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ABSTRACT 

Laminated glass is a sandwich material composed of two or more glass layers and one or 

more polymeric interlayers. The mechanical behaviour of glass is commonly considered 

linear-elastic whereas most laminated interlayers exhibit a viscoelastic behaviour.  The 

mechanical behaviour of laminated glass elements is governed by the material properties 

of the interlayer, which means that the critical buckling loads of laminated glass panels 

are time and temperature dependent. In this paper, a simplified method to calculate the 

buckling critical load of rectangular laminated glass plates is presented, which uses the 

analytical solutions of elastic monolithic plates, the quasi-elastic approximation and the 

effective thickness concept. The analytical solutions are validated by numerical 

simulations on simply supported laminated glass plates subject to different loading 

conditions.  
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NOMENCLATURE 

𝐷1 =
𝐸𝐻1

3

12(1 − 𝜈1
2)

 

𝐷3 =
𝐸𝐻3

3

12(1 − 𝜈3
2)

 

𝐷𝑇 = 𝐷1 + 𝐷3 

𝐷𝑇𝑂𝑇= = 𝐷𝑇(1 + 𝑌𝑃) 

𝐸𝑒𝑓𝑓  Effective Young modulus 

𝐸   Glass Young modulus of glass layers 

𝐸2(𝑡)  Viscoelastic relaxation tensile modulus for polymeric interlayer 

𝐺2(𝑡)  Viscoelastic relaxation shear modulus for the polymeric interlayer 

𝐻1  Thickness of glass layer 1 in laminated glass 

𝐻2  Thickness of polymeric layer in laminated glass 

𝐻3  Thickness of glass layer 3 in laminated glass 

𝐻𝑇𝑂𝑇 = 𝐻1 + 𝐻2 + 𝐻3  

𝐻13 = 𝐻2 + (
𝐻1 + 𝐻3
2

) 

𝐼  Second moment of area 

𝐼1 =
𝑏𝐻1

3

12
 

𝐼3 =
𝑏𝐻3

3

12
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𝐼𝑇 = 𝐼1 + 𝐼3 = 𝑏
𝐻1
3 + 𝐻3

3

12
 

𝐼𝑇𝑂𝑇= = 𝐼𝑇(1 + 𝑌) 

𝐾2(𝑡, 𝑇) Viscoelastic bulk modulus 

L  Length of a glass beam 

𝑃(𝑡, 𝑇)  Critical load 

T   Temperature 

𝑇0  Reference temperature 

𝑌 =
𝐻13
2 𝐻1

𝐼𝑇(𝐻1+𝐻3)
  

𝑌𝑃 =
𝐻13
2 𝐸 𝐻1
(1 − 𝜈2)

𝐸 𝐻3
(1 − 𝜈2)

(𝐷1 + 𝐷3) (
𝐸 𝐻1

(1 − 𝜈2)
+

𝐸 𝐻3
(1 − 𝜈2)

)
=

12𝐻1𝐻3𝐻13
2

(𝐻1 + 𝐻3)(𝐻1
3 + 𝐻3

3)
 

LOWERCASE LETTERS 

𝑎𝑇  Shift factor  

𝑔(𝑥)  Shape function in beams 

𝑔(𝑥, 𝑦) Shape function in plates 

𝑡  Time 

𝑤  Deflection  

GREEK LETTERS 

𝜂2  Loss factor of the polymeric interlayer of laminated glass 

𝜈  Poisson ratio of the glass layers  
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𝜈2(𝑡, 𝑇) Viscoelastic Poisson ratio of the polymeric interlayer 
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1 INTRODUCTION 

 

Laminated glass is a sandwich or layered material which consists of two or more plies of 

monolithic glass with one or more interlayers of a polymeric material which usually show 

a viscoelastic behaviour, i.e., their mechanical properties are time (or frequency) and 

temperature dependent [1]. Polyvinyl butyral (PVB) is the most used interlayer material, 

however the new ionoplastic interlayers improve the mechanical properties of laminated 

glass for a large range of temperatures [1].  

