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Q1Externally driven Q2molecular ratchets on a periodic
potential surface: a rate equation approach

Hongqian Sang, *a David Abbasi-Pérez, b José Manuel Recio c and
Lev Kantorovich b

The long time dynamics of molecular ratchets on a 1D periodic potential energy surface (PES) subjected

to an external stimulus is studied using the rate equation method. The PES consisting of repeated

waveforms made of two peaks is considered as an example of a spatially symmetric or asymmetric PES.

This PES may, for example, correspond to diffusion of a bipedal molecule that moves along an atomic

track via an inchworm walk mechanism [Raval et al., Angew. Chem., Int. Ed., 2015, 54, 7101].

Generalisation to a PES consisting of an arbitrary number of peaks of various heights is straightforward.

Assuming the validity of the transition state theory (TST) for the calculation of the transition rates

between neighbouring potential wells, the probability of occupying each type of potential well on the

PES is obtained analytically, and then the net current for the molecules to move preferentially in a

particular direction under application of external fields over a long time is derived. Note that different to

methods based on solving numerically the corresponding Fokker–Plank equation, our method is entirely

analytical in the limit of weak external fields. The results of the analytical calculations are compared with

the exact numerical solution of the derived rate equations. The following external stimuli are considered:

constant, sinusoidal and shifted sinusoidal fields due to either a spatially uniform thermal gradient or an

electrostatic field. The possible applications of the method for extracting energy from the Brownian

motion under load and separating molecules of different chiralities on the surface are also discussed.

1 Introduction

Various applications such as purification of mixtures, separa-
tion of molecules, sensors, etc. require the development of new
methods for controlling molecular diffusion on surfaces. This
direction of research is attributed to an exciting field of
molecular motors or ratchets,1–3 which has become a topic of
significant interest in chemistry and physics. Notable examples
of such ratchets are molecular motors such as kinesin,4

myosin5 or dynein6 that, driven by a chemical reaction, can
walk along one-dimensional tracks in the cells performing
specific tasks.7,8 Many more examples of such ratchets are
known (see the reviews cited above) in both organic and
inorganic sciences where the unidirectional motion of the
ratchets is stimulated by external fields, temperature gradient,
light, chemical reactions or a combination of these.

Fundamental principles governing the diffusion of mole-
cules under different external stimuli (or the absence of these)

are well understood.3,9–11 In thermal equilibrium a Brownian
particle placed in the 1D periodic potential of a lattice would
diffuse in both directions (to the ‘right’ and ‘left’) with the same
probability. This statement is valid no matter whether the
waveform, the repetition of which comprises the corresponding
potential energy surface (PES), is spatially symmetric or asym-
metric. This is due to the principle of detailed balance, as
otherwise the second law of thermodynamics would be vio-
lated. To enforce diffusion in a particular direction and there-
fore create a unidirectional net transport, one has to break the
thermal equilibrium, e.g., by applying an external stimulus
such as external fields12,13 or temperature fluctuations.14,15 If Q5

the external stimulus is time-dependent and of zero mean,
however, the unidirectional movement requires a broken spa-
tial symmetry, e.g. manifested by asymmetric periodic wave-
forms in the PES.

To the best of our knowledge, mainly the Fokker–Plank
equation method3,10 has been used in theoretical studies on
Brownian ratchets. Apart from some simple examples, investi-
gations of specific external fields require numerical solutions of
this partial differential equation. Recently we proposed a
kinetic Monte Carlo approach to study Brownian molecular
ratchets on surfaces16 which has the advantage of considering
realistic molecules and surfaces at a reasonable computational
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time. In this paper we propose an alternative approach, a
simple method based on rate equations, which is numerically
even more advantageous. Moreover, for an external field of an
oscillatory time dependence this new method provides an
analytical expression for the net current assuming that the
perturbation due to the field can be considered perturbatively,
i.e. the field is ‘weak’ as compared to the characteristic energy
barriers in the system and the thermal energy kBT. In this way
more complex time dependencies may also be in reach. Having
an analytical solution enables one to analyse the behaviour of
molecules on surfaces directly, without performing numerical
calculations, based entirely on the shape of their PES. The
analytical solutions are compared with the (exact) numerical
solutions which can be used for any strength of the field.

In the next section we present our general theory, while in
the following section various examples of the external field are
considered, expressions for the net current are derived and
appropriate numerical simulations are presented. Then a dis-
cussion is given, and we end with conclusions.

