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ARTICLE INFO ABSTRACT

Handling editor: Xavier Querol Objectives: We investigated the association between outdoor air pollutants exposure in the first trimester of preg-
Keywords: nancy, and growth and cardio-metabolic risk at four years of age, and evaluated the mediating role of birth weight.
Air pollution Methods: We included mother-child pairs (N = 1,724) from the Spanish INMA birth cohort established in
Prenatal exposure 2003-2008. First trimester of pregnancy nitrogen dioxide (NO,) and fine particles (PM, s) exposure levels were
Childhood growth estimated. Height, weight, waist circumference, blood pressure, and lipids were measured at four years of age.
Childhood obesity Body mass index (BMI) trajectories from birth to four years were identified.

Particulate matter Results: Increased PM, s exposure in the first trimester of pregnancy was associated with decreased z-scores of

weight (zWeight) and BMI (zBMI) (zWeight change per interquartile range increase in PM, 5 exposure = —0.12;
95% CI: —0.23, —0.01; 2BMI change = —0.12; 95% CI: —0.23, —0.01). Higher NO, and PM, 5 exposure was
associated to a reduced risk of being in a trajectory with accelerated BMI gain, compared to children with the
average trajectory. Birth weight partially mediated the association between PM, 5 and zWeight and zBMI. PM, 5
and NO, were not associated with the other cardio-metabolic risk factors.

Conclusions: This comprehensive study of many growth and cardio-metabolic risk related outcomes suggests that
air pollution exposure during pregnancy may be associated with delays in physical growth in the early years
after birth. These findings imply that pregnancy exposure to air pollutants has a lasting effect on growth after
birth and require follow-up at later child ages.

Abbreviations: BMI, body mass index; BP, blood pressure; CI, confidence interval; DBP, diastolic blood pressure; HDL, high-density lipoprotein; INMA, Infancia y
Medio Ambiente; IQR, interquartile range; LUR, land-use regression; MET, metabolic equivalent of task; PM, s, particulate matter with an aerodynamic diameter
lower than 2.5 pm; PM,, particulate matter with an aerodynamic diameter lower than 10 pm; rMED, relative Mediterranean Diet Score; RRR, relative risk ratio; SBP,
systolic blood pressure; SES, socio-economic status; SHS, second hand smoke; TG, triglycerides; WC, waist circumference
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1. Introduction

Air pollution represents the biggest environmental risk to health
affecting all regions, settings, socioeconomic groups, and ages (World
Health Organization, 2016). Several epidemiological studies indicate
that prenatal exposure to outdoor air pollution is associated with health
effects in children, such as lower birth weight, and adverse respiratory
and neurodevelopmental effects (Vrijheid et al., 2016). However, very
little is known about how prenatal air pollution exposure affects post-
natal and early childhood physical growth (Clemente et al., 2017; Kim
et al., 2016), a fundamental, intrinsic aspect of childhood health (Cooke
et al., 2017).

Prenatal exposure to air pollution is robustly associated with fetal
growth restriction and low birth weight (Vrijheid et al., 2016), a risk
factor for altered growth trajectories and cardio-metabolic diseases
later in life (Nobili et al., 2008; Ramadhani et al., 2006; Barker, 2004).
For maternal smoking during pregnancy, the association found with
lower birth weight (Abel, 1980; Naeye, 1981; Meredith, 1975) seems to
be followed by increased body mass index (BMI) in childhood (Riedel
et al., 2014; Behl et al., 2013), through a reduction in height growth
(Howe et al., 2012). Although outdoor air pollution shares some me-
chanisms with smoking, e.g. inflammation and oxidative stress (Brook
et al., 2010; Yanbaeva et al., 2007), its effects on postnatal growth have
hardly been described. Air pollution interferes with the hypothalamic-
pituitaryadrenal axis, which directly affects growth and cardio-meta-
bolic outcomes (Thomson, 2013; Miller et al., 2016; Thomson et al.,
2016). So far, two prospective studies have investigated the association
between prenatal exposure to air pollutants and height and weight in
infancy and early childhood (Clemente et al., 2017; Kim et al., 2016),
and both reported decreased weight associated with increased exposure
to air pollution. Another study exploring prenatal air pollution exposure
and postnatal weight gain between birth and six months of age
(n = 2,114) (Fleisch et al., 2015) found no association. Two further
studies investigating prenatal exposure to air pollutants and BMI tra-
jectories from birth to 10 years (n = 1,649) (Fleisch et al., 2018) and
between 6 and 10 years (n = 2,318) (Kim et al., 2018) reported null
results. Evidence for an association between air pollution exposure and
childhood obesity is also limited and equivocal. Of the few studies
evaluating prenatal exposure to different air pollutants in relation to
childhood obesity (Huang et al., 2018; Chiu et al., 2017; Mao et al.,
2017; Fleisch et al., 2017; Frondelius et al., 2018), two found mixed
results (Huang et al., 2018; Mao et al., 2017), one a positive association
(Chiu et al., 2017), and two found no association (Fleisch et al., 2017;
Frondelius et al., 2018). In adults, there is good evidence that air pol-
lution exposure is also related to other cardio-metabolic risk factors,
such as hypertension, dyslipidemia and diabetes (Yang et al., 2018;
Wallwork et al., 2017; Eze et al., 2015; Alderete et al., 2018; Cosselman
et al., 2015). In young children there is little study thus far, with only a
few previous reports of increased systolic blood pressure (SBP) (Zhang
et al., 2018), and alteration of the glucose metabolism (Fleisch et al.,
2017) with prenatal air pollution exposure.

