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Abstract 

Solar observation is the branch of astronomy devoted to the study of the Sun. 

Tomographic reconstruction is a kind of multidimensional inverse problem where 

the challenge is to yield an estimate of a specific system from a finite number of 

projections. When the light wave-front that comes from the Sun penetrates the 

atmosphere, it suffers some distortions caused by optically turbulent layers 

present at different altitudes. This turbulence changes the wave-front’s shape and 

morphology. Therefore, in order to obtain a good-quality image, it is necessary to 

correct the induced error. This is done by applying adaptive optics (AO) 

techniques. In the case of the present research, it is performed with the help of a 

Multi-Conjugate Adaptive Optics System (MCAO). The reconstruction technique 

proposed in this research is a MCAO based on Convolutional Neural Networks 

(CNN). This research develops and assesses a real-time tomographic 

reconstructor based on convolutional neural networks, able to correct the error 

introduced by the atmosphere in the light wave-front received from the Sun. The 

CNN was trained and validated using data from the Durham AO Simulation 

Platform as input information. This Platform has been specifically adapted for this 

project in order to simulate a solar telescope. A learning algorithm able to train 

the CNN was developed and the CNN reconstructor results validated in the 

simulated environment. As far as the authors know, this is the first time that an 

AO system based on CNN has been developed for solar telescopes. 

 

Keywords: solar activity, turbulence, tomography, deep learning, convolutional neural 

networks 

1. Introduction. 

The Sun is the nearest star to Earth, being some 148 million kilometres distant at 

its closest approach. The sunlight that reaches Earth is eight minutes old, as this 

is the time required to travel from the Sun to our planet. Despite the distance, and 

due to its size, seen from Earth, the Sun is one of the largest objects in the sky. 



The Sun has a bright surface called the photosphere. Sometimes dark patches 

called sunspots are observed on its surface. Some of these sunspots are so large 

that they can be observed with the naked eye, but most of them cannot. Sunspots 

are magnetic regions formed where a number of concentrated field lines emerge 

through the photosphere to form a region of inward-directed or positive fields. 

Since the mid-19th century the link between the solar cycle, sunspots and some 

terrestrial phenomena such as aurorae has been recognised. Nowadays, solar 

observation is carried out with the help of solar telescopes. These operate during 

the day, which makes their use more complicated than that of telescopes devoted 

to night observation, due to the turbulence caused by the sun heating the 

atmosphere. Another problem specific to solar telescopes is the heating they 

suffer owing to their direct exposure to the rays of the sun. 

One of the earliest systematic solar observations with scientific purposes was the 

one made by The Royal Observatory of the Spanish Navy located at Cadiz 

(Spain), where a solar telescope was installed in 1832 [1]. The results of these 

studies were made available from 1835. The first photograph of the Sun was 

taken in France in 1842 by Lerebours, while the first systematic series of solar 

photographs was taken from 1858 to 1872 by the British astronomer De la Rue 

[2]. 

Since those early days, interest in solar observation has grown enormously. 

Nowadays solar observation is the branch of astronomy devoted to the study of 

the Sun and its behaviour. One of its aims is to discover how solar activity is 

created and how space and Earth weather results from that activity. Solar 

observation helps us to understand the physics behind the activity displayed by 

the Sun’s atmosphere, which drives space weather in the heliosphere and on the 

planets of our solar system. 

At the time when these lines are being written, the new European Solar 

Telescope (EST) is under development. This device will be optimized for studies 

of magnetic coupling between the deep photosphere and upper chromosphere. 

The EST will employ different instruments at the same time in order to generate 

2D spectral information. 

 

2. Materials and Methods. 

 

2.1. Tomographic reconstruction. 

Tomographic reconstruction [3] is a kind of multidimensional inverse problem 

where the challenge is to yield an estimate of a specific system from a finite 

number of projections. Fig. 1 shows a sketch of a parallel beam geometry 

employed in tomography and tomographic reconstruction. In this Figure, each 

projection, resulting from tomography under a specific angle, is made up of the 

set of lines integral through the object. 