2 Theory

Consider a 1D potential energy surface (PES) composed of an
infinite repetition of identical waveforms each consisting of two
peaks, Fig. 1. This PES can be viewed as an infinite repetition of
two potential energy minima, A (the ground state) and B (the
metastable state). A consideration of more complicated wave-
forms containing more than two peaks is straightforward and is
not discussed here. Within the Harmonic Transition State
Theory (HTST),17,18 the transition rate for jumping from A to
B in the direction to the right is kA- = nA exp(�bD1), while in the
direction to the left it is kA’ = nA exp(�bD2). Similarly, the rate
for jumping to either of the two A states to the right and to the
left from the state B is kB- = nB exp(�bD4) and kB’ = nB

exp(�bD3), respectively. Here nA and nB are the prefactors
(attempt frequencies), b = 1/kBT the inverse temperature, and
Di (i = 1,. . .,4) the energy barriers that are shown in Fig. 1. Note
that a spatially asymmetric waveform requires, within the
HTST, at least two peaks to be present. Such a PES corresponds,
e.g., to a bipedal molecule diffusing along a single direction by
means of the inchworm mechanism,16,19 so that the first peak
(to the right from A to B) corresponds to the molecule stepping

with its back ‘foot’ to the right, while the second peak corre-
sponds to the front ‘foot’ stepping in the same direction,
thereby displacing the molecule by one lattice constant.

We are interested here in studying the time evolution of
molecules initially distributed somewhere on the 1D lattice of
these periodic potential wells. Let pA,i(t) and pB,i(t) be the
probabilities to find the molecule in the wells A and B of the
waveform i, respectively. Then, the rate equations for the
dynamics of the molecule read:

:
pA,i = kB-pB,i�1 + kB’pB,i � (kA- + kA’)pA,i (1)

:pB,i = �(kB- + kB’)pB,i + kA-pA,i + kA’pA,i+1 (2)

where the dot above a letter corresponds to the time derivative.
This set of equations is infinite as it is to be written for each
waveform i. The overall probabilities of sites A and B are given
by the sums pAðtÞ ¼

P
i

pA;iðtÞ and pBðtÞ ¼
P
i

pB;iðtÞ. Their equa-
tions of motion are obtained by summing up the equations
above for each value of i:

:
pA = kBpB � kApA and :

pB = �kBpB + kApA (3)

where kB = kB- + kB’ and kA = kA- + kA’ are the corresponding
escape rates from states B and A, respectively. As expected, pA +
pB does not depend on time and is equal to one. Correspond-
ingly, the above equations can be written as a single equation

:
pA + k(t)pA = kB (4)

whose solution, satisfying the initial condition pA(0) = 1,
corresponding to the molecules being initially on site A (at
long times the choice of the initial condition is not
important), is:

pAðtÞ ¼ exp �
ðt
0

k tð Þdt
� �

þ
ðt
0

kB t0ð Þ exp �
ðt
t0
k tð Þdt

� �
dt0 (5)

where

k(t) = kA + kB = kA- + kA’ + kB- + kB’ (6)

Note that a different initial condition would correspond to a
non-unit prefactor to the first (exponential) term in the right
hand side of the solution for pA(t), which at long times
disappears anyway.

The net flux (current) of the molecules to the right can be
calculated as a difference of the fluxes to the right and to
the left,

j- = pAkA- + pBkB- and j’ = pAkA’ + pBkB’

(7)

and is given by:

jðtÞ ¼ j!ðtÞ � j ðtÞ

¼ kB! � kB ð Þ þ kA! � kA � kB! þ kB ð ÞpA
(8)

where the identity pA + pB = 1 has been used. If the net flux is
positive, the molecules on average move preferentially to the
right, if negative, to the left.

Note that the energy barriers Di depend on the external
stimulus applied to the system and, in particular, will depend
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Fig. 1 The 1D PES considered here consists of periodically repeated
waveforms (blue). Each waveform is composed of two peaks of (generally)
different heights with energy barriers from D1 to D4. Each waveform is
numbered by the index i and has two distinct energy minima designated as
A and B.
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on time if the external stimulus is time dependent. Two types of
such stimuli can be easily simulated: (i) an electrostatic field
and (ii) a temperature gradient.16

In the first case the molecule is to be charged and then a
spatially uniform electric field E(t) (in units of energy over
distance) would create an additional electrostatic potential,
DU(x,t) = �E(t)x, changing linearly with the coordinate x along
our 1D system. This extra potential will affect the energy
barriers in a certain way, as it would tilt the PES one way or
another, depending on the field direction. Indeed, the energies
of the minima A and B and of the saddle points TS1 and TS2 will
be modified. This in turn will affect the values of the energy
barriers as clearly the energies at the minima and the saddle
points will be shifted by different amounts. To be more specific,
we choose one waveform in which the positions of state A, the
saddle point between A and B, state B, and the saddle point
between B and the next A (in the direction to the right in Fig. 1)
are x = 0, a/4, a/2, 3a/4 and a, respectively, where a is the
distance between two nearest minima A (the lattice constant).
Then the relative shift of the first saddle point to the right of A
at x = 0 is�aE/4, the minimum B is shifted by�aE/2, and so on.
It is easy to see then that the following expressions for the
energy barriers in the presence of the field are obtained: D1 = D0