The first trimester of pregnancy may be a particularly critical period
for cardio-metabolic health later in life, since it is characterized by
highest human development rates (Livingstone, 2001), includes the
embryonic phase and is fundamental for development of fetal cardio-
vascular and metabolic organs (Robinson, 1973). In our prior analysis
of the INMA birth cohort, exposure to air pollution in the first trimester
was associated with reduced height and weight in early life (Clemente
et al., 2017), but whether this effect persists at older age is unclear.

The aim of this study was to investigate the association between
exposure to traffic-related air pollutants, i.e. nitrogen dioxide (NO,)
and particulate matter with an aerodynamic diameter lower than
2.5 um (PM,5), in the first trimester of pregnancy, and growth and
cardio-metabolic risk outcomes (height, weight, BMI, BMI trajectories,
blood pressure (BP), waist circumference (WC), lipids, and a composite
cardiometaboloc score) in preschoolers. We further aimed to assess the
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mediation role of birth weight in any association between air pollution
and growth and cardio-metabolic risk factors.

2. Materials and methods
2.1. Participants

Data from the INMA (Infancia y Medio Ambiente) sub-cohorts in
four Spanish regions (Asturias, Guipuzcoa, Sabadell, and Valencia)
were used. 2765 pregnant women were recruited in the first trimester
of pregnancy between 2003 and 2008 (Guxens et al., 2012). Inclusion
criteria were age at least 16 years, intention to give birth in the re-
ference hospital, no problems in communication, singleton pregnancy,
and non-assisted conception. Follow-up visits were conducted during
the third trimester of pregnancy, at birth and at child ages one and four
years, and included interview-based questionnaires answered by the
mother. Children underwent a follow-up visit at four years that in-
cluded height, weight and WC measurement and blood samples col-
lection by trained personnel. In Asturias, Sabadell and Valencia SBP and
diastolic BP (DBP) were also measured. This study was approved by the
regional ethical committees of each cohort (Guxens et al., 2012) and
conducted according to principles of the Declaration of Helsinki. A
signed informed consent was obtained from all women at recruitment
and from parents at each follow-up visit.

2.2. Air pollution exposure assessment

NO, exposure was assessed as previously described (Ifiiguez et al.,
2009). Briefly, NO, levels were measured in four 7-days sampling
periods using passive samplers distributed over each sub-cohort area
according to geographic criteria, expected pollution gradients and po-
pulation density. Temporally adjusted land-use regression (LUR)
models were developed to estimate exposure to NO, in different time
windows.

PM, 5 exposure was assessed in all sub-cohorts but Asturias using
land-use regression models temporally adjusted to measurements of
local back ground monitoring stations and averaged over the trimesters
of pregnancy, the whole pregnancy period and the first year. For
Sabadell we used a site-specific LUR model developed in the context of
the ESCAPE project (Eeftens et al., 2012). For Guipuzcoa and Valencia
we applied the ESCAPE European-wide LUR model (Wang et al., 2014).

Our main focus was on exposure in the first trimester of pregnancy,
a period that is characterized by the highest human development rates
(Livingstone, 2001), includes the embryonic phase and is fundamental
for development of fetal cardiovascular and metabolic organs
(Robinson, 1973), and may therefore be a critical period for cardio-
metabolic health later in life. We explored other exposure windows as
sensitivity analysis, i.e. second and third trimesters of pregnancy, entire
pregnancy period and first year of life. Exposures were assessed at
participants’ home addresses, taking into account changes in addresses
between pregnancy and first year of life.

