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Abstract

Some hypothesis tests for analyzing the degree of overlap between the ex-
pected value of random intervals are provided. For this purpose, a suitable
measure to quantify the overlapping grade between intervals is considered on
the basis of the Szymkiewicz-Simpson coefficient defined for general sets. It
can be seen as a kind of likeness index to measure the mutual information
between two intervals. On one hand, an estimator for the proposed degree
of overlap between intervals is provided and its strong consistency is ana-
lyzed. On the other hand, two tests are also proposed in this framework: a
one-sample test to examine the degree of overlap between the expected value
of a random interval and a given interval, and a two-sample test to check
the degree of overlap between the expected value of two random intervals.
To solve such hypothesis tests, two statistics are suggested and their limit
distributions are studied by considering both asymptotic and bootstrap tech-
niques. Their power has been also explored by means of local alternatives.
In addition, some simulation studies are carried out to investigate the behav-
ior of the proposed approaches. Finally, the performance of the tests is also
reported in a real-life application.
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1. Introduction

Interval data appear when dealing with different experimental studies involv-
ing ranges, fluctuations, subjective perceptions, censored and grouped data,
among others (see, for instance, [2, 8, 13, 14, 17, 18, 23, 24, 28]).

The variables modeling such kind of imprecise information are called ran-
dom intervals (or RIs, for short). Two different situations can be tackled
in this context: on one hand, interval-data may appear as disjunctive sets
representing incomplete information about a real variable (epistemic view,
as stated in [6]); on the other hand, the experimental data may appear as
essentially interval-valued data describing precise information (ontic view,
in accordance with [6]). The study in this work is included in the second
scenario.

Random intervals have been shown to be suitable in different settings.
Regarding classification and discriminant analysis for interval data different
works has been developed in [8, 24, 28, 32], to mention only a few. In
addition, the problem of interval data in regression analysis has been tackled,
for instance, in [4, 5, 10, 9, 29].

Concerning hypothesis tests for the expected value or Aumman expec-
tation of random intervals (which is also an interval), the one-sample test,
the two-sample test and the ANOVA have been previously developed in the
literature [12, 16]. Due to the imprecision inherent to the intervals setting,
the equality between intervals becomes a strict assumption. In addition, the
lack of universal order between intervals makes the development of one-sided
tests not a simple task. Thus, in order to both maintain consistency with
such an imprecision and to tackle a kind of one-sided hypothesis tests prob-
lem, some tests aiming at relaxing strict equalities can be proposed and they
can be used as ANOVA a posteriori tests once the strict equality has been
discarded. Some of them are described below.

One option to slacken the strict equality is to consider a measure of inclu-
sion. In this context, one-sample inclusion tests for the Aumann expectation
of RIs have been addressed in [22] leading to the proposal of one-sided tests
as a particular case in spite of the lack of order between interval data. The
inclusion measure considered in that work was introduced by Sánchez [26]
and is defined as a ratio between the measure of the intersection of two inter-
vals (introduced in [27]) and the measure of the reference interval. In other
words, the inclusion index shows how much content an interval is in another
one that serves as a reference, so it is a kind of unidirectional measure.
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Apart from an inclusion measure, it is possible to define bidirectional
measures to compare intervals assigning the same importance to the ele-
ments that are compared. This is the case, for instance, of the similarity
index used for developing the one-sample and two-sample similarity tests for
the expected value of random intervals in [23] and [25]. Here the measure
considered is based on the classical Jaccard similarity coefficient for classical
convex sets firstly introduced in [15] and it is defined as a ratio between the
measure of the intersection of the sets and the measure of their union. From
an interpretive point of view, this measure serves to indicate how similar two
intervals are and it is sensitive to differences in length of the intervals.

The first aim of this contribution is to define a new measure to quantify
the mutual information between two intervals. For this purpose, a particu-
larization of the Szymkiewicz-Simpson coefficient for general sets [31] to the
intervals framework is proposed by computing the ratio between the measure
of the intersection of the two intervals and the smallest of their measures.
This index measures the degree of overlap between intervals and differs from
the similarity grade in that whilst the latter considers the lengths of both
intervals, the former is only related to the length of the smallest one. Note
that the similarity index is always lower that or equal to the overlapping
index. In that sense, the overlapping index is useful to quantify the informa-
tion shared by the Aumman expectation of two variables (or by the Aumman
expectation of one variable and a fixed interval) regardless of their lengths
whereas the similarity index is useful whenever it is necessary to consider the
lengths of both expectations. Finally, once the overlapping index is defined,
its corresponding estimator will be also proposed and some of its properties
will be analyzed.

On the other hand, the second goal of this proposal is to develop a one-
sample test for analyzing the degree of overlap between the Aumman expec-
tation of a random interval and a fixed interval as well as a two-sample test
for the degree of overlap between the expectations of two random intervals.
The coefficient defined to quantify the degree of overlap between intervals
varies between 0 and 1, where 0 means that the measure of the common
points is 0 and 1 means that either one interval is completely included in
the other one or both intervals are equal. Such cases 0 and 1 have been
previously tackled in [22] so the interest will be centered in degrees included
in the open interval (0, 1).

To solve the proposed tests, two statistics are provided and their asymp-
totic and bootstrap limit distributions are theoretically analyzed. The pro-
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posed bootstrap approach grants the approximation to the sampling dis-
tribution of the statistic in practice, since the asymptotic one depends on
unknown parameters. Additionally, some simulation studies are carried out
to show the empirical behavior of the approaches and a real-life application
is also gathered.

The manuscript is organized as follows: Section 2 includes some prelim-
inaries about random intervals, the definition of the overlapping index and
its corresponding estimators for the one and two sample cases, analyzing the
strong consistency of those estimators. The description of the one-sample test
for the degree of overlap between the Aumman expectation of a random inter-
val and a fixed interval is presented in Section 3, whereas the corresponding
two-sample test is addressed in Section 4. The power of the suggested tests
is investigated in Section 5. Moreover, some simulations studies are included
in Section 6 and the applicability of the approaches is illustrated in Section
7. To conclude, Section 8 comprises some remarks and open problems.

2. Preliminary concepts

Let Kc(R) be the family of non-empty closed and bounded intervals of R. An
interval A ∈ Kc(R) can be characterized by either its (inf, sup)-representation
(i.e., A = [inf A, supA]) or its (mid , spr )-representation, A = [midA±sprA],
where midA ∈ R is the mid-point or centre and sprA ≥ 0 the spread or radius
of A. The second characterization has been shown to be more operative than
the first one and a valuable tool for different statistical purposes (see, for
instance, [3, 7, 30]).

Given A1, A2 ∈ Kc(R) and λ ∈ R, the usual arithmetic operations be-
tween intervals are based on the Minkowski’s addition [20] and the product
by a scalar, and they are expressed on terms of the (mid , spr )-representation
as A1 + λA2 = [(midA1 + λmidA2)± (sprA1 + |λ|sprA2)].

The Lebesgue measure of an interval A ∈ Kc(R) is given by λ(A) =
2sprA. Besides, the Lebesgue measure of the intersection between A and B,
for any A,B ∈ Kc(R), can be expressed as follows (see [27]):

λ(A ∩B) = max
{

0,min
{

2sprA, 2sprB,

sprA+ sprB − |midA−midB|
}} (1)

A measure of the degree of overlap between two intervals A,B ∈ Kc(R) can be
defined according to the Szymkiewicz-Simpson coefficient [31], which is a similarity
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measure related to the Jaccard index introduced in [15]. It measures the degree
of overlap between two sets that can be interpreted as the quantity of information
that two sets have in common. It is computed by dividing the length of the
intersection of the two sets by the smallest of their lengths. In the case of intervals
we have that the degree of overlap can be defined as follows:

O(A,B) =
λ(A ∩B)

min{λ(A), λ(B)}
, (2)

where either A or B are assumed not to be reduced to a singleton. It is easy to see
that 0 ≤ O(A,B) ≤ 1, since λ(A ∩ B) ≤ min{λ(A), λ(B)}. This overlap measure
satisfies that O(A,B) = 0 iff A ∩B = ∅, O(A,B) = 1 if A = B, A ⊂ B or B ⊂ A,
and O(A,B) ∈ (0, 1) iff A∩B 6= ∅ and A 6= B, A 6⊂ B and B 6⊂ A. Figure 1 shows
some examples of the degree of overlap of between two intervals.

