
a propose an alternative approach, a simple method based on rate equations, which is numerically even more advantageous. Moreover, for an external field of an oscillatory time dependence this new method provides an analytical expression for the net current assuming that the perturbation due to the field can be considered perturbatively, i.e. the field is 'weak' as compared to the characteristic energy barriers in the system and the thermal energy $k_{\mathrm{B}} T$. In this way more complex time dependencies may also be in reach. Having

Fig. 1 The 1D PES considered here consists of periodically repeated waveforms (blue). Each waveform is composed of two peaks of (generally) different heights with energy barriers from Δ_{1} to Δ_{4}. Each waveform is an analytical solution enables one to analyse the behaviour of molecules on surfaces directly, without performing numerical calculations, based entirely on the shape of their PES. The analytical solutions are compared with the (exact) numerical solutions which can be used for any strength of the field.

In the next section we present our general theory, while in the following section various examples of the external field are considered, expressions for the net current are derived and appropriate numerical simulations are presented. Then a discussion is given, and we end with conclusions.

2 Theory

Consider a 1D potential energy surface (PES) composed of an infinite repetition of identical waveforms each consisting of two peaks, Fig. 1. This PES can be viewed as an infinite repetition of two potential energy minima, A (the ground state) and B (the metastable state). A consideration of more complicated waveforms containing more than two peaks is straightforward and is not discussed here. Within the Harmonic Transition State Theory (HTST), ${ }^{17,18}$ the transition rate for jumping from A to B in the direction to the right is $k_{\mathrm{A} \rightarrow}=\nu_{\mathrm{A}} \exp \left(-\beta \Delta_{1}\right)$, while in the direction to the left it is $k_{\mathrm{A} \leftarrow}=\nu_{\mathrm{A}} \exp \left(-\beta \Delta_{2}\right)$. Similarly, the rate for jumping to either of the two A states to the right and to the left from the state B is $k_{\mathrm{B} \rightarrow}=\nu_{\mathrm{B}} \exp \left(-\beta \Delta_{4}\right)$ and $k_{\mathrm{B} \leftarrow}=\nu_{\mathrm{B}}$ $\exp \left(-\beta \Delta_{3}\right)$, respectively. Here ν_{A} and ν_{B} are the prefactors (attempt frequencies), $\beta=1 / k_{\mathrm{B}} T$ the inverse temperature, and $\Delta_{i}(i=1, \ldots, 4)$ the energy barriers that are shown in Fig. 1. Note that a spatially asymmetric waveform requires, within the HTST, at least two peaks to be present. Such a PES corresponds, e.g., to a bipedal molecule diffusing along a single direction by means of the inchworm mechanism, ${ }^{16,19}$ so that the first peak (to the right from A to B) corresponds to the molecule stepping numbered by the index i and has two distinct energy minima designated as A and B.
with its back 'foot' to the right, while the second peak corresponds to the front 'foot' stepping in the same direction, thereby displacing the molecule by one lattice constant.

We are interested here in studying the time evolution of molecules initially distributed somewhere on the 1D lattice of these periodic potential wells. Let $p_{\mathrm{A}, i}(t)$ and $p_{\mathrm{B}, i}(t)$ be the probabilities to find the molecule in the wells A and B of the waveform i, respectively. Then, the rate equations for the dynamics of the molecule read:

$$
\begin{align*}
& \dot{p}_{\mathrm{A}, i}=k_{\mathrm{B} \rightarrow p_{\mathrm{B}, i-1}+k_{\mathrm{B} \leftarrow} \leftarrow p_{\mathrm{B}, i}-\left(k_{\mathrm{A} \rightarrow}+k_{\mathrm{A} \leftarrow}\right) p_{\mathrm{A}, i}}^{\dot{p}_{\mathrm{B}, i}=-\left(k_{\mathrm{B} \rightarrow}+k_{\mathrm{B} \leftarrow}\right) p_{\mathrm{B}, i}+k_{\mathrm{A} \rightarrow} p_{\mathrm{A}, i}+k_{\mathrm{A} \leftarrow} p_{\mathrm{A}, i+1}} \tag{1}
\end{align*}
$$

where the dot above a letter corresponds to the time derivative. This set of equations is infinite as it is to be written for each waveform i. The overall probabilities of sites A and B are given by the sums $p_{\mathrm{A}}(t)=\sum p_{\mathrm{A}, i}(t)$ and $p_{\mathrm{B}}(t)=\sum p_{\mathrm{B}, i}(t)$. Their equations of motion are obtained by summing up the equations above for each value of i :

$$
\begin{equation*}
\dot{p}_{\mathrm{A}}=k_{\mathrm{B}} p_{\mathrm{B}}-k_{\mathrm{A}} p_{\mathrm{A}} \quad \text { and } \dot{p}_{\mathrm{B}}=-k_{\mathrm{B}} p_{\mathrm{B}}+k_{\mathrm{A}} p_{\mathrm{A}} \tag{3}
\end{equation*}
$$

where $k_{\mathrm{B}}=k_{\mathrm{B} \rightarrow}+k_{\mathrm{B} \leftarrow}$ and $k_{\mathrm{A}}=k_{\mathrm{A} \rightarrow}+k_{\mathrm{A} \leftarrow}$ are the corresponding escape rates from states B and A, respectively. As expected, $p_{\mathrm{A}}+$ p_{B} does not depend on time and is equal to one. Correspondingly, the above equations can be written as a single equation

$$
\begin{equation*}
\dot{p}_{\mathrm{A}}+\kappa(t) p_{\mathrm{A}}=k_{\mathrm{B}} \tag{4}
\end{equation*}
$$