2.3. Outcome assessment

Anthropometric measurements. Height, weight and WC were mea-
sured using standard protocols. Age- and sex-standardized z-scores of
height (zHeight), weight (zWeight) and BMI (2BMI) were calculated
using the World Health Organization (WHO) reference curves (de Onis
et al., 2009, World Health Organization, 2006). We calculated age-,
sex-, and sub-cohort-specific z-scores of WC (zWC), as previously de-
scribed (Manzano-Salgado et al., 2017).

BMI trajectories. Five zBMI trajectories from birth until four years
were identified using latent class growth analysis (Fig. S1), (Slining
et al., 2013) based on medical records of height and weight as pre-
viously described: (Montazeri et al., 2018) class 1, characterized by
higher birth size followed by accelerated BMI gain; class 2, higher birth
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size, slower BMI gain; class 3, lower birth size, accelerated BMI gain;
class 4, average size at birth, average BMI gain (reference category in
our analyses); and class 5, lower birth size, average BMI gain.

BP score. A single BP measurement was taken after 5 min resting in
sited position using an automated oscillometric device and a special
cuff adjusted to the upper right arm size of each child, in all sub-cohorts
but Guipuzcoa. Age-, sex-, sub-cohort-, and height-specific SBP and DBP
z-scores were calculated, as previously described (Manzano-Salgado
et al., 2017). The mean of DBP and SBP z-scores was used for further
analyses.

Lipids score. In a subsample of 870 children triglycerides (TG) and
high-density lipoprotein (HDL) levels were measured in blood samples
(fasting for Valencia, n = 163; not-fasting for the other sub-cohorts)
using standard analytical techniques. We calculated age-, sex-, and sub-
cohort-specific z-scores of TG (2TG) and HDL (zHDL), as previously
described (Manzano-Salgado et al., 2017). A lipid score was used for
further analyses, computed as the mean of 2TG and zHDL, the latter
multiplied by —1 due to the inverse association with the cardio-me-
tabolic risk.

Cardio-metabolic risk score. A continuous cardio-metabolic risk score
was calculated as proposed in the IDEFICS study (Ahrens et al., 2014),
and adapted to accommodate the lack of information on insulin re-
sistance or glucose intolerance, as previously described (Manzano-
Salgado et al., 2017). Briefly, a three-component cardio-metabolic risk
score was built summing zZWC, BP score, and lipid score. A higher score
indicated a higher risk.

2.4. Covariates and mediators

Child sex, date of birth, and birth weight were obtained from clin-
ical records. Information on key covariates was collected during preg-
nancy using questionnaires, and included maternal socio-demographic
variables, pre-pregnancy BMI, physical activity, cigarette smoke ex-
posure, and adherence to the Mediterranean diet assessed using the
relative Mediterranean Diet Score (rMED), derived from a food fre-
quency questionnaire, as previously described (Fernandez-Barrés et al.,
2016; Romaguera et al., 2010).
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2.5. Statistical analysis

We tested the association between air pollution exposure during the
first trimester of pregnancy and our outcomes using linear regression
models for continuous outcomes, logistic regression for overweight/
obesity status and multinomial logistic regression for zBMI trajectories.
Linearity of relationships was checked and confirmed using penalized
splines in generalized additive models (Figs. S2-S3). Covariates were
selected using Directed Acyclic Graphs (Fig. S4). The final model in-
cluded sub-cohort, season of birth, maternal age at delivery (con-
tinuous), maternal country of birth (Spain/not Spain), parity (nulli-
parous/primiparous/multiparous), maternal cigarette smoke exposure
at 12 weeks, categorized as previously described (Robinson et al., 2016)
and detailed in the Supplemental methods (non smoker/second hand
smoke/partial smoker/current smoker), maternal education (low,
<11 years of education/medium, 12-15 years/high, > 15 years), ma-
ternal occupational class, based on the maternal current or last occu-
pation before pregnancy or on the husband’s occupation, in the case of
unemployed women (manual, class IV-V of the Spanish adaptation of
the British Registrar General’s Social Class classification (Domingo-
Salvany et al., 2000)/non-manual, class I-III) (details in the Supple-
mental methods), maternal pre-pregnancy BMI (continuous), maternal
physical activity at 32 weeks, expressed as overall metabolic equivalent
of task levels (Ridley et al., 2008) (continuous), and rMED at 12 weeks
(continuous). Following pairwise deletion, complete data on all in-
cluded variables were available in more than 95% children with BMI
and NO, or PM, 5 data (Fig. 1).