1

� aE/4, D2 = D0
2 + aE/4, D3 = D0

3 + aE/4 and D4 = D0
4 � aE/4, where

D0
i are the barriers without the field. We observe that the effect

of the field is such that the barriers in the direction of the field
are reduced, while in the opposite direction they are increased.
For simplicity, we shall consider the prefactors to the four rates
identical and equal to n; and we shall also assume that they are
not affected by the field as the effect of the energy barriers on
the rates is much more important than that of the prefactors. In
realistic calculations these simplifications can be easily lifted.

In the second case (the temperature gradient) the energy
barriers effectively change in the same way if the temperature
gradient, gT = rxT(x), is spatially uniform (does not depend on
x) and small. Indeed, in this case the temperature T(x) = T0 + gTx
depends linearly on x, and hence each rate, for small gradients,
can be approximately written as

ki ¼ n exp �
Di

kB T0 þ gTxð Þ

� �
’ n exp �b0DiðxÞð Þ (9)

where b0 = 1/kBT0 and Di(x) = Di(1 � gTx/T0) is an effective
barrier that linearly depends on x. Hence, in this case the
barriers Di will change in a similar way to those in the first case:
the effect of this stimulus is that the effective energy barriers in
the direction of the temperature gradient (assuming gT 4 0, i.e.
in the direction of the increase of the temperature) are
increased, while those in the opposite direction reduced. Note
that we assume here that gT { T0/x, where x is a characteristic
distance over which a molecule may diffuse on the surface (the
length of the molecule’s track) and T0 is the temperature in the
middle of the track.

Even though in the case of the temperature gradient an
effective field E = gT

�D/T0 can only be defined approximately via

an average barrier �D, to simplify the consideration we shall treat
both cases on the same footing by assuming that an external

effective field E acts causing the following changes to the
barriers: D1,4 = D0

1,4 � aE/4 and D2,3 = D0
2,3 + aE/4. Correspond-

ingly, the individual rates depend on the field via kA! ¼ k0A!e
l1 ,

kB! ¼ k0B!e
l1 , kA ¼ k0A e

�l1 and kB ¼ k0B e
�l1 , where l1 =

Eba/4 directly depends on the field and temperature. Clearly, as
the field depends on time, so are the barriers and hence the
rates. Here and in the following the zero subscript or superscript
indicates the values of the quantities (e.g. barriers and rates)
without the field.

In what follows, we shall consider the fields changing in
time, and hence the net flux (or current) of eqn (8) becomes
time dependent. To simplify our treatment, we shall consider in
this work only either constant or time periodic external fields
with the characteristic time T (a period in the latter case), and
hence will be interested in the values of the current averaged
over that time, calculated at long observation times:

jav ¼ lim
t!1

1

T

ðtþT
t

jðtÞdt (10)

Eqn (5)–(10) written above enable one to calculate the
average net flux exactly provided that we know how the transi-
tion rates depend on the applied field. We shall apply these
equations to several types of the external field of practical
interest: (i) constant, (ii) sinusoidal and (iii) shifted sinusoidal
fields. Only in the first case can the net current analytically be
worked out exactly, and in the latter two cases an analytical
calculation can only be performed approximately in the limit of
weak external fields. Still, in these two cases the results can be
compared with a numerical method, based on the numerical
solution of the rate eqn (4). This has been done simply by
choosing a small time step t and iterating the equation via

pA(t + t) = pA(t) + [kB(t) � k(t)pA(t)]t (11)

where pA(0) = 1, and then taking the results over long times (the
stationary limit).

