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Abstract

Background: Phenotype prediction problems are usually considered ill-posed, as the amount of samples is very
limited with respect to the scrutinized genetic probes. This fact complicates the sampling of the defective genetic
pathways due to the high number of possible discriminatory genetic networks involved. In this research, we outline
three novel sampling algorithms utilized to identify, classify and characterize the defective pathways in phenotype
prediction problems, such as the Fisher’s ratio sampler, the Holdout sampler and the Random sampler, and apply
each one to the analysis of genetic pathways involved in tumor behavior and outcomes of triple negative breast
cancers (TNBC). Altered biological pathways are identified using the most frequently sampled genes and are
compared to those obtained via Bayesian Networks (BNs).

Results: Random, Fisher’s ratio and Holdout samplers were more accurate and robust than BNs, while providing
comparable insights about disease genomics.

Conclusions: The three samplers tested are good alternatives to Bayesian Networks since they are less
computationally demanding algorithms. Importantly, this analysis confirms the concept of “biological invariance”
since the altered pathways should be independent of the sampling methodology and the classifier used for their
inference. Nevertheless, still some modifications are needed in the Bayesian networks to be able to sample correctly
the uncertainty space in phenotype prediction problems, since the probabilistic parameterization of the uncertainty
space is not unique and the use of the optimum network might falsify the pathways analysis.

Background
Phenotype prediction is one of the forefront challenges
in the drug design industry; a problem that consists of
finding the set(s) of genes that affects pathogenesis.
Computationally speaking, this type of prediction prob-
lem is ill-posed, since the number of supervised genetic
probes always exceeds the number of samples. In this
sense, a large and vast uncertainty space associated to
this problem is found, thus; characterizing the involved

biological pathways is an ambiguous task, mainly due to
the existence of equivalent genetic networks that may
lead to a phenotype prediction with similar accuracies
[1, 2].
Moreover, one of the major difficulties in the study of

genetic data is the lack of a theoretical model that
associates different genes/probes to a class prediction.
Mathematically speaking, this consists of an operator
that given a set of genetic signatures g it is possible to
predict a set of classes, C = {1, 2}, of the phenotype:

L�ðgÞ: g ∈ Rs→C ¼ f1; 2g ð1Þ
The simplest case is to divide the phenotype in healthy

controls and disease samples, but others problems
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concerning drug optimization can be casted into this
framework.
By optimizing the cost function, O(g) = ‖L∗(g) − cobs‖1,

that measures the distance between the observed classes
in the training dataset of data (cobs) and the associated
set of predictions L∗(g), via the genetic signature g and
the classifier L∗, it is possible to find the set of discrimin-
atory genetic signatures. In this notation ‖L∗(g) − cobs‖1
represents the amount of uncorrected samples predicted
by the classifier. Therefore, the accuracy of a genetic sig-
nature is: Acc(g) = 100 −O(g).
The uncertainty space relative to L∗, Mtol = {g : O(g) <

tol}, is formed by the groups of high predictive networks
that have a similar predictive accuracy, Acc(g). These
networks are located in one or several flat curvilinear
valleys of the cost function topography, O(g) [3, 4], con-
cerning the classifier L∗(g).
This research is based on two main hypothesis: 1. the

high discriminatory genetic networks located in Mtol

serve to understand the reasons behind disease develop-
ment in order to discover alternative therapeutic targets.
2. These biological pathways should be independent of
the classifier and of the sampling method used to un-
ravel them. This is named the hypothesis of biological
invariance.
In this paper, we compare different sampling methods

to establish a robust identification of the altered genetic
pathways in a disease. The first method is the Fisher’s
ratio sampler [5] that explores the defective pathways
considering the discriminatory capacity of the differen-
tially expressed genes according to their Fisher’s ratio
that provides the “a priori” sampling distribution of the
high-discriminatory networks. The second sampling al-
gorithm, known as Holdout sampler, is inspired by the
bootstrapping technique [6, 7]. This algorithm quantifies
the likelihood of the high discriminatory genetic net-
works using k-NN classifier in a validation data set using
the minimum-scale genetic signature found in the train-
ing set of each random holdout. In this case, the “a
priori” probability distribution is established by the dis-
criminatory capability of the different networks in the
training dataset in each random hold out (minimum-
scale genetic signature). Therefore, this algorithm is
based on a complete different sampling paradigm than
the Fisher’s ratio sampler. One of its main features is its
fatness and robustness in assessing the uncertainty of
the solution of inverse and regression problems [8, 9].
The third methodology consists of randomly sampling
the set of differentially-expressed genes in the pheno-
type. This algorithm selects random-wise genes within
this set with a prior uniform distribution, building gen-
etic signatures of different lengths (number of genes) be-
tween some bounds that are related to the complexity of
the phenotype prediction problem, that is, the minimum

number of genes with the highest predictive accuracy (or
minimum-scale signature). For these three samplers
(Fisher’s, Holdout and Random), the signatures that have
been sampled and better predicted the phenotype, are
used in the posterior frequency analysis of the discrimin-
atory genes, that serves to establish the ontological path-
way analysis. Finally, the last procedure is based on
Bayesian Networks (BN), a popular predictive modeling
formalism in bioinformatics, with many applications in
modern genomics [10–13].

Materials
These sampling methodologies were applied to a micro-
array dataset obtained from Gene Expression Omnibus
concerning the Triple Negative Breast Cancers (TNBC)
phenotype to unravel the altered genetic pathways that
control metastasis and survival in this type of aggressive
cancers. This dataset was first analyzed by Jézéquel et al.
[14], and can be accessed in the Gene Expression
Omnibus (GEO) under the acronym GSE58812. This
microarray comprises the gene expressions of 107
patients with TNBC and controlled for metastasis (44
relapsed and 63 were disease-free after a follow-up
period of 7 years) and survival (78 survived and 29 were
deceased during the control period). These patients were
treated between 1998 and 2007 at the Institut de
Cancérologie de lOuest – René Gauducheau and the
Institut de Cancérologie de lOuest – Paul Papin. This
data received the consent of patients as required by the
French Committee for the Protection of Human Subjects
(CCPPRB). The analysis of the gene expression was car-
ried out in quality control RNA samples by Affymetrix®
Human Genome U133 Plus 2.0 Arrays (Affymetrix®,
Santa Clara, CA, USA), and the microarray analysis
measured over 43,000 transcripts. This type of cancer
was selected due to its high metastatic potential and very
low prognosis rates (survival). However, this procedure
can be applied to the study of other diseases using
genetic data.

