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Abstract. Student performance and its evaluation remains a serious challenge 

for education systems. Frequently, the recording and processing of students’ 

scores in a specific curriculum have several flaws for various reasons. In this 

context, the absence of data from some of the student scores undermines the ef-

ficiency of any future analysis carried out in order to reach conclusions. When 

this is the case, missing data imputation algorithms are needed. These algorithms 

are capable of substituting, with a high level of accuracy, the missing data for 

predicted values. This research presents the hybridization of a algorithm previ-

ously proposed by the authors called Adaptive Assignation Algorithm (AAA), 

with a well-known technique called Multivariate Imputation by Chained Equa-

tions (MICE). The results show how the suggested methodology outperforms 

both algorithms. 

Keywords: Student Performance, Data imputation, MARS, MICE, AAA 

1 Introduction 

The academic performance of students in higher education is one of the main con-

cerns at universities in Spain [1]. Education parameters such as exam absenteeism and 

failure rates, the Grade Point Average (GPA) or the number of attempts needed to pass 

an exam show a low academic performance that has consistently been the case for years 

[2]. Please note that in this context, exam absenteeism is understood as all those stu-

dents that are enrolled in certain subject but do not attend the exam. 

Some research works on technical engineering degrees [3], show that only 11% of 

students graduate after the three years established by the educational curriculum. These 

studies also evidence that the average time in finishing the degree is 5.41 years, the 



dropout rate is around 70% and the performance rate (credits passed by credits enrolled) 

is 56%. 

In addition to the courses cited above, additional new studies on the Spanish Uni-

versity System (SUE, Sistema Universitario Español) show that engineering and archi-

tecture performance rates are still around 60% and are as such the lowest in the SUE. 

Compared to studies with better performance, such as degrees in health sciences, the 

rates for engineering and architecture are 20% lower. 

In accordance with the guidelines of quality assurance systems under the European 

Higher Education Area (EHEA), tracking of studies is regulated from a legal point of 

view, and is of course obligatory for official university degrees [1]. From this point of 

view, the internal quality systems of the educational institutions try to enhance their 

quality ratios or indicators in terms of academic results and performance, with the aim 

of on-going improvement [2]. This fact means that the faculties or higher education 

centres need tools to support or assist with this task [4, 5]. 

In order to create a tool for making decisions, it is usually necessary to find a way to 

obtain the required knowledge. Traditionally, in past research works, the common 

method was to obtain a model based on a dataset of the historical, whether through 

traditional techniques or through other, more advanced ones [6-13]. 

The above method could be problematic in general terms, given the need to have 

previous cases showing similar performance [14-22]. Also, it must be remarked that the 

case under study could change. If that were the case, the model must be adaptive for 

new cases with different casuistic and performance [23-28]. In this sense, the imputa-

tion methods based on evolutionary methods could be a good solution to the problem 

described here. 

This paper evaluates two imputation methods which allow the system to fill in the 

missing data of any of the students’ scores used in this research. One of the algorithms, 

the AAA (Adaptive Assignation Algorithm) [29], is based on Multivariate adaptive re-

gression splines (MARS) and the other one is the MICE (Multivariate Imputation by 

Chained Equations) [30]. The first one performs well in general terms, when the per-

centage of missing data for a case is small; otherwise, the second method is more ap-

propriate. A new algorithm that hybridizes the two aforementioned algorithms im-

proves the results obtained. The right combination of both algorithms is a good solution 

that involves establishing the border application of both. 

The document is structured in the following way. After the present section, the case 

of study is described. This consists of the dataset of students’ scores in the Electrical 

Engineering Studies Degree of the University of A Coruña. Then, the techniques for 

missing data imputation are shown. The results section shows the outcomes achieved 

with the imputation over the dataset for three different cases over the case of study. 

After that, the conclusions and future works are presented. 