Even though our treatment is general, in order to be specific,
the results of the analytical and numerical calculations
described below are given having a realistic molecule in mind,
1,3-bis(imidazol-1-ylmethyl)-5(1-phenylethyl)benzene (or BIPEB
for short),16 see the inset in Fig. 2, where its R enantiomer is
shown. The molecule is adsorbed on the Cu(110) surface. The
surface consists of parallel rows of protruding Cu atoms, and
the molecule adsorbs on this surface by attaching two Cu atoms
of the same Cu row with its imidazol groups serving as its feet.
The diffusion of the BIPEB molecule on the surface happens
preferentially along (rather than across) the rows via the
inchworm mechanism19 whereby the molecule first steps with
its rear and then with the front foot. Correspondingly, the PES
of the molecule on the Cu(110) surface along a Cu row consists
of a periodic repetition of a waveform comprised of two peaks
as in Fig. 1 with the calculated energy barriers D0

1 = 0.339 eV, D0
2

= 0.316 eV, D0
3 = 0.170 eV and D0

4 = 0.147 eV.16 The lattice
constant of the Cu row is a = 2.52 Å.
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3 Results and discussion
3.1 Zero and constant field

Let us first consider our system with a constant external field
being applied. In this case the rates do not depend on time, and
the whole calculation can be performed exactly. We obtain:

jav ¼
2

k
kA!kB! � kA kB ð Þ (12)

As stated above, according to the second law of thermody-
namics, if the field is not applied, there should be no prefer-
ential direction for the molecular diffusion and hence jav must
be equal to zero. Let us verify that this is indeed the case.
Indeed, without the field, see Fig. 1, we have D0

1 + D0
4 = D0

2 + D0
3,

leading immediately to the identity

k0
A-k0

B- = k0
A’k0

B’. (13)

This expression is easy to understand: we have the overall rate
for molecules moving to the right, k0

A-k0
B-, equal to the rate, k

0
A’k0

B’, for them to move to the left. As a result, jav = 0 exactly.
Hence, indeed the unidirectional motion is not expected at
equilibrium, a well-known result3,9–11 trivially confirmed in our
simple theory.

In fact, in this case we can get, over long times, the detailed
balance condition, k0

BpB = k0
ApA, directly from eqn (3). Moreover,

using the explicit expressions for the rates, one obtains:

pA

pB
¼ k0B

k0A
¼ nBe

�bEB

nAe�bEA
(14)

where EA and EB are the energies of states A and B. So, we have
pA B e�bEA and pB B e�bEB, which are the canonical distribu-
tions for these states valid at equilibrium, as expected.

When a constant field is applied, eqn (12) gives the exact
result for the flux. Using identity (13) and expressions for the
rates given in the section Theory, it can also be rewritten
explicitly as

jav ¼ 2k0A!k
0
B!

e2l � e�2l

k0A! þ k0B!
� �

el þ k0A þ k0B 
� �

e�l
(15)

where l = Eba/4 is a constant. It is seen that the average current
is not antisymmetric with respect to the change of the direction
of the field, jav(E) a �jav(�E). Only in the case of a weak
external field, l { 1, do we have the current

jav ’
2baE
k0

k0A k
0
B (16)

that is exactly antisymmetric, jav(E) = �jav(�E), since the flux is
proportional to the field. Also, for the zero field, l = 0, we
immediately obtain jav = 0.

As an illustration, the net current for the BIPEB molecule is
shown in Fig. 2 as a function of the field. One can see that
indeed the current is not exactly antisymmetric with respect to
the field, which is a consequence of the PES waveform being
asymmetric.

Overall, the obtained result is trivially expected: if the field
tilts the PES in one direction, all identical molecules will move
in the same direction.

3.2 Sinusoidal field

Consider now a more interesting case of the time-periodic
sinusoidal external field E(t) = A sin(ot). In this case the full
calculation cannot be performed analytically. However, usually
the external field is considered weak. In this case an analytical
calculation is in fact possible via an appropriate Taylor expan-
sion. As a small parameter, we consider here the constant
parameter l = Aba/4. The condition of l { 1 corresponds to
the energy aA being small with respect to the thermal energy,
kBT.

We shall expand in the Taylor series with respect to l all the
exponentials in eqn (5)–(10) limiting ourselves with terms up to
the second order, and perform the integrations analytically.
Then, a rather simple but cumbersome calculation for the
probability (5) yields:

pA(t) = p(0)
A (t) + p(1)

A (t) + p(2)
A (t) + O(l3) (17)

where

p
ð0Þ
A ðtÞ ¼ e�k0t þ k0B

k0
1� e�k0tð Þ (18)
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Fig. 2 The net current (in units of the rate prefactor n) for the BIPEB
molecule (inset) as a function of the constant field, l/b, at temperature T =
300 K.
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is the zero order contribution,

p
ð1Þ
A ðtÞ ¼

lk01
o

cos otð Þ � 1ð Þe�k0t

þ lk01k
0
B

ok0
1� e�k0tð Þ cos otð Þ

þ lDk0B
o2 þ k02

oe�k0t � o cos otð Þ þ k0 sin otð Þ½ �

� lk0Bk
0
1

o o2 þ k02ð Þ �k0e
�k0t þ o sin otð Þ þ k0 cos otð Þ½ �

(19)