Figure 1: Different representations for the degree of overlap between A (in red) and B (in
blue)

The random variables that model those situations in which the corresponding
outcomes are intervals on Kc(R) are called random intervals (RIs for short). Given
a probability space (Ω,A, P ), an RI is a Borel measurable mapping X : Ω→ Kc(R)
w.r.t. the Hausdorff metric on Kc(R) (see [19]). Equivalently, X is an RI if both
midX, sprX : Ω→ R are real-valued random variables and sprX ≥ 0 a.s.-[P ].

The expected value of an RI X in the Aumann’s sense (also called Aumann
mean, see [1]) can be defined in terms of classical expectations as E([midX ±
sprX]) = [E(midX)± E(sprX)], whenever midX, sprX ∈ L1(Ω,A, P ).

Let {Xi}ni=1 be a simple random sample drawn from X. The sample expecta-
tion (or sample mean) of X is defined coherently in terms of the interval arithmetic
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(based on the above mentioned Minkowski’s addition) as Xn = (1/n)
∑n

i=1Xi, and
it satisfies that Xn = [midXn ± sprXn].

2.1. Estimators for the degree of overlap

Given an RI X and a simple random sample drawn from X, say {Xi}ni=1, the cor-
responding estimator for the degree of overlap between E(X) and a given interval
A has the following expression:

Ô(Xn, A) =
λ(Xn ∩A)

min{λ(Xn), λ(A)}
. (3)

Analogously, given two RIs X and Y , and two random samples {Xi}ni=1 and
{Yi}ni=1 drawn from them, the estimator for the degree of overlap between E(X)
and E(Y ) is

Ô(Xn, Yn) =
λ(Xn ∩ Yn)

min{λ(Xn), λ(Yn)}
. (4)

The main properties associated with the statistical reliability of the estimators
defined above are the unbiasedness and their strong consistency with respect to the
corresponding population measures. Since Xn and Yn are unbiased estimators for
the parameters E(X) and E(Y ), and min, max and | · | are continuous functions, it
is straightforward to derive that E(Ô(Xn, A)) = O(E(X), A) and E(Ô(Xn, Yn) =
O(E(X), E(Y )).

On the other hand, the strong consistency of the estimators defined above
is provided in Theorem 1. It can be assured directly from the classical strong
consistency of midXn, midYn, sprXn and sprYn w.r.t. midE(X), midE(Y ),
sprE(X) and sprE(Y ), by taking into account that the functions min, max and
| · | are continuous.

Theorem 1. Let X and Y be two RIs. The estimators Ô(Xn, A) and Ô(Xn, Yn)
defined in (3) and (4), respectively, are strongly consistent w.r.t. the measures
O(E(X), A) and O(E(X), E(Y )), i.e.,

a) Ô(Xn, A)
n→∞−→ O(E(X), A) a.s.-[P].

b) Ô(Xn, Yn)
n→∞−→ O(E(X), E(Y )) a.s.-[P].

3. One-sample test for the degree of overlap between the expected
value of an RI and a fixed interval

Let (Ω,A, P ) be a probability space, X : Ω −→ Kc(R) be an RI such that
sprE(X) > 0, and A ∈ Kc(R) such that sprA > 0. In order to avoid some
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trivial cases and to assure the existence of the moments involved in the theoret-
ical developments, consider the RI X belonging to the following class of random
intervals:

P = {X : Ω→ Kc(R) |σ2midX <∞ , 0 < σ2sprX <∞ and

σ2midX, sprX 6= σ2midXσ
2
sprX},

(5)

where σ2midX , σ2sprX and σmidX, sprX are the usual real variances and covariance
for the real variables midX and sprX, respectively.

Given a degree d ∈ (0, 1], the aim is to test

H0 : O(E(X), A) ≥ d vs. H1 : O(E(X), A) < d. (6)

We have chosen the study of the one-sided test in (6) since it seems to be
the more appealing in practical applications. Nevertheless, the corresponding two-
sided test and the other one-sided test can be analogously studied.

It should be noticed that the corresponding one-sided test ≤ for case d = 1
makes no sense since the degree of overlap between two values is always lower
than or equal to 1. On the other hand, the two-sided test for the case d = 0 is
the same that the one-sided test ≤ for the same case, and it is equivalent to test
the empty intersection between E(X) and A, which has been previously studied
in [22]. Again, the corresponding one-sided test ≥ in case d = 0 has no sense since
the degree of similarity between two values is always greater than or equal to 0.
Therefore, we will focus the attention in the case d ∈ (0, 1].

From (1) and (2) it is easy to show that the hypotheses of the test (6) can be
equivalently expressed as

H0 : max
{

min
{
O1(d), O2(d)

}
,min

{
O3(d), O4(d)

}}
≤ 0;

H1 : max
{

min
{
O1(d), O2(d)

}
,min

{
O3(d), O4(d)

}}
> 0,

(7)

where
O1(d) = midE(X)−midA+ (2d− 1) sprE(X)− sprA,
O2(d) = midE(X)−midA− sprE(X) + (2d− 1) sprA,
O3(d) = −midE(X) + midA+ (2d− 1) sprE(X)− sprA,
O4(d) = −midE(X) + midA− sprE(X) + (2d− 1) sprA.

(8)

Let {Xi}ni=1 be a sample of random intervals independent and identically dis-
tributed as X, and let Xn be the associated sample mean. The corresponding test
statistic is defined as follows:

TX(d) =
√
nmax

{
min

{
Ô1(d), Ô2(d)

}
,min

{
Ô3(d), Ô4(d)

}}
, (9)
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where
Ô1(d) = midXn −midA+ (2d− 1) sprXn − sprA,

Ô2(d) = midXn −midA− sprXn + (2d− 1) sprA,

Ô3(d) = −midXn + midA+ (2d− 1) sprXn − sprA,

Ô4(d) = −midXn + midA− sprXn + (2d− 1) sprA.

(10)

Let us consider the bivariate normal distribution Z = (z1, z2)
T ≡ N2

(
~0,Σ

)
,

where Σ is the covariance matrix for the random vector (midX, sprX). As X
belongs to the class P defined in (5), the no singularity of the covariance matrix
Σ is assured.

On the other hand, since the limit distribution of the statistic TX(d) for cases
d = 1 and d ∈ (0, 1) in all the different situations under H0 is analyzed in the
following subsections by means of aysmptotic and bootstrap approaches.

3.1. Case d=1

Firstly, the limit distribution of the statistic TX(1) is provided in Lemma 1 and
the proof is included in the Appendix.

Lemma 1. For n ∈ N, let X1, . . . , Xn be n RIs independent and equally distributed
from X, and defined on the probability space (Ω,A, P ). Let TX(d) be defined as
in (9) and X ∈ P. Whenever O1(1) = O2(1) = O3(1) = O4(1) = 0 (which means
that |midE(X)−midA| = |sprE(X)− sprA|), it is fulfilled that

TX(1)
L−→ max {min{z1 + z2, z1 − z2},min{z2 − z1,−z1 − z2}} (11)

as n→∞.

The consistency and the correctness of the test is stated as follows. If d = 1,
α ∈ [0, 1] and k1−α is the (1−α)-quantile of the asymptotic distribution of TX(1),
and if H0 in (29) is true, then it is easy to prove that

lim sup
n→∞

P (TX(1) > k1−α) ≤ α ,

taking into account Lemma 1. In addition, the equality is achieved whenever
O1(1) = O2(1) = O3(1) = O4(1) = 0. On the other hand, if H0 is not true, then it
is also easy to verify that

lim
n→∞

P (TX(1) > k1−α) = 1.

Then the test rejecting H0 in (29) at the significance level α whenever TX(1) >
k1−α is asymptotically correct and consistent.
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The asymptotic distribution of TX(1) is not easy to handle in practice since it
depends on unknown parameters. For this reason, a residual bootstrap approach
is proposed.

Let X be an RI such that sprE(X) > 0, and let {Xi}ni=1 be a simple random
sample drawn from X. Consider a bootstrap sample {X∗i }ni=1 being chosen ran-
domly and with replacement from {Xi}ni=1. The bootstrap statistic is defined as
follows:

T ∗X(1) = max
{

min
{√

n
(
midX∗n −midXn + sprX∗n − sprXn

)
√
n
(
midX∗n −midXn − sprX∗n + sprXn

)}
,

min
{√

n
(
−midX∗n + midXn + sprX∗n − sprXn

)
√
n
(
−midX∗n + midXn − sprX∗n + sprXn

)}
.

(12)

The asymptotic distribution of T ∗X(1) is given in Lemma 4. The result can be
proved analogously to Lemma 1 by applying in this case the Bootstrapped CLT
(see [11]).

