
UNIVERSIDAD DE OVIEDO

1.- Elementos base
Los elementos base de la identidad de la Universidad de Oviedo son: el signo compuesto por el escudo, el 

logotipo, la denominación social UNIVERSIDAD DE OVIEDO y los colores institucionales amarillo, 

magenta, azul y negro. La construcción del signo se ha hecho generando volúmenes en tres dimensiones 

manteniendo la estructura original del escudo. Respetando y conservando sus contenidos ideológicos. “El 

escudo de la Universidad de Oviedo es el tradicional, constituido por el escudo heráldico de Los Valdés, a 

saber: en campo de plata, tres barras azules con diez cruces de San Jorge de Inglaterra, bajo sombreo, 

cruz y cordones arzobispales”. 2.- Logotipo. Versión en positivo y negativo.
Adecuado para su uso en aquellas ocasiones en las que no sea posible su reproducción en los colores 

corporativos, como es el caso de prensa diaria y determinadas publicaciones que requieren la impresión 

en negro. El signo en positivo se utilizarça en negro sobre fondos de color blanco, que garanticen el 

contraste, con el fin de evitar la pérdida de identificación.

Se muestra la versión del logotipo en negativo sobre una superficie de fondo negro, que corresponde a la 

configuración de la forma envolvente del logotipo, cuando este deba presentarse enmarcado por un fondo 

para reforzar su relevancia visual.

El negativo del logotipo se utilizará sobre fondos de color oscuro que garanticen el contraste para evitar la 

pérdida de visualidad e identificación.
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Abstract

This thesis deals with supervised classification of fuzzy data
obtained from a random experiment. The data generation pro-
cess is modeled using three approaches. First, a naive direct
multivariate method which treats the data as is. Second, a com-
positional data transformation that views data as points in a
Simplex space. Finally, we also employ an algorithm that relies
on random fuzzy sets.

The first two approaches have been tested on a classical set-
ting of supervised classifiers. The fuzzy approach has been
tested on a custom family of classifiers for fuzzy data. Two of
the fuzzy algorithms are novel contributions.

The empirical test consists on two experiments. One con-
cerning fuzzy perceptions and linguistic labels, and the other
concerning fuzzy perceptions and the gender of the individual
that generated the perceptions.





Introduction

Problem setting

This thesis presents a study in supervised classification, and
builds upon the theories and models developed at the Statistical
Methods with Imprecise Random Elements 1 research group, 1 smire, http://bellman.

ciencias.uniovi.es/SMIRElocated at the University of Oviedo. More concretely, this work
continues a recent effort by the thesis advisor’s and close collaborators2.

2 A. Colubi, G. González-
Rodríguez, M. Ángeles Gil,
and W. Trutschnig.
Nonparametric criteria for
supervised classification of
fuzzy data. International
Journal of Approximate
Reasoning, 2011

The dissertation is centered around a visual perception experiment,
whose outcomes are modeled using fuzzy theory.

Goals

To broaden a previous supervised classification problem against
a set of classical classifiers. To analyze a new supervised classification
problem with the same batch of classifiers. Perform the same
analysis with a fully fuzzy space theory framework. And to
improve some of the fuzzy classifiers methods provided in the
literature.

Outline

Fuzzy Data Treated as Functional Data We provide a brief description
of the theory for working with fuzzy data in a fully coherent
way. With that a coherent arithmetic, inner product and distance
could be used in a fully fuzzy setting and that provides the basic
tools for doing inference in a fuzzy setting.

http://bellman.ciencias.uniovi.es/SMIRE
http://bellman.ciencias.uniovi.es/SMIRE
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Classification of Fuzzy Convex Data A description of Colubi et al.2

previous supervised classification algorithms is provided. We
also present a contribution in the form of two new algorithms for
the fuzzy setting.

A Visual Perception Experiment Next we describe the experiment
upon this project builds its analysis.

Fuzzy Data Treated as Compositional Data We provide another
way to analyze the data besides the direct multivariate—as
is— manner and the fuzzy framework. Due to the nature of
the data, which is constrained, a mapping between the data
an a compositional datum could be established. This provides
another set of tools for analyzing the data. A brief overview of
the mathematical framework for dealing with compositional data
is presented.

Classification Analysis We complement the original classification
problem testing against a batch of classifiers and the previous
algorithms developed explicitly for this kind of fuzzy data
plus new ones developed for this work. We try to solve a new
classification problems: try to infer the gender of the respondent.
The analysis is done under three settings, (direct) Multivariate —
data as is—, Simplex space —the data is mapped into a composition—
, Fuzzy space —the data is treated in a coherent fuzzy setting—. A
set of classical classifiers are used against the two first representations,
and a family of fuzzy classifiers for the fuzzy setting.



1
Fuzzy Data Treated as Functional Data

1.1 Introduction and motivation

The exposition presented
here follows the one
provided in González-
Rodríguez et al. 2010, with
additional diagrams and
material from Ángeles Gil
2010.Data which cannot be exactly described by means of numerical

values, such as evaluations, medical diagnosis or quality ratings,
to name but a few, are frequently classified as either nominal or
ordinal. A well-known example is the so-called Lickert1 scales 1 R. Likert. A technique

for the measurement of
attitudes. Archives of
psychology, 1932; and I.E.
Allen and C.A. Seaman.
Likert scales and data
analyses. Quality Progress, 40
(7):64–65, 2007

in which categories are labeled with numerical values. Using
these scales, the statistical analysis is limited. Many parameters
and techniques cannot be directly used or, when they can, the
interpretation and reliability of the conclusions are considerably
reduced. Additionally, the transition from one category to
another is rather abrupt. A third concern is that categories are
not perceived in the same manner by different observers, so that
variability and accuracy cannot always be well captured.

A easy-to-use representation of such data through fuzzy
values is to be considered. The measurement scale of fuzzy
values includes, in particular, real vectors and set values as
special elements. It is more expressive than ordinal scales and
more accurate than rounding or using real or vectorial-valued
codes. The arithmetic and metric to be used make it possible
to extend naturally many of the usual statistical measures and
techniques. The transition between closely different values can
be made gradually, and the variability, accuracy and possible
subjectiveness can be well reflected in describing data.
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1.2 Fuzzy data viewed as functional data

1.2.1 Fuzzy compact convex sets

Let Kc(Rp) be the class of the non-empty compact convex
subsets of Rp and let Fc(Rp) denote the class of normal and
convex upper semicontinuous fuzzy sets of Rp with bounded
closure of the support, that is
Fc(Rp) = {Ũ : Rp → [0, 1] | Ũα ∈ Kc(Rp) ∀α ∈ (0, 1]}
with
Ũα = {x ∈ Rp|Ũ(x) ≥ α, ∀α ∈ (0, 1]}
Ũ0 = cl({x ∈ Rp|Ũ(x) > 0})
These class of fuzzy sets are also called fuzzy values, when

p = 1 the fuzzy values are referred to as fuzzy numbers.

Figure 1.1: Fuzzy value in Fc(R) Figure 1.2: Fuzzy value in Fc(R2)

Formally, fuzzy values are [0, 1]-valued upper semicontinuous
functions with non-empty convex bounded α-levels. Real,
vectorial, interval and set-valued data can be viewed as particular
fuzzy data, by identifying them with the associated indicator
functions.
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1.2.2 Arithmetic operations

The space Fc(Rp) can be endowed with an inner composition
law extending the Minkowski 2 addition between sets and 2 A + B = {a + b : a ∈ A, b ∈ B}

λA = {λa : a ∈ A} λ ∈ Ran external one which is the product by a scalar. These laws
are compatible with the ones obtained by applying Zadeh’s
extension principle3. 3 L.A. Zadeh. The concept of

a linguistic variable and its
application to approximate
reasoning–I. Information
sciences, 8(3):199–249, 1975

Given Ũα, Ṽα ∈ Fc(Rp), and γ ∈ R,

(Ũ + Ṽ)α = Ũα + Ṽα =
{

y + z : y ∈ Ũα, z ∈ Ṽα

}

=
[

inf Ũα + inf Ṽα, sup Ũα + sup Ṽα

]

Figure 1.3: Fuzzy sum in
Fc(R)

(γŨ)α = γŨα =
{

γy : y ∈ Ũα

}
=

{ [
γ · inf Ũα, γ · sup Ũα

]
if γ ≥ 0[

γ · sup Ũα, γ · inf Ũα

]
if γ < 0

Figure 1.4: Fuzzy
multiplication by an scalar in
Fc(R)This arithmetic does not coincide with the usual one for

functions. The application of the functional arithmetic in Fc(Rp)

may lead to elements out of this space, and the fuzzy meaning
would be lost. Thus, from a formal point of view fuzzy data
are a special kind of functional data. Nevertheless, although the
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considered arithmetic is quite natural and intuitive to interpret
in the setting of fuzzy sets it does not coincide with the usual
one for functional data. the space (Fc(Rp),+, ·) has not a linear
(but a semilinear-conical) structure, because the sum extends
level-wise the Minkowski sum of sets.

Figure 1.5: Semilinear
structure of (Fc(R),+, ·)
Ũ + (−1 · Ũ) 6= 1{0}

A fuzzy value Ũ ∈ Fc(Rp) models an ill-defined subset of
Rp, so that for each x ∈ Rp the value Ũ(x) can be interpreted
as ‘degree of membership’ of x to Ũ. Alternatively, Ũ may
be interpreted as the ‘degree of compatibility’ of x with an
ill-defined property Ũ. In practice, fuzzy data usually come
from either a pre-established classification, such as the danger of
forest fires4, or from a designed experiment. This is the case of

4 A. Colubi and G. González-
Rodríguez. Triangular
fuzzification of random
variables and power of
distribution tests: Empirical
discussion. Computational
statistics & data analysis, 51
(9):4742–4750, 2007

the expert evaluation of the trees in a reforestation analyzed
by Colubi5, where the ill-defined characteristic ‘quality’ is 5 A. Colubi. Statistical

inference about the means
of fuzzy random variables:
Applications to the analysis
of fuzzy-and real-valued
data. Fuzzy Sets and Systems,
160(3):344–356, 2009

individually described through a fuzzy set. Obviously, accuracy
and variability of data are much better captured by using individual
fuzzy assessments than by considering a pre-fixed list of fuzzy
values.

1.2.3 The support function: a functional representation of fuzzy values

Consider the space H = L2(Sp−1 × (0, 1], λp × λ) of the L2-type
real-valued functions defined on the unit sphere Sp−1 of Rp

times the interval (0, 1] with respect to the corresponding normalized
Lebesgue measures denoted by λp and λ. The mid/spr decomposition
of a function f ∈ H can be defined 6 as

6 G. González-Rodríguez,
A. Colubi, and M.Á. Gil.
Fuzzy data treated as
functional data: a one-
way anova test approach.
Computational Statistics &
Data Analysis, 2010

f = mid f + spr f where, for all u ∈ Sp−1 and α ∈ (0, 1],

mid f (u, α) =
f (u, α)− f (−u, α)

2
, spr f (u, α) =

f (u, α) + f (−u, α)

2
,

where if u = (u1, . . . , up) ∈ Sp−1, −u denotes the element
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(−u1, . . . ,−up) ∈ Sp−1. It can be proven that mid f , spr f ∈ H,
mid f is an odd function and spr f is an even one, w.r.t. the first
component.

On this basis, a valuable inner product in H can be defined.
More precisely, let θ ∈ (0,+∞) 7 and let ϕ be a weighting 7 cf. 2.2 for an alternative

definitionmeasure formalized as an absolutely continuous probability
measure on ([0, 1],B[0,1]) with positive mass function in (0, 1).
For f , g ∈ H consider the value

〈
f , g
〉ϕ

θ
=
[
mid f , mid g

]ϕ
+ θ
[
spr f , spr g

]ϕ,

where

[
f , g
]ϕ

=
∫

(0,1]

∫

Sp−1
f (u, α)g(u, α)dλp(u)dϕ(α).

Then, the following properties are satisfied:
i)
〈

f , g
〉ϕ

θ
is an inner product in H, for which the associated

norm is denoted by ‖ · ‖ϕ
θ .

ii) The mid/spr decomposition of a function f ∈ H is orthogonal.

iii) (H,
〈
·, ·
〉ϕ

θ
) is a separable Hilbert space.

