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Abstract
The Schlögl system is governed by a nonlinear reaction-diffusion partial differential equa-
tion with a cubic nonlinearity. In this paper, feedback laws of Pyragas-type are presented
that stabilize the system in a periodic state with a given period and given boundary traces.
We consider the system both with boundary feedback laws of Pyragas type and distributed
feedback laws of Pyragas and classical type. Stabilization to periodic orbits is impor-
tant for medical applications that concern Parkinson’s disease. The exponential stability
of the closed loop system with respect to the L2-norm is proved. Numerical examples are
provided.
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1 Introduction

The Schlögl system introduced in [28] is a model for chemical reactions for non-equilibrium
phase transitions that describes the concentration of a substance in dimension 1. In neurol-
ogy, the same system is known as Nagumo equation (or Newell–Whitehead–Segel equation,
see [26, 29]) and models an active pulse transmission through an axon [8, 25]. This sys-
tem is governed by a parabolic partial differential equation with a cubic nonlinearity that
determines three constant equilibrium states u1 < u2 < u3, where u2 is unstable.

The Schögl model serves as a simplified model problem for more complicated equations
such as the bidomain system in heart medicine, cf. [19]. Here, the goal of stabilization is to
extinguish undesired spiral waves as fast as possible and hereafter to control the system to
a desired state. However, there are similarities between these models and it is therefore rea-
sonable to consider related questions for the Schögl system. A finite-dimensional dynamic
compensator for the Schlögl model is designed in [3]. Extensive Monte Carlo calculations
of Schlögl’s model for chemical reactions are presented in [15].

The control functions can act in the domain (distributed control) or on its boundary.
In this paper, the problem of feedback stabilization towards periodic orbits is studied. For
instance, the construction of Lasers with a desired oscillation behavior is an interesting issue
for feedback stabilization.

A possible application of the boundary stabilization of time-periodic orbits in the
Nagumo system is the boundary stabilization of a periodic pulse transmission. Another
important motivation is the development of new treatments for Parkinson’s disease. In [17],
linear combinations of a fixed number of Dirac measures are used in experiments that are
related to the treatment of Parkinson’s disease. There are also interesting applications in
Theoretical Physics such as the control of cluster synchronization in [20] and time-delayed
stabilization of solutions to nonlinear differential equations in [9]. The existence of peri-
odic solutions of nonlinear parabolic equations is studied in [27]. Stabilization towards
desired periodic orbits is also considered in [1] for a pendulum system and in [23, 24]
for discrete time chaotic systems. Optimal control problem for systems governed by the
stochastic FitzHugh–Nagumo equation with a Gaussian noise are studied in [2]. Similar
optimal control problems with recovery variable are considered in [9].

In [16] we have studied the boundary stabilization to given desired orbits with linear
Robin-feedback laws. In this new paper, we concentrate on the exponential stabilization
towards a periodic orbit with feedback laws of Pyragas type. In particular, we are inter-
ested in periodic orbits with desired oscillations. We consider both boundary and distributed
feedback control. In our analysis we study the exponential decay of the Lyapunov function

V (t) = 1

2

∫ L

0
(u(t, x) − u(t − T , x))2 dx, (1)

where u(t, x) denotes the system state at time t and position x and T stands for a desired
period length.

To show that the system is exponentially stable, we verify that V is a strict Lyapunov
function. The construction of strict Lyapunov functions for semilinear parabolic partial dif-
ferential equations has also been studied in [22]. In [22], it is assumed that the feedback
is space-periodic or the boundary conditions are chosen in such a way that the product of
the state and the normal derivative vanishes at the boundary. This assumption implies that
the boundary terms occurring after partial integration in the time derivative of the Lya-
punov function become nonpositive. For the state feedback laws that are presented in this
paper, this assumption holds. But due to the time delay in the Pyragas feedback term, the
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analysis from [22] is not directly applicable. Therefore a different approach is used in the
analysis: For the boundary control, a Poincaré–Friedrichs inequality is used to show that the
Lyapunov function is strict.

The Schlögl system has the interesting property that it allows traveling wave solutions
(i.e., uniformly translating solutions moving with a constant velocity) which have the shape
of the hyperbolic tangent (see [18]). The traveling wave solutions connect the two stable
constant stationary states u1 and u3. The problem to steer associated wave fronts to rest by
distributed optimal control methods with finite time horizon was considered in [5] for the
Schlögl model and in [6] for the FitzHugh–Nagumo system, where spiral waves occur. In
the present paper, we propose control laws that stabilize the system exponentially fast to a
periodic orbit.

In this paper, a spatially 1-d system of length L is studied. In the reaction-diffusion
equation, the diffusion coefficient is normalized to 1. The parameter ρ determines the size
of the reaction term.

In particular, we are interested in answering the following question: Let a state function
u be given that exhibits a stable oscillatory behavior in a fixed bounded time horizon [0, T ].
Will this function approach a periodic and oscillating orbit as t → ∞?

This paper has the following structure: In Section 2, a system is studied where the Pyra-
gas terms appear in the boundary conditions. The model is defined and a result about the
well-posedness is given. We give conditions that guarantee that the system converges to a
periodic orbit exponentially fast.

In Section 3, the result about feedback stabilization where the Pyragas terms appear as
distributed controls is presented. The feedback gain can be chosen in such a way that the
system converges exponentially fast to a periodic state with the desired period T . Similar
results are shown for distributed feedback laws of classical type.

For the boundary feedback law, the Pyragas terms acts through the boundary condi-
tions. If the desired T -periodic orbit is determined uniquely by these boundary traces,
under appropriate assumptions the system states converges exponentially fast to the desired
T -periodic orbit.

For the distributed feedback law, the Pyragas term acts directly in the partial differential
equation (pde, for short) whereas in the boundary conditions, desired Neumann bound-
ary traces for the T -periodic orbit are prescribed. Numerical experiments that illustrate the
behavior of the system are presented in Section 5. Section 6 contains conclusions.