Lemma 2. Let X in P. Whenever O1(1) = O2(1) = O3(1) = O4(1) = 0, it is
fulfilled that

T ∗X(1)
L−→ max{min{z1 + z2, z1 − z2},min{z2 − z1,−z1 − z2}} as− [P ]. (13)

The consistency of the bootstrap procedure is straightforwardly derived. The
distribution of T ∗X(1) is approximated in practice by means of the Monte Carlo
method as follows:

Algorithm for the bootstrap approach:

Step 1. For the simple random sample {Xi}ni=1, compute the value of the statistic
TX(1) in (9).

Step 2. By resampling from {Xi}ni=1, get a bootstrap sample {X∗i }
n
i=1 and com-

pute the value of the bootstrap statistic T ∗X(1) defined in (12).

Step 3. Repeat Step 2 a large number B of times to get a set of B values of the
bootstrap statistic denoted by Boot.

Step 4. Compute the bootstrap p-value for the Test (29) as the proportion of
values in Boot which are greater than or equal to TX(1).
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3.2. Case d ∈ (0, 1)

Lemma 3 provides the limit distribution of TX(d) in different situations under H0

in (29) when d ∈ (0, 1). The proof is contained in the Appendix.

Lemma 3. For n ∈ N, let X1, . . . , Xn be n RIs independent and equally distributed
from X, and defined on the probability space (Ω,A, P ). Let TX(d) be defined as in
(9). If X ∈ P, then:

a) Whenever O1(d) = O2(d) = 0 (which means that midE(X) = midA+2(1−
d)sprA and sprE(X) = sprA), it is fulfilled that

TX(d)
L−→ min{z1 + (2d− 1)z2, z1 − z2} as n→∞. (14)

b) Whenever O3(d) = O4(d) = 0 (which means that midE(X) = midA+2(d−
1)sprA and sprE(X) = sprA), it is fulfilled that

TX(d)
L−→ min{−z1 + (2d− 1)z2,−z1 − z2} as n→∞. (15)

c) Whenever O1(d) = 0 and O2(d) > 0 (which means that O3(d) < 0, O4(d) <
0), it is fulfilled that

TX(d)
L−→ z1 + (2d− 1)z2 as n→∞. (16)

d) Whenever O1(d) > 0 and O2(d) = 0 (which means that O3(d) < 0, O4(d) <
0), it is fulfilled that

TX(d)
L−→ z1 − z2 as n→∞. (17)

e) Whenever O3(d) = 0 and O4(d) > 0 (which implies that O1(d) < 0, O2(d) <
0), it is fulfilled that

TX(d)
L−→ −z1 + (2d− 1)z2 as n→∞. (18)

f) Whenever O3(d) > 0 and O4(d) = 0 (which implies that O1(d) < 0, O2(d) <
0), it is fulfilled that

TX(d)
L−→ −z1 − z2 as n→∞. (19)

g) Whenever 3 values among O1(d), O2(d), O3(d) and O4(d) are lower than 0,
it is fulfilled that

TX(d)
n→∞−→ −∞ as n→∞. (20)
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Figure 2: Situations a)-f) in Lemma 3 for a degree of overlap between E(X) (in red) and
A (in blue) equal to 1/2

A scheme of the different situations addressed in Lemma 3 for case d = 1/2 is
provided in Figure 2.

Remark 1. As it is observed in Lemma 3 the asymptotic distribution of TX(d)
under the null hypothesis H0 depends on X and, specifically, on midE(X) and
sprE(X). Thus, in order to develop the theoretical analysis of the testing procedure
it is necessary to consider an X-dependent distribution to compare with. For this
purpose, the following statistic will be taken into account:

T ′X(d) = max
{

min
{√

n
(
midXn −midE(X) + (2d− 1)(sprXn − sprE(X))

)
+ max

(
0, n1/4(sprXn − sprA)

)
,√

n
(
midXn −midE(X)− sprXn + sprE(X)

)
+ max

(
0, n1/4(sprA− sprXn)

)}
,

+ min
(
0, n1/4(midXn −midA+ 2(d− 1)sprA)

)
,

min
{√

n
(
−midXn + midE(X) + (2d− 1)(sprXn − sprE(X))

)
+ max

(
0, n1/4(sprXn − sprA)

)
√
n
(
−midXn + midE(X)− sprXn + sprE(X)

)
+ max

(
0, n1/4(sprA− sprXn)

)}
+ min

(
0, n1/4(midA−midXn + 2(d− 1)sprA)

)}
.
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Mimicking the procedure in [22], the minima and maxima included in the ex-
pression above have been introduced to determine the component of the expression
of T ′X(d) which has more influence depending on each situation under H0. The
possible limit distributions of T ′X(d) are established below:

• If d = 1 and |midE(X)−midA| = |sprE(X)−sprA|, then T ′X(d) converges
in law to the same distribution as in (11).

• If midE(X) > midA + 2(d − 1)sprA and sprE(X) = sprA, then T ′X(d)
converges in law to the same distribution as in (14).

• If midE(X) < midA + 2(d − 1)sprA and sprE(X) = sprA, then T ′X(d)
converges in law to the same distribution as in (15).

• If midE(X) > midA + 2(d − 1)sprA and sprE(X) < sprA, then T ′X(d)
converges in law to the same distribution as in (16).

• If midE(X) > midA + 2(d − 1)sprA and sprE(X) > sprA, then T ′X(d)
converges in law to the same distribution as in (17).

• If midE(X) < midA + 2(d − 1)sprA and sprE(X) < sprA, then T ′X(d)
converges in law to the same distribution as in (18).

• If midE(X) < midA + (2d − 1)sprA and sprE(X) > sprA, then T ′X(d)
converges in law to the same distribution as in (19).

• If midE(X) = midA + (2d − 1)sprA and sprE(X) < sprA, then T ′X(d)
converges in law to

max{z1 + (2d− 1)z2,−z1 + (2d− 1)z2}.

• If midE(X) = midA + (2d − 1)sprA and sprE(X) > sprA, then T ′X(d)
converges in law to

max{z1 − z2,−z1 − z2}.

• If midE(X) = midA + (2d − 1)sprA and sprE(X) = sprA, then T ′X(d)
converges in law to

max{min{z1 + (2d− 1)z2, z1 − z2},min{−z1 + (2d− 1)z2,−z1 − z2}}.

It can be concluded that the asymptotic distribution of TX(d) is stochastically
bounded by the one of T ′X(d) in all the situations under H0.
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The theoretical analysis of the testing procedure in case d ∈ (0, 1) in terms
of its consistency and its correctness is provided in the following lines. On one
hand, if α ∈ [0, 1] and k1−α is the (1− α)-quantile of the asymptotic distribution
of T ′X(d), and if H0 in (29) is true, then it is easy to prove that

lim sup
n→∞

P (TX(d) > k1−α) ≤ α ,

taking into account Lemma 3 and that TX(d) is stochastically bounded by T ′X(d)
under H0. In addition, the equality is achieved whenever conditions in a), b), c)
and d) in Lemma 3 are fulfilled. On the other hand, if H0 is not true, then it is
also easy to verify that

lim
n→∞

P (TX(d) > k1−α) = 1.

As an immediate consequence, the test rejecting H0 in (29) at the significance
level α whenever TX(d) > k1−α is asymptotically correct and consistent.

The bootstrap statistic proposed in case d ∈ (0, 1) is based on the expression
of T ′X(d) and it is defined as

T ∗X(d) = max
{

min
{√

n
(
midX∗n −midXn + (2d− 1)(sprX∗n − sprXn)

)
+ max

(
0, n1/4(sprXn − sprA)

)
,√

n
(
midX∗n −midXn − sprX∗n + sprXn

)
+ max

(
0, n1/4(sprA− sprXn)

)}
,

+ min
(
0, n1/4(midXn −midA+ 2(d− 1)sprA)

)
,

min
{√

n
(
−midX∗n + midXn + (2d− 1)(sprX∗n − sprXn)

)
+ max

(
0, n1/4(sprXn − sprA)

)
√
n
(
−midX∗n + midXn − sprX∗n + sprXn

)
+ max

(
0, n1/4(sprA− sprXn)

)}
+ min

(
0, n1/4(midA−midXn + 2(d− 1)sprA)

)}
.

(21)

The different possibilities for the asymptotic distribution of T ∗X(d) are provided
in Lemma 4.