The support function8 of Ũ ∈ Fc(Rp) extends level-wise the

8 M.L. Puri and D.A.
Ralescu. The concept of
normality for fuzzy random
variables. The Annals of
Probability, 13(4):1373–1379,
1985

notion of the support function of a set9 and it is given by the

9 C. Castaing, M. Valadier,
and SpringerLink (Service
en ligne). Convex analysis
and measurable multifunctions,
volume 580. Springer-Verlag
Berlin, 1977

mapping sŨ : Sp−1 × (0, 1]→ R defined so that

sŨ(u, α) = sup
v∈Ũα

〈u, v〉

for all u ∈ Sp−1, α ∈ (0, 1], where 〈·, ·〉 denotes the inner product
on Rp. In general, one can state that sŨ(u, α) represents the
“oriented” distance from 0 ∈ Rp to the supporting hyperplane of
Ũα which is orthogonal to u.
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Figure 1.6: Support
functions in Fc(Rp)

The mapping s : F 2
c (R

p) → H, such that s(Ũ) = sŨ for all
Ũ ∈ F 2

c (R
p) = {Ũ ∈ Fc(Rp) : sŨ ∈ H}, is semilinear, that is, it

transform the fuzzy arithmetic to the functional arithmetic in the
corresponding cone.

Let Ũ ∈ F 2
c (R

p), then, from Trutschnig et al10. we have that 10 W. Trutschnig,
G. González-Rodríguez,
A. Colubi, and M.Á. Gil. A
new family of metrics for
compact, convex (fuzzy)
sets based on a generalized
concept of mid and spread.
Information Sciences, 179(23):
3964–3972, 2009

i) for all α ∈ (0, 1] the projection of Ũα over a direction u ∈ Sp−1

is given by the interval

Πu Ũα =
[
−sŨ(−u, α), sŨ(u, α)

]
;

ii) mid sŨ(u, α) =
sŨ(u, α)− sŨ(−u, α)

2
= mid-point/center of

Πu Ũα;

iii) spr sŨ(u, α) =
sŨ(u, α) + sŨ(−u, α)

2
= spread/radius of

Πu Ũα;

iv) if mid Ũ(•, ?) = mid-point of Π• Ũ?, spr Ũ(•, ?) = spread of
Π• Ũ?, then

sŨ = mid Ũ + spr Ũ.
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Consequently, the mid and the spr of a fuzzy value can be
interpreted as a kind of functional measurements of its ‘location’
and ‘shape’, respectively.

1.2.4 Distance between fuzzy values and isometrical embedding

The above-established connection induces a family of L2 metrics
on F 2

c (R
p) from that associated with the norms ‖ · ‖ϕ

θ on H.
Specifically, Trutschnig et al11. have introduced the following 11 W. Trutschnig,

G. González-Rodríguez,
A. Colubi, and M.Á. Gil. A
new family of metrics for
compact, convex (fuzzy)
sets based on a generalized
concept of mid and spread.
Information Sciences, 179(23):
3964–3972, 2009

family of metrics.
Let θ ∈ (0,+∞) and let ϕ be an absolutely continuous

probability measure on ([0, 1],B[0,1]) with positive mass function
in (0, 1). Then, the mapping Dϕ

θ : F 2
c (R

p)×F 2
c (R

p) → [0,+∞)

such that for any Ũ, Ṽ ∈ F 2
c (R

p)

(
Dϕ

θ (Ũ, Ṽ)
)2

= 〈sŨ − sṼ , sŨ − sṼ〉
ϕ
θ =

(
‖sŨ − sṼ‖

ϕ
θ

)2

satisfies that

i)
(
F 2

c (R
p), Dϕ

θ

)
is a separable L2-type metric space.

ii) The support function s : F 2
c (R

p) → H states an isometrical
embedding of F 2

c (R
p) onto a closed convex cone of H.

As a result, data in the fuzzy setting with the fuzzy arithmetic
and the metric Dϕ

θ can be systematically translated into data in
the setting of functional values with the functional arithmetic
and the metric based on the norm ‖ · ‖ϕ

θ . In this way, although
fuzzy data should not be treated directly as functional data, they
can be treated as functional data by considering the identification
with their support functions. Many developments in functional
data analysis could be applied to fuzzy data by using the appropriate
identifications and correspondences, whenever it can be guaranteed
that the elements which should belong to s

(
F 2

c (R
p)
)

are well-
defined within it.

The Dϕ
θ metric on F 2

c (R
p) can be equivalently expressed as

follows

Dϕ
θ (Ũ, Ṽ) =

√(
‖mid Ũ −mid Ṽ‖ϕ

1

)2
+ θ

(
‖spr Ũ − spr Ṽ‖ϕ

1

)2
.
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For each level, the choice of θ allows us to weight the effect
of the deviation between spreads (which can be intuitively
translated into the difference in ‘shape’ or ‘imprecision’), in
contrast to the effect of the deviation between mid’s (intuitively
translated into the difference in ‘location’). On the other hand,
ϕ has no stochastic but a weighting mission, the choice of ϕ

enables to weight the relevance of different levels.

1.2.5 Computing the distance in F 2
c (R)

Given two fuzzy numbers Ũ and Ṽ, the Dϕ
θ distance between

them is given by the value

Dϕ
θ (Ũ, Ṽ) =

√∫

[0,1]
([mid Ũα −mid Ṽα]2 + θ · [spr Ũα − spr Ṽα]2)dϕ(α)

Steps

S1.) A ’bijection’ between Ũ and Ṽ is first considered by associating
for any arbitrary α ∈ [0, 1] : Ũα ↔ Ṽα

S2.) The squared of the Euclidean distance between the mid-
points is computed

Figure 1.7: Computing the
distance in F 2

c (R) I/II

S3.) The squared of the Euclidean distance between the spreads
is computed

S4.) Two weighted averages, one for each of these squared
distances, are considered over different levels, and finally, a
weight is assigned to the second one and the sum is computed



fuzzy data treated as functional data 19

Figure 1.8: Computing the
distance in F 2

c (R) II/II

In the context of this work and the particular case of the
considered experiment a O(1) functional expression of the
{0, 1}-levels values is computed, see more details in 5.3.4.

1.3 Random fuzzy sets and relevant parameters

Random fuzzy sets (for short RFS) were introduced by Puri and
Ralescu12 , as a mathematical model associating a fuzzy value 12 M.L. Puri and D.A.

Ralescu. Fuzzy random
variables. Journal of
Mathematical Analysis and
Applications, 114(2):409–422,
1986

with each outcome of a random experiment and extending level-
wise the concept of random set. They often referred to in the
literature as fuzzy random variables in Puri and Ralescu’s sense).
Several measurability conditions are deduced to be equivalent.
Namely

Theorem 1.3.1 Given a probability space (Ω,A, P), consider the
mapping X : Ω → F 2

c (R
p). Then, the following statements are

equivalent:
i) X is a RFS, that is, for all α ∈ (0, 1] the α-level set-valued mapping
Xα : Ω → Kc(Rp) = {nonempty compact convex sets of Rp},
ω 7→ (X (ω))α , is a compact convex random set
(that is, A|�− measurable, where � is the Borel σ-field associated
with the Hausdorff metric on Kc(Rp)).

ii) X is a Borel measurable mapping w.r.t. A and the Borel σ-field
generated by the topology induced by the metric Dϕ

θ on F 2
c (R

p).

iii) sX : Ω → H is an H-valued random element, that is, a Borel
measurable mapping w.r.t. A and the Borel σ-field generated by the
topology induced by ‖ · ‖ϕ

θ on H.
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iv) For all α ∈ (0, 1] and u ∈ Sp−1, the function sX (u, α) : Ω→ R is
a real-valued random variable.

v) For all α ∈ (0, 1] and u ∈ Sp−1, the functions mid sX (u, α) :
Ω → R and spr sX (u, α) : Ω → [0,+∞) are real-valued random
variables.

On the basis of Theorem 1.3.1 it is concluded that notions like
the distribution induced by an RFS or the stochastic independence
of RFS’s are the usual ones for Borel measurable mappings in
metric spaces. The mean value of an RFS can be presented in
two equivalent ways, either as an extension of the set-valued
Aumann expectation or induced from the expectation of an H-
valued random element. Thus

Definition 1.3.1 Given a probability space (Ω,A, P) and an associated
RFS X such that sX ∈ L1(Ω,A, P), the (Aumann type) mean value
or expected value of X is the fuzzy value Ẽ(X ) ∈ Fc(Rp) such that
for all α ∈ (0, 1]

(
Ẽ(X )

)
α
= Aumann integral of Xα

=

{ ∫

Rp
X(ω) dP(ω) for all X : Ω→ Rp, X ∈ L1(Ω,A, P), X ∈ Xα a.s. [P]

}

or, equivalently, such that

sẼ(X ) = E(sX ).

In case p = 1, if X is an RFS such that max
{
| infX0|, | supX0|

}
∈

L1(Ω,A, P), we have that for each α ∈ [0, 1]
(

Ẽ(X )
)

α
= [E(infXα), E(supXα)] .

This definition for the mean value is coherent with the considered
arithmetic and satisfies the usual properties of linearity. Moreover,
it is the Fréchet’s expectation w.r.t. Dϕ

θ .
The variance of an RFS will be based on the Fréchet’s approach.

The (θ, ϕ)-Fréchet variance is conceived as a measure of the error
in approximating or estimating the values of the RFS through
the corresponding mean value. The real-valued quantification
of the dispersion will enable to compare random elements,
populations, samples, estimators, etc. by simply ranking real
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numbers. Due to the properties of the support function and the
Hilbertian random elements, the considered variance satisfies the
usual properties for this concept.

Definition 1.3.2 Given a probability space (Ω,A, P) and an associated
RFS X such that sX ∈ L2(Ω,A, P), the (θ, ϕ)-Fréchet variance of X
is the real number

σ2
X = E

([
Dϕ

θ

(
X , Ẽ(X )]

)]2
)

or, equivalently,

σ2
X = E

([∥∥∥sX − sẼ(X )

∥∥∥
ϕ

θ

]2
)
= E

([
‖sX − E (sX )‖ϕ

θ

]2
)
= Var(sX )

= E
([
‖midX − E (midX )‖ϕ]2)+ θ E

([
‖sprX − E (sprX )‖ϕ]2)

= Var(midX ) + θ Var(sprX ).





2
Classification of Fuzzy Convex Data

2.1 Previous research

Colubi et al1. tackled this issue on which this work presents 1 A. Colubi, G. González-
Rodríguez, M. Ángeles Gil,
and W. Trutschnig.
Nonparametric criteria for
supervised classification of
fuzzy data. International
Journal of Approximate
Reasoning, 2011

some contributions, the starting point is to assume that we have
a probability space (Ω,A, P), and for each individual we observe
a fuzzy datum. Each individual may belong to one of k different
categories g1, . . . , gk. As learning sample we have n independent
individuals, the corresponding fuzzy data and categories. The
goal is to find a rule allowing us to assign each new individual
one of the k categories.

Density-based Classification Criteria for Fuzzy Data (DCCF) : consist
in to nonparametrically estimate2 P(G = g|X = x̃), for 2 Thus assuming the

existence of the conditional
densities.

g = 1, . . . , k, x̃ ∈ Fc(Rp), and then to assign the new data
to the class of maximum estimated probability. That leads to
estimate the membership probabilities pg = P(G = g|X = x̃)
by means of kernel density estimators and that leads to the
necessity of choosing and adequate bandwidth.

Ball-based Classification Criteria for Fuzzy Data (BCCF) : instead
of focusing the classification technique on estimating the
conditional probabilities {P(G = g|X = x̃)}k

g=1 with x̃ ∈
Fc(Rp), they suggest a classification based on the quantities
{P(G = g|X ∈ B(x̃; δ))}k

g=1

The BCCF leads to a simpler and more versatile approach,
with similar if not better results than the DCCF methods, this
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work is going to extend the algorithms presented under the
BCCF paradigm and do a comparison with traditional supervised
classifiers.

2.1.1 Ball-based Classification Criteria for Fuzzy Data (BCCF)

The starting point is to try to do the classification based on the
quantities

{P(G = g|X ∈ B(x̃; δ))}k
g=1

for a value δ > 0 to be chosen. On the one hand, this simplification
could entail a loss of accuracy. On the other hand, it can be
applied in a more general setting than DCCF, because no assumption
about the existence of the conditional densities is made. Note
that if all the conditional densities exist, then BCCF may be
formally expressed as a special case of DCCF with a uniform
kernel on [0,1] and h = δ.