 

The intensity received can be expressed as follows: 

𝐼 = 𝐼0 ∙ 𝑒− ∫ 𝜇(𝑥,𝑦)∙𝑑𝑥 

Data to be collected as a series of parallel rays, at position, across projection 

angle 𝜃. Where 𝜇 is the attenuation coefficient as a function of position (Radon 

Transform) and 𝐼0the original intensity. The total attenuation 𝑝 of a ray at position 

𝜃 has the following equation: 

𝑝𝜃(𝑟) = ln (
𝐼

𝐼0
) = − ∫ 𝜇(𝑥, 𝑦) ∙ 𝑑𝑠 

Please note that: 

𝑟 = 𝑥 ∙ 𝑐𝑜𝑠𝜃 + 𝑦 ∙ 𝑠𝑖𝑛𝜃 

The equation expressed above can be rewritten as follows: 

𝑝𝜃(𝑟) = ∫ ∫ 𝜇(𝑥, 𝑦) ∙ 𝛿(𝑥 ∙ 𝑐𝑜𝑠𝜃 + 𝑦 ∙ 𝑠𝑖𝑛𝜃 − 𝑟) ∙ 𝑑𝑥 ∙ 𝑑𝑦
∞

−∞

∞
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Using the inverse Fourier transform, the inverse Radon transform formula can 

easily be derived: 

𝜇(𝑥, 𝑦) =
1

2 ∙ 𝜋
∫ 𝑔𝜃(𝑥 ∙ 𝑐𝑜𝑠𝜃 + 𝑦 ∙ 𝑠𝑖𝑛𝜃) ∙ 𝑑𝜃

𝜋

0

 

Where 𝑔𝜃 is the derivative of the Hilbert transform 𝑝𝜃(𝑟). 

Atmospheric turbulence is a highly important issue in solar observation. In the 

lowest areas of the atmosphere, atmospheric turbulence varies greatly from night 

to day, and is heavier during daylight hours. One of its main causes is solar 

radiation. Air is heated by solar radiation, and subsequently the hottest and 

lightest layers of air rise while the coolest layers replace them before falling due 

to their greater density. The number of turbulent layers in the atmosphere is 

variable. Let 𝑁𝑙 be the total number of turbulent layers, each one with a different 

height value. The aperture-plane phase of light coming from the Sun in the 

direction 𝜃 = (𝜃𝑟 , 𝜃𝑦) for a certain time 𝑡 can be expressed as follows [4]: 

𝑦(𝜃, 𝑡) = ∑ 𝑃𝜃
𝑖

𝑁𝑙

𝑖=1

∅𝑖(𝑡) 

Where: 

∅𝑖(𝑡) represents a column vector of a phase distortion on a discrete grid for the 

ith turbulence layer. 

𝑃𝜃
𝑖  is a ray-tracing submatrix which extracts a phase distortion. 

A tomographic reconstruction is determined to minimize the aperture plane phase 

variance for each direction 𝜃𝑘
 [5]: 



𝐸𝜃𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛 〈‖𝑦𝑘 − 𝑦𝑘‖2〉 

Where 𝐸𝜃𝑘 is the tomographic reconstruction for the direction 𝜃𝑘, 𝑦𝑘 is the actual 

aperture-plane phase coming from the direction 𝜃𝑘 and <> indicates the 

ensemble average over time. 

 

2.2. Adaptative optics. 

 

When the light wavefront that comes from the Sun penetrates the atmosphere, it 

suffers some distortions caused by a series of optically-turbulent layers present 

at different altitudes and with different relative strengths. This turbulence changes 

the shape and morphology of the wavefront . Therefore, in order to obtain a good-

quality image it is necessary to correct the error induced. The incoming wave-

front is corrected by applying adaptive optics techniques [6]. In the case of the 

present research, it is done with the help of a Multi-Conjugate Adaptive Optics 

System (MCAO) [7]. 