2 Case Study 

The dataset used in this research is made up of students’ scores in the Electrical 

Engineering Studies Degree of the University of A Coruña from the academic year 



2001/2002 until 2008/2009. The dataset includes the scores for each subject in the de-

gree; nine subjects in the first year, another nine in the second year, seven in the last 

year, and the final project. 

The data also includes the scores and the way to access the University studies. In 

Spain, there are two different ways: from secondary school or from vocational educa-

tion and training. Moreover, the scores for the subjects in the degree include not only 

the mark; the time taken to pass each subject is also included. 

The dataset under study has all the data. It is an important fact to test the performance 

of the algorithms used in this study. It will be possible to emulate several different 

percentages of missing values, and compare both methods with the aim of establishing 

the right frontier of both methods of application. Then, with the combination, a hybrid 

model will be obtained to increase the applicability of the method in a wide range of 

possibilities. 

3 The data imputation techniques used 

The imputation process involves replacing missing values with plausible values. The 

quality of the imputation depends on the quality of the methodology employed and will 

greatly affect the final result of the problem under study. In this section the data impu-

tation techniques employed in the present research are described. In a problem that 

presents complex incomplete data, multiple imputation methods are required [31] and 

many examples of these methodologies can be found in the bibliography. 

3.1 The MARS Algorithm 

MARS ia a non-parametric multivariate regression analysis technique in which the 

interaction of nonlinearities and variables can be modeled [32]. In a MARS model, any 

dependent variable can be represented by means of 𝑀 basis functions by means of the 

following formula: 

 𝑦̂⃗ =  𝑐0 + ∑ 𝑐𝑚
𝑀
𝑚=1 𝐵𝑚 (𝑥⃗) (1) 

The dependent variable is 𝑦̂⃗, 𝑐0 is a constant, 𝐵𝑚 (𝑥⃗) is the m-th basis function and 

𝑐𝑚 its coefficient. Linear basis functions can be either constant or hinge functions, in-

cluding their products. The MARS models are able to model nonlinearities and inter-

actions as a weighted sum of basis functions [32, 33]. 

The generalized cross-validation method [34] is employed by the MARS methodol-

ogy in order to determine which basis functions are to be included in the model. The 

model is built in two phases: first, a forward variables selection and then a backward 

deletion. In the forward stage basis functions are added in order to reduce the training 

error, while in the backward stage, the model obtained is pruned in order to avoid over-

fitting [35]. At the end of the backward phase, from those best models of each size, a 

model with the lowest GCV value is selected and considered as the final one. The back-

ward pass uses GCV to compare the performance of model subsets in order to choose 

the best subset, taking into account that lower values of GCV are better. 



The GCV can be expressed as follows: 

 𝐺𝐶𝑉(𝑀) =  
1

𝑛
 ∑ (𝑦𝑖−𝑓̂𝑚(𝑥𝑖))

2𝑛
𝑖=1

(1−𝐶(𝑀)/𝑛)2  (2) 

In the formula represented above, the numerator is the Mean Squared Error of the 

evaluated model in the training data, 𝑛 is the number of data cases in the training data-

base and 𝐶(𝑀) is a complexity penalty that increases with the number of basis functions 

in the model [36]. 

3.2 The MICE Algorithm 

The MICE algorithm developed by van Buuren and Groothuis-Oudshoorn [31] is a 

Markov Chain Monte Carlo Method where the state space is the collection of all im-

puted values. Like any other Markov Chain, in order to converge, the MICE algorithm 

needs to satisfy the three following properties [37-39]: 

 Irreducible: The chain must be able to reach all parts of the state space. 

 Aperiodic: The chain should not oscillate between different states. 

 Recurrence: Any Markov chain can be considered as recurrent if the probability that 

the Markov chain starting from i will return to i is equal to one. 