2 The Schlögl Model with Pyragas Boundary Feedback Control

2.1 Definition of the Schlögl Model

Let real numbers u1 ≤ u2 ≤ u3 be given and define the polynomial

R(u) = (u − u1)(u − u2)(u − u3).

Due to its definition, R has the property

mR = inf
u∈(−∞,∞)

R′(u) > −∞, (2)

hence the derivative of R is bounded from below. The infimum mR ≤ 0 is attained at the
point (u1 + u2 + u3)/3.
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The system that is considered in this paper is governed by the semilinear parabolic partial
differential equation

ut = uxx − ρR(u) (3)

with a constant ρ > 0 complemented by appropriate initial and boundary conditions. In
the reaction diffusion equation (3), the diffusion coefficient is equal to 1 and the constant ρ

determines the size of the reaction term. If ρ equals zero, the reaction term vanishes and the
partial differential equation (3) models a pure linear diffusion process.

Let the length L > 0, a desired period T > 0, and a feedback gain γ ∈ R be given. We
consider two versions of feedback laws.

First, we consider distributed feedback of the form

ut = uxx − ρR(u) + γ (u − udesi), (4)

where udesi is a desired state function.
Second, we define also a boundary feedback law. For the stabilization of (4), for (t, x) ∈

(0,∞)×(0, L), with some real constant C ≥ 1
2L

, we consider the Pyragas–Robin boundary
conditions

ux(t, 0) = C [u(t, 0) − u(t − T , 0)] + ux(t − T , 0), (5)

ux(t, L) = −C [u(t, L) − u(t − T , L)] + ux(t − T ,L). (6)

In order to start the system, for t ∈ (−T , 0) we prescribe some sufficiently regular initial
state. With the feedback laws (5) and (6), if

2ρ|mR| + 2γ <
1

L2

(see (10) in Theorem 2) the Lyapunov function V (t) defined in (1) decays exponentially.

2.2 Existence and Uniqueness of the Solutions

In [5], the well-posedness of the system governed by (3) is studied for homogeneous Neu-
mann boundary conditions. It is shown that for initial data in L∞(0, L), the system has a
unique weak solution that is continuous for t > 0. If the initial state is continuous, the solu-
tion of the system is continuous for all times. In the associated theorem below, we use the
standard Sobolev space

W(0, T ) = L2(0, T , H 1(0, L)) ∩ H 1(0, T ; H 1(0, L)′)
and write QT = (0, T ) × (0, L).

Let us first consider the following semilinear parabolic problem with inhomogeneous
Robin boundary conditions but without time delay:

ut (t, x) − ρuxx(t, x) + R(u(t, x)) = f (t, x) in QT ,

ux(t, 0) − Cu(t, 0) = g1(t) in (0, T ),

ux(t, L) + Cu(t, L) = g2(t) in (0, T ),

u(0, x) = u0(x) in (0, L).

(7)

Lemma 1 Suppose that it holds K > 0 and u1 ≤ u2 ≤ u3. Then, for all f ∈ L2(QT ),
u0 ∈ L∞(0, L), gi ∈ Lp(0, T ), i = 1, 2, p > 2, the parabolic initial-boundary value
problem (7) has a unique solution u in

L∞(QT ) ∩ W(0, T ) ∩ C((0, T ] × [0, L]).
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If u0 ∈ C[0, 1], then u is also continuous on [0, T ] × [0, L].

Proof We apply the standard substitution u(t, x) = eλtv(t, x) and obtain the problem

vt (t, x) − ρvxx(t, x) + λv(t, x) + e−λtR(eλt v(t, x)) = e−λtf (t, x) in QT ,

vx(t, 0) − Cv(t, 0) = e−λtg1(t) in (0, T ),

vx(t, L) + Cv(t, L) = e−λtg2(t) in (0, T ),

u(0, x) = u0(x) in (0, L).

If λ is taken sufficiently large, then the function d : v 	→ λv+e−λtR(eλtv) is monotone non-
decreasing. Since C is non-negative, the same holds for the function b : v 	→ Cv. Therefore,
the problem fits to a general semilinear parabolic problem with monotone nonlinearities that
is discussed in [32, Theorem 5.5]. This theorem ensures the existence of a unique bounded
solution v in W(0, T ) with the claimed regularity properties.

Theorem 1 Let 0 < T < T ′ < ∞ be given. Assume that udesi belongs to Lr(QT ′) with
some r > 3/2 and u0 ∈ C([−T , 0] × [0, L]) possesses the partial (one-sided) derivatives
(u0)x(t, 0) := (u0)x(t,+0) and (u0)x(t, L) = (u0)x(t,−L) for all t ∈ [−T , 0]. Let the
functions t 	→ (u0)x(t, 0) and t 	→ (u0)x(t, L) belong to Lp(−T , 0) with some p > 2.
Then the parabolic problem with delay T ∈ (0, T ′],

ut − uxx + ρR(u) = γ (u − udesi) in QT ′ ,
u(t, x) = u0(t, x) in (−T , 0) × (0, L),

ux(t, 0) − Cu(t, 0) = ux(t − T , 0) − Cu(t − T , 0) in (0, T ′),
ux(t, L) + Cu(t, L) = ux(t − T , L) + Cu(t − T ,L) in (0, T ′)

(8)

has a unique solution u such that u|[0,T ′] ∈ W(0, T ′) ∩ C([0, T ′] × [0, L]).

Proof We apply the step method that is a classical tool for proving existence and uniqueness
of solutions to delay equations. First, we solve the problem on the time interval [0, T ]. Here,
we have u(t − T , x) = u0(t − T , x), hence the problem is one with given Robin boundary
data

g1(t) = (u0)x(t − T , 0) − Cu0(t − T , 0), g2(t) = (u0)x(t − T ,L) + Cu0(t − T , L)

that fits in (7). Thanks to the assumptions imposed on u0, the functions g1 and g2 belong
to Lp(0, T ) with p > 2. Therefore and since udesi belongs to Lr(QT ′), Lemma 1 ensures
existence and uniqueness of u in W(0, T ) ∩ C(QT ).