Adaptive optics (AO) is a technology used to improve the performance of optical 

systems by reducing the effect of incoming wavefront distortions. This is achieved 

by deforming a mirror in order to compensate for the distortion [8]. The main 

purpose of adaptive optics, which was first used in the 1980s, is to correct the 

aberrations caused by the atmosphere in the wavefront. 

 

Fig. 2 shows the main elements of a closed-loop adaptive optics imaging system. 

As can be observed in the flowchart, light coming from the sun reaches the 

telescope. A certain amount of the light received is sent to the wave-front sensor 

(WFS). Thanks to a deformable mirror that is employed as a corrector, and with 

the help of a computer, the image is adjusted. 

To characterize the incoming wave-front received by large telescopes, it is 

common to use the Shack-Hartman Wavefront Sensor (SH-WFS) [9]. This sensor 

is composed of several lenses with the same focal length which are focused on 

different photon sensors. The resulting wave-front can be split into a matrix of 

tilts, and the deviation from the focal spot can be calculated. The SH-WFS is an 

evolution of the Hartmann mask [10] and its main goal is to improve the images 

of ground telescopes.  

When speaking about solar adaptive optics, there are certain differences from 

night observation that must be considered. Firstly, and due to its distance to 

planet earth, the Sun can be considered as a massive, extremely fast-moving 

object. Furthermore, the solar telescope suffers the effects of radiation from the 

Sun and the image quality is affected by atmospheric turbulence. 

The photons of the observed image, in this case a portion of the solar surface, 

pass through the WFS matrix lens showing as many different images as there 

are subapertures, all very similar but different due to the influence of atmospheric 



turbulence. With the help of the well-known Fractal Iterative Method (FrIM) 

algorithm [11], the best image is selected and linked to the rest of images to 

assess how the turbulence affects them. The output of this stage is a slopes 

matrix and a reconstruction algorithm is subsequently applied. 

In the case of the present research, Multiconjugate Adaptive Optics (MCAO) are 

applied. MCAO utilizes more than one (and more usually three or four) 

deformable mirrors (DM) in the process of correcting the wave front aberrations. 

Each mirror is optically conjugated to an individual distance from the telescope 

and corrects the aberrations produced by different layers of atmosphere. 

The reconstruction technique proposed in this research is a MCAO based on a 

Convolutional Neural Network (CNN). The foundations of CNNs are explained in 

the next section. 

The reconstruction performance is measured by means of the Root Means 

Square Wave-front Error (RMSE WFE). It is calculated as follows: 

𝑅𝑀𝑆𝐸 𝑊𝐹𝐸 = √�̅�2 − [�̅�]2 

Where the wave-front is represented by 𝑊(𝑥, 𝑦), �̅�2 is the average of the 

squared wave-front deviations that can be expressed as �̅�2 =
1

𝐴
∫ 𝑋(𝑥, 𝑦)2𝑑𝑥𝑑𝑦 

and where 𝐴 is the area of the pupil and [�̅�]2 is the square of average wave-

front deviation [12]. 

2.3. Convolutional neural networks. 

Convolutional neural networks were developed in order to deal with well-

structured input with strong spatial dependencies. One of the most common 

examples of this kind of structures are pictures. The first use of a convolutional 

neural network was reported by LeCunn et al. in 1998 [13]. The main idea behind 

convolutional neural networks involves flattening images in order to make it 

possible to store them as vectors. Fig. 3 shows an example in which a 4 by 4 

image is flattened to a vector. Afterwards, it is assigned to a neuron. In general, 

a convolutional neural network can be defined as a neural network that has one 

or more convolutional layers. 

 

A convolutional layer takes a 2D array that generally represents an image and 

passes a logistic regression over all the elements of the array. Please note that 

in general these input arrays have lengths such as 4 (2 × 2), 9 (3 × 3), or 16 (4 ×

4). In most cases, as the information comes from an image, data values are in 

the range from 0 to 255. The output vector generated will typically have a lower 

dimension than the original one. 