In practice, the convergence of the MICE algorithm is achieved after a relatively low 

number of iterations, usually somewhere between 5 and 20 [39]. According to the ex-

perience of the algorithm creator, five iterations are generally enough, but some special 

circumstances would require a greater number of iterations. In the case of the present 

research, and due to the performance of the results obtained when compared with the 

other methods applied, five iterations were considered to be enough. This number of 

iterations is much lower than in other applications of the Markov Chain Monte Carlo 

methods, which often require thousands of iterations. In spite of this, and from a re-

searcher’s point of view and experience, it must be also remarked that in the most com-

mon of the applications each iteration of the MICE algorithm would take several 

minutes or even a few hours. Furthermore, the duration of each iteration is mainly 

linked with the number of variables involved in the calculus and not with the number 

of cases. It should be taken into consideration that imputed data can have a considerable 

amount of random noise, depending on the strength of the relations between the varia-

bles. So in those cases in which there are low correlations among variables or they are 

completely independent, the algorithm convergence will be faster. Finally, high rates 

of missing data (20% or more) would slow down the convergence process work. The 

MICE algorithm [39] for the imputation of multivariate missing data consists of the 

following steps: 

1. Specify an imputation model 𝑃(𝑌𝑗
𝑚𝑖𝑠|𝑌𝑗

𝑜𝑏𝑠 , 𝑌−𝑗, 𝑅) for vari-

able 𝑌𝑗 with 𝑗 = 1, … , 𝑝 

The MICE algorithm obtains the posterior distribu-

tion of R by sampling interactive from the above 



represented conditional formula. The parameters R 

are specific to the respective conditional densi-

ties and are not necessarily the product of a fac-

torization of the true joint distribution. 

2. For each 𝑗, fill in starting imputations 𝑌𝑗
0 by ran-

dom draws from 𝑌𝑗
𝑜𝑏𝑠 

3. Repeat for 𝑡 = 1, … , 𝑇 (iterations) 

4. Repeat for 𝑗 = 1, … , 𝑝 (variables) 

5. Define 𝑌−𝑗
𝑡 = (𝑌1

𝑡 , … , 𝑌𝑗−1
𝑡 , 𝑌𝑗+1

𝑡−1, … , 𝑌𝑝
𝑡−1) as the currently com-

plete data except 𝑌𝑗 

6. Draw ∅𝑗
𝑡 ~𝑃(∅𝑗

𝑡|𝑌𝑗
𝑜𝑏𝑠, 𝑌−𝑗

𝑡 , 𝑅) 

7. Draw imputations 𝑌𝑗
𝑡~𝑃(𝑌𝑗

𝑚𝑖𝑠|𝑌𝑗
𝑜𝑏𝑠 , 𝑌−𝑗

𝑡 , 𝑅, ∅𝑗
𝑡 ) 

8. End repeat 𝑗 

9. End repeat 𝑡 

In the algorithm referred to, Y represents a n×p matrix of partially-observed sample 

data, R is a n×p matrix, 0–1 response indicators of Y, and ∅ represents the parameters 

space. Please note that in MICE imputation [40], initial guesses for all missing elements 

are provided for the n×p matrix of a partially observed sample. For each variable with 

missing elements, the data is divided into two subsets, one of which contains all the 

missing data. The subset with all the available data is regressed on all other variables. 

Then, the missing subset is predicted from the regression and the missing values are 

replaced with those obtained from the regression. This procedure is repeated for all 

variables with missing elements. After this, all the missing elements are imputed ac-

cording to the algorithm described above, while the regression and predictions are re-

peated until the stop criterion is reached: in this case, until a certain number of consec-

utive iterates fall within the specified tolerance for each of the imputed values. The 

MICE algorithm has performed well in previous studies where it was employed by the 

authors [30]. One of the main drawbacks to this algorithm is the high computational 

times required for the resolution of complex problems, and one of its main advantages 

is that no prior knowledge of the distribution is required. As far as it is known by the 

authors, this is the first time that the MICE algorithm has been used for the imputation 

of a kind of data such as that in the present article. 