Mediation analyses. To determine whether birth weight is a potential
mediator between air pollution exposure and outcomes we performed a
mediation analysis using the approach based on the counterfactual
framework (Robins and Greenland, 1992; Pearl, 2001), provided the
associations between exposure and outcome, exposure and mediator,
and mediator and outcome were all statistically significant. For the
mediation analysis to have a causal interpretation, the adjustment for
the following four types of confounding needs to be addressed: (1)
confounding of the exposure-outcome relationship; (2) confounding of
the mediator-outcome relationship; (3) confounding of the exposure-

Full sample
n=2,766

NO, exposure
n=2,214

No covariates
n=89 (4.9%)

BMI & Covariates
available
n=1,724

!

PM, 5 exposure®
n=1,954

p

BMI®
n=1,450

'

No covariates
n=60 (4.1%)

BMI & Covariates
available®
n=1,390

Cardio-Metabolic
risk score® n=639

BMI trajectories
n=1,714

Cardio-Metabolic
risk score®® n=413

BMI trajectories
n=1,382

Fig. 1. Flow chart of study population. Abbreviations: BMI, body mass index; NO,, nitrogen dioxide; PM, s, particulate matter with an aerodynamic diameter lower
than 2.5 um. ? Cardio-metabolic risk score data not available for Guipuzcoa; b PM, 5 data not available for Asturias.



S. Fossati, et al.

mediator association; (4) mediator-outcome confounders also affected
by exposure (VanderWeele, 2016). To adequately address assumption
1, 2 and 3, we used DAGs for confounders selection to include all the
covariates that may confound these relationships (Fig. S4). To address
assumption 4, we ran a sensitivity analysis excluding maternal BMI
(which is possibly affected by prenatal air pollution exposure via a
backdoor pathway through pre-conceptional air pollution exposure)
from the list of mediator-outcome confounders. When assumptions of
the mediation analysis hold, the direct effect represents the effect of
exposure on the outcome after controlling for birth weight, and the
indirect effect is the estimated effect of exposure via birth weight
(Valeri and Vanderweele, 2013). The natural direct effect, the natural
indirect effect, and total effect were estimated fitting a causal mediation
framework with parametric regression models (STATA paramed com-
mand), not including an interaction term between exposure and med-
iator. The proportion of mediation was calculated as the ratio of in-
direct effect to total effect.

Sensitivity analyses. We ran a number of sensitivity analyses. (1) We
explored exposure to air pollution during the second and third trime-
sters of pregnancy, during the entire pregnancy period, and during the
first year of life. (2) Since z-scores were age- and sex-standardized,
these variables were not included in the final model. We ran a sensi-
tivity analyses including them. (3) As developmental tracks for growth
and obesity vary by sex (Wang and Beydoun, 2007), we included an
interaction term between pollutant and sex, and stratified by sex when
p-values for interaction were lower than 0.1. (4) We computed sub-
cohort-specific estimates and evaluated between-sub-cohort hetero-
geneity of associations using the I? statistic as guidance (Higgins and
Thompson, 2002).

We interpreted our results as estimates (95% confidence interval,
CD) for an interquartile range (IQR) increase in the exposure. P-value
lower than 0.05 was considered statistically significant. Analysis were
conducted in STATA 14.0 and R x64 3.3.1.

3. Results

The main study population included 1,724 mother—child pairs with
NO,, exposure data available (Table 1). Mothers were predominantly of
Spanish origin (94.1%), with a mean age at delivery of 32.3 years. Most
mothers received secondary education or higher (78.4%), and ap-
proximately half belonged to the non-manual/skilled occupational class
(51.1%). The majority of mothers were nulliparous (57.8%) and 32.7%
were non-smokers during the first trimester of pregnancy. The pre-
valence of overweight/obesity was 31.5%, with 9.6% of the children
being obese (Table 1). The subpopulation with PM, 5 exposure data had
similar characteristics (Table S1). Median (IQR) levels of exposure to
NO, and PM, 5 were 28.4 (20.2) ug/m® and 15.6 (5.3) pg/m® respec-
tively (Table 2; exposure levels by cohort in Table S2). NO, and PM, 5
levels were moderately correlated (Pearson’s r = 0.27) (Table 2).

Exposure to NO, and PM; 5 during the first trimester of pregnancy
tended to be inversely associated with growth parameters, height,
weight, and BMI, although most associations did not reach statistical
significance. Higher exposure to PM, 5 in the first trimester of preg-
nancy was associated with a statistically significant decrease in zWeight
(beta for an IQR increase in exposure = —0.13; 95% CI: —0.23,
—0.02) and zBMI (beta = —0.12; 95% CI —0.23, —0.01) (Table 3,
unadjusted estimates in Table S3). Exposure to PM, 5 and NO, was also
associated with reduced risk of being in a BMI trajectory characterized
by accelerated BMI gain, compared to the reference category, i.e.
children with average size at birth and average BMI gain (e.g. RRR for
an IQR increase in PM, 5 for class 1, higher birth size and accelerated
BMI gain = 0.62; 95% CI: 0.42, 0.91; and RRR for class 3, lower birth
size and accelerated BMI gain = 0.65; 95% CI: 0.45, 0.96) (Table 4,
unadjusted estimates in Table S4). Early life exposure to NO5 and PM, 5
was not associated with risk of overweight/obesity, BP score, lipid
score, WC, or the composite cardio-metabolic risk score (Tables 3 and 4,
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Table 1
Characteristic of the study population.