whose solution, satisfying the initial condition $p_{\mathrm{A}}(0)=1$, corresponding to the molecules being initially on site A (at long times the choice of the initial condition is not important), is:

$$
\begin{equation*}
p_{\mathrm{A}}(t)=\exp \left(-\int_{0}^{t} \kappa(\tau) \mathrm{d} \tau\right)+\int_{0}^{t} k_{\mathrm{B}}\left(\tau^{\prime}\right) \exp \left(-\int_{\tau^{\prime}}^{t} \kappa(\tau) \mathrm{d} \tau\right) \mathrm{d} \tau^{\prime} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\kappa(t)=k_{\mathrm{A}}+k_{\mathrm{B}}=k_{\mathrm{A} \rightarrow}+k_{\mathrm{A} \leftarrow}+k_{\mathrm{B} \rightarrow}+k_{\mathrm{B} \leftarrow} \tag{6}
\end{equation*}
$$

Note that a different initial condition would correspond to a non-unit prefactor to the first (exponential) term in the right hand side of the solution for $p_{\mathrm{A}}(t)$, which at long times disappears anyway.

The net flux (current) of the molecules to the right can be calculated as a difference of the fluxes to the right and to the left,

$$
\begin{equation*}
j_{\rightarrow}=p_{\mathrm{A}} k_{\mathrm{A} \rightarrow}+p_{\mathrm{B}} k_{\mathrm{B} \rightarrow} \quad \text { and } j_{\leftarrow}=p_{\mathrm{A}} k_{\mathrm{A} \leftarrow}+p_{\mathrm{B}} k_{\mathrm{B} \leftarrow} \tag{7}
\end{equation*}
$$

and is given by:

$$
\begin{align*}
j(t) & =j_{\rightarrow}(t)-j_{\leftarrow}(t) \tag{8}\\
& =\left(k_{\mathrm{B} \rightarrow}-k_{\mathrm{B} \leftarrow}\right)+\left(k_{\mathrm{A} \rightarrow}-k_{\mathrm{A} \leftarrow}-k_{\mathrm{B} \rightarrow}+k_{\mathrm{B} \leftarrow}\right) p_{\mathrm{A}}
\end{align*}
$$

where the identity $p_{\mathrm{A}}+p_{\mathrm{B}}=1$ has been used. If the net flux is positive, the molecules on average move preferentially to the right, if negative, to the left.

Note that the energy barriers Δ_{i} depend on the external stimulus applied to the system and, in particular, will depend

1 on time if the external stimulus is time dependent. Two types of such stimuli can be easily simulated: (i) an electrostatic field and (ii) a temperature gradient. ${ }^{16}$

In the first case the molecule is to be charged and then a 5 spatially uniform electric field $E(t)$ (in units of energy over distance) would create an additional electrostatic potential, $\Delta U(x, t)=-E(t) x$, changing linearly with the coordinate x along our 1D system. This extra potential will affect the energy barriers in a certain way, as it would tilt the PES one way or 10 another, depending on the field direction. Indeed, the energies of the minima A and B and of the saddle points TS_{1} and TS_{2} will be modified. This in turn will affect the values of the energy barriers as clearly the energies at the minima and the saddle points will be shifted by different amounts. To be more specific, choose one waveform in which the positions of state A , the saddle point between A and B, state B, and the saddle point between B and the next A (in the direction to the right in Fig. 1) are $x=0, a / 4, a / 2,3 a / 4$ and a, respectively, where a is the distance between two nearest minima A (the lattice constant). at $x=0$ is $-a E / 4$, the minimum B is shifted by $-a E / 2$, and so on. It is easy to see then that the following expressions for the energy barriers in the presence of the field are obtained: $\Delta_{1}=\Delta_{1}^{0}$ $-a E / 4, \Delta_{2}=\Delta_{2}^{0}+a E / 4, \Delta_{3}=\Delta_{3}^{0}+a E / 4$ and $\Delta_{4}=\Delta_{4}^{0}-a E / 4$, where
$25 \Delta_{i}^{0}$ are the barriers without the field. We observe that the effect of the field is such that the barriers in the direction of the field are reduced, while in the opposite direction they are increased. For simplicity, we shall consider the prefactors to the four rates identical and equal to ν; and we shall also assume that they are not affected by the field as the effect of the energy barriers on the rates is much more important than that of the prefactors. In realistic calculations these simplifications can be easily lifted.

In the second case (the temperature gradient) the energy barriers effectively change in the same way if the temperature gradient, $g_{\mathrm{T}}=\nabla_{x} T(x)$, is spatially uniform (does not depend on x) and small. Indeed, in this case the temperature $T(x)=T_{0}+g_{T} x$ depends linearly on x, and hence each rate, for small gradients, can be approximately written as

$$
\begin{equation*}
k_{i}=\nu \exp \left(-\frac{\Delta_{i}}{k_{\mathrm{B}}\left(T_{0}+g_{\mathrm{T}} x\right)}\right) \simeq \nu \exp \left(-\beta_{0} \Delta_{i}(x)\right) \tag{9}
\end{equation*}
$$

where $\beta_{0}=1 / k_{\mathrm{B}} T_{0}$ and $\Delta_{i}(x)=\Delta_{i}\left(1-g_{T} x / T_{0}\right)$ is an effective barrier that linearly depends on x. Hence, in this case the barriers Δ_{i} will change in a similar way to those in the first case: the effect of this stimulus is that the effective energy barriers in the direction of the temperature gradient (assuming $g_{\mathrm{T}}>0$, i.e. in the direction of the increase of the temperature) are increased, while those in the opposite direction reduced. Note that we assume here that $g_{\mathrm{T}} \ll T_{0} / \xi$, where ξ is a characteristic distance over which a molecule may diffuse on the surface (the length of the molecule's track) and T_{0} is the temperature in the middle of the track.