Assuming P(X ∈ B(x̃; δ)) > 0 Bayes Theorem implies

P(G = g|X ∈ B(x̃; δ)) =
P(Dϕ

θ (X , x̃) ≤ δ|G = g))P(G = g)
k

∑
l=1

P(Dϕ
θ (X , x̃) ≤ δ|G = l)P(G = l)

.

Consider δ > 0 and g ∈ {1, . . . , k}. A natural estimator for

P(Dϕ
θ (X , x̃) ≤ δ|G = g)

based on the sample information is

P̂(Dϕ
θ (X , x̃) ≤ δ|G = g) =

nδ,g

ng
,

where nδ,g is the number of observations in the sample belonging
to group g and for which the distance to x̃ is lower than or equal
to δ. Thus applying Bayes formula,

P(G = g|X ∈ B(x̃; δ)) can nonparametrically be estimated as
follows

P̂(G = g|X ∈ B(x̃; δ)) =

nδ,g

ng

ng

n

∑k
l=1

nδ,l

nl

nl
n

=
nδ,g

∑k
l=1 nδ,l

.
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To summarize, consider a training sample {(Xi, Gi)}i∈{1,...,n}
with Xi a fuzzy datum (in Fc(Rp)) and Gi the corresponding
membership group (in {1, . . . , k}). For each g ∈ {1, . . . , k} let ng

be the number of observations for which Gi = g and denote by
{Yj,g}

ng
j=1 the corresponding collection of such fuzzy data (that

is, the conditional samples). Given a fuzzy value x̃ ∈ F c(Rp),
the suggested Ball-based Classification Criteria for Fuzzy Data
(BCCF) can be summarized in the following algorithm

BCCF Algorithm

Step 1. Compute the distance between the datum x̃ to be
classified and the set of training fuzzy data, that is

dj,g = Dϕ
θ (x̃,Yj,g) for all j ∈ 1, . . . , ng and all g ∈ {1, . . . , k}.

Step 2. Fix a value for δ > 0 and for each g ∈ {1, . . . , k}
compute

nδ,g =
ng

∑
j=1

I[0,δ](dj,g).

Step 3. Estimate the membership probabilities
pg = P(G = g|X ∈ B(x̃; δ)) by means of

P̂(G = g|X ∈ B(x̃; δ)) =
nδ,g

∑k
l=1 nδ,l

.

Step 4. Assign x̃ to the group g(x̃) ∈ {1, . . . , k} of maximum
estimated probability.

One of the essential issues of this approach is to select a
suitable δ. The authors present two approaches for calculating δ

BCCF1: In this first case, δ was chosen to be the maximum of
the sample deviations3 in each group (trying to preserve the 3 With respect to the central

and dispersion measures of
definitions 1.3.1 and 1.3.2.

simplicity of this method). The reason for considering the
maximum instead, for instance, the minimum is to try to



26 intelligent data analysis on a visual perception experiment

ensure that the balls will be large enough for containing data
points of at least one group.

BCCF2: In contrast to the above-mentioned simple approach,
a more elaborate selection was considered. Namely δ was
chosen as the value maximizing an accuracy measure, concretely
the 10-random-3-fold (within each group) classification
accuracy.

2.2 Contributions

We present two contributions which are enhancements of the
BCCF algorithms4, one is instead of searching for the best δ 4 This pattern for optimizing

an algorithm is called Grid
Search.

search for the best θ , in order to simplify the search in the
parameter space θ ∈ (0,+∞) we make the inner product defined
in 1.2.3 convex, thus

〈
f , g
〉ϕ

τ
= (1− τ)

[
mid f , mid g

]ϕ
+ τ

[
spr f , spr g

]ϕ,

where τ ∈ (0, 1).
This alternative of inner product definition leads to another

metric Dϕ
τ , albeit consistent one

Dϕ
τ (Ũ, Ṽ) =

√
(1− τ)

(
‖mid Ũ −mid Ṽ‖ϕ

1

)2
+ τ

(
‖spr Ũ − spr Ṽ‖ϕ

1

)2

and the other is a combination of the BFFC2 algorithm and this
new algorithm, thus we have

BCCF3: Performs a search in the parameter space τ of the
distance (inner product) definition, and chooses the a value
maximizing and accuracy measure concretely the 10-random-
10-fold (within each group) classification accuracy.

BCCF4: It searches in the (0, 1)τ × [0, δmax]δ bidimensional space
and selects a (τi, δj) maximizing an accuracy measure, 10-
random-10-fold (within each group) classification accuracy.
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τ δ

BCCF1 fixed fixed
BCCF2 fixed search
BCCF3 search fixed
BCCF4 search search

Table 2.1: BCCF methods
characteristics

We implement5 all the algorithms including the previously 5 see 5.4.3 for a more
detailed explanationdefined BCCF1, BCCF2 using in all cases 10-random 10-fold

cross validation at each level of decision, i.e. , for a given (τi, δj),
its performance is evaluated averaging 10 executions at 10
random 10 fold cross validation for each execution.





3
A Visual Perceptions Experiment

The main concepts and methods are to be illustrated by means
of a case study which is now introduced along with some
guidelines to describe fuzzy data. The case-study regards an
experiment in which people have been asked for their perception
of the relative length of different line segments with respect to a
fixed longer segment that is used as a standard for comparison.
Figure 3.1 displays the screen of the application. On the center
top of the screen the pattern (longest line segment) is drawn in
pink. At each trial a black shorter line segment is generated and
placed below the pattern one, parallelly and without considering
a concrete location (i.e. indenting or centering).

Analizing Perceptions

Linguistic Descriptor Large Next Trial Trial Number: 1

Perception about the relative length

Min Max108 208 308 408 508 608 708 808 908

Figure 3.1: SMIRE
application to express the
perception on the relative
length of segments.



30 intelligent data analysis on a visual perception experiment

Table 3.1 contains some of the data a person making 551 trials
delivered1.

1 The complete dataset,
as well as the software
Perceptions providing it,
can be found at http://
bellman.ciencias.uniovi.

es/SMIRE/Perceptions.

html, web page of the
SMIRE research group.

Trial inf P0 inf P1 sup P1 sup P0 Ling. descrip.

1 78.27 80.94 84.41 87.40 large
2 54.93 58.00 62.20 65.67 large
3 47.25 49.43 50.89 53.31 medium
4 92.65 95.72 97.58 99.11 very large
5 12.92 15.51 17.77 20.03 very small
6 32.55 36.03 39.90 42.89 small
7 2.50 4.44 6.22 9.21 very small
8 24.80 28.19 30.45 33.28 small
9 55.17 58.40 61.79 65.75 large

10 2.26 3.63 5.57 8.08 very small

Table 3.1: Perceptions about
the relative length of the
light line segment.

After an explanation of the fuzzy values, participants are
asked by their judgment of relative length for each of several line
segments in two ways. First, to choose a label from a Lickert-
like list, {very small, small, medium, large, very large}.
Second, to describe the perception through a trapezoidal fuzzy
number with support included in [0, 100] (0% indicating the
minimum relative length and 100 maximum the one). The
support is to be chosen as the set of all values that the participant
subjectively considers to be compatible with the relative length
of the generated segment to a greater or lesser extent. The 1-
level has to be the set of all values that the participant considers
to be completely compatible with his/her perception about
the relative length of the generated segment. The trapezoidal
fuzzy set is formed by the linear interpolation of both intervals,
although it is possible to change the shape. In other words, out
of the support are the values that the participant is not willing
to accept as possible values for the relative length at all. The
membership degree is linearly increasing from the minimum of
the support to the first value for which the participant would say
that it is the relative length of the line (see Figure 3.1). However,
since the participant may have doubts, often there is not a

http://bellman.ciencias.uniovi.es/SMIRE/Perceptions.html
http://bellman.ciencias.uniovi.es/SMIRE/Perceptions.html
http://bellman.ciencias.uniovi.es/SMIRE/Perceptions.html
http://bellman.ciencias.uniovi.es/SMIRE/Perceptions.html


a visual perceptions experiment 31

unique value in these conditions, but an interval. This interval
with full membership degree is the 1-level set. Analogously,
from the last value in this set and the maximum of the support,
the membership degree is linearly decreasing.

The line shown at each trial has been chosen at random - in
order to obtain a good coverage of some interesting situations
the precise generation procedure was the following one

• 479 lengths were generated from a uniform distribution on
[0, 100].

• 9 lengths in the equally spaced discrete set
{100/27 + i/8 100 (1− 2/27)}i=0,...,8 were repeated 3 times. Thus,
we had 27 lengths that are representative of quite different
situations that may arise.

• All the random lengths were swapped and shown at random.

In previous research Colubi et al2. focused on the problem 2 A. Colubi, G. González-
Rodríguez, M. Ángeles Gil,
and W. Trutschnig.
Nonparametric criteria for
supervised classification of
fuzzy data. International
Journal of Approximate
Reasoning, 2011

of finding a rule allowing us to assign each new individual one
of the 5 Lickert categories. In Chapter 5 we are also review this
problem and present a new one over this dataset, the classification
problem of the Sex variable of the respondent which records the
gender {male, female} of the respondent.





4
Fuzzy Data Treated as Compositional Data

4.1 Introduction and motivation

The fuzzy data created by means of the visual perceptions
experiment, has besides the convexity property, the constrained
property i.e. the last value of the trapezoid must be below 100
and the first value must not be bellow 0.

Given Ũ ∈ Fc(R) with Ũ being trapezoidal constrained fuzzy
number

Ũ = {inf Ũ0, inf Ũ1, sup Ũ1, sup Ũ0} the following bijection
could be established

y ∈ S5 = {inf Ũ0 − 0, inf Ũ1 − inf Ũ0, sup Ũ1 − inf Ũ1, sup Ũ0 − sup Ũ1, 100− sup Ũ0}

The theory of compositional data is fragile when one of the
parts is exactly 0% requiring another treatment. We have 26
degenerate instances where inf 0 is 0. Whenever we apply one
of the log ratio transformations on one of those instances we
perform a 0.01 translation of the data. Since the data viewed cf. the chapter ’Rounded

zeros: some practical aspects
for compositional data’ in
Buccianti et al. for more
specific techniques when
dealing with this issue.

A. Buccianti, G. Mateu-
Figueras, and V. Pawlowsky-
Glahn. Compositional data
analysis in the geosciences.
Geological Society Special
Publication, 204, 2007

as a compositional data reflects (part) of it’s constrained nature
it could be of interest to test what kind of results we could get
under this framework. The idea is to transform the data to this
space, and in this space perform the inference analysis with the
tools available1.

1 the log-ratio
transformations



34 intelligent data analysis on a visual perception experiment

4.2 Compositional data fundamentals

Compositional or closed data are multivariate data with positive
values that sum up to a constant k , usually chosen as 1 or 100,
i.e. x = {(x1, x2, . . . , xD) : x1 > 0, . . . , xD > 0; ∑D

i=1 xi = k}
The set of all closed observations, denoted as SD, forms

a simplex sample space, a subset of RD. Standard statistical
methods can lead to questionable results if they are directly
applied to the original, closed data. For this reason, the family of
log-ratio one-to-one transformations from SD to the real space
was introduced2. We will briefly review the basic theory of 2 J. Aitchison. The statistical

analysis of compositional data
(2003 reprint). Blackburn
Press, 1986

compositional data that we are going to use in the context of
this work.

• For D = 3 the simplex usually is represented in a ternary
diagram, an equilateral triangle with k height.

Figure 4.1: Representation
of a compositional vector
x = (x1, x2, x3) in S3

• For D = 2 the simplex is represented as a segment.

• Para D = 4 the simplex is represented as a tetrahedron.