Structural stability is one of the design requirements in laminated glass beams and plates 

due to their slenderness and brittleness. Due to the fact that the stiffness of the interlayer 

is temperature and time dependent, the same can be said about the critical load, i.e., the 

critical load of a laminated glass plate subject to constant compressive loading decreases 

with time.   Most of the analytical models for predicting the buckling of laminated glass 

plates have been derived from classical sandwich theory formulations [2, 3, 4] where it is 

generally assumed that the materials exhibit a linear-elastic behavior and shear 

deformations occur in the core. The equations for sandwich beams and plates with linear-

elastic interlayers can be easily extended to viscoelastic interlayers using the 

correspondence principle [5, 6]. 

In order to facilitate the calculation of laminated glass elements, the viscoelastic solution 

can be simplified using the quasi-elastic method, which consists of describing the 

viscoelastic behaviour of the interlayer by an elastic behaviour with parameters that 

depend on the load duration and temperature [7, 8, 9]. This means that the memory effect 

of the viscoelastic material is neglected and that the mechanical properties are linear-

elastic but dependent on time [10].  

The concept of effective thickness has been proposed in recent years [6, 7, 8] based on 

the quasi-elastic solution, which consists of calculating the thickness (time and 

temperature dependent) of a monolithic element with bending properties equivalent to 

those of the laminated one. The effective thickness can then be used in analytical 

equations and simplified finite element models in place of the layered laminated-glass 

element [11, 12, 13, 14]. An effective Young modulus [13] can also be formulated from 

the models developed by Benninson et al [10, 14] and Galuppi and Royer-Carfagni [11],  
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which is more attractive to be used in numerical models because a monolithic model with 

constant thickness is defined, whereas the Young modulus is time and temperature 

dependent. The effective thickness and the effective Young modulus concepts can be used 

interchangeably with the same accuracy. 

Several analytical models have been proposed for determining the critical load of a simply 

supported laminated glass beams [15, 16, 17, 18].  Galuppi and Royer-Carfagni [17] 

developed an analytical model for the buckling of a simply supported laminated glass 

column with viscoelastic core under a compressive load 𝑃(𝑡), which can be time 

dependent. A full viscoelastic solution is developed but a simpler model was derived 

using the quasi-elastic approximation [17]. 

The effect of the boundary conditions in monolithic beams is considered through the 

buckling ratio  (or alternatively with the effective length 𝐿𝑒𝑓𝑓), whereas the stiffness EI 

is constant. Aenlle et al [19] proposed a simplified method to calculate critical loads in 

laminated glass beams with different boundary conditions using the Euler theory [20] of 

monolithic beams, the quasi-elastic solution [9,10] and the effective stiffness, and the 

effect of the boundary conditions are taken into account  through the buckling ratios  

derived for elastic monolithic beams [20, 21]. The authors demonstrated that that the 

effective stiffness, the effective thickness and the effective Young’s modulus also depend 

on the boundary conditions and their effect can also be taken into account through the 

buckling ratio . The model was validated by experimental tests and numerical models.  

In this paper a simplified method to calculate critical loads in laminated glass plates using 

the solutions of elastic monolithic plates [20, 21], the quasi-elastic solution [9] and the 

effective stiffness concept [19] is proposed. In order to validate the model, the critical 

load of several simply supported laminated glass plates, made of annealed glass plies and 

PVB interlayer, subject to different loading conditions, were predicted using the 

simplified model proposed in this paper and validated by numerical simulations carried 

out with the finite element software ABAQUS [22].It is concluded that the simplified 

analytical model predict the critical load of simply supported laminated glass plates with 

an error less than 10% for all the cases considered in the paper. 
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2. STATE OF THE ART 