Even though in the case of the temperature gradient an effective field $E=g_{\mathrm{T}} \bar{U} / T_{0}$ can only be defined approximately via an average barrier $\bar{\Delta}$, to simplify the consideration we shall treat both cases on the same footing by assuming that an external
effective field E acts causing the following changes to the barriers: $\Delta_{1,4}=\Delta_{1,4}^{0}-a E / 4$ and $\Delta_{2,3}=\Delta_{2,3}^{0}+a E / 4$. Correspondingly, the individual rates depend on the field via $k_{\mathrm{A} \rightarrow}=k_{\mathrm{A} \rightarrow}^{0} \mathrm{e}^{\lambda_{1}}$, $k_{\mathrm{B} \rightarrow}=k_{\mathrm{B} \leftrightarrows \mathrm{e}^{0}}^{\lambda_{1}}, k_{\mathrm{A} \leftarrow}=k_{\mathrm{A} \leftarrow}^{0} \mathrm{e}^{-\lambda_{1}}$ and $k_{\mathrm{B} \leftarrow}=k_{\mathrm{B} \leftarrow}^{0} \mathrm{e}^{-\lambda_{1}}$, where $\lambda_{1}=$ $E \beta a / 4$ directly depends on the field and temperature. Clearly, as the field depends on time, so are the barriers and hence the rates. Here and in the following the zero subscript or superscript indicates the values of the quantities (e.g. barriers and rates) without the field.

In what follows, we shall consider the fields changing in time, and hence the net flux (or current) of eqn (8) becomes time dependent. To simplify our treatment, we shall consider in this work only either constant or time periodic external fields with the characteristic time T (a period in the latter case), and hence will be interested in the values of the current averaged over that time, calculated at long observation times:

$$
\begin{equation*}
j_{\mathrm{av}}=\lim _{t \rightarrow \infty} \frac{1}{\mathscr{T}} \int_{t}^{t+\mathscr{T}} j(t) \mathrm{d} t \tag{10}
\end{equation*}
$$

Eqn (5)-(10) written above enable one to calculate the average net flux exactly provided that we know how the transition rates depend on the applied field. We shall apply these equations to several types of the external field of practical interest: (i) constant, (ii) sinusoidal and (iii) shifted sinusoidal fields. Only in the first case can the net current analytically be worked out exactly, and in the latter two cases an analytical calculation can only be performed approximately in the limit of weak external fields. Still, in these two cases the results can be compared with a numerical method, based on the numerical solution of the rate eqn (4). This has been done simply by choosing a small time step τ and iterating the equation via

$$
\begin{equation*}
p_{\mathrm{A}}(t+\tau)=p_{\mathrm{A}}(t)+\left[k_{\mathrm{B}}(t)-\kappa(t) p_{\mathrm{A}}(t)\right] \tau \tag{11}
\end{equation*}
$$

where $p_{\mathrm{A}}(0)=1$, and then taking the results over long times (the stationary limit).

Even though our treatment is general, in order to be specific, the results of the analytical and numerical calculations described below are given having a realistic molecule in mind, 1,3-bis(imidazol-1-ylmethyl)-5(1-phenylethyl)benzene (or BIPEB for short), ${ }^{16}$ see the inset in Fig. 2, where its R enantiomer is shown. The molecule is adsorbed on the $\mathrm{Cu}(110)$ surface. The surface consists of parallel rows of protruding Cu atoms, and the molecule adsorbs on this surface by attaching two Cu atoms of the same Cu row with its imidazol groups serving as its feet. The diffusion of the BIPEB molecule on the surface happens preferentially along (rather than across) the rows via the inchworm mechanism ${ }^{19}$ whereby the molecule first steps with its rear and then with the front foot. Correspondingly, the PES of the molecule on the $\mathrm{Cu}(110)$ surface along a Cu row consists of a periodic repetition of a waveform comprised of two peaks as in Fig. 1 with the calculated energy barriers $\Delta_{1}^{0}=0.339 \mathrm{eV}, \Delta_{2}^{0}$ $=0.316 \mathrm{eV}, \Delta_{3}^{0}=0.170 \mathrm{eV}$ and $\Delta_{4}^{0}=0.147 \mathrm{eV} .{ }^{16}$ The lattice constant of the Cu row is $a=2.52 \AA$.

Fig. 2 The net current (in units of the rate prefactor ν) for the BIPEB molecule (inset) as a function of the constant field, λ / β, at temperature $T=$ 300 K.