Methods
Feature selection
A previous gene filtering according to their discrimin-
atory power was performed for all the sampling algo-
rithms. Fold-change analysis served to detect those
genes that were differentially expressed (over and under-
expressed genes). Furthermore, the idea of performing
fold-change analysis is to enhance the sampling of the
header genes, which are those that outline the most
important features of the phenotype prediction [15]. The
rest are helper genes that explain high frequency details
of the discrimination. This procedure is similar to the
Fourier decomposition of a signal into its harmonics. It
is of utmost importance to understand the ill-posed
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character of the phenotype prediction problem, due to
the fact that the number of genetic probes that are mon-
itored are much higher than the number of samples,
making the uncertainty space very vast and difficult to
sample. Furthermore, the irruption of next generation
DNA sequencing (NGS) techniques makes this imbal-
ance even greater. As it has been already outlined, the
genetic data used in this paper comes from the gene ex-
pression of the transcriptome. Nevertheless, although
the analysis of the transcriptome involve the acquisition
of smaller amount of genetic information than NGS, the
number of monitored genetic probes still exceeds more
than 400 times the number of diagnosed samples. This
fact clearly outlines the need of gene filtering techniques
to reduce the dimension of the set of genes that might
be related to the disease development.

Bayesian approach of uncertainty
The Bayesian approach of uncertainty in phenotype pre-
diction problems consists of sampling high discrimin-
atory genetic networks (g) of the phenotype according to
Bayes rule:

P ðg=cobsÞ¼P ðgÞ Lðcobs=gÞ= PðcobsÞ; ð2Þ

where P(g/cobs) is the posterior distribution of the gen-
etic signature g, P(g) is its prior sampling distribution,
L(cobs/g) is the likelihood, that depends on the predictive
accuracy of the genetic signature, Acc(g) = 100 −O(g),
and P(cobs) is called the evidence of the observed classes.
A genetic signature has a bigger likelihood if the prob-
ability of observing the class array (cobs) is bigger, that is,
the prediction error, O(g), smaller.
The analytical expression of P(g/cobs) is unknown.

Therefore, different sampling algorithms are needed to
infer diverse genetic networks from the high probability
region of P(g/cobs) in order to understand the phenotype
from the mechanistically point of view. The aim of this
comparison is to show that the sampled networks using
different algorithms are mechanistically similar. This fact
would be a confirmation that we are achieving a correct
sampling of the defective pathways and enforcing the hy-
pothesis of biological invariance, which states that these
pathways should be independent of the algorithm and
the classifier used to perform their sampling.

Sampling algorithms
Fisher’s ratio sampler (FRS)
FRS is a fast and robust sampling algorithm. The FRS
weighs the discriminatory power of the expressed
genes by quantifying its Fisher’s ratio in order to ob-
tain an “a priori” sampling distribution of high dis-
criminatory genetic network. The sampled networks
are random-wise established using this pre-defined

distribution, while its likelihood is determined via
Leave-One-Out-Cross-Validation (LOOCV) using a
nearest-neighbor classifier [15].
The algorithm workflow (Fig. 1) is as follows:

� The set of genes with the highest Fisher’s ratio is
identified from the set of genes with the highest fold
change. To this end, differentially expressed genes
(over and under-expressed) were found and ranked
according to their Fisher’s ratio in order to detect
those genes that homogeneously separate within
classes (low-intra class variance). In a binary classifi-
cation problem the Fisher’s ratio of the gene j is:

FRj ¼
ðμ j1−μ j2Þ2
σ2
j1 þ σ2j2

; ð3Þ

where μji is a measure of the center of mass of the prob-
ability distribution of the gene j in class i, and σji is a
measure of its dispersion within this class. Discrimin-
atory genes have a high Fisher’s ratio since they have a

Fig. 1 Fisher’s ratio sampler workflow
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low-intra class dispersion and high inter-class distance,
which informs us about the separation between the cen-
ters of the corresponding prognostic genes distributions.
In this paper, Discriminatory genes are defined as those
that are differentially expressed with a Fisher’s ratio

greater than fr = 0.8, that is, the hubs of the distribution in

both classes are separated: jμ j1−μ j2j > 0:89
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2j1 þ σ2j2
q

.

The Fisher’s ratio cutoff value could be further decreased

to fr = 0.5 if the number of discriminatory genes within

this set is very low. Therefore, the Fisher’s ratio cut-off

value is an important tuning parameter in this procedure.
Finding the minimum-scale genetic signature. Based

on the quantified Fisher’s ratio, the discriminatory
genes are ranked in a descendent order, then; the al-
gorithm is capable of detecting the minimum-scale
signature, which better separates the classes via
recursive feature elimination. The predictive accuracy
estimation is based on LOOCV, utilizing a nearest-
neighbor classifier and recursive feature elimination
[1, 15]. The minimum-scale signature serves to
estimate the length (number of genes) of the high
discriminatory networks to be sampled.

� Random sampling of high discriminatory
equivalent networks. By randomly sampling, it is
possible to find out other discriminatory networks
using a prior sampling probability of any
individual gene proportional to its Fisher’s ratio.
Genes are rated as Headers (genes with FRj >
FRmin) and Helpers (FRj < FRmin), as shown in
Fig. 2, and the Fisher sampler constructs genes
signatures at each step, by selecting some Headers
and some Helpers that meet the following
conditions:
� max(cdf (Headers) < rand(1))
� max(cdf (Helpers) < rand(1));

where cdf is the empirical cumulative distribution func-
tion in the sets of genes Headers and Helpers sets re-
spectively, and rand(1) is a random number between 0
and 1.