is the first order, and

p
ð2Þ
A ðtÞ ¼ l2e�k0t

k01
o2 o2 þ k02ð Þ Dk

0
Bo

2 þ k0Bk0k
0
1

� �
cos otð Þ

�

� k01
4o2 4o2 þ k02ð Þ 4Dk

0
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2 þ k0Bk0k
0
1

� �

þ 1

2
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� �2

cos otð Þ � 1ð Þ2þ1
4
k0B � k0
� �

t� sin 2otð Þ
2o

� �

� k0B
4k0

k01
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� �2

2 cos2 otð Þ þ 1
� �)

þ l2 �
k0B o2 � k01

� �2� �
4o2 4o2 þ k02ð Þ 2o sin 2otð Þ þ k0 cos 2otð Þð Þ

8<
:

� 4Dk0Bk
0
1 þ k0Bk0

8o 4o2 þ k02ð Þ �2o cos 2otð Þ þ k0 sin 2otð Þð Þ

þ k0B
8o

sin 2otð Þ þ k0B
4k0

k01
o

� �2

2cos2 otð Þ þ 1
� �

þ k01
o2 o2 þ k02ð Þ cos otð Þ Dk0Bo �o cos otð Þ þ k0 sin otð Þð Þ

	
� k0Bk

0
1 o sin otð Þ þ k0 cos otð Þð Þ


�
(20)

is the second order contribution. The following new combina-
tions of the rates have been introduced:

k0
1 = Dk0

B + Dk0
A = (k0

B- � k0
B’) + (k0

A- � k0
A’) (21)

with Dk0
B = k0

B- � k0
B’ and Dk0

A = k0
A- � k0

A’.
As we are interested in the net current over long times, the

exponentially decaying terms in the expressions above can be
omitted. Expanding the rates in eqn (8) up to the second order
with respect to l as well and substituting the terms from pA(t)
that remain at long times, we obtain after some lengthy but
simple algebra the current as a sum of three contributions. In
the zeroth order

jð0ÞðtÞ ¼ Dk0B þ
k0B
k0

Dk0A � Dk0B
� �

¼ 2

k0
kB!kA! � kB kA ð Þ ¼ 0

(22)

i.e. we obtain a zero contribution. The identity (13) has been
used in the last passage. This result is to be expected as in this
order of the theory the situation is equivalent to having no
external field; this also corresponds to the situation of eqn (12)
and the zero field.

The expression for the current in the first order reads, in the
long time limit:

jð1ÞðtÞ ¼ l k0B þ
k0B
k0

k0A � k0B
� �� 


sin otð Þ

þ p
ð1Þ1
A ðtÞ Dk0A � Dk0B

� � (23)

where k0
A = k0

A- + k0
A’ and p(1)N

A (t) is the part of the expression
in eqn (19) that survives at long times. It is easy to see that the
terms that remain at long times in eqn (19) for p(1)N

A (t) are all
proportional to sine and cosine functions of ot. Consequently,
the whole expression for the current (23) in the first order
contains only terms proportional to these functions. Hence,
when averaging the expression for the current via eqn (10) over
the period T = 2p/o of the external sinusoidal field, the total
contribution to the average current from the first order with
respect to l vanishes, j(1)

av (t) = 0.
Therefore, at long times the first non-vanishing term is of

the second order:

jð2ÞðtÞ ¼ l2

2
sin2 otð Þjð0ÞðtÞ þ lpð1Þ1A ðtÞ k0A � k0B

� �
sin otð Þ

þ p
ð2Þ1
A ðtÞ Dk0A � Dk0B

� � (24)

where p(2)N
A (t) is the part of eqn (20) that survives at long times.

Substituting the obtained expression into eqn (10) and aver-
aging over the period T of the field, one obtains the final
expression for the net flux:

jð2Þav ¼
4l2k02

k02 þ o2
Kasymm (25)

Here we defined a quantity of special interest, the asymmetry
coefficient,

Kasymm ¼
1

k03
k0B!k

0
A � k0A!k

0
B 

� �
k0A!k

0
A � k0B!k

0
B 

� �

¼ 1

k03
k0A 
k0B 

k0B!
� �2� k0B 

� �2� �
k0A!
� �2� k0B 

� �2� �
(26)

that only depends on the shape of the PES waveform. Identity
(13) has been used in the second passage. The obtained
expression is the leading term in the total net flux for the
sinusoidal external field.