3 Results and discussion

3.1 Zero and constant field

Let us first consider our system with a constant external field being applied. In this case the rates do not depend on time, and the whole calculation can be performed exactly. We obtain:

$$
\begin{equation*}
j_{\mathrm{av}}=\frac{2}{\kappa}\left(k_{\mathrm{A} \rightarrow} k_{\mathrm{B} \rightarrow}-k_{\mathrm{A} \leftarrow} k_{\mathrm{B} \leftarrow}\right) \tag{12}
\end{equation*}
$$

As stated above, according to the second law of thermodynamics, if the field is not applied, there should be no preferential direction for the molecular diffusion and hence $j_{\text {av }}$ must be equal to zero. Let us verify that this is indeed the case. Indeed, without the field, see Fig. 1, we have $\Delta_{1}^{0}+\Delta_{4}^{0}=\Delta_{2}^{0}+\Delta_{3}^{0}$, leading immediately to the identity

$$
\begin{equation*}
k_{\mathrm{A} \rightarrow}^{0} k_{\mathrm{B} \rightarrow}^{0}=k_{\mathrm{A} \leftarrow}^{0} \leftarrow k_{\mathrm{B} \leftarrow}^{0} . \tag{13}
\end{equation*}
$$

This expression is easy to understand: we have the overall rate for molecules moving to the right, $k_{\mathrm{A} \rightarrow}^{0} k_{\mathrm{B} \rightarrow}^{0}$, equal to the rate, k ${ }_{\mathrm{A} \leftarrow}^{0} k_{\mathrm{B} \leftarrow}^{0}$, for them to move to the left. As a result, $j_{\mathrm{av}}=0$ exactly. Hence, indeed the unidirectional motion is not expected at equilibrium, a well-known result ${ }^{3,9-11}$ trivially confirmed in our simple theory.

In fact, in this case we can get, over long times, the detailed balance condition, $k_{\mathrm{B}}^{0} p_{\mathrm{B}}=k_{\mathrm{A}}^{0} p_{\mathrm{A}}$, directly from eqn (3). Moreover, using the explicit expressions for the rates, one obtains:

$$
\begin{equation*}
\frac{p_{\mathrm{A}}}{p_{\mathrm{B}}}=\frac{k_{\mathrm{B}}^{0}}{k_{\mathrm{A}}^{0}}=\frac{\nu_{\mathrm{B}} \mathrm{e}^{-\beta E_{\mathrm{B}}}}{\nu_{\mathrm{A}} \mathrm{e}^{-\beta E_{\mathrm{A}}}} \tag{14}
\end{equation*}
$$

where E_{A} and E_{B} are the energies of states A and B. So, we have $p_{\mathrm{A}} \sim \mathrm{e}^{-\beta E_{\mathrm{A}}}$ and $p_{\mathrm{B}} \sim \mathrm{e}^{-\beta E_{\mathrm{B}}}$, which are the canonical distributions for these states valid at equilibrium, as expected.

When a constant field is applied, eqn (12) gives the exact result for the flux. Using identity (13) and expressions for the rates given in the section Theory, it can also be rewritten explicitly as

$$
\begin{equation*}
j_{\mathrm{av}}=2 k_{\mathrm{A} \rightarrow}^{0} k_{\mathrm{B} \rightarrow}^{0} \frac{\mathrm{e}^{2 \lambda}-\mathrm{e}^{-2 \lambda}}{\left(k_{\mathrm{A} \rightarrow}^{0}+k_{\mathrm{B} \rightarrow}^{0}\right) \mathrm{e}^{\lambda}+\left(k_{\mathrm{A} \leftarrow}^{0}+k_{\mathrm{B} \leftarrow}^{0}\right) \mathrm{e}^{-\lambda}} \tag{15}
\end{equation*}
$$

where $\lambda=E \beta a / 4$ is a constant. It is seen that the average current is not antisymmetric with respect to the change of the direction of the field, $j_{\mathrm{av}}(E) \neq-j_{\mathrm{av}}(-E)$. Only in the case of a weak external field, $\lambda \ll 1$, do we have the current

$$
\begin{equation*}
j_{\mathrm{av}} \simeq \frac{2 \beta a E}{\kappa_{0}} k_{\mathrm{A} \leftarrow}^{0} k_{\mathrm{B} \leftarrow}^{0} \tag{16}
\end{equation*}
$$

that is exactly antisymmetric, $j_{\mathrm{av}}(E)=-j_{\mathrm{av}}(-E)$, since the flux is proportional to the field. Also, for the zero field, $\lambda=0$, we immediately obtain $j_{\mathrm{av}}=0$.

As an illustration, the net current for the BIPEB molecule is shown in Fig. 2 as a function of the field. One can see that indeed the current is not exactly antisymmetric with respect to the field, which is a consequence of the PES waveform being asymmetric.

Overall, the obtained result is trivially expected: if the field tilts the PES in one direction, all identical molecules will move in the same direction.

3.2 Sinusoidal field

Consider now a more interesting case of the time-periodic sinusoidal external field $E(t)=A \sin (\omega t)$. In this case the full calculation cannot be performed analytically. However, usually the external field is considered weak. In this case an analytical calculation is in fact possible via an appropriate Taylor expansion. As a small parameter, we consider here the constant parameter $\lambda=A \beta a / 4$. The condition of $\lambda \ll 1$ corresponds to the energy $a A$ being small with respect to the thermal energy, $k_{\mathrm{B}} T$.

We shall expand in the Taylor series with respect to λ all the exponentials in eqn (5)-(10) limiting ourselves with terms up to the second order, and perform the integrations analytically. Then, a rather simple but cumbersome calculation for the probability (5) yields:

$$
\begin{equation*}
p_{\mathrm{A}}(t)=p_{\mathrm{A}}^{(0)}(t)+p_{\mathrm{A}}^{(1)}(t)+p_{\mathrm{A}}^{(2)}(t)+O\left(\lambda^{3}\right) \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{\mathrm{A}}^{(0)}(t)=\mathrm{e}^{-\kappa_{0} t}+\frac{k_{\mathrm{B}}^{0}}{\kappa_{0}}\left(1-\mathrm{e}^{-\kappa_{0} t}\right) \tag{18}
\end{equation*}
$$