It is not always necessary to move the local receptor field one component at a 

time. In fact, the number of parameters that we move the receptive field between 

taking inputs is called the stride of the convolutional layer. This parameter is 

important, as it determines the dimensional reduction that will be performed by 



the convolutional layer. Fig. 4 shows a simple example with a 4 × 4 2D 

convolutional layer, in this case, using a 2 × 2 receptive field. Therefore, the 

output will be 3 × 3. 

 

Each layer of a convolutional neural network has the following three dimensions: 

height, width and depth. Please note that in this context, depth refers to the 

number of channels of the layer. The convolution operation from qth layer to 

(q+1)th can be formally defined as follows: 

ℎ𝑖𝑗𝑝
𝑞+1

= ∑ ∑ ∑ 𝑤𝑟𝑠𝑘
(𝑝,𝑞)

𝑑𝑞

𝑘=1

𝐹𝑞

𝑠=1

𝐹𝑞

𝑟=1

ℎ𝑖+𝑟−1,𝑗+𝑠−1,𝑘
(𝑞)

 

Taking into account that such an expression is valid for: ∀ 𝑖 ∈ {1 … , 𝐿𝑞 − 𝐹𝑞 + 1},  

∀ 𝑗 ∈ {1, … , 𝐵𝑞 − 𝐹𝑞 + 1} and ∀ 𝑘 ∈ {1, … 𝑑𝑞 + 1} 

This convolutional operation is applied in the formula above to the pth filter in the 

qth layer. Their parameters are denoted by the 3-dimensional tensor: 

𝑊(𝑝,𝑞) = [𝑤𝑖𝑗𝑘
(𝑝,𝑞)

] 

Where 𝑖 is the position along height, 𝑗 the position along width and 𝑘 the position 

along depth in the filter considered. The feature maps in the qth layer are 

represented by the following tensor: 𝐻(𝑞) = [ℎ𝑖𝑗𝑘
(𝑞)

] please note that it also has 

three dimensions. The formula is a dot product over the entire volume of the filter, 

which is repeated for all the spatial positions. 

The training of a convolutional neural network may be performed rapidly as there 

are only a few parameters to train. This training consists of training the local 

receptive fields of the layers, their bias and weights. The most commonly-

employed activator function is called a rectified linear unit (ReLu) [14, 15]. It can 

be defined as follows: 

𝜌(𝑥) = max(𝑥, 0) 

which means that this activation function will return the value of 𝑥, unless it is 

negative, in which case it will return a 0. In many applications, colour images are 

processed. This means that three different matrixes are available for the image, 

one for each of the RGB channels. Please note that this is not the case in the 

present research, where grey scale images are employed and only one matrix is 

required. 

In the case of the present research, not only ReLu activation functions are 

employed, but also Leaky Rectified Linear Units (Leaky ReLu). They are 

expressed by the following function: 

𝐿𝜌(𝑥) = {
𝑥 𝑖𝑓 𝑥 > 0

0.01 ∙ 𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 



In general, it can be said that the computation of Leaky ReLu is the faster of the 

two. Furthermore, and according to previous research [16], in order to discover 

which is the most convenient, it must be tested at each application. An advantage 

of ReLu over Leaky ReLu is that it is not necessary to think about the value of the 

negative slope. 

In order to add generalization after a ReLu or Leaky ReLu layer, it is possible to 

employ the local response normalization. This methodology creates a 

competition among different filters. Let be ℒ a layer formed by a total of 𝑛 filters 

whose activation values for coordinates (𝑥, 𝑦) are {𝑎1, … 𝑎𝑛}. It is possible to 

transform those values into normalized ones that will be noted as 𝑎𝑖 by means of 

the following equation: 

𝑏𝑖 =
𝑎𝑖

(𝑘 + 𝛼 ∑ 𝑎𝑖
2)𝑛

𝑗=1
𝛽

 

In the case of the present research, the following previously-empirically-adjusted 

values [17] are employed: 2 for 𝑘, 10−4 for 𝛼 and 0.75 for 𝛽. Nevertheless, it also 

would be possible to normalize the values with the help of a more general method 

such as Box-Cox or Johnson transformations. 