Lemma 4. Let X in P. Then:

a) Whenever O1(d) = O2(d) = 0, it is fulfilled that

T ∗X(d)
L−→ min{z1 + (2d− 1)z2, z1 − z2} as− [P ]. (22)

b) Whenever O3(d) = O4(d) = 0, it is fulfilled that

T ∗X(d)
L−→ min{−z1 + (2d− 1)z2,−z1 − z2} as− [P ]. (23)
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c) Whenever O1(d) = 0 and O2(d) > 0, it is fulfilled that

T ∗X(d)
L−→ z1 + (2d− 1)z2 as− [P ]. (24)

d) Whenever O1(d) > 0 and O2(d) = 0, it is fulfilled that

T ∗X(d)
L−→ z1 − z2 as− [P ]. (25)

e) Whenever O3(d) = 0 and O4(d) > 0, it is fulfilled that

T ∗X(d)
L−→ −z1 + (2d− 1)z2 as− [P ]. (26)

f) Whenever O3(d) > 0 and O4(d) = 0, it is fulfilled that

T ∗X(d)
L−→ −z1 − z2 as− [P ]. (27)

Other situations under H0 leads to other limit distributions of the bootstrap
statistic different from the ones provided in Lemma 4.

In practice, the distribution of T ∗X(d) is approximated by means of the Monte
Carlo method as in the case d = 1.

4. Two-sample test for the degree of overlap between the expected
value of two RIs

The theoretical developments for the two-sample test are analogous to the ones of
Section 3, so the proofs of the corresponding lemmas are very similar and are not
included.

Let (Ω,A, P ) be a probability space, and X,Y : Ω −→ Kc(R) be two indepen-
dent RIs such that sprE(X) > 0 and sprE(Y ) > 0 and belonging to the class P
defined in (5).

In this case, given a degree d ∈ (0, 1), the aim is to test

H0 : O(E(X), E(Y )) ≥ d vs. H1 : O(E(X), E(Y )) < d, (28)

that can be equivalently expressed as

H0 : max
{

min
{

Θ1(d),Θ2(d)
}
,min

{
Θ3(d),Θ4(d)

}}
≤ 0;

H1 : max
{

min
{

Θ1(d),Θ2(d)
}
,min

{
Θ3(d),Θ4(d)

}}
> 0,

(29)
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where

Θ1(d) = midE(X)−midE(Y ) + (2d− 1) sprE(X)− sprE(Y ),
Θ2(d) = midE(X)−midE(Y )− sprE(X) + (2d− 1) sprE(Y ),
Θ3(d) = −midE(X) + midE(Y ) + (2d− 1) sprE(X)− sprE(Y ),
Θ4(d) = −midE(X) + midE(Y )− sprE(X) + (2d− 1) sprE(Y ).

(30)

Let {Xi}ni=1 and {Yi}mi=1 be simple random samples drawn from X and Y ,
respectively, so that n/(n + m) → p1 ∈ (0, 1) and m/(n + m) → p2 ∈ (0, 1). The
test statistic in this case is defined below.

T(X,Y )(d) =
√
nmax

{
min

{
Θ̂1(d), Θ̂2(d)

}
,min

{
Θ̂3(d), Θ̂4(d)

}}
, (31)

where
Θ̂1(d) = midXn −midYm + (2d− 1) sprXn − sprYm,

Θ̂2(d) = midXn −midYm − sprXn + (2d− 1) sprYm,

Θ̂3(d) = −midXn + midYm + (2d− 1) sprXn − sprYm,

Θ̂4(d) = −midXn + midYm − sprXn + (2d− 1) sprYm.

(32)

Consider the bivariate normal distributions U = (u1, u2)
T ≡ N2

(
~0,Σ1

)
and

V = (v1, v2)
T ≡ N2

(
~0,Σ2

)
, where Σ1 and Σ2 are the covariance matrices for the

random vectors (midX, sprX) and (midY, sprY ), respectively. The asymptotic
distribution of the statistic T(X,Y )(d) in all the different situations under H0 is
studied in Lemma 5.

Lemma 5. For n,m ∈ N, let X1, . . . , Xn and Y1, . . . , Ym be simple random samples
drawn from X and Y , respectively, so that n/(n + m) → p1 ∈ (0, 1) and m/(n +
m)→ p2 ∈ (0, 1). Let T(X,Y )(d) be defined as in (31). If X,Y ∈ P, then:

a) Whenever Θ1(1) = Θ2(1) = Θ3(1) = Θ4(1) = 0 (which only arises when
d = 1 and |midE(X) − midE(Y )| = |sprE(X) − sprE(Y )|), it is fulfilled
that

T(X,Y )(1)
L−→ max

{
min{u1 − v1 + u2 − v2, u1 − v1 − u2 + v2},

min{−u1 + v1 + u2 − v2,−u1 + v1 − u2 + v2}
} (33)

as n→∞.

b) Whenever Θ1(d) = Θ2(d) = 0 (which means that midE(X) = midE(Y ) +
2(1− d)sprE(Y ) and sprE(X) = sprE(Y )), it is fulfilled that

T(X,Y )(d)
L−→ min{u1 − v1 + (2d− 1)u2 − v2,

u1 − v1 − u2 + (2d− 1)v2} as n→∞.
(34)
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c) Whenever Θ3(d) = Θ4(d) = 0 (which means that midE(X) = midE(Y ) +
2(d− 1)sprE(Y ) and sprE(X) = sprE(Y )), it is fulfilled that

T(X,Y )(d)
L−→ min{−u1 + v1 + (2d− 1)u2 − v2,

−u1 + v1 − u2 + (2d− 1)v2} as n→∞.
(35)

d) Whenever Θ1(d) = 0 and Θ2(d) > 0 (which means that Θ3(d) < 0, Θ4(d) <
0), it is fulfilled that

T(X,Y )(d)
L−→ u1 − v1 + (2d− 1)u2 − v2 as n→∞. (36)

e) Whenever Θ1(d) > 0 and Θ2(d) = 0 (which means that Θ3(d) < 0, Θ4(d) <
0), it is fulfilled that

T(X,Y )(d)
L−→ u1 − v1 − u2 + (2d− 1)v2 as n→∞. (37)

f) Whenever Θ3(d) = 0 and Θ4(d) > 0 (which means that Θ1(d) < 0, Θ2(d) <
0, midE(X) < midE(Y ) + 2(d− 1)sprE(Y ) and sprE(X) < sprE(Y )), it
is fulfilled that

T(X,Y )(d)
L−→ −u1 + v1 + (2d− 1)u2 − v2 as n→∞. (38)

g) Whenever Θ3(d) > 0 and Θ4(d) = 0 (which means that Θ1(d) < 0, Θ2(d) <
0, midE(X) < midE(Y ) + 2(d− 1)sprE(Y ) and sprE(X) > sprE(Y )), it
is fulfilled that

T(X,Y )(d)
L−→ −u1 + v1 − u2 + (2d− 1)v2 as n→∞. (39)

h) Whenever 3 values among Θ1(d), Θ2(d), Θ3(d) and Θ4(d) are lower than 0,
it is fulfilled that

T(X,Y )(d)
n→∞−→ −∞ as n→∞. (40)

As in the one-sample test, in the case d ∈ (0, 1) we can define a statistic T ′(X,Y )
which stochastically bounds T(X,Y ) in all situations under H0. In addition, it
can be easily proved that the test rejecting H0 in (28) at the significance level α
whenever T(X,Y ) > k1−α is asymptotically correct and consistent.

Finally, the corresponding bootstrap approach is proposed. Given X and Y RIs
such that sprE(X) > 0 and sprE(Y ) > 0, {Xi}ni=1 and {Yi}mi=1 two simple random
samples drawn from X and Y , and {X∗i }ni=1 and {Y ∗i }mi=1 two resamplings from

16



{Xi}ni=1 and {Yi}mi=1, respectively. Then, the corresponding bootstrap statistics
for cases d = 1 and d ∈ (0, 1) can be defined as follows:

T ∗(X,Y )(1) = max
{

min
{√

n
(
midX∗n −midXn −midY ∗m + midYm

+sprX∗n − sprXn − sprY ∗m + sprYm
)

√
n
(
midX∗n −midXn −midY ∗m + midYm

+spr −X∗n + sprXn + sprY ∗m − sprYm
)}
,

min
{√

n
(
−midX∗n + midXn + midY ∗m −midYm

+sprX∗n − sprXn − sprY ∗m + sprYm
)

√
n
(
−midX∗n + midXn + midY ∗m −midYm

+spr −X∗n + sprXn + sprY ∗m − sprYm
)}

;

(41)

T ∗(X,Y )(d) = max
{

min
{√

n
(

midX∗n −midXn −midY ∗m + midYm

+(2d− 1)(sprX∗n − sprXn)− sprY ∗m + sprYm

)
+ max

(
0, n1/4(sprXn − sprYm)

)
,

√
n
(

midX∗n −midXn −midY ∗m + midYm

−sprX∗n + sprXn + (2d− 1)(sprY ∗m − sprYm)
)

+ max
(
0, n1/4(sprYm − sprXn)

)}
+ min(0, n1/4)(midXn −midYm + 2(d− 1)sprYm),

min
{√

n
(
−midX∗n + midXn + midY ∗m −midYm

+(2d− 1)(sprX∗n − sprXn)− sprY ∗m + sprYm

)
+ max

(
0, n1/4(sprXn − sprYm)

)
,

√
n
(
−midX∗n + midXn + midY ∗m −midYm

−sprX∗n + sprXn + (2d− 1)(sprY ∗m − sprYm)
)

+ max
(
0, n1/4(sprYm − sprXn)

)}
+ min(0, n1/4)(−midXn + midYm + 2(d− 1)sprYm)

}
.