Now we extend the solution u to [T , min{2T , T ′}]. Without stronger assumptions on the
regularity of g1, g2, and u0, we cannot expect that ux(t − T , 0) and ux(t − T , L) exist
as functions on [T , 2T ]. However, from the boundary conditions we know that ux(t, 0) −
Cu(t, 0) = g1(t) and ux(t, L) + Cu(t, L) = g2(t) exist as real functions in Lp(0, T ).
Therefore, on [T , 2T ] the functions ux(t − T , 0) − Cu(t − T , 0) = g1(t − T ) and ux(t −
T , L) + Cu(t − T ,L) = g2(t − T ) belong to Lp(T , 2T ).

In this way, on [T , min{2T , T ′}] the boundary conditions of (8) can be re-written as

ux(t, 0) − Cu(t, 0) = g1(t − T ),

ux(t, L) + Cu(t, L) = g2(t − T ),

T ≤ t ≤ min{2T , T ′}.
Moreover, the new initial function x 	→ u(T , x) is continuous on [0, L], again thanks

to Lemma 1. Therefore, we can apply Lemma 1 again, now on [T , min{2T , T ′}], to obtain
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existence and uniqueness of u until min{2T , T ′}. Repeating this procedure again, we finally
can extend the solution up to T ′.

Remark 1 As we have pointed out in the preceding proof, we cannot guarantee that ux(t, 0)

and ux(t, L) exist as measurable functions. We resolved this obstacle by using the boundary
conditions

ux(t, 0) − Cu(t, 0) = g1(t − (k − 1)T ),

ux(t, L) + Cu(t, L) = g2(t − (k − 1)T ),

on [(k − 1)T , kT ], k = 1, 2, . . .. This trick avoids the explicit use of ux(t − T , 0) and
ux(t − T , L) in the right-hand side of the boundary conditions. By results on maximal
parabolic regularity of [21, Theorems 5.1.17 and 5.1.20], we are able to show on [0, T ] the
existence of the solution u in C1+α/2,2+α(QT ) with some 0 < α < 1, provided that u0 and
udesi have higher regularity. Then the functions t 	→ ux(t, 0) and t 	→ ux(t, L) belong to
C(1+α)/2[0, T ]. For the definition of these spaces, we refer to [21]. Analogously, we can
proceed in later time intervals.

2.3 Exponential Stability

In this section, we present our main result about the exponential stability in the L2-sense
of our system with Pyragas boundary control. A boundary feedback law is constructed that
stabilizes the system around a given desired T -periodic state udesi .

An essential tool in the analysis is the 1-d POINCARÉ-FRIEDRICHS inequality (see also
[32] for the general case) in the following form: let L > 0 be given. For all u ∈ H 1(0, L),
the following inequality holds:

∫ L

0
u2(x)dx ≤ L

[
u(0)2 + u(L)2

]
+ 2L2

∫ L

0
(∂xu(x))2 dx. (9)

Now the stabilization result for periodic orbits is given. In what follows, we use the notation
Q2T = (0, 2T ) × (0, L).

Theorem 2 (Exponential stability) Let a period T > 0 and a T -periodic state udesi ∈
H 2(Q2T ) be given. Assume that L > 0 is sufficiently small in the sense that

1

L2
> 2ρ|mR| + 2γ . (10)

Let a feedback parameter C ≥ 1
2L

and an initial state u0 ∈ C1([−T , 0] × [0, L]) be
given. Then the solution u of (4) subject to the initial condition

u(t, x) = u0(t, x)

for t ∈ (−T , 0) and x ∈ (0, L) and to the boundary conditions

ux(t, 0) = C (u(t, 0) − u(t − T , 0)) + ux(t − T , 0),

ux(t, L) = −C (u(t, L) − u(t − T , L)) + ux(t − T , L)

for t ≥ 0 becomes T -periodic exponentially fast in the following sense: With

μ = 1

L2
− 2ρ|mR| − 2γ,
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the inequality
∫ L

0
(u(t, x) − u(t − T , x))2 dx ≤ exp (−μ(t − T ))

∫ L

0
(u(T , x) − u0(0, x))2 dx (11)

holds for all t ≥ T .
There exist a T -periodic function u∗ ∈ L2(Q2T ) and a constant P0 > 0 such that for all

t ≥ 0 we have u∗(t, ·) ∈ L2(0, L) and the inequality
∫ L

0

(
u(t, x) − u∗(t, x)

)2
dx ≤ P0 exp(−μt) (12)

is satisfied for all t ≥ T .

Proof By Theorem 1 the state u is continuous. Hence, V is well-defined by (1). The
definition of V implies that V (t) ≥ 0. For t ≥ T , we can write (4) in the form

ut (· − T , ·) = uxx(· − T , ·) − ρR(u(· − T , ·)) + γ
(
u(· − T , ·) − udesi

)
.

Hence, the pde (4) implies that for all t ≥ T we have

ut (t, x) − uxt (t − T , x) − uxx(t, x) + uxx(t − T , x)

= −ρ (R(u(t, x)) − R(u(t − T , x)) + γ (u(t, x) − u(t − T , x)) (13)

in the sense of the solution of (4) that is given in Theorem 1. Notice that the term with
udesi cancels out by subtracting the pdes for u(t, x) and u(t − T , x). We multiply (13) by
[u(t, x) − u(t − T , x)] and integrate to obtain for t0 > T

∫ t0

T

∫ L

0
[u(t, x) − u(t − T , x)][[ut (t, x) − ut (t − T , x)] − [uxx(t, x) − uxx(t − T , x)]]dxdt

=
∫ t0

T

∫ L

0
− ρ[u(t, x) − u(t − T , x)](R(u(t, x)) − R(u(t − T , x))

) + γ [u(t, x) − u(t − T , x)]2dxdt .