2.1 Sandwich beams with thin faces under static loading 

The displacement of a simply supported sandwich beam with thin faces (see Figure 1) of 

equal thickness 𝐻1 = 𝐻3 = 𝐻 and Young modulus 𝐸, core with thickness 𝐻2 and shear 

modulus 𝐺2, spam 𝐿 and with a central point load 𝑃 can be found superimposing the 

bending displacement 𝑤1 and the shear displacement 𝑤2 [3], i.e.: 

𝑤 = 𝑤1 + 𝑤2 = 𝑤1 (1 +
𝑤2
𝑤1
) (1) 

where 

𝑤1 =
𝑃𝐿3

48𝐸𝐼
 (2) 

𝑤2 =
𝑃𝐿𝐻2

4𝑏𝐺2𝐻13
2  

(3) 

𝐸𝐼 =
𝐸𝐻3

6
+
𝐸𝐻𝐻13

2

2
 

(4) 

𝐻13 = 𝐻 + 𝐻2 (5) 

 

 

Figure 1. Sandwich beam with two external faces of thicknesses 𝐻 = 𝐻1 = 𝐻2 and one 

interlayer with thickness 𝐻2. 

In order to facilitate the calculation of displacements in sandwich beams, an effective 

stiffness 𝐸𝐼𝑒𝑓𝑓 to be used with bending monolithic models, can be derived from Eq. (1), 

i.e:  

𝐻1 = 𝐻 

𝐻2 

𝐻3 = 𝐻 

𝐻13 
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𝑃𝐿3

48𝐸𝐼𝑒𝑓𝑓
=
𝑃𝐿3

48𝐸𝐼
(1 +

𝑃𝐿𝐻2
4𝑏𝐺2𝐻13

2

𝑃𝐿3

48𝐸𝐼

) (6) 

which results in: 

𝐸𝐼𝑒𝑓𝑓 = 𝐸𝐼 (
1

1 +
𝐸𝐼 ∙ 𝐻2
𝐺2𝑏𝐻13

2 𝜓𝑡ℎ𝑖𝑛

) (7) 

Where 𝜓𝑡ℎ𝑖𝑛 is a parameter which depends on the loading and boundary conditions. 

Expressions for the effective stiffness of any statically-determinate symmetrically-loaded 

sandwich beam can be formulated superimposing the bending and the shear deflections 

[3]. For a simply supported beam with a central point load  

𝜓𝑡ℎ𝑖𝑛 = 12/𝐿
2, whereas 𝜓𝑡ℎ𝑖𝑛 = 9.6/𝐿

2 for a simply supported beam under distributed 

loading. 

2.2 Sandwich beams with thick faces under static loading 

In the case of sandwich beams with thick faces, the effective stiffness is derived using the 

same procedure as that used in the previous section and it is given by: 

𝐸𝐼𝑒𝑓𝑓 = 𝐸𝐼 (
1

1 +
𝐸𝐼 ∙ 𝐻2
𝐺2𝑏𝐻13

2 𝜓𝑡ℎ𝑖𝑐𝑘

) (8) 

Where: 

𝜓𝑡ℎ𝑖𝑐𝑘 = 𝜓𝑡ℎ𝑖𝑛 (1 −
𝐼𝑓

𝐼
)
2

𝛾 (9) 

In Eq. (9), 𝐼𝑓 is the inertia of one of the faces with respect to its own centroidal axis. The 

expressions of parameters 𝜓𝑡ℎ𝑖𝑛 and 𝛾 for simply supported beams under mid-point 

concentrated loading and uniformly distributed loading are presented in Table 1, where 

the parameter  𝜃 is given by [3]: 
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𝜃 =
𝐿

2√
𝐺2𝑏𝐻12

2

𝐻2𝐸𝐼𝑓 (1 −
𝐼𝑓
𝐼 )

 (10) 

 

Table 1. Parameters 𝜓𝑡ℎ𝑖𝑛 and 𝛾 for simply supported beams. 