The current is proportional to the asymmetry coefficient that
contains a product of two terms in the brackets. These terms
may each change their sign depending on the shape of the PES
waveform thereby affecting the overall sign of the current (and
hence the direction of the net flux). To facilitate our analysis, it
is convenient, using explicit expressions for the rates, to
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rearrange the asymmetry coefficient:

Kasymm ¼
n2

k03
k0A k

0
B e�2bETS2 � e�2bETS1

� �
e2bEA � e2bEB
� �

(27)

It is seen then that Kasymm vanishes if either the energies at the
minima, EA = EB, or the energies of the transition states, ETS1

=
ETS2

(see Fig. 1), are equal. Hence, at this level of theory there is
no current if the PES waveform possesses this spatial symmetry.
It is also interesting to notice that only one (any) of these two
conditions is sufficient for the current to vanish.

The other point worth discussing is the direction of the
current. It is determined exclusively by the sign of the asym-
metry coefficient, which, in turn, is defined by the combined
sign of the two brackets in eqn (26) or (27). To simplify our
analysis, let us assume that EA o EB (one can always choose the
lower of the two minima to be A), so that the second bracket is
negative. Therefore, the direction of the net current is basically
determined by the relative values of the transition state ener-
gies: if ETS1

o ETS2
, then Kasymm 4 0 and the current flows to

the right, while if ETS1
4 ETS2

the asymmetry coefficient Kasymm

o 0 and it flows to the left. The full dependence of the
asymmetry coefficient on the shape of the PES waveform is
shown in Fig. 3(a), clearly demonstrating the areas of positive
(red) and negative (blue) regions. The expected increase of
Kasymm with temperature is demonstrated for the BIPEB mole-
cule in Fig. 3(b).

Clearly, molecules that are not symmetric upon a 1801
rotation about a vertical axis and with their PES waveforms
related to each other by a mirror reflection in a plane perpendi-
cular to the Cu rows and the surface will diffuse in opposite
directions along the rows, when oriented differently.16

The dependence of the net current on the frequency of the
field and on the temperature is shown in Fig. 4 for both the

analytical and (exact) numerical calculations. It can be seen
that the analytical formula (25) yields almost exact results for
amplitudes A r 0.02 eV; deviations from the exact result start to
be noticeable at larger amplitudes. If the external field is
strong, A c kBT, transitions in the opposite direction of A
become irrelevant, and the net current increases exponentially
with respect to A. However, even for large A values the general
trend of the current is correctly reproduced for both dependen-
cies by our analytical result obtained in the second order with
respect to the field: the current is the largest in the limit of the
slowly changing field, o- 0, reaching the value of jav(o- 0) =
4l2Kasymm, and then decaying to zero at larger frequencies as 1/
o2, while the current increases with temperature, as expected.
Concerning the latter dependence, it appears that, compared to
the exact results, at small T the current is underestimated by
the analytical result and the T dependence is steeper towards
higher T than it should be.

3.3 Shifted sinusoidal field

Here we shall consider the external field of the form E(t) =
A[sin(ot) + d] with a constant shift defined by the dimensionless
constant 0 r d o 1. This external stimulus combines oscillat-
ing and constant contributions.

A calculation similar to that for the sinusoidal field gives the
same expression (18) for the zero order probability. The first
and second order expressions valid at long times are obtained,
after some trivial but tedious calculations, as:

p
ð1Þ1
A ðtÞ ¼ Dk0Bk0 � k0BAk

0
1

k02 k02 þ o2ð Þ d k02 þ o2
� �	

þ k0 �o cos otð Þ þ k0 sin otð Þð Þ�
(28)

1

5

10

15

20

25

30

35

40

45

50

55

1

5

10

15

20

25

30

35

40

45

50

55Fig. 3 The asymmetry coefficient (in units of n) of eqn (27) as a function of (a) the shape of the PES waveform at T = 300 K and (b) temperature for the
BIPEB molecule.

6 | Phys. Chem. Chem. Phys., 2019, 00, 1�10 This journal is �c the Owner Societies 2019

Paper PCCP



and

p
ð2Þ1
A ðtÞ ¼ l2

2

k01 Dk0Bk0 � k0BAk
0
1

� �
k03 k02 þ o2ð Þ k02 þ 4o2ð Þ

� 4dk04 k02 þ 4o2
� �

sin otð Þ
�
þ k02 þ o2
� �

k02 þ 4o2
� �

k02 þ 2d2 k02 þ o2
� �� �

� 3ok03 k02 þ o2
� �

sin 2otð Þ � 2odk0

� k02 þ 4o2
� �

3k02 þ o2
� �

cos otð Þ

þ k02 2o4 þ o2k02 � k04
� �

cos 2otð Þ
�

(29)

The 0-th order current vanishes again; however, the first
order current is not zero. In fact, it is the leading term in this
case. Its expression, after averaging, reads:

jð1Þav ¼
8ld
k0

k0A k
0
B ¼

8ld
k0

k0A!k
0
B! (30)

Assuming l = Aba/4 4 0, this expression for the current is
positive for any values of the rates (and hence for any shape of
the PES waveform). Also note that this expression coincides
with eqn (16) for the case of the constant field since 8ld =
2ba(Ad), where Ad is the constant component of the shifted
sinusoidal field.