Study population with NO,

n = 1,724)
Child characteristics
Age at 4 years follow-up visit (years) [mean 4.41 (0.18)
(SD)]
Sex (%)
Female 48.6
Male 51.4

Birth weight (g) [mean (SD)]
Sub-cohort (%)

3,266.56 (460.3)

Asturias 21.4
Guipuzcoa 22.4
Sabadell 24.3
Valencia 32.2
Season of birth (%)
Winter 26.3
Spring 23.3
Summer 24.7
Fall 25.7

Growth and obesity outcomes at age 4 years

zHeight [mean (SD)] —0.02 (0.94)
zWeight [mean (SD)] 0.40 (1.02)
zBMI [mean (SD)] 0.62 (1.07)
Child overweight/obese status (%)
Normal or underweight 68.5
Underweight 0.5
Overweight or obese 31.5
Obese 9.6
BMI trajectory” (%)
Class 1 - Higher birth size, accelerated 12.0
BMI gain
Class 2 - Higher birth size, slower BMI 25.7
gain
Class 3 — Lower birth size, accelerated BMI 13.4
gain
Class 4 - Average birth size, average BMI 36.4
gain
Class 5 - Lower birth size, average BMI 12.4
gain
Cardio-metabolic risk outcomes® at age 4 years
Lipids score [mean (SD)] —0.01 (0.78)
ZWC [mean (SD)] —0.02 (0.96)
BP score [mean (SD)] —0.05 (0.88)
Cardio-metabolic risk score [mean (SD)] —0.08 (1.52)
Maternal characteristics
Age at delivery (years) [mean (SD)] 32.3 (4.06)
Country of origin (%)
Spain 94.1
Not Spain 5.9
Occupation (%)
Non-manual/skilled 51.1
Manual 48.9
Education (%)
Low 21.6
Medium 41.6
High 36.8
Parity (%)
Nulliparous 57.8
One child 35.8
Two or more children 6.4
Cigarette smoke exposure (%)
No smoker 32.7
Second hand smoke 37.2
Partial smoker 13.2
Current smoker 16.9
Physical activity during pregnancy (METs/ 36.91 (3.54)
hour/day) [mean (SD)]
Pre-pregnancy BMI (kg/mz) [mean (SD)] 23.61 (4.29)
Relative Mediterranean Diet Score [mean 8.04 (2.57)

(SD)]

Abbreviations: BMI, body mass index; BP, blood pressure; MET, Metabolic
Equivalent of Task; SD, standard deviation; WC, waist circumference.
n=1,714.
b Only available for Asturias, Sabadell and Valencia (n = 639).
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Table 2
Exposure levels to NO, (n = 1,724) and PM, 5 (n = 1,390)" during the first
trimester of pregnancy and Pearson’s correlation coefficient (r).

Pearson’s r
Pollutant Median (IQR) 5th perc — 95th perc NO,
NO, (ug/m>) 28.44 (20.19) 10.56-61.44 1
PM, 5 (ug/m>) 15.55 (5.31) 9.30-20.94 0.27%%*

Abbreviations: IQR, interquartile range; NO,, nitrogen dioxide; perc, percentile;
PM, s, particulate matter with an aerodynamic diameter lower than 2.5 pm;
WC, waist circumference.

***p value < 0.001.
@ Available for Guipuzcoa, Sabadell and Valencia.

unadjusted estimates in Tables S3 and S4).

We tested whether birth weight was a mediator of the association
between PM, 5 exposure during the first trimester of pregnancy and
zBMI and zWeight at four years. We did not tested birth weight as a
mediator for BMI trajectories because the trajectories that we used in-
cluded the weight of the child measured in the first days of life, which is
highly correlated with birth weight. An IQR increase in PM, 5 exposure
was associated with a 51.9 g (95% CI —11.32, —0.86) decrease in birth
weight. A 100 g increase in birth weight was associated with a 0.07
(95% CI 0.06, 0.08) increase in zWeight and a 0.04 (95% C.I. 0.03,
0.06) increase in zBMI at four years of age. In our mediation analysis
birth weight mediated 31% and 19% of the effects of PM, 5 on weight
and zBMI, respectively, although mediation estimates were only mar-
ginally significant (e.g. proportion of mediation for zWeight = 30.7%
(95% CI: —11.5; 133.4) (Fig. 2). The natural direct and indirect effects
were negative, although at most marginally significant (e.g. beta direct
effect of PM, s on zWeight = -0.10; CI —0.20, 0.002; and beta indirect
effect of PM, 5 on zWeight = -0.03; CI —0.07, 0.006) (Fig. 2).