Beam 𝜓𝑡ℎ𝑖𝑛 𝛾 

Central point load 12/𝐿2 
1 −

sinh𝜃 +
(1 − 𝑐𝑜𝑠ℎ𝜃)

𝑡𝑎𝑛ℎ𝜃 + 1/𝑡𝑎𝑛ℎ𝜃

𝜃
 

Distributed load 9.6/𝐿2 1 +
2

𝜃2𝑐𝑜𝑠ℎ𝜃
(1 − 𝑐𝑜𝑠ℎ𝜃) 

  

If If → 0, from Eq. (9) it  is easily derived that: 

𝜓𝑡ℎ𝑖𝑐𝑘 = 𝜓𝑡ℎ𝑖𝑛 (11) 

2.3 Buckling of a monolithic beam 

The critical load of a linear-elastic monolithic beam with constant cross section and 

stiffness 𝐸𝐼, according to the Euler theory, is given by [20, 21]: 

𝑁𝑐𝑟𝑖𝑡 =
𝜋2

(𝛽𝐿)2
𝐸𝐼 (12) 

Where 𝛽 is the buckling ratio.  

If the critical load is calculated by the Energy method [20, 21] with an approximate 

deflection curve g(𝑥), the critical load is obtained from: 

𝑁𝑐𝑟𝑖𝑡 =
∫ 𝐸𝐼𝑔′′(𝑥)2𝑑𝑥
𝐿

0

∫ 𝑔′(𝑥)2𝑑𝑥
𝐿

0

 (13) 

From which is inferred that: 
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𝜋2

(𝛽𝐿)2
=
∫ 𝑔′′(𝑥)2𝑑𝑥
𝐿

0

∫ 𝑔′(𝑥)2𝑑𝑥
𝐿

0

 (14) 

For a simply supported beam the mode shapes are sinusoidal in shape, i.e.: 

𝑔(𝑥) = 𝐴𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝐿
) (15) 

Substitution of Eq. (15) in Eq. (14) gives for 𝑛 = 1: 

𝜋2

(𝛽𝐿)2
=
𝜋2

𝐿2
 (16) 

From which it is obtained that 𝛽 = 1. This result coincides with buckling ratio of a simply 

supported beam. 

2.4 Buckling of sandwich beams with thin faces. 

The critical load of a simply supported sandwich beam with thin faces can be estimated 

using the expression [3]: 

𝑁𝑐𝑟𝑖𝑡 =
𝜋2

𝐿2
𝐸𝐼𝑒𝑓𝑓 (17) 

where 

𝐸𝐼𝑒𝑓𝑓 =  𝐸𝐼 (
1

1 +
𝐸𝐼 ∙ 𝐻2
𝐺2𝑏𝐻13

2 𝜓𝑡ℎ𝑖𝑛

) (18) 

and 

𝜓𝑡ℎ𝑖𝑛 =
𝜋2

𝐿2
 (19) 
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It can be observed that Eqs. (7) and (18) coincide, i.e. the expression of the effective 

stiffness is the same for static loads and for buckling but with the special feature that the 

parameters 𝜓𝑡ℎ𝑖𝑛 are different in statics and in buckling, for the same boundary 

conditions. 

2.5 Buckling of sandwich beams with thick faces 

The critical load of a sandwich beam with thin faces can be estimated with Eq. (17) but 

with a different effective stiffness given by:  

𝐸𝐼𝑒𝑓𝑓 =  𝐸𝐼 (
1

1 +
𝐸𝐼 ∙ 𝐻2
𝐺2𝑏𝐻13

2 𝜓𝑡ℎ𝑖𝑐𝑘

) (20) 

where  

𝜓𝑡ℎ𝑖𝑐𝑘 = 𝜓𝑡ℎ𝑖𝑛

(

 
 

(1 − (
𝐼𝑓
𝐼 ))

2

1 +
𝐸𝐼𝑓 ∙ 𝐻2
𝐺2𝑏𝐻12

2
𝜋2

𝐿2
(1 −

𝐼𝑓
𝐼 )
)

 
 

 (21) 

From Eq. (21) it is inferred that: 

𝜓𝑡ℎ𝑖𝑐𝑘 = 𝜓𝑡ℎ𝑖𝑛 (22) 

when 𝐼𝑓 → 0. 