(42)

The asymptotic distributions of T ∗(X,Y )(1) and T ∗(X,Y )(d) are (almost sure) the
ones provided in Lemma 5 for T(X,Y ), under the same conditions. In addition, the
consistency of the bootstrap procedure can be straightforwardly derived. Finally,
the distributions of both T ∗(X,Y )(1) and T ∗(X,Y )(d) are approximated in practice
again by means of the Monte Carlo method.

5. Power analysis of the tests

The capability of the tests for the degree of overlap defined in the previous sections
is analyzed. A suitable way to carry out this analysis is through the study of the
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power function under a sequence of alternatives which converges to the null one
as the sample size increases, i.e., by using the so-called local alternatives. They
allow us to measure how sensitive is a test under small deviations from the null
hypothesis.

Withouth loss of generality we will check the power under the different situa-
tions established in Lemma 5 for the two-sample case. The power analysis of the
corresponding one-sample test can be addressed analogously.

Suppose that X and Y are two RIs so that O(E(X), E(Y )) = d. Let {Xi}ni=1

and {Yi}mi=1 be two simple random samples drawn from X and Y , and let {Y ′
i }mi=1

{Y ′′
i }mi=1 be two ’corrections’ of {Yi}mi=1 defined as

Y
′
i = Yi +

δm√
m

and Y
′′
i = Yi −

δm√
m

(43)

whose sample means are Y ′
m = Ym + δm√

m
and Y ′′

m = Ym − δm√
m

, respectively. If

δm ↗ ∞ and δm/
√
m → 0 as m → ∞, then both sequences of sample means

{Y ′
m}m and {Y ′′

m}m converges to Ym as the sample size m tends to ∞. Thus, it
is easy to check that the null hypothesis is not satisfied but it is approached as
m→∞.

Theorem 2 shows that the power of the test under different situations converges
to 1. Its proof is provided in the Appendix.

Theorem 2. Let X and Y be two RIs, let {Xi}ni=1 and {Yi}mi=1 be two simple
random samples drawn from them and let {Y ′

i }mi=1 {Y
′′
i }mi=1 be the ’corrections’ of

{Yi}mi=1 defined above. Let T(X,Y ′ )(d) and T(X,Y ′′ )(d) be defined as in (31) and let

k1−α and k1−β be the (1−α) and (1− β)-quantiles of the asymptotic distributions
of T(X,Y ′

)(d) and T(X,Y ′′
)(d), respectively.

i) If the asymptotic testing procedures in cases a), b), d) and e) of Lemma 5
are applied to {Y ′

i }mi=1, then

lim
n→∞

P (T(X,Y ′ ) > k1−α ) = 1.

ii) If the asymptotic testing procedures in cases c), f) and g) of Lemma 5 are
applied to {Y ′′

i }mi=1, then

lim
n→∞

P (T(X,Y ′′ ) > t1−α ) = 1.

6. Simulation studies

In this section, some simulation studies are developed in order to show the em-
pirical behavior of the bootstrap approach. For this purpose, several models are
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taken into account for the one-sample and two-sample tests proposed in Sections
3 and 4. Two different situations are tackled in both scenarios: in the first one the
mid-point and spread components of the RI or RIs considered are independently
generated; in the second one, it is allowed that those components have certain
level of dependence each other. In addition, the consideration of equal or unequal
sample sizes has been examined in the two-sample case.

6.1. Scenario 1: one-sample test

As a first study, the one-sample test is analyzed. Some different models are pro-
posed according to the independency or dependency of the components. In all the
cases, the fixed interval A = [1, 3] is used to compare it with the expected value
of X. The bootstrap test introduced in Section 3 has been run in every case for
10000 simulations with 1000 bootstrap replications each, by considering the usual
significance level α = 0.05 and different sample sizes. The different null hypothesis
investigated as well as the distributions for the mid-point and spread components
are gathered in Table 1.

Table 1: Distributions for the mid-point and spread of X considered in 10 different sce-
narios of the one-sample test for the degree of overlap between E(X) and A

Model H0 midX sprX E(X)

1.1.a) O(E(X), A) = 1 N (2, 1) χ2
1 [1, 3]

1.1.b) O(E(X), A) ≥ 1/2 N (3, 1) χ2
1 [2, 4]

1.1.c) O(E(X), A) ≥ 1/2 N (1, 1) χ2
1 [0, 2]

1.1.d) O(E(X), A) ≥ 1/2 U(0, 6) χ2
0.5 [2.5, 3.5]

1.1.e) O(E(X), A) ≥ 1/2 U(−2, 4) χ2
0.5 [0.5, 1.5]

1.2.a) O(E(X), A) = 1 sprX +N (1, 1) χ2
1 [1, 3]

1.2.b) O(E(X), A) ≥ 1/2 sprX +N (2, 1) χ2
1 [2, 4]

1.2.c) O(E(X), A) ≥ 1/2 sprX +N (0, 1) U(0, 2) [0, 2]

1.2.d) O(E(X), A) ≥ 1/2 N (3.5, 1)− sprX U(0, 1) [2.5, 3.5]

1.2.e) O(E(X), A) ≥ 1/2 N (0.5, 1) + sprX U(0, 1) [2.5, 3.5]

It is easy to check that models 1.a) and 2.a) satisfy the conditions of Lemma
1, whereas models 1.1.b)-1.2.b), 1.1.c)-1.2.c), 1.1.d)-1.2.d) and 1.1.e)-1.2.e) satisfy
conditions of parts a), b), c) and e) of Lemma 3, respectively. Note that cases
fulfilling conditions of parts d) and f) of the same lemma can be analogously
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considered leading to similar conclusions. The results obtained in the situations
included in Table 1 are collected in Table 2.

They show that the empirical sizes of the test are in all cases quite close to the
expected nominal significance level even for moderate sample sizes. Specifically,
it should be noticed that even when that approximation is relatively good for all
models, it is more conservative in the case of models 1.1.b), 1.2.b), 1.1.c) and 1.2.c)
(which are those corresponding to parts a) and b) of Lemma 3) than in the rest of
scenarios. Thus, in view of the previous results it can be concluded that models
fulfilling conditions a) and b) of Lemma 3) for solving Test (29) whenever d = 1/2
behave a little bit better than those fulfilling conditions c) and e) of the same
lemma, although all of them present a good behavior in terms of approximation
to the expected nominal significance level.

Table 2: Empirical size of the bootstrap test for the degree of overlap for models included
in Table 1

n \ Model 1.1.a) 1.1.b) 1.1.c) 1.1.d) 1.1.e)

n = 10 0.0616 0.0648 0.0629 0.0830 0.0856

n = 30 0.0555 0.0529 0.0497 0.0642 0.0636

n = 50 0.0489 0.0497 0.0482 0.0606 0.0592

n = 100 0.0503 0.0489 0.0489 0.0534 0.0531

n = 200 0.0499 0.0510 0.05 0.0509 0.0507

n \ Model 1.2.a) 1.2.b) 1.2.c) 1.2.d) 1.2.e)

n = 10 0.0913 0.0605 0.0641 0.0808 0.0757

n = 30 0.0603 0.0479 0.0482 0.0580 0.0606

n = 50 0.0575 0.0491 0.0489 0.0537 0.0555

n = 100 0.0532 0.0486 0.0496 0.0517 0.0534

n = 200 0.0507 0.05 0.0492 0.0511 0.0514

In addition, there are not remarkable differences among the results when con-
siderating either independent or dependent distributions for the mid-point and
spread components. Finally, some slight differences appreciated when comparing
all the situations may also be due to the diverse nature of the distributions.