The max pooling process is a sampled-based discretization process. Its aim is to 

perform the image dimensional reduction. When using max-pooling, it is assumed 

that important information is contained in adjacent pixels. This principle, although 

not very useful for dealing with real-world images, is interesting for feature maps. 

In a convolutional neural network, max-pooling and convolutional layers are 

combined. After passing the original information through some layers, the 

processed information can be used as input data for a classification model such 

as logistic regression. 

The reconstruction algorithm presented in this research, based on CNN, is trained 

using images of the Sun in different turbulence conditions. The WFS images are 

the input data and the output is the voltage of the actuators that modify the shape 

of the deformable mirror surface to get a perfect reconstruction. 8,000 images of 

the Sun were used for the training, together with thousands of different turbulence 

profiles. 

The real-time tomographic reconstructor developed is able to correct the error 

introduced by the atmosphere in the light wave-front received from the Sun. The 

CNN was trained and validated using data from the Durham AO Simulation 

Platform (DASP) as input information. This Platform has been specifically 

adapted for this project in order to simulate a solar telescope. 

 

3. Results and discussion. 

The input information employed for training the model consists of a set of 1,000 

different images of the sun created with the help of the Durham Adaptive Optics 

Simulation Platform (DASP) [18]. Each of these images represents a different 



area of the Sun’s surface. Please note that although all the images are different, 

overlap is possible. In other words, it is possible for a certain area of the solar 

surface to be present in more than one image. Fig. 5 shows one of the images of 

the Sun used for the DASP simulator. A Monte-Carlo modelling tool is employed 

for the simulation of solar AO systems. The information employed in the training 

of the CNN contains images that correspond to different turbulence profiles. In 

order to configure these profiles, the following parameters are modified: 

turbulence energy (𝑅0), wind speed (𝑣0) and turbulence height (𝐻0) from 0 to 15 

kilometres in steps of 50 meters. This means that each of the images goes 

through a total of 300 different height turbulence profiles. Please note that each 

turbulence profile is simulated 10 times. Therefore, the training set has a total of 

three million different images. 

 

In a traditional AO system, the first step involves obtaining the centroids of the 

images of all the sub apertures. The image that is closest to the original is 

selected, and the rest of the images are correlated. Afterwards, these centroids 

are employed for the tomographic reconstruction. 

In the present research, which makes use of deep learning methodologies, the 

process follows a flowchart like what is detailed in Fig. 6. The information from 

the Shack-Hartmann wavefront sensors (Fig. 7) is employed as input images for 

the reconstructor based on convolutional neural networks. 

One of the main challenges of AO in solar observation is that the Sun is a massive 

object for a telescope. This means that only a portion of the Sun can be seen with 

a telescope at any given moment and this portion covers all the subaperture of 

the sensor. This is a great difference when compared with night observation, 

where a star is seen as a light spot which after aberrated by the turbulence profile 

becomes a cloud of points in the subaperture of the sensor. 

All the Shack-Hartmann wavefront sensors receive the same image but with 

certain differences due to turbulence in the atmosphere. In the case of the model 

training not only do we have the image deformed by turbulence, but also the 

original image of the Sun without turbulence. Therefore, we will be able to train a 

system capable of predicting how the deformable mirror must behave in order to 

compensate for atmospheric turbulence and obtain a clear image of the Sun. 

In traditional multi-layer perceptron ANN-AO systems each subaperture is 

processed separately [10] However, in our case, as we use CNN, the images of 

all the subapertures are processed together and the features extracted 

successively in each convolutional filter. 