The current in this order of our theory is proportional to d
and hence must be small for d { 1. Hence, it is still necessary
to consider the second order term, for which we obtain:

jð2Þav ¼ x
4l2k02

k02 þ o2
Kasymm (31)

where the factor x = 1 + 2d2 + 2(od/k0)2. It is by this very factor
the obtained expression for the shifted sinusoidal field differs
from formula (25) we obtained for the purely sinusoidal field.
For small d this factor is close to one and the two expressions
become practically identical. Still, the relatively small first order
contribution makes the difference as will be seen shortly when
the numerical results are discussed. As seen in Fig. 5, the
analytical solution serves as a good approximation for ampli-
tudes A r 0.015 eV; at larger amplitudes and larger shift
parameters deviations from the exact numerical solutions
become significant.

Qualitatively, the constant field contribution (30) pushed the
molecules to the right or left depending on the sign of the shift
parameter d, while the oscillating component of the field (31)
pushes the molecules into one or another direction depending
on the sign of the asymmetry coefficient, Kasymm, i.e. according
to the shape of the PES waveform. Both these factors, applied
together, determine the net current direction for the given
molecule, jav = j(1)

av + j(2)
av . In particular, a value of d exists, d0, at

which the two terms cancel each other leading to the zero net
current. For d 4 d0 and d o d0 the currents have opposite
directions, as shown in Fig. 6(a). The value of ad0A increases
with the increase of the oscillation amplitude (see also Fig. 7(d)
for the dependence of d0 alone). We also observe that the
current increases with the oscillation amplitude A, as expected.
Importantly, for the given PES, changing the value of the
constant field, Ad, one can change the direction of the net
current.

An interesting question would be whether energy can be
extracted from the Brownian particle driven by an oscillating
field of zero mean. Here, eqn (31) also describes the motion of
the Brownian motor driven by a sinusoidal field with oscillation
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Fig. 4 Dependence of the average current (in units of the rate prefactor n) on the (a) frequency o (at T = 300 K, also in units of n) and (b) temperature T
(at o = 10�7n) for the sinusoidal external field E = A sin(ot) for several oscillation amplitudes A (as indicated). The full curves correspond to the numerical
solution of the rate equations and therefore represent exact results valid for any field strength (oscillation amplitudes). The dashed lines correspond to the
analytical result of eqn (25) that is valid for weak fields (small amplitudes).
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amplitude A against external load Ad. The average power P
generated by the diffusing BIPEB molecules was calculated and
shown in Fig. 6(b), where P = javDU and DU = aAd is the change
of the potential energy of the molecule after diffusing by one
lattice constant. At a given oscillation amplitude, the power

output increases when the load increases before it reaches a
maximum and then starts falling back to zero. At a heavier load,
a greater oscillation amplitude would be required for the
Brownian motor to function as expected.

3.4 Resolution of chiral molecules

Above we have considered, using both the exact numerical and
the approximate analytical methods, the behaviour of the
molecular net current for various parameters, such as the shape
of the PES of the molecule, the type and strength of the external
field, and the temperature. We find that under certain condi-
tions the identical molecules would move preferentially uni-
directionally in one or the other direction. When a constant
field and a sinusoidal field are applied at the same time, the
signs of both the constant component and of the asymmetry
coefficient Kasymm determine the eventual direction in which
the molecules would move. An interesting observation is, given
that two different types of molecules are present on the surface
(i.e. of different PES waveforms), it is possible to find a field
upon which the molecules can be separated, i.e. when one type
of molecule moves to the right and the other to the left.

We found above that under a sinusoidal field different
molecules would move in opposite directions if their asymme-
try coefficients (determined by the shapes of their respective
PES waveforms) have different signs (otherwise, they would
move in the same direction, albeit at different speeds). If the
oscillating field has a shift component, however, the diffusion
in opposite directions is possible by a careful choice of the
field. The BIPEB molecule considered so far actually has two
enantiomers, R and S. The calculations presented above were
done only for the R enantiomer. To illustrate a possibility of the
separation of different molecules, we shall compare here the
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Fig. 5 Dependence of the average current (in units of the rate prefactor n)
on the shift parameter d at T = 300 K and o = 10�7n for the sinusoidal
external field E = A[sin(ot) + d] for several oscillation amplitudes A (as
indicated). The full curves correspond to the numerical solution of the rate
equations and therefore represent exact results valid for any field strength
(oscillation amplitudes), while the dashed lines correspond to the analytical
result obtained by the sum of the contributions from eqn (30) and (31) that
is valid for weak fields (small amplitudes).