is the zero order contribution,

$$
\begin{align*}
p_{\mathrm{A}}^{(1)}(t)= & \frac{\lambda \kappa_{1}^{0}}{\omega}(\cos (\omega t)-1) \mathrm{e}^{-\kappa_{0} t} \\
& +\frac{\lambda \kappa_{1}^{0} k_{\mathrm{B}}^{0}}{\omega \kappa_{0}}\left(1-\mathrm{e}^{-\kappa_{0} t}\right) \cos (\omega t) \\
& +\frac{\lambda \Delta k_{\mathrm{B}}^{0}}{\omega^{2}+\kappa_{0}^{2}}\left[\omega \mathrm{e}^{-\kappa_{0} t}-\omega \cos (\omega t)+\kappa_{0} \sin (\omega t)\right] \\
& -\frac{\lambda k_{\mathrm{B}}^{0} \kappa_{1}^{0}}{\omega\left(\omega^{2}+\kappa_{0}^{2}\right)}\left[-\kappa_{0} \mathrm{e}^{-\kappa_{0} t}+\omega \sin (\omega t)+\kappa_{0} \cos (\omega t)\right] \tag{19}
\end{align*}
$$

is the first order, and

$$
\begin{aligned}
p_{\mathrm{A}}^{(2)}(t)= & \lambda^{2} \mathrm{e}^{-\kappa_{0} t}\left\{\frac{\kappa_{1}^{0}}{\omega^{2}\left(\omega^{2}+\kappa_{0}^{2}\right)}\left(\Delta k_{\mathrm{B}}^{0} \omega^{2}+k_{\mathrm{B}}^{0} \kappa_{0} \kappa_{1}^{0}\right) \cos (\omega t)\right. \\
& -\frac{\kappa_{1}^{0}}{4 \omega^{2}\left(4 \omega^{2}+\kappa_{0}^{2}\right)}\left(4 \Delta k_{\mathrm{B}}^{0} \omega^{2}+k_{\mathrm{B}}^{0} \kappa_{0} \kappa_{1}^{0}\right) \\
& +\frac{1}{2}\left(\frac{\kappa_{1}^{0}}{\omega}\right)^{2}(\cos (\omega t)-1)^{2}+\frac{1}{4}\left(k_{\mathrm{B}}^{0}-\kappa_{0}\right)\left(t-\frac{\sin (2 \omega t)}{2 \omega}\right) \\
& \left.-\frac{k_{\mathrm{B}}^{0}}{4 \kappa_{0}}\left(\frac{\kappa_{1}^{0}}{\omega}\right)^{2}\left(2 \cos ^{2}(\omega t)+1\right)\right\} \\
& +\lambda^{2}\left\{-\frac{k_{\mathrm{B}}^{0}\left(\omega^{2}-\left(\kappa_{1}^{0}\right)^{2}\right)}{4 \omega^{2}\left(4 \omega^{2}+\kappa_{0}^{2}\right)}\left(2 \omega \sin (2 \omega t)+\kappa_{0} \cos (2 \omega t)\right)\right.
\end{aligned}
$$

$$
-\frac{4 \Delta k_{\mathrm{B}}^{0} \kappa_{1}^{0}+k_{\mathrm{B}}^{0} \kappa_{0}}{8 \omega\left(4 \omega^{2}+\kappa_{0}^{2}\right)}\left(-2 \omega \cos (2 \omega t)+\kappa_{0} \sin (2 \omega t)\right)
$$

$$
+\frac{k_{\mathrm{B}}^{0}}{8 \omega} \sin (2 \omega t)+\frac{k_{\mathrm{B}}^{0}}{4 \kappa_{0}}\left(\frac{\kappa_{1}^{0}}{\omega}\right)^{2}\left(2 \cos ^{2}(\omega t)+1\right)
$$

$$
+\frac{\kappa_{1}^{0}}{\omega^{2}\left(\omega^{2}+\kappa_{0}^{2}\right)} \cos (\omega t)\left[\Delta k_{\mathbf{B}}^{0} \omega\left(-\omega \cos (\omega t)+\kappa_{0} \sin (\omega t)\right)\right.
$$

$$
\begin{equation*}
\left.\left.-k_{\mathrm{B}}^{0} \kappa_{1}^{0}\left(\omega \sin (\omega t)+\kappa_{0} \cos (\omega t)\right)\right]\right\} \tag{20}
\end{equation*}
$$

is the second order contribution. The following new combinations of the rates have been introduced:

$$
\begin{equation*}
\kappa_{1}^{0}=\Delta k_{\mathrm{B}}^{0}+\Delta k_{\mathrm{A}}^{0}=\left(k_{\mathrm{B} \rightarrow}^{0}-k_{\mathrm{B} \leftarrow}^{0}\right)+\left(k_{\mathrm{A} \rightarrow}^{0}-k_{\mathrm{A} \leftarrow}^{0}\right) \tag{21}
\end{equation*}
$$

with $\Delta k_{\mathrm{B}}^{0}=k_{\mathrm{B} \rightarrow}^{0}-k_{\mathrm{B} \leftarrow}^{0}$ and $\Delta k_{\mathrm{A}}^{0}=k_{\mathrm{A}}^{0} \rightarrow-k_{\mathrm{A} \leftarrow}^{0}$.
As we are interested in the net current over long times, the exponentially decaying terms in the expressions above can be omitted. Expanding the rates in eqn (8) up to the second order with respect to λ as well and substituting the terms from $p_{\mathrm{A}}(t)$ that remain at long times, we obtain after some lengthy but simple algebra the current as a sum of three contributions. In the zeroth order

$$
\begin{equation*}
j^{(0)}(t)=\Delta k_{\mathrm{B}}^{0}+\frac{k_{\mathrm{B}}^{0}}{\kappa_{0}}\left(\Delta k_{\mathrm{A}}^{0}-\Delta k_{\mathrm{B}}^{0}\right)=\frac{2}{\kappa_{0}}\left(k_{\mathrm{B} \rightarrow} k_{\mathrm{A} \rightarrow}-k_{\mathrm{B} \leftarrow} k_{\mathrm{A} \leftarrow}\right)=0 \tag{22}
\end{equation*}
$$

i.e. we obtain a zero contribution. The identity (13) has been used in the last passage. This result is to be expected as in this order of the theory the situation is equivalent to having no external field; this also corresponds to the situation of eqn (12) and the zero field.