In this sampling algorithm, high discriminatory
variables span the most important features of the
classification while lower discriminatory variables
account for discrimination details. This method
minimizes the high-frequency details (helper genes)
while optimally discriminating between classes and
promoting the header genes, which are those that
explain the phenotype in a robust manner. It is
therefore expected that different associations of
headers and helper genes form the high discrimin-
atory genetic networks. It is important to remark
that only with helper genes a high discrimination ac-
curacy cannot be achieved. The LOOCV predictive
accuracy is calculated after a genetic network has
been randomly constructed based on the Fisher’s
probability distribution.
FRS follows the Bayes rule (2) with a prior prob-

ability −P(g) − inferred from the Fisher’s ratio of the
selected genes and a likelihood −L(cobs/g)− that de-
pends on the LOOCV predictive accuracy of the gen-
etic network g that has been sampled. However, it is
out the scope of this paper to explore the posterior
distribution factorization, but to determine the genes
with the highest discriminatory power that are in re-
lation with the uncertainty space of the problem [1,
3, 4] via L∗(g) in order to identify the altered genetic
pathways.
Finally, the discriminatory networks with the highest

posterior sampling frequency are those that best
defined the TNBC phenotype. A frequency threshold
is used to optimize the discriminatory genes used for
the pathway analysis. Based on these networks the
defective biological pathways are identified via Gene
Analytics [16].
A simplified version of this algorithm has been

previously used to assess the genomic risk of
aromatase inhibitor-related arthralgia in patients with
breast cancer using SNPs [17], to perform the
integration of genomic data in CLL patients [18, 19],
and to predict post-radiotherapy fatigue development
in cancer patients [20].

Fig. 2 Genetic Network built by the FRS at step k
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Holdout sampler (HS)
The rationale of the HS algorithm is completely different
from FRS; however, the purpose is the same: exploring
the uncertainty space intrinsic to phenotype prediction
problems. In this sense, the procedure consists of chan-
ging the evidence term of the observed classes - P(cobs) -
in Bayes expression (2). The simplest way of doing that
is performing random data bags with different datasets
for training, followed by a blind validation. This is com-
parable to modifying the evidence of cobs with respect to
the classifier L∗, since part of the samples used for blind
validation have not been used (observed in training).
This method is grounded on the statistical technique of
bootstrapping, or arbitrary sampling with replacement
[7], which is used to build the confidence intervals in
sample estimates and to estimate the sampling distribu-
tion of any statistic via a random sampler. In this case,
this methodology was designed to explore the uncer-
tainty space in phenotype prediction. This algorithm was
used in other disciplines and fields of technology to opti-
mally sample the model parameters posterior distribu-
tion via the least squares fitting of different data bags [6,
8, 9].
Figure 3 shows the HS workflow. This algorithm sam-

ples the uncertainty space in two steps:

� Data bagging: Different arbitrary 75/25 data bag
holdouts were different from the dataset, where 75%
of the data is used for learning and 25% for

validation. In the present case, 1000 different bags
were generated. For each bag, the minimum-scale
signature is established using the training dataset
following the same procedure than for FRS, and the
overall predictive accuracy estimation is established
via LOOCV over all the samples of the validation
dataset in each bag. Therefore, in the case of HS the
sampling consists in finding the minimum scale
signature using the training of the data bag and
establishing its likelihood in the validation part via
LOOCV. The holdout sampler involves a k-NN
classifier in the reduced set of high discriminatory
genes (minimum-scale signature) which has been
successfully applied to the bioinformatics modeling
of high dimensional Omics data [15, 18].

� Posterior analysis: after completing the bags
simulation, the posterior analysis is carried using the
minimum-scale signatures that have been sampled,
having a LOOCV validation predictive accuracy
above a given threshold. In this case an accuracy
threshold of 85% was found to provide enough
explicative genetic networks of the TNBC
phenotype. The accuracy threshold is tuning
parameter of the procedure that depends on the
maximum predictive accuracy that can be achieved.

Finally, these lists follow a frequency analysis to find
the most frequently sampled genes required to establish
the defective genetic pathways via ontological platforms.

Random sampler (RS)
This algorithm randomly selects genes and builds signa-
tures of variable length [21]. The philosophy is close to
the FRS, however, in this case the “a priori” sampling
distribution is uniform instead of proportional to the
Fisher’s ratio, As in the FRS algorithm, the predictive ac-
curacy is established via LOOCV. The posterior fre-
quency analysis and the ontological pathways are similar
to the previous cases. Figure 4 shows the RS flowchart.
This algorithm shares many similarities with FRS, except
that the “a priori” sampling distribution is uniform in
this case. This algorithm works with smaller amount of
prior information that makes it more explorative than
FRS.

Bayesian networks (BNs)
A BN is a data structure that encodes the conditional
probability distribution between variables by using a di-
rected acyclic graph. This procedure is utilized to sample
the posterior distribution of the genetic signatures, P(g/
cobs), according to Bayes rule (2) .
In reality, this algorithm carries out the gene selection

in two steps (Fig. 5). First, the training dataset is used to
“learn” the network structure. The best network model

Fig. 3 The Holdout Sampler workflow
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is determined by selecting the candidate network
model with the highest computed marginal likelihood.
The “learned” network exemplifies how genes affects
each other and serves as a phenotype predictor. At
the second step, the network parameters are trained
by optimizing the conditional probabilities of the net-
work. Finally, the phenotype prediction is carried out
using a variable elimination algorithm [22]. The genes
associated to the final BN are used to identify the de-
tective pathways [10–13].
CGBayesNets was used to accomplish the BNs model-

ling [12] and maximizing the data likelihood. Since the
number of possible networks grows exponentially with
the number of gene candidates, not all networks can be
explored, and different heuristics are employed to
optimize this search. Therefore, this algorithm cannot be
considered as a pure sampling algorithm. In fact, explor-
ing the uncertainty space of the high discriminatory BNs
is more advantageous, in terms of pathway analysis,
since the BN found is not an unique illustration of the
phenotype problem uncertainty, that is, other plausible
networks might exist that explain the phenotype with a
similar likelihood. Besides, the noise in data and class as-
signment [2] falsifies the pathways analysis and greatly

affects the BNs search and optimization. Therefore,
inferring the genetic pathways via the genes involved in
the best network might not be robust enough.

Identification of the altered genetic pathways
GeneAnalytics [16] was used to infer the defective
pathways and biological processes by querying the group
of genes with the higher sampling frequency for these
sampling algorithms. This software uses the main onto-
logical databases (Biosystems, Reactome, Qiagen, Kegg,
Cell Signaling Technology and R&D Systems), and offers
important information about the chemo-biology behind
the phenotypic expressions of actionable genes. Further-
more, it also provides information about the chemical
compounds to target the actionable genes that
characterize the phenotype. In all the cases, this analysis
was performed over the high discriminatory networks of
genes, provided by each sampler.