2.6 Buckling of rectangular monolithic plates 

The critical load of a simply supported rectangular monolithic plate with dimensions 𝑎 ×

𝑏, thickness 𝐻 ,and subject to uniaxial compression in the “x” direction (see Figure 2) is 

given by: 

𝑁𝑥𝑐𝑟𝑖𝑡 =
𝜋2

𝑏2
𝑘𝐷 (23) 

Where 𝐷 is the stiffness of the plate: 
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𝐷 =
𝐸𝐻3

12(1 − 𝜈2)
 (24) 

and 𝑘 is a parameter dependent on the boundary conditions, which is expressed as: 

𝑘 = (
𝑚𝑏

𝑎
+
𝑎𝑛2

𝑚𝑏
)

2

 (25) 

where the parameters 𝑚 and 𝑛 are the number of half-waves that the plate buckles into 

the x and y directions, respectively.  

 

Figure 2. Rectangular monolithic plate subject to a compressive uniaxial loading in the 

𝑥 direction. 

On the other hand, the critical loading of a rectangular plate subject to normal loadings 

𝑁𝑥, 𝑁𝑦 𝑎𝑛𝑑 𝑁𝑥𝑦 (see Figure 3), can also be calculated by the Energy method assuming 

an approximate buckling mode shape  𝑔(𝑥, 𝑦), which satisfies the boundary conditions 

[20, 21]. The total potential energy of the system consists of two parts, the strain energy 

due to bending 𝑈𝑏, which can be calculated by means of the expression: 

𝑈𝑏 =
𝐷

2
∬ [(

𝜕2𝑔(𝑥, 𝑦)

𝜕𝑥2
+
𝜕2𝑔(𝑥, 𝑦)

𝜕𝑦2
)

2𝑎  𝑏

 0  0

− 2(1 − 𝜈) (
𝜕2𝑔(𝑥, 𝑦)

𝜕𝑥2
𝜕2𝑔(𝑥, 𝑦)

𝜕𝑦2
− (

𝜕2𝑔(𝑥, 𝑦)

𝜕𝑥𝜕𝑦
)

2

)]𝑑𝑥𝑑𝑦 

(26) 

and the potential energy of the external loads 𝑈𝑁 which is given by: 

𝑈𝑁 = −
1

2
∬ [𝑁𝑥 (

𝜕𝑔(𝑥, 𝑦)

𝜕𝑥
)

2

+𝑁𝑦 (
𝜕𝑔(𝑥, 𝑦)

𝜕𝑦
)

2

+ 2𝑁𝑥𝑦
𝜕𝑔(𝑥, 𝑦)

𝜕𝑥

𝜕𝑔(𝑥, 𝑦)

𝜕𝑦
] 𝑑𝑥𝑑𝑦

𝑎  𝑏

 0  0

 (27) 

𝑎 

𝑏 𝑁𝑥 𝑁𝑥 

𝐻 

𝑥 

𝑦 



13 
 

 

 

Figure 3: Rectangular monolithic plate subject to loadings 𝑁𝑥, 𝑁𝑦 and 𝑁𝑥𝑦. 

Using the notation: 

𝜕2𝑔(𝑥, 𝑦)

𝜕𝑥2
= 𝑔𝑥

′′ 

𝜕2𝑔(𝑥, 𝑦)

𝜕𝑦2
= 𝑔𝑦

′′ 

𝜕2𝑔(𝑥, 𝑦)

𝜕𝑥𝜕𝑦
= 𝑔𝑥𝑦

′′  

 

𝜕𝑔(𝑥, 𝑦)

𝜕𝑥
= 𝑔𝑥

′  

𝜕𝑔(𝑥, 𝑦)