3.3 The AAA algorithm  

With the purpose of explaining the AAA, let us assume that we have a dataset formed 

by 𝑛 different variables 𝑣1, 𝑣2, … , 𝑣𝑛. In order to calculate the missing values of the i-

th column, all the rows with no missing value in the said column are employed. Then, 

a certain number of MARS models are calculated. It is possible to find rows with very 

different amounts of missing data from 0 (no missing data) to 𝑛 (all values are missing). 

Those columns with all values missing will be removed and will be neither used for the 

model calculation nor imputed. Therefore, any number of missing data from 0 to 𝑛 − 2 

is feasible (all variables but one with missing values). 



In other words, if the dataset is formed by variables 𝑣1, 𝑣2, … , 𝑣𝑛. and we want to 

estimate the missing values in column 𝑣𝑖, then the maximum number of different 

MARS models that would be computed for this variable (and in general for each col-

umn) is as follows: ∑ (
𝑛 − 1

𝑘
)𝑛−1

𝑘=1 . In the case of the data under study in this research, 

with 10 different variables, a maximum of 5,110 distinct MARS models are trained 

(511 for each variable). 

After the calculation of all the available models, the missing data of each row will 

be calculated using those models that employ all the available non-missing variables in 

the row. In those cases where no model was calculated, the missing data will be replaced 

by the median of the column. Please note that large data sets with a not-too-high per-

centage of missing data will be infrequent. As a general rule for the algorithm, it has 

been decided that when a certain value can be estimated using more than one MARS 

model, it must be estimated using the MARS model with the largest number of input 

variables; the value would be estimated by any of those models chosen at random. Fi-

nally, in those exceptional cases in which no model is available for estimation, the me-

dian value of the variable will be used for the imputation. Please note that this lack of 

model only occurs in exceptional cases as they have a particularly low probability. For 

a more in-depth explanation, please see [29]. 

3.4 The hybrid algorithm 

The hybrid algorithm combines MICE and AAA algorithms in search of a better 

performance, using one or the other depending on the most favorable conditions for 

their application. First, the MARS models of the AAA algorithm are trained using those 

rows without missing data as input values. In other words, the information from those 

rows without missing data is employed to train MARS models. Afterwards, the MARS 

models trained are employed for calculating missing values only in those rows with one 

or two missing values but not in those with three or more missing data. Finally, the 

resulting matrix, in which there are missing values only in those rows with three or 

more missing data, is imputed using the MICE algorithm. 

This way of working takes advantage of the AAA algorithm for imputation in those 

cases of few (one or two) missing data per row where it has performed better and re-

duces the computational time required by the MICE algorithm, as fewer missing data 

are required to be imputed. 

3.5 Models validation 

Leave-one-out cross-validation has been used to analyze the spatial error of interpolated 

data [41, 42]. This procedure involves using eight of the nine stations in the model to 

obtain the estimated value in the ninth station (this one is left out) in order to calculate 

the performance of the different methods employed, Mean Absolute Error (MAE), Root 

Mean Square Error (RMSE) and Mean Absolute Deviation (MAD) has been employed. 

The equations that represent these three metrics, frequently employed in literature 

[29, 30], are as follows: 



 𝑀𝐴𝐸(%) =
𝑀𝐴𝐸

1

𝑛
∑ 𝐺𝑖

𝑛
𝑖=1

𝑥100 (3) 

 𝑀𝐴𝐷 =
1

𝑛
∑ |𝐺𝑖̂ − 𝐺𝑖|

𝑛
𝑖=1  (4) 

 𝑅𝑀𝑆𝐸 = ∑ √
1

𝑛
(𝐺𝑖̂ − 𝐺𝑖)

2𝑛
𝑖=1  (5) 

Where Gi and 𝐺𝑖̂ are the measurements and the model estimated, and n is the number 

of data points of the validation set. The RMSE weights large estimation errors more 

strongly than small errors, and it is considered a very important model validation met-

ric. Also, MAE is a useful complement of the measured-modeled scatter plot near the 

1-to-1 line [39]. 