Results
Additional file 1: Tables S1 and S2 show these lists of
the first most discriminative genes, ranked by their Fish-
er’s ratio and the corresponding accuracies of each list,
for both prediction problems, providing also the
means, standard deviations and Fold change of the

Fig. 4 The Random Sampler workflow

Fig. 5 Bayesian Network workflow
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expressions of genes in each class, together with ac-
curacies corresponding to each list. In the case of
metastasis prediction problem the small-scale genetic
signature found by the recursive backward feature
elimination [15] was composed of the 92 most dis-
criminatory genes (Additional file 1: Table S1) with
an LOOCV predictive accuracy of 96.3%. In the case
of survival prediction (Additional file 1: Table S2) this
small-scale signature contained only 16 genes with
94.4%. These predictive accuracies were respectively
improved to 98 and 96.3% by the Fisher’s ratio
sampler.
Tables 1 and 2 show the most frequent genes involved

in the high discriminative signatures provided by each
sampling algorithm for Metastasis and Survival prediction.
The frequencies are established over the total amount of
sampled genes within the high predictive networks that
have an accuracy greater than 85% found after 105 random
simulations. All the sampling algorithms, but BNs, are
very fast. These simulations were performed in less than 5
min in a regular computer. Tables 3 and 4 present the list
of the most frequently pathways sampled by each algo-
rithm together with their relative score.
Figures 6 and 7 show the optimum Bayesian Networks

found for the TNBC metastasis and survival phenotype
prediction problem, containing respectively 68 and 66
genes. As it has been already mentioned, it is important
to highlight that this probabilistic factorization of the
uncertainty space in both phenotype prediction prob-
lems (metastasis and survival) is not unique.

Discussion
The aim of this research was to appraise the abilities of
three novel sampling algorithms to predict phenotypic
changes using data from patients with TNBC and to de-
termine if any or all of these algorithms was equivalent
or superior to BN-based methods. We were able to iden-
tify different discriminatory networks of the phenotype
to infer the altered biological pathways. Underlying this
analysis, we would like to demonstrate the hypothesis of
biological invariance, that is, the defective pathways that
affect the disease development should be somehow
independent.

Metastasis prediction
Some of the most frequently sampled genes shown in
Table 1 for the metastasis prediction are shared by the
Fisher’s ratio, Holdout and Random Samplers. In con-
trast, this finding was not the case for the Bayesian
Network that only choses one of possible probabilistic
factorization of the metastasis phenotype prediction.
The main objective is to understand how the most im-
portant genes work in synergy; however, the individual
ontological attributions of the most-discriminatory genes
in the prediction of the TNBC phenotype are very im-
portant to understand the pedigree of these genes.
All the genes provided by FRS are overexpressed in

the metastasis group, and the most frequent sampled
gene was LINC00630. Mao et al. [23] studied the role
of non-coding RNAs showing that LINC00630 play a
crucial role in the development of Non-Small-Cell

Table 1 Metastasis prediction: list of most-frequently sampled
genes by the different algorithms

FRS HS RS BN

LINC00630 OTUB2 LINC00630 ZNF597

LOC100506272 STC1 HIPK3 ZDHHC2

STC1 BAIAP2-AS1 CCDC116 YY1

BAIAP2-AS1 KCNS2 EXOC5 SPP1

ARFGAP2 LOC100506272 GHSR SMAD9

LHX9 LOC644135 ZNF540 SHANK1

LOC646482 LINC00630 ATF3 RBMS3

CACNA1S UGT1A1 1557882_at PRICKLE1

AC108056.1 ARFGAP2 220899_at PRDM11

NXF3 CACNA1I ARFGAP2 PML

GIPC3 DCAF8 CXADR NAV1

KCNS2 RP11-799D4.4 AHI1 MASP1

DAZ1 MDM2 KIRREL3-AS3 LOC646482

UGT1A1 RP11-38C18.3 DRP2 LOC101927735

RP5-855D21.1 BFSP2-AS1 207743_at P4HA2

EXOC5 JMJD6 LINC00642

Bold faces highlights the common genes

Table 2 Survival prediction: list of the most-frequently sampled
genes by the different algorithms

FRS HS RS BN

LOC100506272 LOC100506272 ING2 ZNF658

EML3 CHAF1A 220899_at LIMK2

TYR LOC400748 LINC00423 HAPLN2

ABCB8 KCNS2 VSX1 237969_at

GYPA ZNF428 1561100_at LOC644135

C14orf80 DAZ1 1558494_at 240923_at

LILRA2 LOC646482 LOC100507530 ANKRD54

1564841_at LINC00630 LINC01020 UBN2

RP11-440I14.2 233714_at 206909_at 234834_at

LATS2 TNRC18 C2CD3 215828_at

241286_at 1558494_at 1566162_x_at CACNG8

LOC100506411 DNASE1L3 CXADR CTSC

PTPN21 RP11-38C18.3 213777_s_at EPS15P1

UPF3A PCDHB2 PRKCB HCN2

RGSL1 DCAF8 240973_s_at P2RX5-TAX1BP3

232723_at ME1 BTG4 MMP14

Bold faces highlights the common genes
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Lung Cancers. It was also proved that its overexpres-
sion increased cell proliferation and metastasis
in vitro and in vivo whereas LINC00630 silencing had
opposite effects. Therefore, LINC00630 constitutes a
very interesting target. STC1 (Stanniocalcin-1) en-
codes a glycoprotein that is expressed in a wide di-
versity of tissues. Overexpression of STC1 in mice
produces high serum phosphate levels, dwarfism and
increased metabolic rate. This gene has also an al-
tered expression in hepatocellular, ovarian and breast
cancers and it has been previously associated to

metastasis in TNBC [24, 25]. BAIAP2-AS1 is a non-
coding RNA gene. This gene has been associated to
hepatitis B virus-related hepatocellular carcinoma
[26]. Metabolism related and cancer associated KEGG
pathways are in relation with BAIAP2-AS1. As well, it
has been found that BAIAP2-AS1 may function as a
competing endogenous RNA (ceRNA), regulating
other RNA transcripts. ARFGAP2 (ADP Ribosylation
Factor GTPase Activating Protein 2) is a Protein cod-
ing gene that it is involved in protein recycling
(Transport of the damaged proteins to the Golgi and