For initial data u0 in H 2((−T , 0) × (0, L)), integration by parts yields
∫ L

0

1

2
[u(t, x) − u(t − T , x)]2

∣∣t0
t=T

dx +
∫ t0

T

∫ L

0
[ux(t, x) − ux(t − T , x)]2dxdt

=
∫ t0

T

[u(t, x) − u(t − T , x)][ux(t, x) − ux(t − T , x)]|Lx=0dt

+
∫ t0

T

∫ L

0
− ρ[u(t, x) − u(t − T , x)](R(u(t, x)) − R(u(t − T , x))

) + γ [u(t, x) − u(t − T , x)]2dxdt .

Due to (2), for all v1, v2 ∈ (−∞,∞) it holds

(v2 − v1)(R(v2) − R(v1)) ≥ (v2 − v1)
2mR . (14)

The definition of V and the boundary conditions imply

V (t0) − V (T ) +
∫ t0

T

∫ L

0
[ux(t, x) − ux(t − T , x)]2dxdt

≤ −
∫ t0

T

C[u(t, L) − u(t − T , L)]2 + C[u(t, 0) − u(t − T , 0)]2dt

+
∫ t0

T

∫ L

0
(−ρmR + γ )[u(t, x) − u(t − T , x)]2dxdt .
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Thanks to C ≥ 1
2L

, due to the Poincaré–Friedrichs inequality (9) this implies

V (t0) − V (T ) ≤
∫ t0

T

∫ L

0

(
− 1

2L2
− ρmR + γ

)
[u(t, x) − u(t − T , x)]2dxdt .

Now (10) implies V (t0) ≤ V (T ). In fact, we have 0 ≤ V (t0) ≤ V (T )−∫ t0
T

μV (τ)dτ . Now
Gronwall’s lemma implies the inequality

V (t0) ≤ V (T ) exp (−μ(t0 − T )) .

Since H 2((−T , 0)×(0, L)) is dense in L∞((−T , 0)×(0, L)), the same estimate remains
true (by continuous extension) for any initial state u0 in L∞(0, L). Thus V is a strict Lya-
punov function and the assertion (11) follows. (Similar classical Lyapunov analysis can be
found for example in [10] or [11]).

Inequality (11) implies that for all t ∈ (0, T ), the sequence (u(t +jT , ·))∞j=1 is a Cauchy

sequence in L2(0, L). This can be seen as follows. Define

C0 =
√∫ L

0

(
u(T , x) − u0(x)

)2
dx.

Then for all j ∈ {1, 2, 3, . . . } we have√∫ L

0

(
u(t + jT , x) − u(t + (j − 1)T , x)

)2
dx ≤ C0 exp

(
−μ

2
(t + (j − 1)T )

)
.

We use the notation
√∫ L

0 (f (x))2dx = ‖f ‖L2(0,L).
For all k ∈ {0, 1, 2, . . . } the triangle inequality implies

‖u(t + (j + k)T , ·) − u(t + (j − 1)T , ·)‖L2(0,L)

≤
k∑

l=0

‖u(t + (l + j)T , ·) − u(t + (l + j − 1)T , ·)‖L2(0,L)

≤ C0

k∑
l=0

exp
(
−μ

2
(t + (l + j − 1)T )

)

≤ C0
exp

(−μ
2 (t + (j − 1)T )

)
1 − exp

(−μ
2 T

) .

Hence, for all t ∈ (0, T ), the sequence (u(t + jT , ·))∞j=1 converges in L2(0, L). There exist

limit functions u∗(t, ·) ∈ L2(0, L) such that, for all t ∈ (0, T ),

lim
j→∞

∫ L

0
(u(t + jT , x) − u∗(t, x))2dx = 0.

Then (11) implies that u∗(t, ·) generates a T -periodic orbit. More precisely, we have

‖u∗(t, ·) − u(t + (j − 1)T , ·)‖L2(0,L) ≤ C0
exp

(−μ
2 (t + (j − 1)T )

)
1 − exp

(−μ
2 T

)
which implies (12).

Remark 2 Note that γ < 0 can always be chosen such that (10) holds.
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Example 1 Let u1 = −1, u2 = 0, u3 = π . Then we have R(u) = (u2 + u)(u − π) and

mR = −π2 + π + 1

3
> −5.

Let L = 1 and C = 1
2 ; the constants ρ and γ will be specified below. Consider the desired

state udesi(t, x) = (sin(t) + sin(2t))3 sin(πx) which is T -periodic with T = 2π . The
corresponding Robin–Pyragas-feedback is

ux(t, 0) = ux(t − T , 0) + 1

2
[u(t, 0) − u(t − T , 0)] ,

ux(t, L) = ux(t − T ,L) − 1

2
[u(t, L) − u(t − T , L)] .

– With the choice ρ = 1
10 and γ = 0, (10) holds. Theorem 2 is applicable and implies

the convergence to a T -periodic state.
– Consider now ρ = 1. Then for γ ≥ 0, the inequality (10) is not satisfied. Hence in this

case, Theorem 2 is not applicable.
– For ρ = 1 and γ < − 9

2 , the inequality (10) is satisfied and Theorem 2 is applicable.

Remark 3 The feedback strategies of this section can generate timely constant periodic
functions, because the standard solutions of the Schlögl model without time delay are con-
stant. In Sections 3 and 4, we investigate the stabilization of the Schlögl model with different
stabilization strategies, that are able to generate non-constant periodic limit functions of a
desired period.