6.2. Scenario 2: two-sample test

Secondly, the behavior of the two-sample test introduced in Section 4 is investi-
gated. Again, different models are considered for solving the two-sided test for the
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degree of overlap between E(X) and E(Y ) in case d = 1 and the corresponding
one-sided test (≥) in case d = 1/2. Dependent and independent distributions for
the mid-point and spread components of the RIs X and Y have been taken into
account as well as equal and different type of distributions for X and Y . The
distribution of the components of X and Y for each proposed test is provided in
Tables 3 (case d = 1) and 4 (case d = 1/2).

Table 3: Distributions for the mid-point and spread of X and Y in 4 different situations
of the two-sample test for the degree of overlap between E(X) and E(Y ) in case d = 1
(E(X) = E(Y ) = [1, 3])

Model midX sprX midY sprY

2.1.a) N (2, 1) χ2
1 N (2, 1) χ2

1

2.1.b) U(1, 3) χ2
1 N (2, 1) U(0, 2)

2.1.c) sprX +N (1, 1) χ2
1 sprX +N (1, 1) χ2

1

2.1.d) sprX + U(0, 2) χ2
1 sprX +N (1, 1) U(0, 2)

Table 4: Distributions for the mid-point and spread of X and Y in 8 different situations
of the two-sample test for the degree of overlap between E(X) and E(Y ) in case d = 1/2
(E(Y ) = [1, 3] in all cases)

Model midX sprX midY sprY E(X)

2.2.a) N (3, 1) χ2
1 N (2, 1) χ2

1 [2, 4]

2.2.b) U(1, 5) χ2
1 N (2, 1) U(0, 2) [2, 4]

2.2.c) N (1, 1) χ2
1 N (2, 1) χ2

1 [0, 2]

2.2.d) U(−2, 4) χ2
1 N (2, 1) U(0, 2) [0, 2]

2.2.e) sprX +N (2, 1) U(0, 2) sprX +N (1, 1) U(0, 2) [2, 4]

2.2.f) sprX + U(0, 4) χ2
1 sprX +N (1, 1) U(0, 2) [2, 4]

2.2.g) N (2, 1)− sprX U(0, 2) sprX +N (1, 1) U(0, 2) [0, 2]

2.2.h) U(0, 4)− sprX χ2
1 sprX +N (1, 1) U(0, 2) [2.5, 3.5]

Regarding the distributions included in Table 3, it should be remarked that
models 2.1.a) and 2.1.c) provides equal distribution types for X and Y whereas
models 2.1.b) and 2.1.d) present different distribution types for both RIs. On the
other hand, the distributions of the components of models 2.1.a) and 2.1.b) are
independently generated in contrast to the ones of models 2.1.c) and 2.1.d) which
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are dependently generated. Besides, the four models satisfy conditions of the part
a) of Lemma 5.

With respect to the situations included in Table 4, models 2.2.a), 2.2.c), 2.2.e)
and 2.2.g) show equal distribution types for X and Y while the others are deter-
mined by different distribution types for X and Y . In the same way, the distri-
bution of the mid-point and spread in case of models from 2.2.a) to 2.2.d) has
been independently generated whereas the rest of models present dependency in
the generation of the distribution of both components. Finally, models 2.2.a),
2.2.b), 2.2.e) and 2.2.f) satisfy conditions of part b) of Lemma 5 and the other
models satisfy conditions of part c). For the sake of readability of the manuscript,
simulations considering other scenarios included in Lemma 5 have been ommited,
although similar conclusions can be drawn in those cases.

In order to solve the tests gathered in Tables 3 and 4, 10000 simulations and
1000 bootstrap replications of the bootstrap approach proposed in Section 4 have
been carried out at a significance level α = 0.05 for equal and unequal sample
sizes. The results obtained are displayed in Tables 5 and 6.

Table 5: Empirical size of the bootstrap test for the degree of overlap for models included
in Table 3

(n,m)\ Model 2.1.a) 2.1.b) 2.1.c) 2.1.d)

n = m = 10 0.0597 0.0644 0.0737 0.077

n = m = 30 0.0578 0.054 0.0652 0.0604

n = m = 50 0.0538 0.0541 0.0533 0.0538

n = m = 100 0.0513 0.0520 0.0524 0.0522

n = m = 200 0.0504 0.0507 0.0512 0.0512

n = 10, m = 30 0.0546 0.0572 0.0682 0.0667

n = 30, m = 50 0.0626 0.0528 0.0504 0.0574

n = 80, m = 100 0.052 0.0534 0.0518 0.0546

n = 100, m = 150 0.0496 0.0524 0.0486 0.05

n = 200, m = 300 0.052 0.0492 0.0532 0.05

From the results shown in Table 5 it can be concluded that the corresponding
empirical sizes of the test in the four cases are quite close to the nominal significance
level whenever the sample sizes n and m are greater than 100, i.e., the behaviour
of the test in this four situations is quite good for moderate/large sample sizes.
However, for small sample sizes the empirical size of the test is around 0.06 when
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Table 6: Empirical size of the bootstrap test for the degree of overlap for models included
in Table 4

(n,m) \ Model 2.2.a) 2.2.b) 2.2.c) 2.2.d)

n = m = 10 0.0675 0.0604 0.0566 0.0586

n = m = 30 0.0505 0.0494 0.0529 0.0540

n = m = 50 0.0520 0.0512 0.0486 0.0489

n = m = 100 0.0484 0.0482 0.0497 0.0511

n = m = 200 0.0504 0.0494 0.0511 0.0490

n = 10, m = 30 0.0477 0.0571 0.0583 0.0586

n = 30, m = 50 0.0469 0.0509 0.0491 0.0489

n = 80, m = 100 0.0520 0.0489 0.0471 0.0484

n = 100, m = 150 0.0511 0.0487 0.0497 0.0496

n = 200, m = 300 0.0494 0.0497 0.0499 0.0505

(n,m) \ Model 2.2.e) 2.2.f) 2.2.g) 2.2.h)

n = m = 10 0.0608 0.0634 0.0604 0.0576

n = m = 30 0.0532 0.0518 0.0548 0.0494

n = m = 50 0.0516 0.0507 0.0472 0.0481

n = m = 100 0.0504 0.0488 0.0524 0.0489

n = m = 200 0.0493 0.0492 0.0487 0.505

n = 10, m = 30 0.0616 0.0632 0.0604 0.0568

n = 30, m = 50 0.05 0.0480 0.0484 0.0476

n = 80, m = 100 0.0496 0.0488 0.0525 0.0485

n = 100, m = 150 0.0485 0.0508 0.05 0.0492

n = 200, m = 300 0.0490 0.0504 0.0514 0.0497

the components have independent distributions and it is close to 0.07 when those
distributions are dependent, which implies that the general behavior of the test is
quite good.

In case d = 1/2 we get from Table 6 similar conclusions that in the one-
sample case: the approximation of the empirical size of the test to the level 0.05
is relatively good in all the cases and it shows in general a conservative behavior.
It should be also noticed that empirical size is around 0.06 for all the models
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when the corresponding sample sizes are small which implies again that the two-
sample test behaves in a good way. Finally, there are no appreciable differences
in the dependence or independence of the components as well as on the similarity
or difference of the distributions of the two RIs. Again, the slight differences
appreciated when comparing all the situations may be due to the nature of the
distributions considered.

7. Real-life application

In this section, a real-life application is provided to show the applicability of the
procedure presented in the manuscript. Thus, a questionnaire of some statements
regarding students’ mathematics related beliefs has been proposed to four groups
of students attending the second course of the Degree in Primary Education of the
University of Cantabria (Spain). Two of the questions of the questionnaire were
the following ones:

M1. “I think it’s interesting what I learn in math class.”

M2. “I like to do math stuff.”

Each one of the four groups, namely, G1, G2, G3 and G4, receives class from
a different professor. The number of students of each group is 28, 31, 31 and 24,
respectively, and the total sample size is 114. They are asked to reflect on the
statements M1 and M2 by using intervals representing the set of values that the
student considers compatible with his/her opinion at some extent (that is, the
student considers that his/her opinion cannot be outside of this set).

Let us consider the following random intervals:

• X ≡ answer of a student to the statement M1.

• Y ≡ answer of a student to the statement M2.

• Xk ≡ answer of a student of the Group k to the statement M1, k ∈
{1, 2, 3, 4}.

• Yk ≡ answer of a student of the Group k to the statement M2, k ∈ {1, 2, 3, 4}.