Table 3 Metastasis prediction: top score pathways sampled by the different algorithms

FRS HS

Score Top Pathways Score Top Pathways

10.3 Direct P53 Effectors 11.2 JNK Signaling in CD4+ TCR Pathway

10.1 DREAM Repression & Dynorphin Exp. 9.7 RhoA Signaling Pathway

9.6 P53 Signaling 8.3 ATM Pathway

8.8 RhoA Signaling Pathway 8.1 FoxO Signaling Pathway

8.4 P53 Pathway 8.0 TGF-beta Signaling Pathway

RS BN

Score Top Pathways Score Top Pathways

15.0 DREAM Repression & Dynorphin Exp. 8.1 Direct P53 Effectors

10.1 Direct P53 Effectors 8.0 Proteolysis Putative SUMO-1 Pathway

10.1 Immune Response Role of DAP12 Receptors in NK Cells 7.1 Creation of C4 and C2 Activators

9.9 JNK Signaling in CD4+ TCR Pathway 6.9 TGF-beta Receptor Signaling

9.8 MAPK Signaling Pathway 6.8 MTOR Signaling Pathway

Bold faces highlights the common pathways

Table 4 Survival prediction: top score pathways sampled by the different algorithms

FRS HS

Score Top Pathways Score Top Pathways

9.87 Integrin Pathway 13.54 Integrin Pathway

8.96 Fatty Acid Beta-oxidation (peroxisome) 11.30 Sweet Taste Signaling

7.94 DREAM Repression &Dynorphin Expression 11.28 DREAM Repression &Dynorphin Expression

7.88 Signaling Events Mediated By HDAC Class II 11.13 RhoA Signaling Pathway

7.54 Type II Interferon Signaling (IFNG) 9.58 Signaling Events Mediated By HDAC Class II

7.19 Fatty Acid Biosynthesis (KEGG) 9.40 Androgen Receptor Signaling Pathway

6.93 Fatty Acyl-CoA Biosynthesis 9.39 CCR5 Pathway in Macrophages

RS BN

Score Top Pathways Score Top Pathways

9.90 TCR Signaling 7.87 Nucleotide-binding Domain, NLR Signaling

9.79 Androgen Receptor Signaling Pathway 7.39 Apoptosis and Autophagy

9.48 Presenilin-Mediated Signaling 7.20 C-MYC Transcriptional Repression

8.57 Ovarian Infertility Genes 6.82 NF-kB (NFkB) Pathway

8.34 DNA Damage Response (ATM Dependent) 6.19 Apoptosis Modulation and Signaling

8.14 Apoptotic Pathways in Synovial Fibroblasts 6.13 Apoptosis and Survival Caspase Cascade

8.02 Sweet Taste Signaling 5.69 Senescence and Autophagy in Cancer

Bold faces highlights the common pathways
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subsequent modification). LHX9 is a gene involved in
transcription.
Similarly, in the case of HS, all high frequently sample

genes, except LOC644135, are overexpressed in the
metastasis group. The most important gene seems to
be STC1 (Stanniocalcin-1) with 2 different probes in
the set of most important sampled genes. Other im-
portant gene is OTUB2 that codes one enzyme, which
is required to reverse the ubiquitin modification of
deleterious proteins. Among its related pathways are
ovarian tumor domain proteases and protein ubiquiti-
nation. HS also sampled BAIAP2-AS1 as a high

frequent gene. Another appraised gene is KCNS2,
which encodes a protein that is a voltage-gated potas-
sium channel subunit. Huang and Yeh Jan have
reviewed the importance of potassium channels in
regulating cancer cell migration and proliferation [27].
The potassium channel activation inhibits proliferation
of breast cancer cells [28]. LOC100506272 and
LOC644135 are two uncharacterized genes.
The main genes found by RS have the following

attributions: HIPK3 encodes a serine/threonine-protein
kinase, which takes part in the transcription regulation
and apoptosis. CCDC116 (coiled-coil domain containing

Fig. 6 Metastasis prediction: optimum centered Bayesian network found
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116) is primarily found in the testis. This gene has been
recently connected to risk in multiple kind of cancers
[29] and it is considered in experimentation as a possible
prostate cancer biomarker. EXOC5 is related to peptide
hormone metabolism. GHSR is the Growth Hormone
Secretagogue Receptor and is related to the CAMP
signaling pathway.
In the case of BNs, the main genes are related to

the TGF-beta Receptor Signaling and MTOR Signal-
ing Pathway. ZNF597 codes a zinc finger protein,
which is involved in gene expression and transcrip-
tion. ZDHHC2 (Palmitoyltransferase or Reduced

Expression Associated with Metastasis Protein) has
been linked to human colorectal cancers with liver
metastasis [30]. Yin Yang 1 (YY1) is vastly expressed
in several sorts of cancers and regulates tumorigenesis
through numerous pathways. YY1 is overexpressed in
breast cancer cells [31]. Genes found by BN are dif-
ferent from those found by other sampling methods.
This observation seems most to be attributable to the
high-underdetermined character of the phenotype pre-
diction problem. Therefore, using the optimum prob-
abilistic network found is not the proper way of
spanning the phenotype prediction uncertainty.

Fig. 7 Survival prediction: optimum centered Bayesian network found
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Comparing the different lists, the most frequently
sampled gene, LINC00630, is the same in FRS and RS.
HS sampled this gene with a lower frequency. Other
common genes (sampled by all algorithms) were STC1,
LOC100506272, BAIAP2-AS1 and LOC646482.
The analysis of the top score pathways shown in

Table 2 provides the following insights:

– Fisher’s ratio and Random samplers found as the
main common mechanisms P53 pathways and
DREAM Repression and Dynorphin Expression.

– Fisher’s ratio and Holdout samplers shared the
RhoA Signaling Pathway.

– Holdout and Random samplers have JNK Signaling
in CD4+ TCR Pathway in common.