4.3 Arithmetic

4.3.1 Closure operator

C is a transformation mapping each vector w = (w1, w2, . . . , wD)

of RD
+ to its corresponding associated compositional data:

C (w) =

(
k · w1

∑D
i=1 wi

,
k · w2

∑D
i=1 wi

, . . . ,
k · wD

∑D
i=1 wi

)

4.3.2 Perturbation

The internal operation ⊕ perturbation, of one composition x by
another composition y refers to the operation,

x⊕ y = C (x1 · y1, x2 · y2, . . . , xD · yD) ∀x, y ∈ SD
(
SD,⊕

)
is a commutative group, the neutral element of this

operation is the barycenter eD =
(

1
D , 1

D , . . . , 1
D

)
= C (1, 1, . . . , 1)
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4.3.3 Powering

The external operation � powering, of one real number λ by
another composition x refers to the operation:

λ� x = C
(

xλ
1 , xλ

2 , . . . , xλ
D
)
∀λ ∈ R, x ∈ SD

4.3.4 Vector space structure

The tuple
(
SD,⊕,�

)
is a vector space of D− 1 dimensions. The

inverse element in this space is defined as: x−1 = −1 · x, then
x⊕ x−1 = x⊕ (−1� x) = eD

Usually 	 denotes the operation of adding the inverse (difference
perturbation): x⊕ y−1 = x⊕ (−1� y) = x	 y

4.4 Distance

4.4.1 Euclidean vector space structure

The inner product in
(
SD,⊕,�

)
is defined as,

〈x, y〉a = 1
2D ∑D

i=1 ∑D
j=1 ln xi

xj
ln yi

yj
x, y ∈ SD

(
SD,⊕,�, 〈., .〉a

)
is an Euclidean vector space

4.4.2 Aitchison’s norm

The inner product induces the following norm,

‖x‖2
a = 〈x, x〉a ⇒ ‖x‖a =

√
1

2D ∑D
i=1 ∑D

j=1

(
ln xi

xj

)2
x, y ∈ SD

4.4.3 Aitchison’s distance

Aichison’s norm induces the following metric,

d2
a (x, y) = ‖x	 y‖2

a ⇒ da (x, y)a =

√
1

2D ∑D
i=1 ∑D

j=1

(
ln xi

xj
− ln yi

yj

)2
x, y ∈ SD

The norm, ‖x‖a can also be seen as the distance from x to the
linear space origin, the barycenter: ‖x‖a = da (x, eD)



36 intelligent data analysis on a visual perception experiment

Real space: RD−1 Simplex space: SD

addition: x + y perturbation: x⊕ y
product: α · x powering: α� x
Euclidean distance: de (x, y) Aitchison’s distance : da (x, y)
Vector of means: Metric center:

x̄ = 1
n ·∑n

l=1 xl

x = 1
n ·
⊕n

l=1 xl

= C (g1, g2, . . . , gD)

gi = (∏n
l=1 xil)

1
n i = 1, . . . , D

Distance and translation: Distance and perturbation:
de (x + z, y + z) = de (x, y) da (x⊕ z, y⊕ z) = da (x, y)
Distance and scaling: Distance and powering:
de (α · x, α · y) = |α| de (x, y) da (α� x, α� y) = |α| da (x, y)

Table 4.1: Analogy between
the real space and the
simplex space

4.5 Simplex transformations

4.5.1 Additive log ratio transformation (alr )

This is a transformation from SD to RD−1, and the result for an
observation x ∈ SD are the transformed data y ∈ RD−1

y = (y1, y2, . . . , yD−1) = (ln x1
xD

, x2
xD

, . . . , xD−1
xD

)

The alr transformation is an isomorphism, but not an isometry
da(x, y) 6= de(alr (x), alr (y))

4.5.2 Centered log ratio transformation (clr )

Compositions x ∈ SD are transformed to data y ∈ RD, with
y = (y1, y2, . . . , yD) = (ln x1

D
√

∏D
i=1 xi

, ln x2
D
√

∏D
i=1 xi

, . . . , ln xD
D
√

∏D
i=1 xi

)

It has the desirable isometry property da(x, y) = de(clr (x), clr (y))
but it is easy to see that this transformation results in collinear
data because ∑D

i=1 yi = 0. On the other hand, the clr transformation
treats all components symmetrically by dividing by the geometric
mean. The interpretation of the resulting values might thus be
easier.
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4.5.3 Isometric log ratio transformation (ilr )

This transformation solves the problem of data collinearity
resulting from the clr transformation, while preserving all
its advantageous properties3. It is based on the choice of an 3 J.J. Egozcue, V. Pawlowsky-

Glahn, G. Mateu-Figueras,
and C. Barceló-Vidal.
Isometric logratio
transformations for
compositional data analysis.
Mathematical Geology, 35(3):
279–300, 2003

orthonormal basis on the hyperplane in RD that is formed by
the clr transformation, so that the compositions x ∈ SD result
in noncollinear data y ∈ RD−1. The explicit transformation
formulas for one such chosen basis are,

y = (y1, y2, . . . , yD−1) = ( 1√
2

ln x1
x2

, 1√
6

ln x1x2
x3x3

, . . . , 1√
D(D−1)

ln ∏D−1
i=1 xi

xD−1
D

)

Is an isometry between SD and RD−1, thus avoiding the drawbacks
of both the alr and the clr. It has the desirable property da(x, y) =
de(ilr (x), ilr (y)) but the resulting values are difficult to interpret.

4.6 Mapping between constrained trapezoidal convex numbers
and compositional data

Formally we have a datum Ũ = {inf Ũ0, inf Ũ1, sup Ũ1, sup Ũ0},

Fc(R) −→
(
S5,⊕,�, 〈., .〉a

)
−→ R4(+, ., 〈., .〉2)

Ũ 7→ comp 7→ ilr

comp(Ũ) = {inf Ũ0− 0, inf Ũ1− inf Ũ0, sup Ũ1− inf Ũ1, sup Ũ0− sup Ũ1, 100− sup Ũ0}

ilr (comp(Ũ)) =

{
1√
2

ln
inf Ũ0

inf Ũ1 − inf Ũ0
,

1√
6

ln
inf Ũ0(inf Ũ1 − inf Ũ0)

(sup Ũ1 − inf Ũ1)2
,

1√
12

ln
inf Ũ0(inf Ũ1 − inf Ũ0)(sup Ũ1 − inf Ũ1)

(sup Ũ0 − sup Ũ1)3
,

1√
24

ln
inf Ũ0(inf Ũ1 − inf Ũ0)(sup Ũ1 − inf Ũ1)(sup Ũ0 − sup Ũ1)

(100− sup Ũ0)4

}
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We have then, the following mathematical tool for analyzing
this data. Starting with the 4-part {0, 1}-levels data, map the data
to a 5-part composition. Then (re4)map that composition (back) 4 If we consider the starting

point R4 instead of Fc(R)to the real hyperspace using one of the log-ratio transformations,
and then the Euclidean distance in the real space is an Aitchison
distance back in the Simplex which in turn is a Fuzzy (Multivariate)
distance for the original perception (multivariate) data in the
Fuzzy (Multivariate) context .
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0 10 20 30 40 50 60 70 80 90 100

0
1

inf Ũ0 − 0
inf Ũ1 − inf Ũ0
sup Ũ1 − inf Ũ1
sup Ũ0 − sup Ũ1
100 − sup Ũ0

Ũ

Figure 4.2: Mapping of a
4 part convex constrained
fuzzy number to a 5 part
composition

inf Ũ0 − 0

inf Ũ1 − inf Ũ0

sup Ũ1 − inf Ũ1

sup Ũ0 − sup Ũ1

100 − sup Ũ0

Figure 4.3: 5 part
composition of trapezoid
convex constrained number
of Figure 4.2





5
Classification Analysis

We complement the original supervised classification problem
with a new batch of classifiers and present a new problem, the
gender of the respondent.

5.1 Dataset Description

The data and software for conducting the experiments are
avaible at http://bellman.ciencias.uniovi.es/SMIRE/Perceptions.html
The dataset has following rows:

- EmailId: Identification index for the different emails.

- Sex: Genre of the individual coded as 0=Male, 1=Female.

- nTrial: Number of trial (first 3 blocks of 9 observations, i.e.
nTrial from 1 to 27, correspond to random ordered relative
sizes in the fixed grid 3.7%, 15.2%, 26.8%, 38.4%, 50.0%, 61.5%,
73.1%, 84.7%, 96.3%, the remaining ones are just selected
uniformly at random between 0 and 100).

- pHWS: Number of pixels in the horizontal direction of the
Working Space.

- Ref: Relative size of the reference line with respect to the
available horizontal working space expressed in percentage
(fixed to 80%).

- Pref: Absolute number of pixels (in horizontal sense) occupied
by the reference line (i.e. integer part of Ref·HWS/100).

http://bellman.ciencias.uniovi.es/SMIRE/Perceptions.html
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- Size: Number of pixels (in the horizontal direction) occupied
by the line shown.

- Rel.Size: Effective relative size of the line shown with respect
to the reference line expressed in percentage (i.e. 100·Size/Pref).
Note that depending on the screen resolution this relative size
could be slightly different to the ones selected in the fixed grid
for the first 27 trials.

- Ling: Linguistic description selected after fixing the fuzzy
response (0=Very Small, 1=Small, 2=Medium, 3=Large, 4=Very
Large).

- inf 0: Infima of the 0-cut of the fuzzy set selected.

- inf 1: Infima of the 1-cut of the fuzzy set selected.

- sup 1: Suprema of the 1-cut of the fuzzy set selected.

- sup 0: Suprema of the 0-cut of the fuzzy set selected.

- Date: Date and time when the measurement was done.

In total we have 1387 instances, and 24 different users, the
number of replies and genre of each user are shown in Table 5.1.
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EmailId Replies Sex

1 13 Male
2 50 Male
3 32 Female
3 32 Female
4 30 Female
5 32 Male
6 30 Male
7 31 Female
8 10 Male
9 30 Male
10 31 Female
11 30 Male
12 30 Female
13 41 Female
14 31 Male
15 20 Male
16 31 Female
17 35 Male
18 32 Female
19 30 Male
20 30 Male
21 30 Female
22 551 Male
23 102 Female
24 105 Female

Table 5.1: Number of replies
and genre in Perceptions
dataset.

Also we have 26 degenerate
instances on which inf 0
is 0. That is an issue with
the compositional data
treatment we are going
to present, see Section 4.1
margin note

Males have 892 (64%) replies, and females 495 (36%), the most
frequent user is EmailId: 22.

The data {inf 0, inf 1, sup 1, sup 0} is highly correlated.
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inf 0 inf 1 sup 1 sup 0

inf 0 1 0.998 0.990 0.983
inf 1 0.998 1 0.995 0.990
sup 1 0.990 0.995 1 0.998
sup 0 0.983 0.990 0.998 1

Table 5.2: Correlation matrix
of the α-cuts.

5.2 Problems description

For this work we are going to concentrate on the subset
{inf 0, inf 1, sup 1, sup 0, Ling, Sex} and try to do inference of

1. Ling ∼ {inf 0, inf 1, sup 1, sup 0}, classify Ling given the fuzzy
perception, this is going to be referred as the Ling Classification
problem.

2. Sex ∼ {inf 0, inf 1, sup 1, sup 0} classify Sex, this is going to be
referred as the Sex Classification problem.

The Ling classification problem is going to be presented in
two versions, Ling[22] which represents the problem analyzed
for the user EmailId: 22, and the full dataset which is going to
be referred as Ling. The first problem was already analyzed by
Colubi et al.1 1 A. Colubi, G. González-

Rodríguez, M. Ángeles Gil,
and W. Trutschnig.
Nonparametric criteria for
supervised classification of
fuzzy data. International
Journal of Approximate
Reasoning, 2011

5.3 Methodology

The inference is going to be made under the optic of different
algorithms and different representations of the covariate data.

5.3.1 Data representation

- (Direct) Multivariate space: treats the data as a Rn point, with
the usual Euclidean arithmetic. Represents the raw data,
treated as real multivariate data, and direct combinations
of such data In this space we consider the following sets

α{0,1} = {inf 0, inf 1, sup 1, sup 0}
steiner calculated using the SAFD2 package, which as

2 Wolfgang Trutschnig and
Asun Lubiano. SAFD:
Statistical Analysis of Fuzzy
Data, 2011. URL http:

//CRAN.R-project.org/

package=SAFD. R package
version 0.3

weighting measure uses the Lebesgue measure on [0,1].

http://CRAN.R-project.org/package=SAFD
http://CRAN.R-project.org/package=SAFD
http://CRAN.R-project.org/package=SAFD


classification analysis 45

mid α1 =
sup 1+inf 1

2

sprs = {inf 1− sup 0, sup 0− sup 1, sup 1−mid 1}3

3 Which are respectively the
left and right 0-level spreads,
and the 1-level spread

mid α1 ∪ sprs = {mid α1 , inf 1− sup 0, sup 0− sup 1, sup 1−mid 1}

- Simplex space: Represents the data viewed as a 5-part compositional
point and it’s log-ratio transformations In this space we
consider the following sets

comp = {{inf 0− 0, inf 1− inf 0, sup 1− inf 1, sup 0− sup1, 100− sup 0}
which is the 5 part composition mapping of the fuzzy
convex constrained trapezoid.

alr = alr (comp) see 4.5.1.

clr = clr (comp) see 4.5.2.

ilr = ilr (comp) see 4.5.3.