2.4 Another Application: A Parabolic Model for Gas Pipeline Flow

In this section we consider another application of the presented boundary feedback law,
namely the flow of ideal gas through a horizontal pipe of length L > 0. Let numbers α > 0,
q0 > 0 be given. Let P denote the pressure and q0 + q the flow rate, where we assume
that |q|/q0 is sufficiently small. The number c > 0 denotes the sound speed in the gas. The
following system of partial differential equations can be used as a model for the flow for
x ∈ [0, L] and t > 0:

Pt + c2qx = 0, Px = −α
q2

0 + 2q0q

P

(see [4, 12, 31]). From the second equation we obtain qx = − 1
2αq0

( 1
2P 2)xx . In order to

obtain a single partial differential equation we insert this in the first equation. This yields

Pt = − c2

2αq0

(
1

2
P 2

)
xx

.

Let p0(x) > 0 denote a function such that
(

1
2p2

0

)
x

= −αq2
0 . We introduce a new variable p

by P = p0+p. If we neglect the lower order terms with px , p2
x we obtain pt = − c2

2αq0
(p0+

p)pxx . By neglecting the quadratic term this yields the linear model

pt = − c2

2αq0
p0pxx (15)

which has the same form as the Schlögl model with zero reaction term, that is ρ = 0. So we
can apply the methods for boundary stabilization from Section 2. This is of interest for the
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operation of gas pipelines since often, the customer demand has a periodic structure (see
[14]). If the variations of the demand curves are sufficiently small, that is if the gas flow
remains close to the stationary state (q0, p0(x)), they can be modeled with (15).

3 The Schlögl Model for Distributed Pyragas Control

3.1 Definition of theModel

Again we introduce a given desired T -periodic measurable state udesi ∈ L∞(Q2T ),

udesi = udesi(t, x)

that has well-defined T -periodic Neumann traces udesi
x (·, 0) ∈ Lp(0, T ) and

udesi
x (·, L) ∈Lp(0, T ), p > 2. We extend udesi to a T -periodic function on [0,∞)×[0, L].

Moreover, we assume that an initial state u0 ∈ C([−T , 0], L∞(0, L)) is given. Let a real
number

κ > 0

be given. For (t, x) ∈ [0, ∞) × (0, L), our system state is defined as the solution of the
initial-boundary value problem

(S) :

ut (t, x) = uxx(t, x) − uxx(t − T , x)

−ρ [R(u(t, x)) − R(u(t − T , x))] +ut (t − T , x) − κ[u(t, x)

−u(t − T , x)],
ux(t, 0) = udesi

x (t, 0) for t > 0,

ux(t, L) = udesi
x (t, L) for t > 0,

u(t, x) = u0(t, x) for (t, x) ∈ (−T , 0) × (0, L).

While the above form of the equations nicely shows the action of Pyragas feedback stabi-
lization, the following re-written partial differential equation fits better to the discussion of
its analysis:

ut −uxx +ρR(u)+κu = ut (·−T , ·)−uxx(·−T , ·)+ρR(u(·−T , ·))+κu(·−T , ·). (16)

3.2 Existence and Uniqueness of the Solutions

Theorem 3 Suppose that ρ ≥ 0, u1 ≤ u2 ≤ u3, and u0 ∈ L∞((−T , 0)× (0, L)) are given,
such that the (classical) partial derivatives (u0)t , (u0)xx exist a.e. in (−T , 0) × (0, L) and

(u0)t − (u0)xx + ρR(u0) + κu0 ∈ L2((−T , 0) × (0, L)).

Suppose further that udesi obeys the properties assumed above. Then for all T ′ ≥ T the
parabolic initial-boundary value problem with time delay

ut − uxx + ρR(u) + κu = ut (· − T , ·) − uxx(· − T , ·)
+ρR(u(· − T , ·)) + κu(· − T , ·) in QT ′ ,

ux(t, 0) = udesi
x (t, 0) in (0, T ′),

ux(t, L) = udesi
x (t, L) in (0, T ′),

u(t, x) = u0(t, x) in [−T , 0] × (0, L),

has a unique solution u such that

u|[0,T ′] ∈ L∞(QT ′) ∩ W(0, T ′) ∩ C((0, T ′] × [0, L]).
If u0 belongs to C([−T , 0] × [0, L]), then u is also continuous on [0, T ′] × [0, L].
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Proof Again, we apply the step method. In the interval [0, T ], the right-hand side of the
parabolic equation is

(u0)t (t − T , x) − (u0)xx(t − T , x) + ρR(u0(t − T , x)) + κu0(t − T , x) =: F(t, x).

Thanks to our assumption, F belongs to L2(QT ). Now Theorem 5.5 of [32] can be applied
that yields existence and uniqueness of a solution u ∈ W(0, T ) ∩ C((0, T ] × [0, L]) ∩
L∞(QT ) of

ut − uxx + ρR(u) + κu = F in QT ,

ux(t, 0) = udesi
x (t, 0) in (0, T ),

ux(t, L) = udesi
x (t, L) in (0, T ),

u(0, x) = u0(0, x) in (0, L).

Next, we extend the solution to [T , min{2T , T ′}]. Here, the new system reads

ut − uxx + ρR(u) + κu = F(· − T , ·) in (T , min{2T , T ′}) × (0, L),

ux(t, 0) = udesi
x (t, 0) in (T , min{2T , T ′}),

ux(t, L) = udesi
x (t, L) in (T , min{2T , T ′}),

u(T , x) = u(T − 0, x) in (0, L).

Clearly, F(· − T , ·) belongs to L2((T , min{2T , T ′}) × (0, L)). Again we obtain existence,
uniqueness, and regularity of u on [T , min{2T , T ′}] as above. If T ′ > 2T , then we repeat
the same procedure with 2T as new initial time. After finitely many steps, we arrive at the
final time T ′.

3.3 Exponential Decay with Distributed Pyragas Control

Now the stabilization result for periodic orbits is given.