Fig. 6 (a) The mean velocities (in nm s�1) and (b) the accumulated power (in eV s�1) of the BIPEB molecules under the shifted sinusoidal field at T = 300
K, o = 10�7n and n = 1013 as a function of the constant field shift aAd (in eV), both calculated by solving numerically the rate equations. The dashed line in
(a) corresponds to applying only the constant field (E = Ad).
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diffusion of the enantiomer R and the conformer S* of the
second enantiomer,16 both shown in Fig. 7(a). Their PESs
shown in Fig. 7(b) were calculated16 to be only slightly different,
with the energy barriers of S* being D0

1 = 0.320 eV, D0
2 = 0.285 eV,

D0
3 = 0.181 eV and D0

4 = 0.146 eV (compare with the values given
for R in the section Theory).

The numerically calculated net currents for R (solid lines)
and S* (dashed lines) are shown in Fig. 7(c). At d = 0 both
enantiomers go to the left. However, one can see that there exist
such values of the shift parameter d 4 0 for which the signs of
the currents for the two enantiomers are different. This
becomes especially obvious from panel (d) in which the value
of d0 is shown as a function of the amplitude A of the oscillating
field. Since for d 4 d0 a molecule would preferentially move to

the right and for d o d0 to the left, for the given oscillating
amplitude, A, the values of the shift parameter d lying between
the solid and the dashed curves would ensure the R and S*
enantiomers move preferentially in opposite directions.

4 Conclusions

Concluding, in this work we have considered, both numerically
and analytically, the 1D diffusion of molecules with a double-
peak PES on a periodic crystalline surface under external
stimuli. The BIPEB molecule on the Cu(110) surface (a bipedal
walker diffusing along the Cu rows) has been considered as a
specific example of the Brownian motor driven by the oscillat-
ing field. We find that both the application of an external
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Fig. 7 Comparison of the diffusion of two enantiomers, R and S*, of the BIPEB molecule. (a) The two enantiomers and (b) their PES.16 (c) The mean
velocities (in nm s�1) for R (solid lines) and S* (dashed lines) for a few values of the oscillation amplitude. (d) The dependence of the shift parameter d0

(yielding the zero current) on the oscillation amplitude A for R (solid lines) and S* (dashed lines). The results in (c) and (d) were obtained by numerically
solving the rate equations for T = 300 K, o = 10�7n and n = 1013.
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stimulus (either an electrostatic field or a temperature gradient)
to break the thermal equilibrium and an asymmetry of the PES
of the molecule on the surface are the necessary ingredients for
the unidirectional motion, in complete agreement with pre-
vious studies.3,9–11 Our calculations show that a constant field
would provide the unidirectional motion for molecules with
different PESs, an oscillating field of zero mean may only
separate the molecules if the asymmetry coefficients of their
PES are of different signs (one molecule has the first peak in its
PES higher than the second and the other way round for the
second molecule), while the shifted oscillating field is capable
of separating the two molecules on the surface even if their
PESs are quite similar. This study can be easily generalised to a
more complex PES containing more than two peaks in the PES
waveform.

Our simple rate equation method based on the known PES
waveforms of the molecules, which can routinely be calculated
nowadays using ab initio methods, can be applied to realistic
molecules and surfaces. For weak fields (the case most likely in
practical applications) an analytical result is available for
sinusoidal and shifted sinusoidal fields, which enables one to
analyse different molecules without performing any numerical
kinetic calculations in terms of their possible unidirectional
motion. In the cases of strong fields or fields for which the
analytical solution is problematic, it is demonstrated that trivial
and cheap numerical simulations of the developed kinetic
equations are routinely possible. Conversely, one may wish to
synthesize molecules in such a way that, apart from a useful
function they are designed for, they would also possess the
desired diffusion PES that corresponds to the specific stimuli to
be applied ensuring their unidirectional motion. The formulae
developed above may prove to be useful in this case.

We hope that this paper will be useful for researchers
working in the field of molecular surface physics and chemis-
try, and that it would stimulate further studies, especially
experimental ones, aiming at providing unidirectional diffu-
sion of molecules on surfaces using the considered Brownian
ratchet mechanism.
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