In sensitivity analyses, we did not observe significant associations
between exposure to NO, and PM, 5 during the second and third tri-
mesters of pregnancy, the entire pregnancy period, and first year of life
and the investigated outcomes, except for an association between ex-
posure to PM, 5 during the first year of life and zBMI (change in zBMI
for an IQR increase in PM,s = -0.07; CI: —0.15, —0.01) (Tables
S5-S6). Adjusting the model of PM, s in the first trimester of pregnancy
for PM, 5 in the first year of life did not change the direction and the
magnitude of the association (change in zBMI for an IQR increase in
PM, 5 exposure in the first trimester of pregnancy = -0.09; CI: —0.21,
—0.03). Further adjustment of our models for sex and exact age at four
years visit returned results similar to our main analyses (Tables S7-S8).

Table 3
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We found evidence of sex interaction only for exposure to PM, 5 and
zWeight (p-value interaction = 0.09); following stratification, the as-
sociation was negative in both sexes, but statistically significant only in
males (change in zWeight for an IQR increase in PM, s exposure = -
0.19; 95% CI: —0.34, —0.03 in males; and —0.08; 95% CI: —0.23,0.08
in females). We observed little evidence for heterogeneity between the
INMA sub-cohorts in the association between PM, 5 exposure and zBMI
(I> = 40.6) (Figs. S5-S6). To address the assumption of the mediation
analysis of no mediator-outcome confounder also affected by exposure,
we ran a sensitivity analysis excluding maternal BMI (possibly affected
by prenatal air pollution exposure) from the list of mediator-outcome
confounders in our mediation analyses, and the results did not differ
meaningfully.

4. Discussion

In this prospective study we found that higher exposure of mothers
to PM, s, a common traffic-related air pollutant, during the first tri-
mester of pregnancy was associated with reduced weight and BMI of the
children at 4 years of age. Results for NO, exposure were similar to
those of PM, s, but did not reach statistical significance. Higher ex-
posure to PM, s and NO, was also associated with a reduced risk of the
child being in a BMI trajectory characterized by accelerated BMI gain
between birth and four years. The association between PM,s and
weight and BMI was partially mediated by a reduction in birth weight.
Prenatal exposure to NO, and PM, s was not associated with other
cardio-metabolic outcomes in the children.

Our results are in keep with the only two studies available so far
investigating prenatal exposure to outdoor air pollutants and weight in
infants and children (Clemente et al., 2017; Kim et al., 2016). In a South
Korean multiregional prospective birth cohort study (n = 1,129),
higher prenatal (and postnatal) exposure to particles with an aero-
dynamic diameter lower than 10 pum (PM,;,) was associated with re-
duced weight from one year up to five years (Kim et al., 2016). In a
subset of our cohort (n = 336), prenatal NO, exposure was associated
with an overall decrease in weight at 12 months (Clemente et al., 2017).
Our findings of an association between air pollution and lower BMI or
lower risk of being in an accelerated BMI trajectory (departing from
either low or high birth size) are in agreement with a large prospective
study conducted in Hong Kong (n = 7,301) that found higher prenatal
exposure to PM;, to be associated with reduced BMI attained at age 9
up to 15 years (Huang et al., 2018). On the contrary, in a small lower-
income birth cohort (mainly Hispanic and African-American)
(n = 239), exposure to PM, 5 in early pregnancy was significantly

Estimated change (95% CI) in growth, obesity and cardio-metabolic risk outcomes for an IQR increase in NO, (20.19 ug/m®) and PM, 5 (5.31 pg/m?®) exposure in the

first trimester of pregnancy.