Theorem 4 (Exponential stability) Let T > 0 and a T -periodic state udesi ∈ H 2(Q2T ) be
given. Let the assumptions of Theorem 3 hold. Define

μ = 2κ − 2ρ|mR|.
Assume that μ > 0. The function

V (t) = 1

2

∫ L

0

(
u(t, x) − u(t − T , x)

)2
dx

is a strict Lyapunov function for the system (S) in the sense that for t ≥ T it satisfies the
inequality

V (t) ≤ exp(−μ(t − T ))V (T ). (17)

Moreover, there exists a T -periodic function u∗ ∈ L2(Q2T ) and a constant P0 > 0 such
that for all t ≥ 0 we have u∗(t, ·) ∈ L2(0, L) and the inequality∫ L

0

(
u(t, x) − u∗(t, x)

)2
dx ≤ P0 exp(−μt)

is satisfied for all t ≥ T .

Proof By Theorem 3 the state u is continuous. Hence, V is well-defined by (1).
The definition of V implies that V (t) ≥ 0. The pde (16) implies that for all
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t ≥ T in the sense of the solution of the system (S) presented in Theorem 3 we
have

ut (t, x) − ut (t − T , x) − [uxx(t, x) − uxx(t − T , x)]

= −ρ [R(u(t, x)) − R(u(t − T , x))] − κ[u(t, x) − u(t − T , x)]. (18)

We multiply (18) by [u(t, x) − u(t − T , x)] and integrate to obtain for t0 > T

∫ t0

T

∫ L

0
[u(t, x) − u(t − T , x)][[ut (t, x) − ut (t − T , x)] − [uxx(t, x) − uxx(t − T , x)]]dxdt

=
∫ t0

T

∫ L

0
− ρ[u(t, x) − u(t − T , x)](R(u(t, x)) − R(u(t − T , x))

) − κ[u(t, x) − u(t − T , x)]2dxdt .

For initial data u0 in H 2((−T , 0) × (0, L)), integration by parts yields

∫ L

0

1

2
[u(t, x) − u(t − T , x)]2

∣∣t0
t=T

dx

=
∫ t0

T

∫ L

0
− [ux(t, x) − ux(t − T , x)]2dxdt

+
∫ t0

T

[u(t, x) − u(t − T , x)][ux(t, x) − ux(t − T , x)]∣∣L
x=0dt

+
∫ t0

T

∫ L

0
− ρ[u(t, x) − u(t − T , x)](R(u(t, x))−R(u(t − T , x))

)−κ[u(t, x) − u(t − T , x)]2dxdt .

Due to (2), for all v1, v2 ∈ (−∞,∞) it holds (14). With the definition of V and since due
to the periodic boundary conditions the terms at x = 0 and x = L cancel we obtain

V (t0) − V (T ) ≤
∫ t0

T

∫ L

0
− [ux(t, x) − ux(t − T , x)]2dxdt

+
∫ t0

T

∫ L

0
(−ρmR − κ)[u(t, x) − u(t − T , x)]2dxdt .

Thus we have

V (t0) ≤ V (T ) +
∫ t0

T

∫ L

0
− μ 1

2 [u(t, x) − u(t − T , x)]2dxdt .

Since μ > 0 this implies V (t0) ≤ V (T ). In fact, we have 0 ≤ V (t0) ≤ V (T ) −∫ t0
T

μV (τ)dτ . Now, Gronwall’s lemma implies the inequality

V (t0) ≤ V (T ) exp (−μ(t0 − T )) .

With a density argument, this implies (17). The last part of the assertion follows as in the
proof of Theorem 2.

Example 2 Let T = 2π and L = 1. Assume that

udesi
x (t, 0) = udesi

x (t, L) = 0.

For (t, x) ∈ (−T , 0) × (0, L), let

u0(t, x) = sin(t).
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Then system (S) is

u(t, x) = sin(t) for (t, x) ∈ (−2π, 0) × (0, L),

ux(t, 0) = 0 for t > 0,

ux(t, L) = 0 for t > 0,

ut = uxx − uxx(· − T , ·) − ρ [R(u) − R(u(· − T , ·))]
+ut (· − T , ·) − κ[u − u(· − T , ·)] for t > 0.

(19)

The solution of the pde in (19) is in fact independent of x, so for t > 0 the pde reduces to
the ordinary differential equation

ut = ut (· − 2π, ·) − ρ [R(u) − R(u(· − 2π, ·))] − κ[u − u(· − 2π, ·)].
Since u(t, x) = sin(t) is 2π -periodic, it satisfies the above ordinary differential equation.
Thus it is the 2π -periodic solution of (19).

4 Stabilization to a Desired State

In order to complete the picture, we also consider non-Pyragas distributed feedback. The
analysis is completely analogous to Section 3. Let a desired state udesi ∈ C2([0,∞) ×
[0, L]) be given. Let initial data u0 in C2([0, L]) be given. Consider the system

(V) :

ut − uxx + ρR(u) + κu = udesi
t − udesi

xx + ρR(udesi ) + κudesi for (t, x) ∈ (0, ∞) × (0, L),

ux(t, 0) = udesi
x (t, 0) for t > 0,

ux(t, L) = udesi
x (t, L) for t > 0,

u(0, x) = u0(x) for x ∈ (0, L).

For the semilinear system (V), existence results from [16] apply.