𝜕𝑦
= 𝑔𝑦

′  

(28) 

Eqs. (26) is expressed as: 

𝑈𝑏 =
𝐷

2
∬ [(𝑔𝑥

′′ + 𝑔𝑦
′′)
2
− 2(1 − 𝜈) (𝑔𝑥

′′𝑔𝑦
′′ − (𝑔𝑥𝑦

′′ )
2
)] 𝑑𝑥𝑑𝑦

𝑎  𝑏

 0  0

 (29) 

and Eq. (27) as: 

𝑎 

𝑏 𝑁𝑥 𝑁𝑥 

𝑁𝑦 

𝑁𝑦 

𝑁𝑥𝑦 

𝑁𝑥𝑦 
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𝑈𝑁 = −
1

2
∬ [𝑁𝑥(𝑔𝑥

′ )2 + 𝑁𝑦(𝑔𝑦
′ )
2
+ 2𝑁𝑥𝑦𝑔𝑥

′𝑔𝑦
′ ] 𝑑𝑥𝑑𝑦

𝑎  𝑏

 0  0

 (30) 

The critical values of the forces can be found minimizing the total energy Π, i.e. 

minimizing the equation: 

Π = 𝑈𝑏 + 𝑈𝑁 (31) 

2.7 Buckling of sandwich plates with thin faces 

The critical load of a rectangular sandwich plate simply supported along the four edges, 

with thin faces of thickness 𝐻, core with shear modulus 𝐺2 and thickness 𝐻2, dimensions 

𝑎 × 𝑏 and compressed in the x direction is given by [3]: 

𝑁𝑥𝑐𝑟𝑖𝑡 =
𝜋2

𝑏2
𝑘 𝐷𝑒𝑓𝑓 (32) 

where  

𝑘 = (
𝑚𝑏

𝑎
+
𝑎𝑛2

𝑚𝑏
)

2

 (33) 

𝐷𝑒𝑓𝑓 =
𝐷

1 +
𝐸𝐻2𝐻

2𝐺2(1 − 𝜈2)
 𝜓𝑡ℎ𝑖𝑛

 
(34) 

𝐷 =
𝐸𝐻𝐻13

2

2(1 − 𝜈2)
 (35) 

𝜓𝑡ℎ𝑖𝑛 =
𝜋2

𝑏2
(𝑛2 +𝑚2

𝑏2

𝑎2
) (36) 
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2.8 Buckling of sandwich plates with thick faces 

In the case of a rectangular sandwich plate with thick faces, with the same geometry as 

that described in section 2.7, and compressed in the x direction, the critical load can be 

predicted with Eq. (32) but using the following effective stiffness given by:  

𝐷𝑒𝑓𝑓 = 𝐷(
1

1 +
𝐸𝐻2𝐻

2𝐺2(1 − 𝜈2)
 𝜓𝑡ℎ𝑖𝑐𝑘

+
𝐻2

3𝐻12
2 ) (37) 

Where the parameters 𝑘, 𝐷 are given by Eqs. (33) and (35), respectively, and 𝜓𝑡ℎ𝑖𝑐𝑘 =

𝜓𝑡ℎ𝑖𝑛. 

2.9 Laminated glass beams under static loading 

The concept of effective thickness for the calculation of deflections in laminated glass 

beams under static loads was proposed by Benninson et al. [1, 14] based on a previous 

work of Wölfel [13].  From the model proposed by Benninson et al. [1, 6], an effective 

stiffness for a laminated-glass beam subject to a static loading can be formulated, which 

is expressed as: 

𝐸𝐼(𝑡, 𝑇)𝑒𝑓𝑓 = 𝐸𝐼𝑇  (1 +
𝑌

1 +
𝐸 𝐻1 𝐻2𝐻3

𝐺2
 (𝑡, 𝑇) (𝐻1 + 𝐻3) 

𝛾
𝐿2

) (38) 