– Bayesian networks share P53 pathways (even thou
with a lower score) with Fisher’s ratio and Random
Samplers, and TGF-beta Receptor Signaling with
Holdout sampler. The Bayesian network used the
network with fewer discriminatory genes (only 68).
This fact influences the pathway identification.
However, Direct P53 effectors and TGF-beta
receptor signaling pathways appeared also related to
other samplers. The main biological process involved
is the Complement Activation via the Lectin
pathway. The pathways and biological processes
identified by Bayesian networks have a lower score
than those found by the rest of the samplers.

– In all the cases, the pathways are involved in both
cancer and immune response. Despite not being the
purpose of this paper, it is very remarkable to
mention that the primary biological process involved
is phagocytosis, which is one of the most important
mechanisms in the immune system defense related
to NF-κB activation.

Survival prediction
The most frequently sampled genes shown in Table 2
for the survival prediction are very different for all the
samplers. Only LOC100506272 (uncharacterized gene) is
in common to FRS and HS within this very restrictive
list. Although not shown in Table 2, RS also sampled
this gene with a lower frequency (0.15%). Besides,
LINC00630 is a common for all the algorithms in lower
positions. Interesting, this gene resulted as the most fre-
quent gene in the metastasis prediction. Other high fre-
quent genes in the metastasis prediction problem are
also present in the survival prediction (even thou with
lower frequencies that are not shown in Table 2), such
as BAIAP2-AS1, described before, sampled by HS algo-
rithm, LOC646482, STC1 and ZNF597 sampled by RS
and HS. Other common genes sampled by all algorithms
for survival prediction problem were EML3, TYR,
ABCB8 and GYPA. To our knowledge, none of these

genes was previously associated to breast cancer. HS and
RS sampled other common genes such as CHAFIA,
LOC400748, KCNS2, ZNF428, ING2, LINC00423 and
VSX1. Among these genes, ING2 (Inhibitor Of Growth
Family Member 1) encodes a tumor suppressor protein
that can induce cell growth arrest and apoptosis, respon-
sible of biological process such as Regulation of Cell
Death and Protein Import into Nucleus, and, related to
Squamous Cell Carcinoma, Head And Neck, Fibrosarcoma
of Bone, Squamous Cell Carcinoma, and Melanoma
diseases.
The high heterogeneity observed in these lists implies

that there are many genetic networks that equally pre-
dict survival in TNBC, that is, the uncertainty space of
this problem is broader than the one corresponding to
the metastasis prediction. This fact can be observed also
in the analysis of the top score pathways where only FRS
and HS commonly sampled with high score the Integrin
Pathway, the DREAM Repression and Dynorphin
Expression, and the Signaling Events Mediated by
HDAC Class II. The role of integrin signaling in breast
cancer has been highlighted by Lambert et al. [32]. The
extracellular matrix which is composed of numerous
insoluble proteins secreted locally by epithelial and
stromal cells changes dramatically during the process of
breast tumorigenesis and can strongly affect disease
progression [33]. Interesting, the DREAM Repression
and Dynorphin Expression pathway was found to be the
top score mechanism involved in TNBC metastasis.

Conclusions
In this paper, we compared three novel samplers in
phenotype prediction problems (Fisher’s ratio, Holdout
and Random Samplers) with Bayesian Networks to
unravel the altered genetic pathways involved in the me-
tastasis and survival in Triple Breast Negative Cancer.
Among them, the Bayesian networks is the less efficient
methodology, since it requires a greater computational
effort to find out the discriminatory networks. This re-
search shows that the Fisher’s ratio, Holdout and the
Random samplers are good alternatives to Bayesian
networks, since they are much more efficient when sam-
pling the uncertainty space of the phenotype prediction
problem. These algorithms are based in a different para-
digm and they do not require inferring the posterior
probability distribution. Besides, the pathways found by
these novel samplers explained better mechanistically
this disease. This analysis shows that the common
pathways in TNBC metastasis and survival are related to
cancer progression and immune response, although the
matching with the results obtained via Bayesian net-
works was not perfect. This result could be improved by
considering other Bayesian Networks with lower predict-
ive accuracy, since different equivalent probabilistic
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factorizations exist. Besides, 70 genes are not enough to
establish mechanistic conclusions about the disease
development and prognosis, as shown by the complexity
of TNBC (high number of discriminatory genes). Con-
versely, the right way of performing this analysis consists
in sampling different discriminatory networks of the
phenotype and using the most-frequently sampled genes
to establish the defective pathways. Damping the effect
of the helper genes that have a lower discriminatory
power of the phenotype and whose importance mechan-
istically is much lower is crucial to perform a robust
sampling of the defective pathways. The appearance of
these genes in the pathway analysis is mainly related to
the high-underdetermined character of the phenotype
prediction. This approach is similar to the Lasso
regularization in inversion [34]. These sampling ap-
proaches are more robust than the Bayesian Networks,
since the probabilistic representation (acyclic graph) cor-
responding to the uncertainty space of the phenotype
prediction (for a given classifier) is not unique. There-
fore, the best BN, which is found through optimization,
cannot considered a robust way to sample the defective
pathways involved in a phenotype prediction problem.
This would equivalent to trying to understand the gen-
etic mechanisms involved in this disease by using the
discriminatory network with the higher predictive accur-
acy, which would be very sensible to the presence of
noise in the expression data, and mainly in the class as-
signment. This research also confirms our prior insight
that the altered pathways should be somehow independ-
ent of the sampling methodology that is used to infer
them, and it is crucial important to understand the
discriminatory power of a gene and how genetic net-
works work in synergy. Further research will be devoted
in the future to analyze this important subject in order
to finally prove the hypothesis of biological invariance.
Although the methodology shown in this paper has a
general purpose, we hope that the results shown for
TNBC in the discussion concerning novel pathways and
genetic targets, will contribute to provide deeper insights
into their cure.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12859-020-3356-6.

Additional file 1. Metastasis and Survival prediction.

Abbreviations
BN: Bayesian Network; CCPPRB: French Committee for the Protection of
Human Subjects; FRS: Fisher’s Ratio Sampler; GEO: Gene Expression Omnibus;
HS: Holdout Sampler; LOOCV: Leave-One-Out-Cross-Validation; NGS: Next
Gen Sequencing; RS: Random Sampler; TNBC: Triple Negative Breast Cancer

Acknowledgements
We acknowledge Dr. Stephen T. Sonis (Brigham and Women’s Hospital and
Biomodels) and Dr. Leorey Saligan (National Institute of Nursing Research) for
their inspiring unconditional support during all these years concerning our
biomedical research.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 21
Supplement 2, 2020: Selected articles from the 6th International Work-
Conference on Bioinformatics and Biomedical Engineering. The full contents of
the supplement are available online at URL.