Theorem 5 (Exponential stability) Define

μ = 2κ − 2ρ|mR|.
Assume that μ > 0. The function

V (t) = 1

2

∫ L

0

(
u(t, x) − udesi(t, x)

)2
dx

is a strict Lyapunov function for the system (V) in the sense that for t ≥ 0 we have

V (t) ≤ exp(−μt)V (0). (20)

Proof The pde in (V) implies that we have

ut − udesi
t −

[
uxx − udesi

xx

]
= −ρ

[
R(u) − R(udesi)

]
− κ[u − udesi]. (21)

We multiply (21) by [u(t, x) − udesi(t, x)] and integrate to obtain for t0 > 0
∫ t0

0

∫ L

0
[u(t, x) − udesi (t, x)]

[
[ut (t, x) − udesi

t (t, x)] − [uxx(t, x) − udesi
xx (t, x)]

]
dxdt

=
∫ t0

0

∫ L

0
− ρ[u(t, x) − udesi (t, x)]

(
R(u(t, x)) − R(udesi (t, x))

)
− κ[u(t, x) − udesi (t, x)]2dxdt .
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Integration by parts yields
∫ L

0

1

2
[u(t, x) − udesi (t, x)]2|t0t=0dx

=
∫ t0

0

∫ L

0
− [ux(t, x) − udesi

x (t, x)]2dxdt +
∫ t0

0
[u(t, x) − udesi (t, x)][ux(t, x) − udesi

x (t, x)]|Lx=0dt

+
∫ t0

0

∫ L

0
− ρ[u(t, x) − udesi (t, x)]

(
R(u(t, x)) − R(udesi (t, x))

)
− κ[u(t, x) − udesi (t, x)]2dxdt .

Due to (2), for all v1, v2 ∈ (−∞,∞) it holds (14). With the definition of V and since due
to the boundary conditions the terms at x = 0 and x = L cancel we obtain

V (t0) − V (0) ≤
∫ t0

0

∫ L

0
− [ux(t, x) − udesi

x (t, x)]2dxdt

+
∫ t0

0

∫ L

0
(−ρmR − κ)[u(t, x) − udesi(t, x)]2dxdt .

Thus we have

V (t0) ≤ V (0) +
∫ t0

0

∫ L

0
− μ 1

2 [u(t, x) − udesi(t, x)]2dxdt .

Since μ > 0 this implies V (0) ≤ V (T ). In fact, we have 0 ≤ V (t0) ≤ V (0)−∫ t0
0 μV (τ)dτ .

Now, Gronwall’s lemma implies the inequality V (t0) ≤ V (0) exp(−μt0). Thus we have
shown (20).

5 Numerical Experiments

5.1 Numerical Results for Distributed Pyragas Feedback

For simplicity we concentrate here on ordinary differential equations. They are equivalent
to the Schlögl model, where spatially constant initial data functions u0(x, t) ≡ u0(t) are
given. Then the solution u of the Schlögl model satisfies uxx = 0 and it is spatially constant
for all times. Moreover, it obeys the homogeneous Neumann boundary conditions.

The feedback strategies of the previous sections partially generated periodic functions
that are in fact constant. This is not a surprise, because certain standard solutions of
the Schlögl model without time delay are constant. In the next following examples, we
investigate the stabilization of delay equations that exhibit periodic solutions. By different
stabilization strategies, we are able to generate as time limit functions of a desired period.
However, in contrast to the preceding part, we were not yet able to prove this periodic limit
behavior. Therefore, this subsection has an experimental character.

We define

ρ = 1, u1 = 0, u2 = 0.25, u3 = 1, R(u) = (u − u1)(u − u2)(u − u3).

For delay s = 1.240683838477202 and weight ω = −1.766552137106608, let v :
[−s, ∞) → R be the solution of the nonlinear delay equation

v′(t) = −ρR(v(t)) + ωv(t − s) for t ∈ [0, ∞),

v(t) = 1 if t ≤ 0.
(22)

These special numbers s and ω were determined such that the solution v of the nonlinear
delay ode (22) in the interval [0, 160] minimizes the L2(0, 160)-distance to the solution of
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Fig. 1 The solution v of the delay ode (22) does not seem to be 4-periodic

the linear delay ode

U ′(t) = −π

2
U(t − 1) for t ∈ [0, ∞),

U(t) = 1 if t ≤ 0;
we refer to the computational examples in [7].

The function U is known to be periodic with period T = 4, cf. [13]. At first glance,
the function v seems to have this property, too. However, if we solve equation (22) in the
interval [0, 960] and then compare the solution in [156, 160] with the solution in [956, 960],
we can see that the obtained v is not periodic of period 4; see Fig. 1. Most likely, some
numerical instabilities are the reason for this behavior. On the other hand, the function v

might not be periodic.
Therefore, to obtain a periodic solution, we try to stabilize the solution of (22) by some

feedback.

Strategy 1. We want to stabilize (22) using a Pyragas feedback stabilization. To obtain the
target period T = 4, we solve the equation

u′(t) = −ρR(u(t)) + ωu(t − s) + κ(u(t − 4) − u(t)) for t ∈ [160, 960],
u(t) = v(t) if 156 ≤ t ≤ 160

(23)

with some positive κ . For a sufficiently large weight κ , κ = 100 in our computations,
we obtain a very fine numerical adjustment, cf. Fig. 2. Indeed, the L2(−4, 0) difference
between u(t + 960) and v(t + 160) is 2 × 10−2. Since ‖v‖L2(156,160) = 1.4927, we report
only on absolute errors. In all the figures, the graph of the error is magnified 40 times with
respect to the scale of the function.

Strategy 2. We try to stabilize the solution v of (22) by adding the difference between the
periodic target function

udesi = v(mod(t − 160, 4) + 160 − 4)
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Fig. 2 The solution u of the delay ode (23) with Pyragas feedback seems to be 4-periodic

and the solution u of

u′(t) = −ρR(u(t)) + ωu(t − s) + κ(udesi (t) − u(t)) for t ∈ [160, 960],
u(t) = v(t) if 156 ≤ t ≤ 160.

(24)

For κ = 100, the L2(−4, 0)-norm of the difference between u(t + 960) and v(t + 160) is
9 × 10−3; see Fig. 3.

Stabilization in the presence of small perturbations of parameters and data. The solu-
tion of (22) is very sensitive w.r.t. small perturbations of s, ω and the initial history v(t) for
t ≤ 0. For instance, we consider the round off of s and ω with two digits to the right of the
decimal point,

ŝ = 1.24, ω̂ = −1.77.