The data is treated with the usual Euclidean arithmetic, and
in the case of the clr (in R5), and ilr (in R4). This Euclidian
treatment is equivalent to a

(
S5,⊕,�, 〈., .〉a

)
compositional

treatment.

- Fuzzy space: considers the 4 point (pseudo) multivariate real
data as a 1 point in

(
F 2

c (R), Dλ
τ

)
.

5.3.2 Data representation example

Let Ũ be a perception given by
Ũ = {inf 0, inf 1, sup 1, sup 0} = {78.27, 80.94, 84.41, 87.4}, we

have

- Multivariate space

α{0,1}(Ũ) = {78.27, 80.94, 84.41, 87.4}
steiner(Ũ) = {82.755}
mid α1(Ũ) = {82.675}
sprs(Ũ) = {2.67, 2.99, 1.735}
mid α1 ∪ sprs (Ũ) = {82.675, 2.67, 2.99, 1.735}
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- Simplex space

comp(Ũ) = {78.27, 2.67, 3.47, 2.99, 12.6}
alr(comp) = {1.8265,−1.5516,−1.2895,−1.4384}
clr(comp) = {2.3171,−1.0610,−0.79892,−0.9478, 0.49062}
ilr(comp) = {2.3887, 1.1651, 0.95279,−0.54853}

- Fuzzy space

Ũ = {78.27, 80.94, 84.41, 87.4} as a point in Fc(R)

5.3.3 Supervised classification algorithms

The idea is to compare the BCCF fuzzy algorithms to classical
classifiers. For the Ling variable, as it

has an implicit ‘metric’ due
to it’s ordered nature, an
Ordinal wrapper could be
employed in conjunction
with the classifiers. In
exploratory analysis we
obtained no improvement
using this technique, so we
opted to not pursue further
with that path.

- For the Multivariate space and the Simplex space

Linear Discriminant Analysis (LDA)

Logistic Regression (LR)

Support Vector Machines (SVM)

Neural Network (NN)

k-Nearest Neighbor (k-NN)

1− Rules (1R)

C4.5

- For the Fuzzy space: BCCF1, BCCF2, BCCF3, BCCF4

5.3.4 BCCF classifiers implementation details

In order to speed up the computations4 of the distance between

4 An O(1) strategy given the
fixed number of examples
could be to precompute
all the possible distances
combinations, but that
does not work for BCCF3
and BCCF4 given it’s
parameterizable metric
definition.

to fuzzy numbers. We exploit the discrete convex nature of the
trapezoidal fuzzy numbers in question. Thus

mid Ãα = mid Ã0 − α (mid Ã0 −mid Ã1)

spr Ãα = spr Ã0 − α (spr Ã0 − spr Ã1)

mid Aα =
sup Aα + inf Aα

2
spr Aα = sup Aα −mid Aα

Treating each α-level as equally important and therefore use
the Lebesgue measure as weighting measure ϕ = λ, we have

[
Dλ

τ (Ã, B̃)
]2

=
∫

[0,1]
(1− τ)[mid Ãα−mid B̃α]

2 + τ · [spr Ãα− spr B̃α]
2 dα
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let

I1 =
∫

[0,1]
[mid Ãα −mid B̃α]

2 dα

I2 =
∫

[0,1]
·[spr Ãα − spr B̃α]

2 dα

we have then

I1 =
∫

[0,1]

[(
mid Ã0 − α · (mid Ã0 −mid Ã1)

)
−
(
mid B̃0 − α · (mid B̃0 −mid B̃1)

)]2

=
∫

[0,1]

[
(mid Ã0 −mid B̃0) + α

(
(mid B̃0 −mid B̃1)− (mid Ã0 −mid Ã1)

)]2 dα

=
∫

[0,1]
(mid Ã0 −mid B̃0)

2 dα

+
∫

[0,1]
α2((mid B̃0 −mid B̃1)− (mid Ã0 −mid Ã1)

)2 dα

+
∫

[0,1]
2α(mid Ã0 −mid B̃0)

(
(mid B̃0 −mid B̃1)− (mid Ã0 −mid Ã1)

)
dα

=

{
(mid Ã0 −mid B̃0)

2 +

(
(mid B̃0 −mid B̃1)− (mid Ã0 −mid Ã1)

)2

3

+ (mid Ã0 −mid B̃0)
(
(mid B̃0 −mid B̃1)− (mid Ã0 −mid Ã1)

)
}

proceeding in a similar manner for I2

I2 =

{
(spr Ã0 − spr B̃0)

2 +

(
(spr B̃0 − spr B̃1)− (spr Ã0 − spr Ã1)

)2

3

+(spr Ã0 − spr B̃0)
(
(spr B̃0 − spr B̃1)− (spr Ã0 − spr Ã1)

)
}

so the distance could be computed as

Dλ
τ (Ã, B̃) =

√
(1− τ) I1 + τ I2



48 intelligent data analysis on a visual perception experiment

5.4 Experimental setup

5.4.1 Software

The data was prepared with R5 (2.15.0 version)

5 R Development Core
Team. R: A Language and
Environment for Statistical
Computing. R Foundation
for Statistical Computing,
Vienna, Austria, 2012. URL
http://www.R-project.

org/. ISBN 3-900051-07-0

LDA was run in R.

The classifiers LR, SVM, NN, k-NN, 1R, C4.5 were run in
Weka6 (3.7 version) in Experimenter mode.

6 M. Hall, E. Frank,
G. Holmes, B. Pfahringer,
P. Reutemann, and I.H.
Witten. The weka data
mining software: an update.
ACM SIGKDD Explorations
Newsletter, 11(1):10–18, 2009

BCCF methods were implemented in C++.

All the output from the classifiers was postprocessed in R.
‘xtable’7 R package was used to generate the tables in LATEX code. 7 David B. Dahl. xtable:

Export tables to LaTeX or
HTML, 2012. URL http:

//CRAN.R-project.org/

package=xtable. R package
version 1.7-0

To generate boxplots in TikZ graphic format from R ‘tikzDevice’8

8 Charlie Sharpsteen and
Cameron Bracken. tikzDevice:
A Device for R Graphics
Output in PGF/TikZ Format,
2012. URL http://CRAN.

R-project.org/package=

tikzDevice. R package
version 0.6.2

was employed.

5.4.2 Inference Schema

Schematically we have the following
A set of problems: P =

{
Ling[22], Ling, Sex

}

A set of spaces: Ξ =
{

Multivariate, Simplex, Fuzzy
}

Each space has a set of algorithms:
Λ{Multivariate,Simplex} =

{
LDA, LR, SVM, NN, kNN, 1R, C4.5

}

ΛFuzzy =
{

BCCF1, BCCF2, BCCF3, BCCF4
}

Each space has different ways of presenting the data to the
inferred variable

ΞMultivariate =
{

α{0,1}, steiner, mid α1, sprs, {mid α1 ∪ sprs}
}

ΞSimplex =
{

comp, alr , clr , ilr
}

ΞFuzzy =
{

α{0,1}FD
c (R)

}

Pk

Λξ j∼ Ξξi

Given a problem k, is inferred in a space ξ using a representation
i with an algorithm j for the given space.

5.4.3 Classifier evaluation

In all the problems, we employed a stratified 10-fold cross-
validation, and run 100 global executions. For the Sex class
problem, due to the unbalanced nature of the dataset—64%

http://www.R-project.org/
http://www.R-project.org/
http://CRAN.R-project.org/package=xtable
http://CRAN.R-project.org/package=xtable
http://CRAN.R-project.org/package=xtable
http://CRAN.R-project.org/package=tikzDevice
http://CRAN.R-project.org/package=tikzDevice
http://CRAN.R-project.org/package=tikzDevice
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males, 36% females—we opted for producing 10 random balanced
datasets having all the female instances and a random sample of
size females for the males instances. Each of these 10 datasets
were evaluated globally 10 times.

Whenever a parameter was inferred for the algorithm, it was
done without using the test k-fold. Instead a new subproblem
was created with the training dataset, which was subdivided in
a 10 fold cross validation problem. Thus when evaluating a fold,
the test data is not used for adjusting the algorithm.
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5.5 Ling[22]

5.5.1 Linear Discriminant Analysis

– Multivariate space

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs

Minimum 89.45 90.19 90.11 36.63 89.32
Median 90.38 90.94 90.87 38.46 90.38
Mean 90.37 90.96 90.84 38.46 90.38
Maximun 91.45 91.88 91.51 40.95 91.16
Deviation 0.30 0.26 0.26 0.61 0.29

Table 5.3: Summary of
the percentage of correct
classification for Ling[22]
variable with LDA method
in Multivariate space.

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs

40
50

60
70

80
90

Figure 5.1: Boxplots of the
percentage of correct Ling[22]
classification with LDA
method in Multivariate
space.

The performance is excellent in all datasets but sprs9, which 9 This fact, which is present
in all the remaining
experiments, is not going
to be repeated for the
rest of results of each
individual pair algorithm,
representation.

contains no information about the relationship between
a perception and a linguistic description. The algorithm
is slightly more stable in 1-arity datasets. Notice a small
degradation of performance in the mid α1 ∪ sprs with respect
to mid α1 .
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– Simplex space

comp alr clr ilr

Minimum 89.44 71.58 71.49 71.49
Median 90.37 73.29 73.27 73.27
Mean 90.37 73.28 73.26 73.26
Maximun 91.32 74.87 75.63 75.63
Deviation 0.30 0.58 0.58 0.58

Table 5.4: Summary of
the percentage of correct
classification for Ling[22]
variable with LDA method
in Simplex space.

comp alr clr ilr

75
80

85
90

Figure 5.2: Boxplots of the
percentage of correct Ling[22]
classification with LDA
method in Simplex space.

The performance in the comp representation is the same than
in the α{0,1}. In the log-ratio transformations the performance
degrades considerably.
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5.5.2 Logistic Regression

– Multivariate space

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs

Minimum 88.93 90.19 90.37 37.58 88.93
Median 90.20 90.92 90.75 39.03 90.20
Mean 90.24 90.87 90.78 39.08 90.24
Maximun 91.29 91.30 91.30 40.49 91.29
Deviation 0.39 0.20 0.20 0.64 0.39

Table 5.5: Summary of
the percentage of correct
classification for Ling[22]
variable with LR method in
Multivariate space.

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs

40
50

60
70

80
90

Figure 5.3: Boxplots of
the percentage of correct
Ling[22] classification with
LR method in Multivariate
space.

Similar results as LDA, a little more unstable in α{0,1} but
a bit more stable with steiner and mid α1 datasets. Again
there is a degradation of performance in mid α1 ∪ sprs with
respect to mid α1 and the instability nearly doubles. This kind
of argument of degradation in a redundant representation
could also be said of the α{0,1} with respect to the 1-arity
datasets.
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– Simplex space

comp alr clr ilr

Minimum 88.93 89.11 89.11 89.11
Median 90.20 90.37 90.37 90.37
Mean 90.24 90.35 90.35 90.35
Maximun 91.29 91.30 91.30 91.30
Deviation 0.39 0.46 0.46 0.46

Table 5.6: Summary of
the percentage of correct
classification for Ling[22]
variable with LR method in
Simplex space.

comp alr clr ilr

89
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90
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90
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91
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Figure 5.4: Boxplots of
the percentage of correct
Ling[22] classification with LR
method in Simplex space.

Similar results as with the Multivariate space in mean value,
but the variability doubles for the log-ratio transformations.
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5.5.3 Support Vector Machines

– Multivariate space

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs

Minimum 87.83 88.93 88.76 37.75 87.30
Median 89.48 90.11 90.01 39.39 88.56
Mean 89.48 90.09 89.92 39.44 88.56
Maximun 90.75 91.11 91.47 40.84 90.20
Deviation 0.58 0.49 0.52 0.69 0.56

Table 5.7: Summary of
the percentage of correct
classification for Ling[22]
variable with SVM method
in Multivariate space.

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs

40
50

60
70

80
90

Figure 5.5: Boxplots of the
percentage of correct Ling[22]
classification with SVM
method in Multivariate
space.