As a first study we are interested in analyzing if the mean of the responses to
question M1 has in common at least the 50% or at least the 75% of the information
with the intervals A = [5, 10] and B = [6, 8], respectively. In addition, we will also
analyze if the mean of the responses to question M2 has in common at least the
50% or at least the 80% of the information with the intervals C = [5, 6.5] and
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D = [0, 5], respectively. The corresponding sample means are X = [4.7807, 6.8553]
and Y = [3.8553, 5.8333] i.e. we will consider the tests described in Table 7.

The bootstrap procedure developed in Section 3 has been applied with B =
100000 replications. The obtained p-values as well as the decision for each test are
also shown in Table 7.

Table 7: Results corresponding to eight one-sample tests for the degree of overlap regarding
questions M1 and M2

Test H0 H1 p-value

Test 1.1 O(E(X), A) ≥ 0.5 O(E(X), A) < 0.5 1

Test 1.2 O(E(X), B) ≥ 0.5 O(E(X), B) < 0.5 0.2282

Test 1.3 O(E(X), A) ≥ 0.75 O(E(X), A) < 0.75 0.9329

Test 1.4 O(E(X), B) ≥ 0.75 O(E(X), B) < 0.75 7 · 10−4

Test 1.5 O(E(Y ), C) ≥ 0.5 O(E(Y ), A) < 0.5 0.8321

Test 1.6 O(E(Y ), D) ≥ 0.5 O(E(Y ), B) < 0.5 0.7404

Test 1.7 O(E(Y ), C) ≥ 0.8 O(E(Y ), A) < 0.8 0.0841

Test 1.8 O(E(Y ), D) ≥ 0.8 O(E(Y ), B) < 0.8 0.0554

Thus, taking into account the results in Table 7, only the null hypothesis in
Test 1.4 is rejected at the usual significance levels, which implies that we can assure
that the mean responses of the students to the question ”I think it’s interesting
what I learn in math class” has in common with the interval [6, 8] less than the
75% of the information. Besides, the null hypothesis of Tests 1.7 and 1.8 are also
rejected at the level α = 0.1 which implies that we can assure that the degree of
overlap between the mean responses for question “I like to do math stuff” and
the intervals [5, 6.5] and [0.5] is lower than 0.8 at the significance level α = 0.1.
Finally, the other null hypothesis are not rejected at the usual significance levels
so neither H0 nor H1 can be assured in those cases.

Secondly, we are interested in compare the answers given to question M1 by
the students of different groups in order to check if their interest in Mathematics
depends on the professor they have or not. Thus, we are going to check if the
expected values of the responses given by the students from each pair of groups
have in common at least the 90% of the information. To do that, the tests gathered
in Table 8 are considered.

The sample means for question M1 in each one of the groups are X1 =
[5.6071, 7.9464], X2 = [4.3871, 6.3871], X3 = [4.0645, 6.0323] and X4 = [5.25, 7.25],
respectively. In this case, the bootstrap procedure proposed in Section 4 has been
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Table 8: Results corresponding to 6 two-sample tests for the degree of overlap in the case
of question M1

Test H0 H1 p-value

Test 2.1 O(E(X1), E(X2)) ≥ 0.9 O(E(X1), E(X2)) < 0.9 0.0619

Test 2.2 O(E(X1), E(X3)) ≥ 0.9 O(E(X1), E(X3)) < 0.9 0.0094

Test 2.3 O(E(X1), E(X4)) ≥ 0.9 O(E(X1), E(X4)) < 0.9 0.8447

Test 2.4 O(E(X2), E(X3)) ≥ 0.9 O(E(X2), E(X3)) < 0.9 0.597

Test 2.5 O(E(X2), E(X4)) ≥ 0.9 O(E(X2), E(X4)) < 0.9 0.3859

Test 2.6 O(E(X3), E(X4)) ≥ 0.9 O(E(X3), E(X4)) < 0.9 0.1353

applied, again with B = 100000 replications, and the p-values are included in the
last column of Table 8.

From the results in Table 8 we can derive that groups 1 and 3 are the ones dif-
fering the most since the corresponding p-value is lower than the usual significance
levels. This means that the responses regarding the interest in what the students
of group 1 learn in a math class has in mean less than a 90% of the information
in common with respect to the responses of students of group 2 to the same state-
ment. Besides, at a significance level α = 0.1 we can also assume that groups 1 and
2 has in common less than the 90% of the information in mean. Paying attention
to the values of the sample means we can conclude that the students of group 1
presents more interesest in Mathematics than the ones of groups 2 or 3.

Finally, we are going to mimick the last study above with respect to question
M2, to check if the Mathematics liking of the students can be considered to be
similar in each pair of groups (again using and overlap degree of 0.9). The sample
means of the responses to M2 in each one of the groups are Y1 = [3.7321, 6.1071],
Y2 = [3.7097, 5.5000], Y3 = [4, 5.7258] and Y4 = [4, 6.0833]. Table 9 gathers the
corresponding tests as well as the p-values obtained in each one on the situations.

In this case the Mathematics liking can be consider to be very similar in each
one of the four groups since all the two-sample tests proposed are not rejected at
the usual significance levels; what is more, all the p-values obtained are very high.

Therefore, by considering the studies developed in this section, it can be in-
ferred the professor has not a lot of influence in students Mathematics liking
whereas it seems they may influence their interest in Mathematics.
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Table 9: Results corresponding to 6 two-sample tests for the degree of overlap in the case
of question M2

Test H0 H1 p-value

Test 3.1 O(E(Y1), E(Y2)) ≥ 0.9 O(E(Y1), E(Y2)) < 0.9 0.9703

Test 3.2 O(E(Y1), E(Y3)) ≥ 0.9 O(E(Y1), E(Y3)) < 0.9 0.9997

Test 3.3 O(E(Y1), E(Y4)) ≥ 0.9 O(E(Y1), E(Y4)) < 0.9 0.9038

Test 3.4 O(E(Y2), E(Y3)) ≥ 0.9 O(E(Y2), E(Y3)) < 0.9 0.6640

Test 3.5 O(E(Y2), E(Y4)) ≥ 0.9 O(E(Y2), E(Y4)) < 0.9 0.9205

Test 3.6 O(E(Y3), E(Y4)) ≥ 0.9 O(E(Y3), E(Y4)) < 0.9 0.9772

8. Concluding remarks and open problems

Some hypothesis tests for analyzing the degree of overlap between the expected
value of an RI an a fixed interval and between the expectations of two RIs have
been proposed. For this purpose an index for measuring the degree of overlap be-
tween two intervals was introduced based on the Szymkiewicz-Simpson coefficient.
Asymptotic and bootstrap approaches have been developed to approximate the
distribution of the corresponding test statistics. Besides, some simulation studies
were carried out and they have shown a good empirical behavior of the tests for
moderate and even for small sample sizes in some situations.

To improve the results obtained the introduction of the sample variability in the
test statistics may be studied as well as the estimation of the covariance operator
involved in their limit distributions. The problem of defining a confidence interval
for the degree of overlap can be also explored. In addition, the extension of the
proposed approaches to the case of having sets in Rp or to the functional framework
could be addressed.
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Appendix: proofs

Proof of Lemma 1

The statistic TX(1) can be equivalently expressed as:

TX(1) =
√
nmax

{
min

{
midXn −midE(X) + midE(X)−midA

+sprXn − sprE(X) + sprE(X)− sprA,
midXn −midE(X) + midE(X)−midA

−sprXn + sprE(X)− sprE(X) + sprA
}
,

min
{
−midXn + midE(X)−midE(X) + midA

+sprXn − sprE(X) + sprE(X)− sprA,
−midXn + midE(X)−midE(X) + midA

−sprXn + sprE(X)− sprE(X) + sprA
}}

.

The terms of the first minimum can be expressed as
√
n
(

midXn−midE(X) + sprXn− sprE(X)
)

+
√
nO1(1), (44)

√
n
(

midXn −midE(X)− sprXn − sprE(X)
)

+
√
nO2(1), (45)

whereas the terms of the second minimum are equal to
√
n
(
−midXn+midE(X)+sprXn−sprE(X)

)
+
√
nO3(1), (46)

√
n
(
−midXn + midE(X)− sprXn − sprE(X)

)
+
√
nO4(1). (47)

As O1(1) = O2(1) = O3(1) = O4(1) = 0, it is possible to apply the continu-
ous mapping and the central limit theorems for real variables to assure that the
asymptotic convergence of TX(1) in this situation is equal to the one in (11).