Let v̂ be the solution of the perturbed problem

v̂′(t) = −ρR(v̂(t)) + ω̂v̂(t − ŝ) for t ∈ [0, ∞),

v̂(t) = 1 if t ≤ 0.
(25)
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Fig. 3 The solution u of the delay ode (24) with forcing term seems to be 4-periodic
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Fig. 4 The solution v̂ of the perturbed delay equation (25) is quite different from the original solution v of (22)

We obtain a solution that considerably differs from the original one in the last interval
[156, 160]. We have an error of ‖v − v̂‖L2(156,160) = 9 × 10−1; see Fig. 4.

Let us test the behavior of both stabilization strategies in this case.

Strategy 1. We try to stabilize (25) using a Pyragas feedback stabilization. For the target
period T = 4, we solve the equation

u′(t) = −ρR(u(t)) + ω̂u(t − ŝ) + κ(u(t − 4) − u(t)) for t ∈ [160, 960],
u(t) = 1.01v(t) if 156 ≤ t ≤ 160

(26)

for some positive κ . Notice that we have also perturbed the initial history. For κ = 100, the
L2(−4, 0)-norm of the difference between u(t +960) and v(t +160) is 1.5×10−2. This is:
the stabilized function not only appears to be periodic, but also is very close to the solution
of the original unperturbed problem; cf. Fig. 5.
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Fig. 5 The solution u of the perturbed delay ode (26) with Pyragas feedback seems to be 4-periodic and is
quite similar to the original solution v of (22)
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Fig. 6 The solution of the perturbed delay ode with forced feedback also seems to be 4-periodic and is quite
similar to the original solution v of (22)

Strategy 2. Using the target udesi(t) = v(mod(t − 160, 4) + 160 − 4) instead of u(t − 4)

yields also a successful stabilization. The error in this case is again 9 × 10−3; cf. Fig. 6.

Comment about perturbation. One could think that the periodic behavior is imposed only
or mainly by the Pyragas feedback term because it has this big weight κ and we impose a
delay equal to the searched period. Nevertheless, if the ode we are trying to stabilize does
not have a solution that is periodic (or is at least close to be periodic), then the Pyragas
feedback term will not help to obtain such a periodic solution.

Our first motivation for this example was to mimic the solution of the linear delay equa-
tion (23), that has delay ŝ = 1 and weight ω̂ = −π/2, with a the solution of the nonlinear
ode (22). By an optimization method, we found the “strange” pair s = 1.240683838477202
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Fig. 7 The solution u of the delay ode (27) cannot be steered to match the solution v of the original delay
ode (22) using a Pyragas feedback



Exponential Stability for the Schlögl System by Pyragas Feedback
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Fig. 8 The solution u of an ode without delay, (28), is forced to match a periodic pattern by Strategy 2

and ω = −1.766552137106608, cf. [7]. If we follow Strategy 1 and try to stabilize the
perturbed equation inserting a Pyragas feedback term, i.e., solving the following equation,

u′(t) = −ρR(u(t)) − π
2 u(t − 1) + κ(u(t − 4) − u(t)) for t ∈ [160, 960],

u(t) = v(t) if 156 ≤ t ≤ 160,
(27)

we are not successful; see Fig. 7.
However, Strategy 2 leads to a function that is very close to the solution v of (22). In

Fig. 8 we show, how the solution of

u′(t) = −ρR(u(t)) + κ(udesi (t) − u(t)) for t ∈ [160, 960],
u(t) = v(t) if 156 ≤ t ≤ 160

(28)

corresponding to ω = 0 (no delay) is lead to a periodic pattern by feedback Strategy 2. The
error in this case is 2 × 10−2.
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Fig. 9 The function u(t) − sin(t) for κ = 7
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Fig. 10 The function u(t) − sin(t) for κ = 3

5.2 Numerical Results for Distributed (non-Pyragas) Feedback

As in Example 1, we select the numbers u1 = −1, u2 = 0, u3 = π . Then we have
R(u) = (u2 +u)(u−π) and also mR is as in Example 1. Let ρ = 1 and udesi(t, x) = sin(t).
For constant initial data u0, the solutions of system (V) do not depend on x and are the
solutions of the Cauchy problem with the initial condition u(0) = u0 and the ordinary
differential equation

ut + (u2 + u)(u − π) + κu = cos(t) + (sin2(t) + sin(t))(sin(t) − π) + κ sin(t).

Let κ = 7. Since κ > ρ|mR|, Theorem 4 implies that for any constant initial state the
function t 	→ (u(t) − sin(t))2 decays exponentially. This is illustrated by Fig. 9. The initial
value for t = 0 is u0 = 10.

Numerical simulations indicate that for κ = 3, the function (u(t) − sin(t))2 does not
converge to zero for t → ∞. This is illustrated by Fig. 10. Note however that the function
u(t) − sin(t) appears to be periodic.

6 Conclusion

In this paper, feedback laws with Pyragas terms have been discussed that stabilize the
Schlögl system globally to a T -periodic state for a given period T > 0 under appropriate
assumptions.

Both the case of Pyragas boundary feedback control on both ends of the interval and
of distributed Pyragas feedback control were considered. A strict Lyapunov function was
constructed to show the exponential stability of the resulting closed-loop system in the L2-
sense. We have presented inequalities that guarantee the exponential stability of the systems
and can easily be verified.
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7. Casas, E., Mateos, M., Tröltzsch, F.: Optimal time delays in a class of reaction-diffusion equations.
Optimization 68, 255–278 (2019)

8. Chen, Z.-X., Guo, B.-Y.: Analytic solutions of the Nagumo equation. IMA J. Appl. Math. 48, 107–115
(1992)

9. Cordoni, F., Di Persio, L.: Optimal control for the stochastic FitzHugh–Nagumo model with recovery
variable. Evol. Equ. Control Theory 7, 571–585 (2018)
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