NO; PMy 5"
Outcome N Beta (95% CI)° N Beta (95% CD)”
Growth and obesity outcomes
zHeight 1,724 —0.05 (—-0.13, 0.03) 1,390 —0.07 (—-0.17, 0.03)
ZWeight 1,724 —0.07 (—0.15, 0.02) 1,390 —-0.13 (—0.23, —0.02)
zBMI 1,724 —0.05 (—-0.14, 0.03) 1,390 —-0.12 (-0.23, —0.01)
Cardio-metabolic risk outcomes®
BP score 639 0.07 (—0.04, 0.19) 413 0.11 (—0.07, 0.29)
ZWC 639 0.02 (—0.11, 0.15) 413 —0.06 (—0.23, 0.11)
Lipids score 639 —0.03 (—-0.14, 0.07) 413 —0.11 (-0.25, 0.03)
CMR score 639 0.06 (—0.15, 0.26) 413 —0.07 (—0.36, 0.23)

Abbreviations: BMI, body mass index; BP, blood pressure; CI, confidence interval; CMR, cardio-metabolic risk; IQR, interquartile; NO,, nitrogen dioxide; PM, s,
particulate matter with an aerodynamic diameter lower than 2.5 um; WC, waist circumference.

2 Available for Asturias, Sabadell and Valencia.

> Adjusted for sub-cohort, season of birth, and maternal age at delivery, country of origin, education, occupation, parity, cigarette smoke exposure during
pregnancy, physical activity during pregnancy, pre-pregnancy BMI, and adherence to the Mediterranean diet.

¢ Available for Guipuzcoa, Sabadell and Valencia.
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Table 4
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Odds ratio (95% CI) in overweight/obese status and relative risk ratio (95% CI) in child zBMI trajectory classes for an IQR increase in NO, (20.19 ug/m® and PM, 5"

(5.31 pg/m>) exposure in the first trimester of pregnancy.

NO, PM, 5"
Outcome N OR or RRR" (95% CI) N OR or RRR" (95% CI)
Child overweight/obese status
Normal or underweight 1,180 1.00 (reference) 964 1.00 (reference)
Overweight/obese 544 0.93 (0.77, 1.13) 426 0.89 (0.70, 1.14)
2BMI trajectory class
Class 1: Higher birth size + accelerated BMI gain 206 0.85 (0.64, 1.14) 158 0.62 (0.42, 0.91)
Class 2: Higher birth size + slower BMI gain 441 1.15 (0.93, 1.43) 366 1.03 (0.78, 1.37)
Class 3: Lower birth size + accelerated BMI gain 230 0.72 (0.54, 0.96) 156 0.65 (0.45, 0.96)
Class 4: Average birth size + average BMI gain 624 1.00 (reference) 519 1.00 (reference)
Class 5: Lower birth size + average BMI gain 213 1.02 (0.78, 1.34) 183 1.08 (0.76, 1.55)

Abbreviations: BMI, body mass index; CI, confidence interval; NO,, nitrogen dioxide; OR, odds ratio; PM, s, particulate matter with an aerodynamic diameter lower

than 2.5 um; RRR, relative risk ratio.
2 Available for Guipuzcoa, Sabadell and Valencia.

> Adjusted for sub-cohort, season of birth, and maternal age at delivery, country of origin, education, occupation, parity, cigarette smoke exposure during
pregnancy, physical activity during pregnancy, pre-pregnancy BMI, and adherence to the Mediterranean diet.

associated with higher BMI in boys but not in girls at preschool age
(Chiu et al., 2017). Three studies reported null associations between
prenatal exposure to PM, 5 and obesity and growth outcomes in chil-
dren around pre-school age (Fleisch et al., 2018; Mao et al., 2017;
Fleisch et al., 2017). In a low-income birth cohort, no association was
found between prenatal exposure to PM, s and risk of overweight/
obesity status in children between 2 and 6 years of age (Mao et al.,
2017). In another cohort, no association was observed between prenatal
PM, s exposure and either BMI at 3.3 and 7.7 years (n = 1,418) (Fleisch

et al., 2017), or BMI trajectories from birth up to 10 years (n = 1,649)
(Fleisch et al., 2018). We should note though that the exposure levels
reported in these three studies were lower than in our study, which may
explain the null associations. The sizes of our estimates were compar-
able to those from previous studies, e.g. (Huang et al., 2018).

This is the first study investigating the mediation role of birth
weight in the association between PM, 5 and weight and BMI. Our re-
sults showed that roughly one third and one fifth of the association
between prenatal exposure to PM, 5 and weight and BMI respectively

IE: -0.03 (-0.07, 0.006)?