4 Results 

To calculate the performance of each algorithm, several tests were carried out, with 

differing quantities of missing data. First of all, it should be pointed out that, for the 

results shown in the tables, only ten columns from the total dataset have been taken into 

account. Each column represents a different subject, and the selection was made at ran-

dom. In all the tests, the percentage of missing data is the same, 10%, but the real miss-

ing data varied from one to more than three, depending on the test. From the authors’ 

point of view, this way of proceeding allows us to say that the algorithm will perform 

robustly under many different real conditions. 

Table 1 shows the performance of each algorithm with only one value missing in 

each case. According to the results obtained for MAE, MAD and RMSE, it may be 

appreciated that the AAA algorithm clearly performs better than MICE. 

Table 1. – Results for algorithm with 1 missing value 

 MAE MAD RMSE 

MICE AAA MICE AAA MICE AAA 

Column 1 0.15013 3.33E-15 0.07413 1.32E-15 0.25495 3.41E-15 

Column 2 1.00E-03 1.11E-15 1.20E-03 0 0.00325 1.17E-15 

Column 3 2.10E-03 8.44E-15 1.01E-03 1.25E-14 0.00247 8.45E-15 

Column 4 0.07502 7.77E-15 0.07412 1.98E-15 0.11180 7.93E-15 

Column 5 0.07503 5.11E-15 1.53E-03 0 0.15019 5.12E-15 

Column 6 1.01734 5.11E-15 1.40805 1.32E-15 1.20623 5.24E-15 

Column 7 0.19235 6.66E-16 2.36E-03 0 0.21015 1.33E-15 

Column 8 0.02492 1.78E-15 0.02313 1.32E-15 0.04502 1.99E-15 

Column 9 1.25013 1.55E-15 1.48260 0 1.36931 1.60E-15 

Column 10 0.75024 2.89E-15 0.88956 0 0.90135 2.91E-15 

In Table 2, the performance was calculated for two missing values. In this case, as 

in the previous one, the AAA algorithm is clearly better than MICE, but the difference 

in performance between both algorithms is smaller. 



The results present in Table 3 show that when the number of missing values increases 

to three, the MICE algorithm performs better than the AAA. Please note how for this 

case the results are clearly different to those presented in Table 1 and 2. 

Table 2. – Results for algorithm with 2 missing values 

 MAE MAD RMSE 

MICE AAA MICE AAA MICE AAA 

Column 1 0.22265 5.08E-05 0.11597 5.82E-05 0.35759 4.90E-06 

Column 2 0.09623 8.26E-05 0.10724 4.36E-05 0.03246 4.08E-05 

Column 3 0.01146 9.28E-05 0.03063 3.00E-06 0.02834 4.16E-05 

Column 4 0.11066 6.47E-05 0.08836 5.62E-05 0.16341 6.84E-05 

Column 5 0.12991 3.09E-05 0.04132 2.92E-05 0.22379 9.68E-05 

Column 6 1.07473 7.28E-06 1.43598 3.69E-05 1.23973 5.79E-05 

Column 7 0.26962 4.01E-05 0.09282 5.15E-05 0.22093 8.40E-05 

Column 8 0.10302 6.47E-05 0.07025 3.14E-05 0.05451 7.37E-05 

Column 9 1.34970 1.13E-05 1.49259 2.32E-05 1.46712 4.40E-05 

Column 10 0.80736 6.71E-05 0.96982 2.71E-06 0.94504 9.29E-05 

Table 3. – Results for algorithm with 3 of missing values 

 MAE MAD RMSE 

MICE AAA MICE AAA MICE AAA 

Column 1 0.29825 1.29788 0.21251 0.97760 0.37785 0.33879 

Column 2 0.10030 0.32404 0.23003 0.68342 0.08148 0.88620 

Column 3 0.23256 0.76501 0.14919 1.28895 0.06039 1.19963 

Column 4 0.22723 1.01881 0.21624 0.30309 0.32788 1.18293 

Column 5 0.18359 0.66619 0.13611 0.46380 0.29628 0.84689 

Column 6 1.14205 0.93627 1.61320 1.10473 1.36929 0.91176 

Column 7 0.37556 0.78123 0.10937 0.68277 0.32463 0.72429 

Column 8 0.14983 1.18887 0.14077 1.05084 0.06936 0.42409 

Column 9 1.44081 1.01170 1.56163 1.21070 1.49719 0.94814 

Column 10 0.89382 0.94070 1.01722 0.32494 1.09256 1.19549 

With the aim of obtaining the best results, a hybrid of the two algorithms was created. 