As was stated before, one of the strengths of CNNs is that they are very good at 

dealing with information whose spatial location is relevant. In the case of the 

present research, the output values of the CNN are the voltage figures of the 

actuators in the deformable mirror. In other words, the target of the CNN is to 

obtain the voltage values that modify the deformable mirror in such a way that 



the image that it reflects compensates for atmospheric turbulence and happens 

to be the inverse of the turbulence profile which aberrated the solar image. 

Simulations were performed applying different offsets to the images. The 

computer-simulated Shack-Hartmann wavefront sensors have 10 × 10 sub 

apertures (please see Fig. 7) with 28 × 28 pixels each. The deformable mirror 

simulated has a total of 117 actuators. 

The CNN made use of different numbers of convolutional layers, from four to 

nine, and kernels of 3 × 3, 5 ×5 and 7 × 7. The activation function were ReLu and 

Leaky ReLu. Afterwards, 5 ×5 maxpooling was applied in all cases. 

The input layer of the neural network was formed by the pixel output of the last 

layer of the CNN. This neural network was a multilayer perception, with only one 

hidden layer, which in all the cases trained for the present research had 1024 

neurons. 

Layer Parameter   Values   Units 

Common Test name  test1 test2 test3   

Ground 
layer 

Altitude 
Wind Speed 
Wind direction 

0 
7.5 
0 

0 
7.5 
0 

0 
10 
0 

m 
m/s 

degrees 

First layer 
Altitude 
Wind Speed 
Wind direction 

4,000 
12.5 
330 

2,500 
12.5 
330 

6,500 
15 

330 

m 
m/s 

degrees 

Second layer 
Altitude 
Wind Speed 
Wind direction 

10,000 
15 

135 

4,000 
15 

135 

10,000 
17,5 
135 

m 
m/s 

degrees 

Third layer 
Altitude 
Wind Speed 
Wind direction 

15,500 
20 

240 

13,500 
20 

240 

15,500 
25 

240 

m 
m/s 

degrees 

Table 1. Parameters of the three turbulent cases considered to be like those that 

can be found at IAC. 

As was stated before, the training was performed using only one turbulent layer 

for each image in each case. For the validation of the trained models, Montecarlo 

Simulation was employed in order to generate three different atmospheric profiles 

that would be like the real ones to be found at the facilities of the Instituto 

Astrofísico de Canarias (IAC), on the island of La Palma (Canary Islands, Spain). 



These three profiles, considered as good, medium and bad, have already been 

employed in previous research. These three cases made use of four different 

turbulent layers, with each one being of different height, wind speeds and 

directions. Their parameters are detailed in Table 1. 

Table 2 and 3 show the normalized errors of the deformable mirror commands 

for ReLu and Leaky ReLu kernel functions respectively for the three test 

scenarios. As may be observed, in general, it can be said that the greater the 

number of layers, the smaller the error. Also, smaller errors are obtained with 3 ×

3 kernel when compared with 5 ×5 and 7 × 7. Please note that the minimum error 

value is 0.18842 and is obtained when 8 layers are employed with 3 ×3 kernels. 

    4 layers 5 layers 6 layers 7 layers 8 layers 9 layers 

Test 1 

3x3 kernel 0.211543 0.201279 0.195589 0.187791 0.188420 0.190041 

5x5 kernel 0.213286 0.203987 0.202882 0.193617 0.192800 0.194285 

7x7 kernel 0.218320 0.208755 0.203547 0.197540 0.194529 0.197858 

Test 2 

3x3 kernel 0.219107 0.219644 0.201318 0.188881 0.191916 0.204941 

5x5 kernel 0.228367 0.206752 0.213619 0.195264 0.204193 0.213279 

7x7 kernel 0.235252 0.215690 0.221186 0.209351 0.202488 0.213410 

Test 3 

3x3 kernel 0.220384 0.230254 0.212205 0.200777 0.193051 0.215512 

5x5 kernel 0.235567 0.213712 0.218565 0.209500 0.216587 0.218077 

7x7 kernel 0.244911 0.228288 0.230779 0.212701 0.215510 0.229981 

Table 2. RMSE WFE of the deformable mirror commands (kernel function: ReLu). 