-

Birth weight

Proportion of mediation:
30.7% (-11.5%, 133.4%)°

N7

IQR increase in PM2 s
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DE: -0.10 (-0.20, 0.002)°

D N

Fig. 2. Mediation through birth weight of the effect
of PM,s exposure during the first trimester of
pregnancy on zWeight (A) and zBMI (B) at four
years (n = 1,390). The figures show the estimated
effect (95% CI) of an IQR increase in PM, 5 ex-
posure during the first trimester of pregnancy on
the outcomes at four years, through birth weight.
The estimates of indirect effect and of the direct
effect, and the proportion of mediation are pro-
vided. Abbreviations: CI, confidence interval; DE,
direct effect; IE, indirect effect; IQR, interquartile
range; PM,s, particulate matter with an aero-
dynamic diameter lower than 2.5 um. *Models ad-
justed for sub-cohort, season of birth, and maternal
age at delivery, country of origin, parity, cigarette
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cupation, physical activity during pregnancy, pre-
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was potentially mediated through birth weight. This proportion should
be taken with caution because it was only marginally significant and
both direct and indirect effects were small and did not reach statistical
significance, probably due to limited variability and sample size.
However, our results for BMI trajectories support this potential partial
mediation through birth weight, and also suggest other mechanisms
independent of birth weight could operate, as we found a reduction in
the risk of being in the trajectories of accelerated BMI gain departing
from either lower or higher birth sizes.

Overall, our results suggest that, if the observed associations are
indeed causal, fetal growth restriction caused by exposure to air pol-
lution (Vrijheid et al., 2016) could lead to impaired growth trajectories
beyond infancy and up to four years. Results from some studies suggest
that effects of prenatal exposure on growth may vary according to child
age (Mao et al., 2017; Nikoli¢ et al., 2014); thus, follow up studies until
later ages in childhood and adolescence will be important.

The biological mechanisms underlying the adverse effects of air
pollution on children's growth are still unclear. The hypothesized me-
chanisms proposed so far include oxidative stress and inflammation
(Clemente et al., 2017; Kim et al., 2016), interference with thyroid
hormones (Kim et al., 2016), increased risk of respiratory related dis-
eases and other health problems that could delay growth (Kim et al.,
2016; Nikoli¢ et al., 2014), and induction of cell apoptosis due to DNA
damage (Nikoli¢ et al., 2014). Oxidative stress is also one of the me-
chanisms proposed for the effects of air pollution on birth weight (Li
et al., 2019), and this fits with the results of our mediation analysis.

The fact that our study observes associations mainly with child
anthropometry, but not with other cardio-metabolic outcomes, may be
due to the young age of children, since at this young age the prevalence
of cardio-metabolic risk factors is still low (Margolis et al., 2014). The
low prevalence of pediatric cardio-metabolic syndrome in young chil-
dren (Ahrens et al., 2014), and the lack of clinical measures of glucose
metabolism and insulin resistance in our study may also explain the null
results for cardio-metabolic risk score. Further, we note that our ana-
lyses of cardio-metabolic outcomes had a smaller sample size, and this
could have prevented us to find significant associations. Therefore,
larger studies with follow up at an older age are required to fully un-
derstand whether there are any potential adverse cardio-metabolic ef-
fects of air pollution exposure in children.

The main strengths of this study are its prospective design and the
follow up of our study population from birth to four years of age that
allows examining the effects of prenatal exposure to pollutants across
the whole early childhood period. Further, this study includes a un-
iquely comprehensive range of multiple outcomes related to growth
and cardio-metabolic risk. The use of strict protocols for collection of
anthropometric variables, BP and blood samples for lipids measure-
ment, and the use of structured questionnaires ensured high-quality
outcome, exposure and covariate data. Another strength is the use of
causal mediation analysis that allowed us to study the potential role of
birth weight in the associations of interest (Valeri and Vanderweele,
2013), although the method only provide estimates of direct, indirect
and total effects. The validity of our mediation analysis is based on the
assumption that we have adequately controlled the following three
types of confounding: (1) confounding of the exposure-mediator re-
lationship; (2) confounding of the exposure—outcome relationship; and
(3) confounding of the mediator-outcome relationship. We used DAGs
for confounders selection and, as far as possible, we included all the
covariates that may confound these relationships, however we cannot
exclude residual confounding from unknown factors related to our ex-
posure, outcome or mediator. Our study has some limitations. Exposure
was only assessed at residential address; air pollution at residency is,
however, a commonly used tool in epidemiological research (Jerrett
et al., 2005). Also, PM, s exposure was estimated using different
methods in different cohorts, which may have given rise to different
levels of measurement error, but is unlikely to explain our overall as-
sociations.

Environment International 138 (2020) 105619

5. Conclusions

This study suggests that air pollution exposure during pregnancy
may be associated with a reduction of growth outcomes, particularly
weight and BMI at preschool age, and in the risk of being in a trajectory
with accelerated BMI gain between birth and four years. These findings
imply that pregnancy exposure to air pollutants has a lasting effect on
growth after birth and require follow-up at later child ages.
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