The results of this hybrid system are shown in tables 4 and 5. In these tables, the per-

centage of missing values is fixed at 10% and 15% respectively, but the number of 

missing values is random. When the missing values are fewer than 3, the algorithm 

selected is the AAA, while the MICE is the chosen one in other cases. 

Figure 1 shows the evolution of the RMSE for the two algorithms and the hybrid 

combination. The hybrid algorithm is not the best one for every case, but it does keep 

the values for the RMSE constant regardless of the number of missing values. The blue 

continued line represents the MICE algorithm; the red dotted line means the AAA al-

gorithm, and the black dashed line is for the combined algorithm results. 



Table 4. – Results for algorithm with random missing values and hybrid combination (10% of 

missing values). 

 MAE MAD RMSE 

Column 1 0.12029 0.06570 0.16468 

Column 2 0.02435 0.05345 0.06089 

Column 3 0.03859 0.02057 0.05461 

Column 4 0.09622 0.06510 0.07271 

Column 5 0.06831 0.05347 0.11492 

Column 6 0.05947 0.23464 0.23564 

Column 7 0.11934 0.05872 0.12157 

Column 8 0.05201 0.06290 0.13310 

Column 9 0.09857 0.02255 0.23560 

Column 10 0.42762 0.47831 0.46016 

Table 5. – Results for algorithm with random missing values and hybrid combination (15% of 

missing values). 

 MAE MAD RMSE 

Column 1 0.14507 0.11055 0.16490 

Column 2 0.04801 0.09328 0.09792 

Column 3 0.04459 0.03185 0.09607 

Column 4 0.19098 0.08987 0.08459 

Column 5 0.10614 0.08720 0.13741 

Column 6 0.08390 0.45658 0.33184 

Column 7 0.12288 0.10458 0.21315 

Column 8 0.07592 0.10295 0.22643 

Column 9 0.13944 0.03038 0.39976 

Column 10 0.64091 0.65130 0.64978 

 

Fig. 1. Plotting of the RMSE values for the algorithms 
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5 Conclusions 

With the proposal, it was possible to predict students’ academic performance. The 

high level of accuracy attained could help the students to identify which subjects may 

represent more difficulties for them during the course. This could be a useful tool for 

improving different parameters such as academic performance, the GPA and dropout 

rates in all academic years. Overall, very good results have been obtained with the data 

imputation techniques employed in this study. 

It is possible to predict the scores of the students for the three cases contemplated, 

assuming the data do not exist, by comparing the estimate results with the real dataset. 

The average of RMSE for MICE was 0.50759, varying from 2.47E-3 to 1.54849; for 

AAA, the average of RMSE was 0.29130, with a minimum of 3.11E-31 and a maximum 

of 1.29216. The hybrid combination of these two algorithms achieved a 4.92E-3 aver-

age RMSE, ranging from 4.26E-5 to 9.72E-3. 

These techniques could be used to predict missing data and then undertake studies 

about students’ performance, taking into account all the cases. As in many other cases, 

a hybrid algorithm performed better than the original set of algorithms employed for its 

construction. This is the reason why the authors consider that the use of a hybrid algo-

rithm combining MICE and AAA is a most promising way of solving complex impu-

tation problems. 

In future research, the use of support vector machines (SVM) [43, 44] and hybrid 

methods [44-47] will be explored by the authors in order to find a new algorithm with 

even higher performance than the one proposed in this research. 
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