2

Proof of Lemma 3

The statistic TX(d) can be equivalently written as:

TX(d) =
√
nmax

{
min

{
midXn −midE(X) + midE(X)−midA

+(2d− 1)(sprXn − sprE(X)) + (2d− 1)sprE(X)− sprA,
midXn −midE(X) + midE(X)−midA

−sprXn + sprE(X)− sprE(X) + (2d− 1)sprA
}
,

min
{
−midXn + midE(X)−midE(X) + midA

+(2d− 1)(sprXn − sprE(X)) + (2d− 1)sprE(X)− sprA,
−midXn + midE(X)−midE(X) + midA

−sprXn + sprE(X)− sprE(X) + (2d− 1)sprA
}}

.
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a) The first term of the second minimum is equal to

√
n
(
−midXn + midE(X) + (2d− 1)(sprXn − sprE(X))

)
−
√
nO1(d) + 2

√
n((2d− 1)sprE(X)− sprA).

(48)

As midE(X) = midA+ 2(1− d)sprA and sprE(X) = sprA, then

2
√
n((2d− 1)sprE(X)− sprA) = 4

√
n(d− 1)sprE(X) < 0

and diverges in probability to −∞ as n→∞. Therefore, by the central limit
and the Slutsky’s theorems, the term (48) diverges in probability to −∞ as
n→∞. For the same reason, the second term of the second minimum can
be written as

√
n
(
−midXn + midE(X)− (sprXn − sprE(X))

)
−
√
nO2(d)− 2

√
n(sprE(X)− (2d− 1)sprA).

(49)

Again, the last part can be expressed as

−2
√
n(sprE(X)− (2d− 1)sprA) = −4

√
n(1− d)sprE(X) < 0

and diverges in probability to −∞ as n→∞. Thus, by the central limit and
the Slutsky’s theorems, also (49) diverges in probability to −∞ as n→∞.

Finally, the terms of the first minimum can be written as

√
n
(

midXn−midE(X) + (2d−1)(sprXn− sprE(X))
)

+
√
nO1(d), (50)

√
n
(

midXn −midE(X)− (sprXn − sprE(X))
)

+
√
nO2(d), (51)

therefore, by the continuous mapping and the central limit theorems for real
variables, the asymptotic convergence of TX(d) as n→∞ is the one in (14).

b) The proof of this part is analogous to the one of the part a). Following similar
reasonings, as midE(X) = midA+2(d−1)sprA and sprE(X) = sprA, then
the first and the second terms of the first minimum (multiplied by

√
n) in

TX diverge in probability to −∞ as n→∞. Additionally, the terms of the
second minimum can be expressed as it was pointed out in (46) and (47).

Again, by considering the continuous mapping and the central limit theorems
for real variables, the asymptotic convergence of TX(d) as n→∞ is in this
case the one in (15).
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c) In this case it is easy to show that both terms of the second minimum (mul-
tiplied by

√
n) diverge in probability to −∞ whereas the second component

of the first minimum (multiplied by
√
n) diverges to ∞, as n → ∞. In ad-

dition, the first component of the first minimum is equal to the one in (44),
and converges in law to z1 + (2d− 1)z2 by the CLT.

d) This case is analogous to the one in c) taking into account that the remaining
term is the one in (45), which converges in law to z1 − z2 by the CLT.

e) In this it is easy to show that both components of the first minimum (mul-
tiplied by

√
n) diverge in probability to −∞ whereas the second term of

the second minimum (multiplied by
√
n) diverges to ∞, as n → ∞. More-

over, the first term of the second minimum is equal to the one in (46), and
converges in law to −z1 + (2d− 1)z2 by the CLT.

f) This case is analogous to the one in e) taking into account that the remaining
component is the one in (47), which converges in law to −z1−z2 by the CLT.

g) Finally, in this case three terms of the expression diverge to −∞ as n→∞,
so the whole expression of TX(d) does.

2

Proof of Theorem 2

i) Consider the asymptotic testing procedure in case a) of Lemma 5. The
corresponding cases b), d) and e) can be solved analogusly. The test statistic
in this case can be written as

T(X,Y ′ )(1) =
√
nmax

{
min

{
midXn −midE(X)−midY ′

m + midE(Y ′)

+sprXn − sprE(X)− sprY ′
m + sprE(Y ′)

+midE(X)−midE(Y ′) + sprE(X)− sprE(Y ′),

midXn −midE(X)−midY ′
m + midE(Y ′)

−sprXn + sprE(X) + sprY ′
m − sprE(Y ′)

+midE(X)−midE(Y ′)− sprE(X) + sprE(Y ′)
}
,

min
{
−midXn + midE(X)−midY ′

m + midE(Y ′)

+sprXn − sprE(X)− sprY ′
m + sprE(Y ′)

−midE(X) + midE(Y ′) + sprE(X)− sprE(Y ′),

−midXn + midE(X)−midY ′
m + midE(Y ′)

−sprXn + sprE(X) + sprY ′
m − sprE(Y ′)

−midE(X) + midE(Y ′)− sprE(X) + sprE(Y ′)
}}

.
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The first term of the first minimum is equal to

√
n
(

midXn −midE(X)−midY ′
m + midE(Y ′)

+sprXn − sprE(X)− sprY ′
m + sprE(Y )

)
+
√
n
(

Θ1(1)
)
− δ,

where Θ1(1) is the one defined in (30). As in the case a) of Lemma 5 it is
fulfilled that Θ1(1), by the CLT and the Slutsky’s theorem the term above
diverges in probability to −∞. In the same way, the second term of the first
minimum also diverges in probability to −∞.

On the other hand, the first term of the second minimum is equal to

√
n
(
−midXn + midE(X) + midY ′

m −midE(Y ′)

+sprXn − sprE(X)− sprY ′
m + sprE(Y ′)

)
+
√
n
(

Θ3(d)
)

+ δ,

where Θ3(1) is the one defined in (30). As Θ3(1) = 0, again by the CLT
and the Slutsky’s theorem it can be concluded that the term above diverges
in probability to +∞. Finally, as the minimum and the maximum are con-
tinuous functions, the statistic T(X,Y ′ )(1) diverges in probability to ∞ and,
therefore,

lim
n→∞

P (T(X,Y ′ ) > t1−α ) = 1.

ii) Consider the asymptotic testing procedure in case b) of Lemma 5. The
corresponding cases c), f) and g) can be solved analogusly. The test statistic
T(X,Y ′′ )(d) in this case can be written as follows:

√
nmax

{
min

{
midXn −midE(X)−midY ′

m + midE(Y ′)

+(2d− 1)(sprXn − sprE(X))− sprY ′
m + sprE(Y ′)

+midE(X)−midE(Y ′) + (2d− 1)sprE(X)− sprE(Y ′),

midXn −midE(X)−midY ′
m + midE(Y ′)

−(2d− 1)(sprXn − sprE(X)) + sprY ′
m − sprE(Y ′)

+midE(X)−midE(Y ′)− (2d− 1)sprE(X) + sprE(Y ′)
}
,

min
{
−midXn + midE(X)−midY ′

m + midE(Y ′)

+(2d− 1)(sprXn − sprE(X))− sprY ′
m + sprE(Y ′)

−midE(X) + midE(Y ′) + (2d− 1)sprE(X)− sprE(Y ′),

−midXn + midE(X)−midY ′
m + midE(Y ′)

−(2d− 1)(sprXn − sprE(X)) + sprY ′
m − sprE(Y ′)

−midE(X) + midE(Y ′)− (2d− 1)sprE(X) + sprE(Y ′)
}}

.
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Using a similar reasoning that in part i), as in case b) of Lemma 5 it is
fulfilled that Θ1(d) = Θ2(d) = 0, and then the two components of the first
minimum diverge in probability to ∞. In addition, the first term of the
second minimum can be written as

√
n
(
−midXn + midE(X) + midY ′

m −midE(Y ′)

+sprXn − sprE(X)− sprY ′
m + sprE(Y ′)

)
+
√
n
(

Θ3(d)
)

+ δ.

As Θ2(d) = 0, it is satisfied that Θ3(d) = 2(d−1)(sprE(X)+sprE(Y )) < 0,
and the term above diverges in probability to −∞. In the same way, the
nullity of Θ1(d) implies that Θ4(d) is also lower than 0 and it can be proven
that the second term of the second minimum also diverges in probability
to −∞. Therefore, due to the continuity of the minimum and maximum
functions, T (X,Y

′′
)(d) diverges in probability to ∞, and

lim
n→∞

P (T(X,Y ′′ ) > t1−α ) = 1.

2
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