The expression for the current in the first order reads, in the long time limit:

$$
\begin{align*}
j^{(1)}(t)= & \lambda\left[k_{\mathrm{B}}^{0}+\frac{k_{\mathrm{B}}^{0}}{\kappa_{0}}\left(k_{\mathrm{A}}^{0}-k_{\mathrm{B}}^{0}\right)\right] \sin (\omega t) \tag{23}\\
& +p_{\mathrm{A}}^{(1) \infty}(t)\left(\Delta k_{\mathrm{A}}^{0}-\Delta k_{\mathrm{B}}^{0}\right)
\end{align*}
$$

where $k_{\mathrm{A}}^{0}=k_{\mathrm{A} \rightarrow+}^{0}+k_{\mathrm{A} \leftarrow}^{0}$ and $p_{\mathrm{A}}^{(1) \infty}(t)$ is the part of the expression in eqn (19) that survives at long times. It is easy to see that the terms that remain at long times in eqn (19) for $p_{\mathrm{A}}^{(1) \infty}(t)$ are all proportional to sine and cosine functions of ωt. Consequently, the whole expression for the current (23) in the first order contains only terms proportional to these functions. Hence, when averaging the expression for the current via eqn (10) over the period $\mathrm{T}=2 \pi / \omega$ of the external sinusoidal field, the total contribution to the average current from the first order with respect to λ vanishes, $j_{\mathrm{av}}^{(1)}(t)=0$.

Therefore, at long times the first non-vanishing term is of the second order:

$$
\begin{align*}
j^{(2)}(t)= & \frac{\lambda^{2}}{2} \sin ^{2}(\omega t) j^{(0)}(t)+\lambda p_{\mathrm{A}}^{(1) \infty}(t)\left(k_{\mathrm{A}}^{0}-k_{\mathrm{B}}^{0}\right) \sin (\omega t) \tag{24}\\
& +p_{\mathrm{A}}^{(2) \infty}(t)\left(\Delta k_{\mathrm{A}}^{0}-\Delta k_{\mathrm{B}}^{0}\right)
\end{align*}
$$

where $p_{A}^{(2) \infty}(t)$ is the part of eqn (20) that survives at long times. Substituting the obtained expression into eqn (10) and averaging over the period T of the field, one obtains the final expression for the net flux:

$$
\begin{equation*}
j_{\mathrm{av}}^{(2)}=\frac{4 \lambda^{2} \kappa_{0}^{2}}{\kappa_{0}^{2}+\omega^{2}} K_{\text {asymm }} \tag{25}
\end{equation*}
$$

Here we defined a quantity of special interest, the asymmetry coefficient,

$$
\begin{align*}
K_{\text {asymm }} & =\frac{1}{\kappa_{0}^{3}}\left(k_{\mathrm{B} \rightarrow}^{0} k_{\mathrm{A} \leftarrow}^{0}-k_{\mathrm{A} \rightarrow}^{0} k_{\mathrm{B} \leftarrow}^{0}\right)\left(k_{\mathrm{A} \rightarrow}^{0} k_{\mathrm{A} \leftarrow}^{0}-k_{\mathrm{B} \rightarrow}^{0} k_{\mathrm{B} \leftarrow}^{0}\right) \\
& =\frac{1}{\kappa_{0}^{3}} \frac{k_{\mathrm{A} \leftarrow}^{0}}{k_{\mathrm{B} \leftarrow}^{0}}\left(\left(k_{\mathrm{B} \rightarrow}^{0}\right)^{2}-\left(k_{\mathrm{B} \leftarrow}^{0}\right)^{2}\right)\left(\left(k_{\mathrm{A} \rightarrow}^{0}\right)^{2}-\left(k_{\mathrm{B} \leftarrow}^{0}\right)^{2}\right) \tag{26}
\end{align*}
$$

that only depends on the shape of the PES waveform. Identity (13) has been used in the second passage. The obtained expression is the leading term in the total net flux for the sinusoidal external field.

The current is proportional to the asymmetry coefficient that contains a product of two terms in the brackets. These terms may each change their sign depending on the shape of the PES waveform thereby affecting the overall sign of the current (and hence the direction of the net flux). To facilitate our analysis, it is convenient, using explicit expressions for the rates, to

1 rearrange the asymmetry coefficient:

$$
\begin{equation*}
K_{\text {asymm }}=\frac{\nu^{2}}{\kappa_{0}^{3}} k_{\mathrm{A} \leftarrow}^{0} k_{\mathrm{B} \leftarrow}^{0} \leftarrow\left(\mathrm{e}^{-2 \beta E_{\mathrm{TS}_{2}}}-\mathrm{e}^{-2 \beta E_{\mathrm{TS}_{1}}}\right)\left(\mathrm{e}^{2 \beta E_{\mathrm{A}}}-\mathrm{e}^{2 \beta E_{\mathrm{B}}}\right) \tag{27}
\end{equation*}
$$

5 It is seen then that $K_{\text {asymm }}$ vanishes if either the energies at the minima, $E_{\mathrm{A}}=E_{\mathrm{B}}$, or the energies of the transition states, $E_{\mathrm{TS}_{1}}=$ $E_{\mathrm{TS}_{2}}$ (see Fig. 1), are equal. Hence, at this level of theory there is no current if the PES waveform possesses this spatial symmetry. It is also interesting to notice that only one (any) of these two conditions is sufficient for the current to vanish.