Excellent results in all datasets with location information, a bit
more unstable and a slightly worse mean performance than
the simpler LDA, LR.
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– Simplex space

comp alr clr ilr

Minimum 88.56 88.56 88.76 88.76
Median 89.29 89.47 89.83 89.83
Mean 89.30 89.43 89.78 89.78
Maximun 90.19 90.03 90.74 90.74
Deviation 0.30 0.30 0.32 0.32

Table 5.8: Summary of
the percentage of correct
classification for Ling[22]
variable with SVM method
in Simplex space.

comp alr clr ilr88
.5

89
.0

89
.5

90
.0

90
.5

Figure 5.6: Boxplots of the
percentage of correct Ling[22]
classification with SVM
method in Simplex space.

Similar to the multivariate case in mean performance but with
much more stability. Notice the gain in stability in the comp
representation with respect to α{0,1}.
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5.5.4 Neural Network

– Multivariate space

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs

Minimum 86.74 77.84 78.04 35.23 86.20
Median 89.84 83.30 82.95 38.68 88.74
Mean 89.72 83.21 83.06 38.63 88.72
Maximun 91.28 87.83 87.67 41.38 90.92
Deviation 0.84 1.98 1.97 1.18 0.95

Table 5.9: Summary of
the percentage of correct
classification for Ling[22]
variable with NN method in
Multivariate space.

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs

40
50

60
70

80
90

Figure 5.7: Boxplots of
the percentage of correct
Ling[22] classification with
NN method in Multivariate
space.

The performance degrades in 1-arity datasets. We have
an inversion of the inversion10. The α{0,1} representation

10 cf. the commentary for the
Multivariate space in 5.5.1

produces better results and more stable than its 1-arity counterparts.
The stability is higher than in simpler algorithms with worse
performance.
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– Simplex space

comp alr clr ilr

Minimum 87.47 80.93 82.20 82.20
Median 89.11 86.38 86.57 86.57
Mean 89.18 86.09 86.54 86.54
Maximun 90.93 88.39 88.93 88.93
Deviation 0.82 1.37 1.31 1.31

Table 5.10: Summary of
the percentage of correct
classification for Ling[22]
variable with NN method in
Simplex space.

comp alr clr ilr

82
84

86
88

90

Figure 5.8: Boxplots of the
percentage of correct Ling[22]
classification with NN
method in Simplex space.

The log-ratio transformation offers no improvement with
respect to the Multivariate space. The comp representation
behaves in a similar way to the α{0,1} representation.
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5.5.5 k-Nearest Neighbor

– Multivariate space

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs

Minimum 87.11 88.56 87.46 33.57 83.31
Median 88.92 90.02 89.48 36.12 84.76
Mean 88.94 90.07 89.47 36.13 84.77
Maximun 90.92 91.11 90.39 39.03 86.40
Deviation 0.67 0.56 0.53 1.13 0.67

Table 5.11: Summary of
the percentage of correct
classification for Ling[22]
variable with k-NN method
in Multivariate space.

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs

40
50
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70

80
90

Figure 5.9: Boxplots of the
percentage of correct Ling[22]
classification with k-NN
method in Multivariate
space.

Excellent results for α{0,1}, steiner, and mid α1 . The degradation
in the redundant dataset mid α1 ∪ sprs with respect to mid α1 is
about 25% here. 11 11 Which clearly points out

that spreads for the Ling[22]
classification introduce
noise. Due to the nature of
the method, this noise is
squared.
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– Simplex space

comp alr clr ilr

Minimum 84.57 85.65 82.76 82.76
Median 86.57 87.47 84.21 84.21
Mean 86.59 87.37 84.17 84.17
Maximun 88.38 89.30 85.48 85.48
Deviation 0.69 0.65 0.61 0.61

Table 5.12: Summary of
the percentage of correct
classification for Ling[22]
variable with k-NN method
in Simplex space.

comp alr clr ilr

83
84

85
86

87
88

89

Figure 5.10: Boxplots of the
percentage of correct Ling[22]
classification with k-NN
method in Simplex space.

Slightly worse results than in the simpler Multivariate configurations.
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5.5.6 1− Rules

– Multivariate space

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs

Minimum 89.29 89.65 88.02 26.14 88.02
Median 90.57 90.92 89.12 30.40 89.12
Mean 90.57 90.85 89.09 30.42 89.09
Maximun 91.65 92.03 90.38 34.49 90.38
Deviation 0.56 0.57 0.54 1.51 0.54

Table 5.13: Summary of
the percentage of correct
classification for Ling[22]
variable with 1R method in
Multivariate space.

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs
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Figure 5.11: Boxplots of
the percentage of correct
Ling[22] classification with
1R method in Multivariate
space.

Excellent performance, better than the more complex NN and
on par with SVM. Notice the robustness of the method with
respect to noise information. There is no degradation in the
mid α1 ∪ sprs dataset due to the nature of the method.
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– Simplex space

comp alr clr ilr

Minimum 87.48 88.93 74.94 74.94
Median 89.74 90.75 78.40 78.40
Mean 89.69 90.77 78.32 78.32
Maximun 91.12 91.84 80.77 80.77
Deviation 0.73 0.51 1.06 1.06

Table 5.14: Summary of
the percentage of correct
classification for Ling[22]
variable with 1R method in
Simplex space.

comp alr clr ilr

75
80

85
90

Figure 5.12: Boxplots of
the percentage of correct
Ling[22] classification with 1R
method in Simplex space.

The comp representation behaves slightly worse than the
α{0,1}. The alr transformation performs on par with the non-
transformed representations. But the two other ones degrade
considerably. The complexity in the clr and ilr transformations
introduces noise components in all the resulting transformed
variables. And each of the resulting transformed variable carries
noise not present in one of the alr coordinates.12 12 The decisive covariate

in the alr transformation
for 1R is ln inf 0−0

100−sup 0 ,
and corresponds to the
transformation of the
covariate that carries the
location information of the
original data.
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5.5.7 C4.5

– Multivariate space

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs

Minimum 86.93 88.56 86.92 27.59 86.75
Median 88.39 89.84 88.01 31.57 88.01
Mean 88.37 89.90 88.02 31.62 87.99
Maximun 89.47 90.93 89.29 35.58 89.66
Deviation 0.59 0.54 0.53 1.48 0.64

Table 5.15: Summary of
the percentage of correct
classification for Ling[22]
variable with C4.5 method in
Multivariate space.

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs
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90

Figure 5.13: Boxplots of
the percentage of correct
Ling[22] classification with
C4.5 method in Multivariate
space.

Similar but very slightly worse performance than 1R, which
implies that the tree C4.5 is doing splits on noise components
or highly redundant13 data which is the case for the original 13 See the correlation matrix

on Table 5.2data α{0,1} and its linear combinations.
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– Simplex space

comp alr clr ilr

Minimum 86.38 88.21 85.48 85.48
Median 88.03 89.83 87.30 87.30
Mean 88.13 89.73 87.27 87.27
Maximun 89.30 90.93 89.49 89.49
Deviation 0.64 0.61 0.76 0.76

Table 5.16: Summary of
the percentage of correct
classification for Ling[22]
variable with C4.5 method in
Simplex space.

comp alr clr ilr

86
87

88
89

90
91

Figure 5.14: Boxplots of the
percentage of correct Ling[22]
classification with C4.5
method in Simplex space.

Similar results to the Multivariate approach, albeit slightly
worse.
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5.5.8 BCCF methods

Fuzzy space

BCCF1 BCCF2 BCCF3 BCCF4

Minimum 89.85 89.79 89.99 89.66
Median 90.73 90.58 90.72 90.59
Mean 90.70 90.59 90.69 90.57
Maximun 91.16 91.32 91.31 91.62
Deviation 0.24 0.33 0.22 0.35

Table 5.17: Summary of
the percentage of correct
classification for Ling[22]
variable with BCCF methods
in Fuzzy space.

BCCF1 BCCF2 BCCF3 BCCF4
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Figure 5.15: Boxplots of the
percentage of correct Ling[22]
classification with BCCF
methods in Fuzzy space.

All have excellent performance, although the ones that search
for δ have around 50% more variability.
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5.5.9 Conclusions

For Ling[22], the best methods are LDA and LR in the Multivariate
space, but only when they are presented with the 1-arity location
datasets. This contrasts with similar results in BCCF1 and BCCF3
without needing to cast data for individual classifiers. The
Simplex approach does not produce any noticeable improvement.
The key features for inferring the linguistic characteristic are
the location ones. Spreads (shape) do not introduce additional
knowledge in this problem.

Table 5.18 shows how the BCCF4 method beats14 all other

14 1R is produces the same
mean value but has 60%
more variability.

algorithms in the non-Fuzzy space approach when the data is
presented as-is.

BCCF4 LDA LR SVM NN k-NN 1R C4.5

Minimum 89.66 89.45 88.93 87.83 86.74 87.11 89.29 86.93
Median 90.59 90.38 90.20 89.48 89.84 88.92 90.57 88.39
Mean 90.57 90.37 90.24 89.48 89.72 88.94 90.57 88.37
Maximun 91.62 91.45 91.29 90.75 91.28 90.92 91.65 89.47
Deviation 0.35 0.30 0.39 0.58 0.84 0.67 0.56 0.59

Table 5.18: Summary
of the percentage of
correct classification for
Ling[22] variable without
transforming the data.

BCCF4 LDA LR SVM NN k-NN 1R C4.5

87
88

89
90

91

Figure 5.16: Boxplots of
the percentage of correct
Ling[22] classification without
transforming the data.
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5.6 Ling

For this problem the results are more or less the same as the
subset problem Ling[22], although in the low 80s% scale performance
wise. Much of the comments refer to the previous ones in the
Ling[22] classification problem.

5.6.1 Linear Discriminant Analysis

– Multivariate space

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs

Minimum 83.69 84.28 84.28 31.78 83.57
Median 84.36 84.66 84.77 32.74 84.35
Mean 84.35 84.67 84.75 32.73 84.34
Maximun 84.89 85.09 85.22 33.89 84.87
Deviation 0.19 0.12 0.11 0.36 0.19

Table 5.19: Summary of
the percentage of correct
classification for Ling
variable with LDA method
in Multivariate space.

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs
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Figure 5.17: Boxplots of
the percentage of correct
Ling[22] classification with
LDA method in Multivariate
space.

The performance is good in all datasets but sprs, which
leads to the same conclusion about location/dispersion as
in the subset problem Ling[22]. The algorithm behaves more
stable in the 1-arity datasets. Notice the slight performance
degradation in the mid α1 ∪ sprs with respect to mid α1 accompanied
by a relatively big increase in variability.
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– Simplex space

comp alr clr ilr

Minimum 83.72 62.15 62.13 62.13
Median 84.36 63.02 63.01 63.01
Mean 84.35 63.03 63.02 63.02
Maximun 84.86 63.85 63.81 63.81
Deviation 0.19 0.26 0.26 0.26

Table 5.20: Summary of
the percentage of correct
classification for Ling
variable with LDA method
in Simplex space.

comp alr clr ilr
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Figure 5.18: Boxplots of the
percentage of correct Ling
classification with LDA
method in Simplex space.

The comp representation performs as well as in the α{0,1}
dataset. The bad behavior of the log-ratio transformations is the
same as it was in the subset problem, cf. 5.5.1.



68 intelligent data analysis on a visual perception experiment

5.6.2 Logistic Regression

– Multivariate space

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs

Minimum 84.72 84.93 85.07 31.72 84.72
Median 85.29 85.58 85.65 32.66 85.29
Mean 85.28 85.58 85.62 32.69 85.28
Maximun 85.94 86.23 85.94 33.38 85.94
Deviation 0.24 0.20 0.17 0.35 0.24

Table 5.21: Summary of
the percentage of correct
classification for Ling
variable with LR method
in Multivariate space.

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs
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Figure 5.19: Boxplots of
the percentage of correct
Ling classification with LR
method in Multivariate
space.

Similar behaviors as LDA. The degradation in variability is
only half of what we had for the subset problem Ling[22].
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– Simplex space

comp alr clr ilr

Minimum 84.72 84.57 84.57 84.57
Median 85.29 85.22 85.22 85.22
Mean 85.28 85.21 85.21 85.21
Maximun 85.94 85.73 85.73 85.73
Deviation 0.24 0.23 0.23 0.23

Table 5.22: Summary of
the percentage of correct
classification for Ling
variable with LR method
in Simplex space.

comp alr clr ilr
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Figure 5.20: Boxplots of
the percentage of correct
Ling classification with LR
method in Simplex space.