Authors’ contributions
AC, JLFM, EJDG, FJO, OA, ZF, designed different parts of the algorithms used
in this paper. AC, JLFM, EJDG, FJO and run the simulations of the data
modelling. LS and SS designed the study and provided the interpretations of
the results and the medical meaning. All the authors participated in the
writting, read and approved the final manuscript.

Funding
No funding was received to perform this research study. The publication fees
are funded by the institutions of the authors of this research.

Availability of data and materials
The dataset used in this paper can be accessed in the GEO database under
the acronym GSE58812.

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Group of Inverse Problems, Optimization and Machine Learning,
Department of Mathematics, University of Oviedo, C/ Federico García-Lorca,
18, 33007 Oviedo, Spain. 2Department of Informatics and Computer Science,
University of Oviedo, C/ Federico García-Lorca, 18, 33007 Oviedo, Spain.
3National Institutes of Health, National Institute of Nursing Research,
Bethesda, MD, USA. 4Primary Endpoint Solutions, Watertown, MA, USA.
5Brigham and Women’s Hospital and the Dana-Farber Cancer Institute,
Boston, MA, USA.

Published: 13 March 2020

References
1. De Andrés Galiana EJ, Fernández-Martínez JL, Sonis S. Design of biomedical

robots for phenotype prediction problems. J Computational Biol. 2016;23(8):
678–92.

2. De Andrés-Galiana EJ, Fernández-Martínez JL, Sonis S. (2016b). Sensitivity
analysis of gene ranking methods in phenotype prediction. J Biomed
Inform. 2016;64:255–64.

3. Fernández-Martínez JL, Fernández-Muñiz MZ, Tompkins MJ. On the
topography of the cost functional in linear and nonlinear inverse problems.
Geophysics. 2012;77(1):W1–W15. https://doi.org/10.1190/geo2011-0341.1.

4. Fernández-Martínez JL, Pallero JLG, Fernández-Muñiz Z, Pedruelo-González
LM. From Bayes to Tarantola: new insights to understand uncertainty in
inverse problems. J Appl Geophys. 2013;98:62–72.

5. Cernea A, Fernández-Martínez JL, deAndrés-Galiana EJ, Fernández-Ovies FJ,
Fernández-Muñiz Z, Álvarez-Machancoses O, et al. Sampling defective
pathways in phenotype prediction problems via the Fisher’s ratio sampler.
In: Rojas I, Ortuño F, editors. Bioinformatics and Biomedical Engineering.
IWBBIO 2018. Lecture notes in computer science, vol 10814. Cham: Springer;
2018. https://doi.org/10.1007/978-3-319-78759-6_2.

6. Fernández-Martínez JL, Cernea A, deAndrés-Galiana EJ, Fernández-Ovies FJ,
Fernández-Muñiz Z, Álvarez-Machancoses O, Saligan LN, Sonis S. Sampling
defective pathways in phenotype prediction problems via the Holdout
sampler. In: Rojas I, Ortuño F, editors. Bioinformatics and Biomedical
Engineering. IWBBIO 2018. Lecture notes in computer science, vol 10814.
Cham: Springer; 2018. https://doi.org/10.1007/978-3-319-78759-6_3.

Cernea et al. BMC Bioinformatics 2020, 21(Suppl 2):89 Page 12 of 13

https://doi.org/10.1186/s12859-020-3356-6
https://doi.org/10.1186/s12859-020-3356-6
https://doi.org/10.1190/geo2011-0341.1
https://doi.org/10.1007/978-3-319-78759-6_2
https://doi.org/10.1007/978-3-319-78759-6_3


7. Efron B, Tibshirani R. An introduction to the bootstrap. Boca Raton, FL:
Chapman & Hall/CRC; 1993. ISBN 0-412-04231-2

8. Fernández-Muñiz Z, Hassan K, Fernández-Martínez JL. Data kit inversion and
uncertainty analysis. J Appl Geophys. 2019;161(February 2019):228–3.

9. Fernández-Martínez Juan Luis, Fernández-Muñiz Zulima, Breysse Denys
(2018). The uncertainty analysis in linear and nonlinear regression revisited:
application to concrete strength estimation, Inverse Problems in Science
and Engineering, https://doi.org/10.1080/17415977.2018.1553969.

10. Jiang X, Barmada MM, Visweswaran S. Identifying genetic interactions in
genome-wide data using Bayesian networks. Genet Epidemiol. 2010;
34(6):575–81.

11. Hageman RS, Leduc MS, Korstanje R, Paigen B, Churchill GA. A Bayesian
framework for inference of the genotype–phenotype map for segregating
populations. Genetics. 2011;187(4):1163–70.

12. McGeachie MJ, Chang HH, Weiss ST. CGBayesNets: Conditional Gaussian
Bayesian Network Learning and Inference with Mixed Discrete and
Continuous Data PLoS Computational Biology 2014;10(6).

13. Su C, Andrew A, Karagas MR, Borsuk ME. Using Bayesian networks to
discover relations between genes, environment, and disease. BioData
Mining. 2013;6:6.

14. Jézéquel P, Loussouarn D, Guérin-Charbonnel C, Campion L, et al. Gene-
expression molecular subtyping of triple-negative breast cancer tumours:
importance of immune response. Breast Cancer Res. 2015;17:43.

15. Saligan LN, Fernández-Martínez JL, de Andrés Galiana EJ, Sonis S. Supervised
classification by filter methods and recursive feature elimination predicts risk
of radiotherapy-related fatigue in patients with prostate cancer. Cancer
Inform. 2014;13(141–152):2014.

16. Stelzer G, Inger A, Olender T, Iny-Stein T, Dalah I, Harel A, et al. GeneDecks:
paralog hunting and gene-set distillation with GeneCards annotation.
OMICS. 2009;13(6):477.