The other point worth discussing is the direction of the current. It is determined exclusively by the sign of the asymmetry coefficient, which, in turn, is defined by the combined sign of the two brackets in eqn (26) or (27). To simplify our analysis, let us assume that $E_{\mathrm{A}}<E_{\mathrm{B}}$ (one can always choose the lower of the two minima to be A), so that the second bracket is negative. Therefore, the direction of the net current is basically determined by the relative values of the transition state energies: if $E_{\mathrm{TS}_{1}}<E_{\mathrm{TS}_{2}}$, then $K_{\text {asymm }}>0$ and the current flows to the right, while if $E_{\mathrm{TS}_{1}}>E_{\mathrm{TS}_{2}}$ the asymmetry coefficient $K_{\text {asymm }}$ <0 and it flows to the left. The full dependence of the asymmetry coefficient on the shape of the PES waveform is shown in Fig. 3(a), clearly demonstrating the areas of positive (red) and negative (blue) regions. The expected increase of
$25 K_{\text {asymm }}$ with temperature is demonstrated for the BIPEB molecule in Fig. 3(b).

Clearly, molecules that are not symmetric upon a 180° rotation about a vertical axis and with their PES waveforms related to each other by a mirror reflection in a plane perpendicular to the Cu rows and the surface will diffuse in opposite directions along the rows, when oriented differently. ${ }^{16}$

The dependence of the net current on the frequency of the field and on the temperature is shown in Fig. 4 for both the
analytical and (exact) numerical calculations. It can be seen that the analytical formula (25) yields almost exact results for amplitudes $A \leq 0.02 \mathrm{eV}$; deviations from the exact result start to be noticeable at larger amplitudes. If the external field is strong, $A \gg k_{\mathrm{B}} T$, transitions in the opposite direction of A become irrelevant, and the net current increases exponentially with respect to A. However, even for large A values the general trend of the current is correctly reproduced for both dependencies by our analytical result obtained in the second order with respect to the field: the current is the largest in the limit of the slowly changing field, $\omega \rightarrow 0$, reaching the value of $j_{\text {av }}(\omega \rightarrow 0)=$ $4 \lambda^{2} K_{\text {asymm }}$, and then decaying to zero at larger frequencies as $1 /$ ω^{2}, while the current increases with temperature, as expected. Concerning the latter dependence, it appears that, compared to the exact results, at small T the current is underestimated by the analytical result and the T dependence is steeper towards higher T than it should be.

3.3 Shifted sinusoidal field

Here we shall consider the external field of the form $E(t)=$ $A[\sin (\omega t)+\delta]$ with a constant shift defined by the dimensionless constant $0 \leq \delta<1$. This external stimulus combines oscillating and constant contributions.

A calculation similar to that for the sinusoidal field gives the same expression (18) for the zero order probability. The first and second order expressions valid at long times are obtained, after some trivial but tedious calculations, as:

$$
\begin{align*}
p_{\mathrm{A}}^{(1) \infty}(t)= & \frac{\Delta k_{\mathrm{B}}^{0} \kappa_{0}-k_{\mathrm{BA}}^{0} \kappa_{1}^{0}}{\kappa_{0}^{2}\left(\kappa_{0}^{2}+\omega^{2}\right)}\left[\delta\left(\kappa_{0}^{2}+\omega^{2}\right)\right. \tag{28}\\
& \left.+\kappa_{0}\left(-\omega \cos (\omega t)+\kappa_{0} \sin (\omega t)\right)\right]
\end{align*}
$$

Fig. 5 Dependence of the average current (in units of the rate prefactor ν) on the shift parameter δ at $T=300 \mathrm{~K}$ and $\omega=10^{-7} \nu$ for the sinusoidal external field $E=A[\sin (\omega t)+\delta]$ for several oscillation amplitudes A (as indicated). The full curves correspond to the numerical solution of the rate equations and therefore represent exact results valid for any field strength (oscillation amplitudes), while the dashed lines correspond to the analytical result obtained by the sum of the contributions from eqn (30) and (31) that is valid for weak fields (small amplitudes).
amplitude A against external load $A \delta$. The average power P generated by the diffusing BIPEB molecules was calculated and shown in Fig. 6(b), where $P=j_{\mathrm{av}} \Delta U$ and $\Delta U=a A \delta$ is the change of the potential energy of the molecule after diffusing by one lattice constant. At a given oscillation amplitude, the power
output increases when the load increases before it reaches a maximum and then starts falling back to zero. At a heavier load, a greater oscillation amplitude would be required for the Brownian motor to function as expected.

3.4 Resolution of chiral molecules

Above we have considered, using both the exact numerical and the approximate analytical methods, the behaviour of the molecular net current for various parameters, such as the shape of the PES of the molecule, the type and strength of the external field, and the temperature. We find that under certain conditions the identical molecules would move preferentially unidirectionally in one or the other direction. When a constant field and a sinusoidal field are applied at the same time, the signs of both the constant component and of the asymmetry coefficient $K_{\text {asymm }}$ determine the eventual direction in which the molecules would move. An interesting observation is, given that two different types of molecules are present on the surface (i.e. of different PES waveforms), it is possible to find a field upon which the molecules can be separated, i.e. when one type of molecule moves to the right and the other to the left.