Marginally worse performance than with the Multivariate
approach.
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5.6.3 Support Vector Machines

– Multivariate space

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs

Minimum 80.03 84.57 85.00 32.23 81.90
Median 81.18 85.22 85.51 33.45 82.70
Mean 81.10 85.19 85.52 33.53 82.67
Maximun 81.90 85.66 86.01 34.54 83.56
Deviation 0.39 0.27 0.22 0.52 0.36

Table 5.23: Summary of
the percentage of correct
classification for Ling
variable with SVM method
in Multivariate space.

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs

40
50

60
70

80

Figure 5.21: Boxplots of the
percentage of correct Ling
classification with SVM
method in Multivariate
space.

Same comments as the subset case cf. 5.5.3.
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– Simplex space

comp alr clr ilr

Minimum 84.50 83.63 83.56 83.56
Median 84.93 84.14 84.39 84.39
Mean 84.96 84.19 84.37 84.37
Maximun 85.36 84.86 85.00 85.00
Deviation 0.18 0.28 0.29 0.29

Table 5.24: Summary of
the percentage of correct
classification for Ling
variable with SVM method
in Simplex space.

comp alr clr ilr83
.5

84
.0

84
.5

85
.0

Figure 5.22: Boxplots of the
percentage of correct Ling
classification with SVM
method in Simplex space.

Same behavior as the one seen in the subset problem in 5.5.3.
An increase in stability in the comp representation with respect
to the α{0,1}.
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5.6.4 Neural Network

– Multivariate space

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs

Minimum 83.19 73.26 73.12 29.78 82.84
Median 84.75 78.15 77.83 31.29 84.35
Mean 84.69 78.01 77.91 31.34 84.30
Maximun 85.80 82.69 82.90 33.74 85.37
Deviation 0.57 1.86 1.87 0.74 0.47

Table 5.25: Summary of
the percentage of correct
classification for Ling
variable with NN method in
Multivariate space.

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs

30
40

50
60

70
80

Figure 5.23: Boxplots of
the percentage of correct
Ling classification with NN
method in Multivariate
space.

Same comment in the 85% performance scale as 5.5.4.
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– Simplex space

comp alr clr ilr

Minimum 82.70 79.38 79.67 79.67
Median 84.28 82.59 82.69 82.69
Mean 84.25 82.57 82.56 82.56
Maximun 85.73 85.15 84.93 84.93
Deviation 0.56 1.06 1.01 1.01

Table 5.26: Summary of
the percentage of correct
classification for Ling
variable with NN method in
Simplex space.

comp alr clr ilr

80
81

82
83

84
85

Figure 5.24: Boxplots of
the percentage of correct
Ling classification with NN
method in Simplex space.

Same relative behavior as in 5.5.4 Simplex space stanza.
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5.6.5 k-Nearest Neighbor

– Multivariate space

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs

Minimum 82.11 82.77 81.76 29.28 81.61
Median 83.56 83.63 82.80 31.22 82.70
Mean 83.53 83.63 82.80 31.24 82.70
Maximun 84.43 84.49 83.71 32.95 84.06
Deviation 0.41 0.37 0.42 0.69 0.41

Table 5.27: Summary of
the percentage of correct
classification for Ling
variable with k-NN method
in Multivariate space.

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs

30
40

50
60

70
80

Figure 5.25: Boxplots of the
percentage of correct Ling
classification with k-NN
method in Multivariate
space.

We have good results in the Multivariate space. In contrast
with the subset problem 5.5.5, there is no degradation in
the redundant dataset mid α1 ∪ sprs with respect to mid α1 .
This leads to the conclusion that the influence of the noise
component is less relevant for this problem when we have
more instances.
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– Simplex space

comp alr clr ilr

Minimum 81.62 81.32 80.89 80.89
Median 82.55 82.34 81.62 81.62
Mean 82.55 82.40 81.70 81.70
Maximun 83.56 83.78 82.84 82.84
Deviation 0.42 0.53 0.43 0.43

Table 5.28: Summary of
the percentage of correct
classification for Ling
variable with k-NN method
in Simplex space.

comp alr clr ilr
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Figure 5.26: Boxplots of the
percentage of correct Ling
classification with k-NN
method in Simplex space.

Same as 5.5.5 Simplex stanza, a bit worse than simpler data
configurations.
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5.6.6 1− Rules

– Multivariate space

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs

Minimum 82.91 83.20 83.05 27.04 83.05
Median 84.28 84.36 84.00 29.31 84.00
Mean 84.21 84.33 84.01 29.25 84.01
Maximun 85.44 85.44 84.92 31.87 84.92
Deviation 0.55 0.41 0.37 1.03 0.37

Table 5.29: Summary of
the percentage of correct
classification for Ling
variable with 1R method
in Multivariate space.

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs

30
40

50
60

70
80

Figure 5.27: Boxplots of
the percentage of correct
Ling classification with 1R
method in Multivariate
space.

Good results on par with more complicated methods, same
comment as 5.5.6.
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– Simplex space

comp alr clr ilr

Minimum 81.39 83.71 64.31 64.31
Median 82.73 84.86 66.47 66.47
Mean 82.72 84.84 66.40 66.40
Maximun 83.79 85.51 68.06 68.06
Deviation 0.48 0.34 0.79 0.79

Table 5.30: Summary of
the percentage of correct
classification for Ling
variable with 1R method
in Simplex space.

comp alr clr ilr

65
70

75
80

85

Figure 5.28: Boxplots of
the percentage of correct
Ling classification with 1R
method in Simplex space.

Same issues in the clr and ilr log-ratio transformations that
were encountered in the subset problem, see 5.5.6.
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5.6.7 C4.5

– Multivariate space

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs

Minimum 82.84 84.42 83.77 29.42 83.35
Median 83.70 85.15 84.72 31.22 84.57
Mean 83.71 85.16 84.71 31.21 84.54
Maximun 84.50 85.80 85.58 33.60 85.51
Deviation 0.37 0.34 0.38 0.96 0.46

Table 5.31: Summary of
the percentage of correct
classification for Ling
variable with C4.5 method in
Multivariate space.

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs

30
40

50
60

70
80

Figure 5.29: Boxplots of
the percentage of correct
Ling classification with C4.5
method in Multivariate
space.

Similar results as in the simpler 1R. Same problem as the one
described in 5.5.7, although in this case the C4.5 is much more
stable in α{0,1} representation than in the 1R classifier.
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– Simplex space

comp alr clr ilr

Minimum 80.97 84.43 79.23 79.23
Median 82.77 85.87 81.40 81.40
Mean 82.76 85.87 81.38 81.38
Maximun 83.77 86.45 82.55 82.55
Deviation 0.53 0.36 0.59 0.59

Table 5.32: Summary of
the percentage of correct
classification for Ling
variable with C4.5 method in
Simplex space.

comp alr clr ilr

80
82

84
86

Figure 5.30: Boxplots of
the percentage of correct
Ling classification with C4.5
method in Simplex space.

Same behavior as in 5.5.7 Simplex stanza.
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5.6.8 BCCF methods

BCCF1 BCCF2 BCCF3 BCCF4

Minimum 85.53 84.94 85.50 84.92
Median 85.88 85.59 85.88 85.62
Mean 85.88 85.60 85.89 85.60
Maximun 86.39 86.30 86.31 86.03
Deviation 0.17 0.25 0.18 0.21

Table 5.33: Summary of
the percentage of correct
classification for Ling
variable with BCCF methods
in Fuzzy space.

BCCF1 BCCF2 BCCF3 BCCF4

85
.0

85
.5

86
.0

Figure 5.31: Boxplots of the
percentage of correct Ling
classification with BCCF
methods in Fuzzy space.

Good results. The method achieves the best result for the
Ling problem. Again, the ones that not look for δ have the best
behavior, cf. 5.5.8.
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5.6.9 Conclusions

The issues described in 5.5.9 also apply here. The BCCF4 method
is the best when data is not transformed for the classifier.

BCCF4 LDA LR SVM NN k-NN 1R C4.5

Minimum 84.92 83.69 84.72 80.03 83.19 82.11 82.91 82.84
Median 85.62 84.36 85.29 81.18 84.75 83.56 84.28 83.70
Mean 85.60 84.35 85.28 81.10 84.69 83.53 84.21 83.71
Maximun 86.03 84.89 85.94 81.90 85.80 84.43 85.44 84.50
Deviation 0.21 0.19 0.24 0.39 0.57 0.41 0.55 0.37

Table 5.34: Summary
of the percentage of
correct classification for
Ling variable without
transforming the data.

BCCF4 LDA LR SVM NN k-NN 1R C4.5

80
81
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83

84
85

86

Figure 5.32: Boxplots of
the percentage of correct
Ling classification without
transforming the data.
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5.7 Sex classification problem

5.7.1 Linear Discriminant Analysis

– Multivariate space

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs

Minimum 67.88 45.34 45.27 66.48 67.88
Median 69.39 50.53 50.21 68.98 68.92
Mean 69.32 50.42 49.70 68.86 69.10
Maximun 70.32 52.55 51.63 71.23 71.32
Deviation 0.47 1.52 1.51 1.06 0.78

Table 5.35: Summary of
the percentage of correct
classification for Sex variable
with LDA method in
Multivariate space.

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs

45
50

55
60

65
70

Figure 5.33: Boxplots of
the percentage of correct
Sex classification with LDA
method in Multivariate
space.

Moderately good results in the datasets on which an amplitude
measure could be deduced. No inference possible in the
1-arity location scenario15. 15 In this problem the

situation reverses with
respect to the linguistic
problem. Location variables
individually offer no
information, and the 1-arity
central datasets steiner,
mid α1 will be useless for
trying to explain the Sex
variable.
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– Simplex space

comp alr clr ilr

Minimum 66.78 71.11 71.42 71.42
Median 68.90 72.83 72.69 72.69
Mean 68.87 72.80 72.71 72.71
Maximun 70.82 75.06 73.84 73.84
Deviation 0.89 1.00 0.56 0.56

Table 5.36: Summary of
the percentage of correct
classification for Sex variable
with LDA method in
Simplex space.

comp alr clr ilr

68
70

72
74

Figure 5.34: Boxplots of
the percentage of correct
Sex classification with LDA
method in Simplex space.

Improvement in the log-ratio transformations with respect to
the Multivariate approach, the clr , ilr offer much more stability
than the alr transformation.
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5.7.2 Logistic Regression

– Multivariate space

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs

Minimum 67.47 44.65 44.65 67.68 67.47
Median 69.80 50.81 50.71 69.80 69.80
Mean 69.53 50.22 50.02 69.59 69.53
Maximun 70.71 51.92 51.82 70.71 70.71
Deviation 0.72 1.44 1.53 0.75 0.72

Table 5.37: Summary of
the percentage of correct
classification for Sex
variable with LR method
in Multivariate space.

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs

45
50

55
60

65
70

Figure 5.35: Boxplots of
the percentage of correct
Sex classification with LR
method in Multivariate
space.

Similar mean values results as the LDA Multivariate case,
but less variability in the sprs datasets, situation that it’s the
opposite for the α{0,1} dataset.
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– Simplex space

comp alr clr ilr

Minimum 67.47 71.72 71.72 71.72
Median 69.80 73.64 73.64 73.64
Mean 69.53 73.69 73.69 73.69
Maximun 70.71 75.35 75.35 75.35
Deviation 0.72 0.91 0.91 0.91

Table 5.38: Summary of
the percentage of correct
classification for Sex variable
with LR method in Simplex
space.

comp alr clr ilr

68
70

72
74

Figure 5.36: Boxplots of
the percentage of correct
Sex classification with LR
method in Simplex space.

Improvement in the log-ratio transformation with more
instability with respect to the Multivariate case.
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5.7.3 Support Vector Machines

– Multivariate space

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs

Minimum 65.56 45.25 43.54 72.83 66.36
Median 67.88 48.74 49.44 75.56 68.03
Mean 67.86 48.96 49.50 75.64 68.11
Maximun 70.51 54.34 54.04 77.68 71.11
Deviation 1.08 2.09 2.28 0.99 1.03

Table 5.39: Summary of
the percentage of correct
classification for Sex variable
with SVM method in
Multivariate space.