17. Reinbolt RE, Sonis S, Timmers CD, Fernández-Martínez JL, Cernea A, de
Andrés-Galiana EJ, Hashemi S, Miller K, Pilarski R, Lustberg MB. Genomic risk
prediction of aromatase inhibitor-related arthralgia in patients with breast
cancer using a novel machine-learning algorithm. Cancer Med. 2017.
https://doi.org/10.1002/cam4.1256.

18. Fernández-Martínez JL, deAndrés-Galiana EJ, Sonis ST. Genomic data
integration in chronic lymphocytic leukemia. J Gene Med. 2017;2017:19.
https://doi.org/10.1002/jgm.2936.

19. Fernández-Martínez JL, DeAndrés-Galiana EJ, Cernea A. The effect of NOP16
mutation in chronic lymphocytic leukemia. J Mol Genet Med. 2017;11(295):
1747–0862.1000295.

20. Feng LR, Fernández-Martínez JL, Zaal KJM, Wolff BS, Saligan LN. mGluR5
mediates post-radiotherapy fatigue development in cancer patients.
Translational Psychiatry. 2018;8(1):110.

21. Cernea, J.L. Fernández-Martínez EJ, deAndrés-Galiana FJ, Fernández-Ovies Z,
Fernández-Muñiz O, Alvarez-Machancoses, Leorey Saligan, Stephen T. Sonis.
(2018). Comparison of different sampling algorithms for phenotype
prediction. 6th international work- Bioinformática IWBBIO 2018 (6th
international work-conference on bioinformatics and biomedical
engineering. Springer international publishing AG, part of springer nature
2018 (IWBBIO 2018), LNBI 10814, pp. 1–13, 2018.

22. Koller D, Friedman N. Probabilistic graphical models: principles and
techniques. Cambridge: Mass.: MIT press. Xxxv; 2009. p. 1231.

23. Mao G, Jin H, Wu L. DDX23-Linc00630-HDAC1 axis activates the notch
pathway to promote metastasis. Oncotarget. 2017;8(24):38937–49. https://
doi.org/10.18632/oncotarget.17156.

24. Jeon M, Han J, Nam SJ, Lee JE, Kim S. STC-1 expression is upregulated
through an Akt/NF-κB-dependent pathway in triple-negative breast cancer
cells. Oncol Rep. 2016;36(3):1717–22 Epub 2016 Jul 25.

25. Han J, Jeon M, Shin I, Kim S. Elevated STC-1 augments the
invasiveness of triple-negative breast cancer cells through activation
of the JNK/c-Jun signaling pathway. Oncol Rep. 2016;36(3):1764–71
Epub 2016 Jul 26.

26. Gong X, Wei W, Chen L, Xia Z, Yu C. Comprehensive analysis of long
non-coding RNA expression profiles in hepatitis B virus-related
hepatocellular carcinoma. Oncotarget. 2016;7(27):42422–30. https://doi.
org/10.18632/oncotarget.9880.

27. Huang X, Jan LY. Targeting potassium channels in cancer. J Cell Biol Jul
2014. 2016;206(2):151–62. https://doi.org/10.1083/jcb.201404136.

28. Lansu K, Gentile S. Potassium channel activation inhibits proliferation of
breast cancer cells by activating a senescence program. Cell Death Dis
(2013). 2013;4:e652. https://doi.org/10.1038/cddis.2013.174.

29. Qin N, Wang C, Lu Q, et al. A cis-eQTL genetic variant of the cancer–testis
gene CCDC116 is associated with risk of multiple cancers. Hum Genet
(2017). 2017;136:987. https://doi.org/10.1007/s00439-017-1827-2.

30. Oyama T, Miyoshi Y, Koyama K, Nakagawa H, Yamori T, Ito T, Matsuda H,
Arakawa H, Nakamura Y. Isolation of a novel gene on 8p21.3-22 whose
expression is reduced significantly in human colorectal cancers with liver
metastasis. Genes Chromosomes Cancer. 2000;29:9–15.

31. Wan M, Huang W, Kute TE, Miller LD, Zhang Q, Hatcher H, Wang J, Stovall
DB, Russell GB, Cao PD, Deng Z, Wang W, Zhang Q, Lei M, Torti SV, Akman
SA, Sui G. Yin Yang 1 plays an essential role in breast cancer and negatively
regulates p27. Am J Pathol. 2012;180(5):2120–33. https://doi.org/10.1016/j.
ajpath.2012.01.037 Epub 2012 Mar 20.

32. Lambert AW, Ozturk S, Thiagalingam S. Integrin signaling in mammary
epithelial cells and breast Cancer. ISRN Oncol. 2012;2012:493283. https://doi.
org/10.5402/2012/493283.

33. Bissell MJ, Radisky D. Putting tumours in context. Nat Rev Cancer. 2001;
1(1):46–54.

34. Tibshirani R. Regression Shrinkage and Selection via the Lasso. J R Stat Soc
Ser B. 1996;58(1):267–88.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Cernea et al. BMC Bioinformatics 2020, 21(Suppl 2):89 Page 13 of 13

https://en.wikipedia.org/wiki/Special:BookSources/0-412-04231-2
https://doi.org/10.1080/17415977.2018.1553969
https://doi.org/10.1002/cam4.1256
https://doi.org/10.1002/jgm.2936
https://doi.org/10.18632/oncotarget.17156
https://doi.org/10.18632/oncotarget.17156
https://doi.org/10.18632/oncotarget.9880
https://doi.org/10.18632/oncotarget.9880
https://doi.org/10.1083/jcb.201404136
https://doi.org/10.1038/cddis.2013.174
https://doi.org/10.1007/s00439-017-1827-2
https://doi.org/10.1016/j.ajpath.2012.01.037
https://doi.org/10.1016/j.ajpath.2012.01.037
https://doi.org/10.5402/2012/493283
https://doi.org/10.5402/2012/493283

	Abstract
	Background
	Results
	Conclusions

	Background
	Materials
	Methods
	Feature selection
	Bayesian approach of uncertainty
	Sampling algorithms
	Fisher’s ratio sampler (FRS)
	Holdout sampler (HS)
	Random sampler (RS)
	Bayesian networks (BNs)

	Identification of the altered genetic pathways

	Results
	Discussion
	Metastasis prediction
	Survival prediction

	Conclusions
	Supplementary information
	Abbreviations
	Acknowledgements
	About this supplement
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Competing interests
	Author details
	References
	Publisher’s Note