We found above that under a sinusoidal field different molecules would move in opposite directions if their asymmetry coefficients (determined by the shapes of their respective PES waveforms) have different signs (otherwise, they would move in the same direction, albeit at different speeds). If the oscillating field has a shift component, however, the diffusion in opposite directions is possible by a careful choice of the field. The BIPEB molecule considered so far actually has two enantiomers, R and S. The calculations presented above were done only for the R enantiomer. To illustrate a possibility of the separation of different molecules, we shall compare here the

(a)

(b) e

(d)
 to break the thermal equilibrium and an asymmetry of the PES of the molecule on the surface are the necessary ingredients for the unidirectional motion, in complete agreement with previous studies. ${ }^{3,9-11}$ Our calculations show that a constant field would provide the unidirectional motion for molecules with different PESs, an oscillating field of zero mean may only separate the molecules if the asymmetry coefficients of their PES are of different signs (one molecule has the first peak in its PES higher than the second and the other way round for the second molecule), while the shifted oscillating field is capable of separating the two molecules on the surface even if their PESs are quite similar. This study can be easily generalised to a more complex PES containing more than two peaks in the PES waveform.

Our simple rate equation method based on the known PES waveforms of the molecules, which can routinely be calculated nowadays using ab initio methods, can be applied to realistic molecules and surfaces. For weak fields (the case most likely in practical applications) an analytical result is available for sinusoidal and shifted sinusoidal fields, which enables one to analyse different molecules without performing any numerical kinetic calculations in terms of their possible unidirectional motion. In the cases of strong fields or fields for which the analytical solution is problematic, it is demonstrated that trivial and cheap numerical simulations of the developed kinetic equations are routinely possible. Conversely, one may wish to synthesize molecules in such a way that, apart from a useful function they are designed for, they would also possess the desired diffusion PES that corresponds to the specific stimuli to be applied ensuring their unidirectional motion. The formulae developed above may prove to be useful in this case.

We hope that this paper will be useful for researchers working in the field of molecular surface physics and chemistry, and that it would stimulate further studies, especially experimental ones, aiming at providing unidirectional diffusion of molecules on surfaces using the considered Brownian ratchet mechanism.
${ }^{40}$ Conflicts of interest
There are no conflicts to declare.

Acknowledgements

H. S. would like to thank the support from the National Natural Science Foundation of China (Grant No. 21603086) and the

China Scholarship Council (Grant No. 201608420186). J. M. R. thanks the Spanish MINECO and FICYT for financial support (Projects CTQ2015-67755-C2-2-R, FC-GRUPIN-IDI/2018/000177) and Universidad de Oviedo and Banco Santander-Universidad Oviedo for a mobility grant to visit King's College London. This work was also in part supported by the UK EPSRC grant EP/ J019844/1.

References

1 M. Schliwa and G. Woehlke, Nature, 2003, 422, 759-765.
2 S. Erbas-Cakmak, D. A. Leigh, C. T. McTernan and A. L. Nussbaumer, Chem. Rev., 2015, 115, 10081-10206.

3 P. Hänggi and F. Marchesoni, Rev. Mod. Phys., 2009, 81, 387-442.
4 R. D. Vale, T. Funatsu, D. W. Pierce, L. Romberg, Y. Harada and T. Yanagida, Nature, 1996, 380, 451-453.
5 R. Sellers and C. Veigel, Curr. Opin. Cell Biol., 2006, 18, 68-73.
6 K. Oiwa and H. Sakakibara, Curr. Opin. Cell Biol., 2005, 17, 98-103.
7 D. Jülicher, A. Ajdari and J. Prost, Rev. Mod. Phys., 1997, 69, 1269.
8 A. Parmeggiani, D. Jülicher, A. Ajdari and J. Prost, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1999, 60, 2127.
9 M. O. Magnasco, Phys. Rev. Lett., 1993, 71, 1477-1481.
10 P. Reimann, Phys. Rep., 2002, 361, 57-265.
11 P. Reinmann and P. Hänggi, Appl. Phys. A: Mater. Sci. Process., 2002, 75, 169-178.
12 B. Robertson and R. D. Astumian, Biophys. J., 1990, 58, 969-974.
13 J. Neumann, K. E. Gottschalk and R. D. Astumian, ACS Nano, 2012, 6, 5242-5248.
14 A. Pérez-Madrid, J. Rubí and M. P. , Phys. A, 1994, 212, 231-238.
15 S. Wiegand, J. Phys.: Condens. Matter, 2004, 16, R357-R379.
16 D. Abbasi-Pérez, H. Sang, L. Pérez-García, A. Floris, D. B. Amabilino, R. Raval, J. M. Recio and L. Kantorovich, Chem. Sci., 2019, 10, 5864-5874.
17 G. H. Vineyard, J. Phys. Chem. Solids, 1957, 3, 121.
18 A. Nitzan, Chemical Dynamics in Condensed Phases: Relaxation, Transfer, and Reactions in Condensed Molecular Systems, Oxford University Press, 2014.
19 S. Haq, B. Wit, H. Sang, A. Floris, Y. Wang, J. Wang, L. PérezGarcía, L. Kantorovich, D. B. Amabilino and R. Raval, Angew. Chem., Int. Ed., 2015, 54, 7101-7105.