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs
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Figure 5.37: Boxplots of
the percentage of correct
Sex classification with SVM
method in Multivariate
space.

Good results with the sprs. A noticeable degradation with
its superset. The method does not fullylearn the concept of
spread from the α{0,1} dataset.
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– Simplex space

comp alr clr ilr

Minimum 56.06 71.82 73.13 73.13
Median 58.08 74.24 74.95 74.95
Mean 58.05 74.12 74.96 74.96
Maximun 59.70 76.26 77.17 77.17
Deviation 0.79 1.04 0.98 0.98

Table 5.40: Summary of
the percentage of correct
classification for Sex variable
with SVM method in
Simplex space.

comp alr clr ilr

60
65

70
75

Figure 5.38: Boxplots of
the percentage of correct
Sex classification with SVM
method in Simplex space.

Good results for the log-ratio transformations, bad results for
the comp dataset.
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5.7.4 Neural Network

– Multivariate space

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs

Minimum 67.58 48.79 48.69 72.02 70.51
Median 70.81 50.00 50.10 74.04 73.23
Mean 70.96 50.02 50.07 74.07 73.22
Maximun 74.04 51.52 51.41 75.96 76.26
Deviation 1.22 0.55 0.52 0.86 1.02

Table 5.41: Summary of
the percentage of correct
classification for Sex
variable with NN method in
Multivariate space.

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs
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Figure 5.39: Boxplots of
the percentage of correct
Sex classification with NN
method in Multivariate
space.

As with the SVM, the sprs information behaves the best, the
superset degrades, and it’s not able to form internally the full
concept of spread from the α-cuts representation.
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– Simplex space

comp alr clr ilr

Minimum 71.11 71.82 70.40 70.40
Median 73.43 74.14 73.94 73.94
Mean 73.42 74.17 73.86 73.86
Maximun 75.96 76.97 76.16 76.16
Deviation 1.07 1.06 1.14 1.14

Table 5.42: Summary of
the percentage of correct
classification for Sex variable
with NN method in Simplex
space.

comp alr clr ilr
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74
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76

77

Figure 5.40: Boxplots of
the percentage of correct
Sex classification with NN
method in Simplex space.

Here we have the opposite behavior in the SVM with respect
to the divergence in the comp, α{0,1} representations. And an
improvement over the Multivariate representation, although the
effect is not as severe as with the SVM algorithm.
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5.7.5 k-Nearest Neighbor

– Multivariate space

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs

Minimum 62.02 44.24 45.66 70.40 70.61
Median 65.96 47.68 49.39 72.93 73.38
Mean 65.97 47.89 49.37 73.02 73.23
Maximun 69.80 51.92 53.74 75.66 75.35
Deviation 1.64 1.75 1.59 1.03 1.07

Table 5.43: Summary of
the percentage of correct
classification for Sex variable
with k-NN method in
Multivariate space.

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs
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Figure 5.41: Boxplots of the
percentage of correct Sex
classification with k-NN
method in Multivariate
space.

The sprs and it’s superset are the ones that produce the best
results for this representation and algorithm, the influence
of the spurious central data is not enough to degrade the
method.
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– Simplex space

comp alr clr ilr

Minimum 69.90 70.10 71.41 71.41
Median 72.98 72.83 74.09 74.09
Mean 72.75 72.87 74.13 74.13
Maximun 76.06 74.85 76.57 76.57
Deviation 1.25 0.99 1.07 1.07

Table 5.44: Summary of
the percentage of correct
classification for Sex variable
with k-NN method in
Simplex space.

comp alr clr ilr
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Figure 5.42: Boxplots of the
percentage of correct Sex
classification with k-NN
method in Simplex space.

Improvement in the comp dataset over the α{0,1} in mean
value and stability, good results for the log-ratio transformations.
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5.7.6 1− Rules

– Multivariate space

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs

Minimum 49.80 44.75 44.75 68.18 68.18
Median 52.93 48.94 50.10 70.71 70.71
Mean 52.93 49.10 49.88 70.64 70.64
Maximun 56.77 52.93 54.55 72.73 72.73
Deviation 1.56 1.97 1.91 1.03 1.03

Table 5.45: Summary of
the percentage of correct
classification for Sex
variable with 1R method
in Multivariate space.

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs
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Figure 5.43: Boxplots of
the percentage of correct
Sex classification with 1R
method in Multivariate
space.

Due to the nature of the method it cannot build the concept
of spread from α{0,1} so it fails for that representation. With
the sprs representation, it produces acceptable results, which
again due to it’s nature do not degrade in the noisy superset.
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– Simplex space

comp alr clr ilr

Minimum 68.28 56.57 66.16 66.16
Median 71.01 60.91 70.20 70.20
Mean 71.03 60.84 70.10 70.10
Maximun 73.13 64.44 73.13 73.13
Deviation 1.01 1.75 1.45 1.45

Table 5.46: Summary of
the percentage of correct
classification for Sex variable
with 1R method in Simplex
space.

comp alr clr ilr

60
65

70

Figure 5.44: Boxplots of
the percentage of correct
Sex classification with 1R
method in Simplex space.

In the comp representation, it succeeds in contrast with the
α{0,1} representation, due to the fact that the comp representation
barring the first variable inf 0, all coordinates contain relative
difference values—i.e. the difference with the previous datum16. 16 Which also happens

to inf 0, which in reality
is inf 0 − 0 in the comp
representation.

No improvement in the log-ratio transformations, with noticeable
degradation in the alr .
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5.7.7 C4.5

– Multivariate space

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs

Minimum 49.09 49.49 49.49 71.21 71.11
Median 50.10 49.49 49.49 73.84 73.64
Mean 50.52 49.49 49.49 73.83 73.70
Maximun 53.33 49.49 49.49 76.36 76.36
Deviation 1.20 0.00 0.00 0.99 1.06

Table 5.47: Summary of
the percentage of correct
classification for Sex
variable with C4.5 method in
Multivariate space.

α{0,1} steiner mid α1 sprs mid α1 ∪ sprs
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Figure 5.45: Boxplots of
the percentage of correct
Sex classification with C4.5
method in Multivariate
space.

Textbook example of the shortcomings of the C4.5, it does not
know how to perform addition, so it cannot build the concept
of spread for the α{0,1} representation. Good result with the
sprs dataset, with a slight degradation in its superset.
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– Simplex space

comp alr clr ilr

Minimum 70.61 66.77 70.61 70.61
Median 73.94 70.15 72.73 72.73
Mean 73.87 70.35 73.00 73.00
Maximun 76.16 73.64 76.77 76.77
Deviation 1.08 1.37 1.39 1.39

Table 5.48: Summary of
the percentage of correct
classification for Sex
variable with C4.5 method in
Simplex space.

comp alr clr ilr
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Figure 5.46: Boxplots of
the percentage of correct
Sex classification with C4.5
method in Simplex space.

In contraposition with the Multivariate case, the comp dataset—
which is formed with ’spreads’—provides the information that
the tree needs to build the classifier. A tad worse results and
variability in the log ratio transformations.
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5.7.8 BCCF methods

BCCF1 BCCF2 BCCF3 BCCF4

Minimum 45.55 53.41 61.12 67.69
Median 50.45 57.89 62.28 70.42
Mean 50.30 57.68 62.27 70.32
Maximun 53.41 60.54 63.64 72.32
Deviation 1.45 1.49 0.60 0.96

Table 5.49: Summary of
the percentage of correct
classification for Sex variable
with BCCF methods in
Fuzzy space.

BCCF1 BCCF2 BCCF3 BCCF4
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Figure 5.47: Boxplots of the
percentage of correct Sex
classification with BCCF
methods in Fuzzy space.

BCCF1 and to a lesser extent BCCF2 do not work, due to the
weight in the distance component of the difference between
mid levels. In BCCF3, it can be minimized the influence of cf. Section 2.2

the the mid component in the distance and there is a slight
improvement. With BCCF4, the performance is good in the lower
band, 1R beats it when using the sprs representation. Although
this argument could be reversed and said that the classical
algorithms only beat BCCF4 when the correct information
is presented. Because it beats all algorithms—but the neural
network—that use the raw data α{0,1} in this problem.
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5.7.9 Conclusions

Of all of the algorithms with the data as-is only the NN method
can compete in results.

BCCF4 LDA LR SVM NN k-NN 1R C4.5

Minimum 67.69 67.88 67.47 65.56 67.58 62.02 49.80 49.80
Median 70.42 69.39 69.80 67.88 70.81 65.96 52.93 52.93
Mean 70.32 69.32 69.53 67.86 70.96 65.97 52.93 52.93
Maximun 72.32 70.32 70.71 70.51 74.04 69.80 56.77 56.77
Deviation 0.96 0.47 0.72 1.08 1.22 1.64 1.56 1.56

Table 5.50: Summary of
the percentage of correct
classification for Sex variable
without transforming the
data.

BCCF4 LDA LR SVM NN k-NN 1R C4.5
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Figure 5.48: Boxplots of
the percentage of correct
Sex classification without
transforming the data.

Contrast C4.5 (same argument could be said for 1R) which is
useless for this problem and representation, when we spoon feed
the algorithm the sprs representation, cf. 5.7.7.

The key features for inferring (albeit with less success than
the linguistic problem) the genre characteristic are the linear
combinations of the features that create dispersion measures.
Location do not introduce additional knowledge in this problem.
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5.8 Combined classification results

In this seccion we combine the means—with the geometric
mean—results of the Ling and Sex problem to give an overall
picture of representation, algorithm pairs performance.

The log-ratio transformations shine here, producing the
overall best result with SVM followed by LR. The BCCF methods
hold up, considering the data as-is, the BCCF4 is the best under
this combination criteria closely followed by NN.

One thing to notice about the combined results is that they
are a bit misleading as no deviation measure is provided, the
methods based on information gaining around a feature, i.e. 1R,
C4.5, are useless when trying to learn based on the concept of
dispersion. This is somewhat hidden when combined with a
classification result around the opposite concept, location, for
which they prove very much adequate.

LDA LR SVM NN k-NN 1R C4.5

α{0,1} 76.47 77.00 74.18 77.52 74.23 66.76 65.03
steiner 65.34 65.56 64.58 62.47 63.29 64.35 64.92
mid α1 64.90 65.44 65.06 62.46 63.93 64.74 64.75
sprs 47.48 47.70 50.36 48.18 47.76 45.46 48.01
{mid α1 ∪ sprs} 76.34 77.00 75.04 78.57 77.82 77.04 78.93

comp 76.22 77.00 70.23 78.65 77.50 76.65 78.19
alr 67.74 79.24 79.00 78.25 77.49 71.84 77.72
clr 67.69 79.24 79.53 78.09 77.82 68.23 77.08
ilr 67.69 79.24 79.53 78.09 77.82 68.23 77.08

Table 5.51: Ling Sex
geometric mean
classification in Multivariate
and Simplex space.

BCCF1 BCCF2 BCCF3 BCCF4

65.73 70.27 73.13 77.58

Table 5.52: Ling Sex
geometric mean
classification in Fuzzy
space.
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Epilogue

6.1 Final remarks

The results yielded by the fuzzy approach when algorithms
are given some freedom turned out to be very good. The fuzzy
algorithm leads to a conceptually lazy model that is easy to
understand. The behavior of the compositional approach has
also led to interesting results. On the other hand, for some of the
classical algorithms and the direct multivariate approach are not
adequate for general settings, as they are unable to build features
such as variance.

6.2 Summary of contributions

Two supervised classification problems were evaluated against a
batch of classifiers in a naive multivariate way, and in a novel
simplex compositional data approach which is compatible
with the kind of data generated by means of fuzzy convex
constrained trapezoids. The classification problem was also
tested in a fuzzy theoretical framework against two conventional
classifiers and two novel ones, which are based upon the initial
definitions of ball based fuzzy ones. The last fuzzy classifier we
proposed presents an improvement over the previous ones, and
performs quite well. Besides, it’s robust problem wise against
more classical approaches.
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6.3 Conclusions and future work

This work is an initial study concerning the problem of supervised
classification of random fuzzy sets. We proposed to use two
additional approaches to better capture the generality one can
encounter in a classification problem in Fc(R)—i.e. adjusting by
location and/or dispersion. The fuzzy trapezoidal convex data
treated as compositional data performs quite well. After this
initial proposal it could interesting to see if this ad-hoc procedure
could be pursued any further under the fuzzy statistics umbrella.
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