 

    4 layers 5 layers 6 layers 7 layers 8 layers 9 layers 

Test 1 

3x3 kernel 0.138543 0.104979 0.168089 0.232991 0.18132 0.106141 

5x5 kernel 0.252486 0.216387 0.285682 0.148517 0.277 0.231985 

7x7 kernel 0.14472 0.291255 0.227547 0.29614 0.114829 0.247358 

Test 2 

3x3 kernel 0.152110 0.111050 0.170712 0.233598 0.183859 0.111347 

5x5 kernel 0.265687 0.234299 0.301850 0.157323 0.303653 0.242232 

7x7 kernel 0.154358 0.294695 0.246192 0.298045 0.121044 0.255289 

Test 3 

3x3 kernel 0.158442 0.111950 0.173266 0.254239 0.198599 0.113427 

5x5 kernel 0.277282 0.255696 0.321212 0.157395 0.320119 0.261627 

7x7 kernel 0.158055 0.303917 0.261078 0.301766 0.131963 0.260473 

Table 3. RMSE WFE of the deformable mirror commands (kernel function: Leaky 

ReLu). 

According to the results of the Anderson-Darling normality test, the values of the 

RMSE WFE do not follow a normal distribution (𝐴𝐷 = 1.163, 𝑝 < 0.005). This lack 

of normality in the data led us to the use of a no-parametric test for the data 

analysis. The application of the Kruskal-Wallis test in order to find differences in 

the RMSE WFE values according to the kernel function allows us to say that there 

are no statistically-significant differences in the median among groups when 

kernel groups are compared (𝐻 = 0.73, 𝑑𝑓 = 1,  𝑝 = 0.393). The results are also 

equivalent for the different profiles employed for the validation (𝐻 = 5.17, 𝑑𝑓 = 2, 



 𝑝 = 0.075), although in this case the p-value is closer to the significant cutting 

point. The kernel dimension gives statistically-significant differences (𝐻 = 20.93, 

𝑑𝑓 = 2,  𝑝 < 0.001), giving a lower median value for the 3 × 3 kernel (0.190979), 

followed by the 5 × 5 kernel (0.217332) and the the 7 × 7 kernel (0.219753). The 

number of layers employed does not show statistically-significant differences 

(𝐻 = 3.98, 𝑑𝑓 = 5,  𝑝 = 0.553) according to the results of the test. Fig. 8 shows a 

boxplot of the RMSE WFE values by kernel dimension, and allows us to see how 

RMSE WFE values are lower in 3 × 3 kernels. 

 

4. Conclusions. 

In the present research, a learning algorithm able to train the CNN was 

developed. As far as the researchers know, this is the first time that an AO system 

based on CNN has been developed for solar telescopes. The CNN reconstructor 

obtained from the training has been validated in the simulated environment. The 

results obtained with the two kernels tested are very similar, and the only 

differences found were due to the kernel dimension. Although this project is at a 

very early stage, from our point of view, the results are promising, and we can 

say that the combination of deep learning and AO is able to provide high-

performance results. 

The next step will be to test the reconstructor in a real system. Please note that 

the final goal of this research is to have a system ready to be employed in the 

European Solar Telescope, a future 4-meter class aperture device. 

Furthermore, the developments made for the purposes of solar observation 

would also be of interest to the field of ophthalmology. 
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Figures. 

 

 

Figure 1. Conventional configuration of a closed-loop AO imaging system. 

 



 

Figure 2. Solar image used for simulation in DASP. 

 

Figure 3. Flowchart of the process. 



 

Figure 4. Image obtained with the information of the Shack-Hartmann wavefront 

sensors. 



 

Figure 5. Boxplot of the RMSE WFE values by kernel dimension. 

 

 