Benninson et al. assume  γ = 9.6 for all the boundary conditions although in the Wölfel’s 

formulation this is associated to a simply supported beam under uniformly distributed 

load. The Parameter 𝑌 in Eq. (38) is a constant coefficient that relates the monolithic limit 

𝐸𝐼𝑇𝑂𝑇 and the layered limit 𝐸𝐼𝑇 of the effective stiffness 𝐸𝐼(𝑡, 𝑇)𝑒𝑓𝑓, by means of the 

expression:   

1 + 𝑌 =
𝐸𝐼𝑇𝑂𝑇  

𝐸𝐼𝑇
        (39) 

Later, Galuppi and Royer-Carfagni [11] derived new equations for the deflection effective 

thickness using a variational approach and assuming that the deflection shape of the 

laminated glass beam coincide with that of a monolithic beam with the same load and 

boundary conditions, i.e. ,the deflection of the beam is assumed  as: 
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𝑤(𝑥, 𝑡, 𝑇) = −
𝑔(𝑥)

𝐸𝐼(𝑡, 𝑇)𝑒𝑓𝑓
 (40) 

where g(x) is a shape function that takes the form of the elastic deflection of a monolithic 

beam, with constant cross section under the same load and boundary conditions as the 

laminated glass beam, and 𝐸𝐼(𝑡)𝑒𝑓𝑓 is the bending stiffness of the laminated glass beam 

given by: 

𝐸𝐼(𝑡, 𝑇)𝑒𝑓𝑓 = 𝐸𝐼𝑇  (1 +
𝑌

1 +
𝐸 𝐻1 𝐻2𝐻3

𝐺2
 (𝑡, 𝑇) (𝐻1 + 𝐻3) 

𝜓𝐵

) (41) 

where the parameter  𝜓𝐵 is calculated with the equation: 

𝜓𝐵 =
∫ 𝑔′′(𝑥)2𝑑𝑥
𝐿

0

∫ 𝑔′(𝑥)2𝑑𝑥
𝐿

0

  ;          0 ≤ x ≤ L (42) 

The authors derived 𝜓𝐵 = 10/L
2 for a beam under concentrated load and 𝜓𝐵 =

168

17𝐿2
=

9.882

𝐿2
 for a beam under distributed load. These parameters 𝜓𝐵 coincide with those 

proposed for sandwich beams (𝜓𝑡ℎ𝑖𝑛) under the same load and same boundary conditions. 

2.10 Buckling of laminated glass beams 

Blaauwendraad [15] proposed a formula for the buckling force of a simply supported 

laminated glass column, which is expressed as: 

𝑁𝑐𝑟𝑖𝑡(t, T) =
𝜋2𝐸𝐼𝑇 

𝐿2
+

𝐻0
2

𝐿2

𝜋2𝐸𝐻1
+

𝐿2

𝜋2𝐸𝐻3
+

𝐻2 
𝐺2(𝑡, 𝑇)

 
(43) 

As it is pointed out by the author, this equation coincides with the equation derived by 

Satler and Stein [16] for sandwich panels. 



17 
 

Feldmann et al. [18] proposed to calculate the critical load of a simply supported beam 

with the Euler Theory but using an effective stiffness 𝐸𝐼(𝑡, 𝑇)𝑒𝑓𝑓, i.e.:  

𝑁𝑐𝑟𝑖𝑡(t, T) =
𝜋2𝐸𝐼(𝑡, 𝑇)𝑒𝑓𝑓 

𝐿2
 (44) 

where 

𝐸𝐼(𝑡, 𝑇)𝑒𝑓𝑓 = 𝐸𝐼𝑇  (1 +
𝑌

1 +
𝐸 𝐻1 𝐻2 𝐻3

𝐺2
 (𝑡, 𝑇) (𝐻1 + 𝐻3) 

𝜋2

𝐿2

) (45) 

Galuppi and Royer-Carfagni [17] developed an analytical model for the buckling of 

simply supported laminated three-layered composite beams with viscoelastic core and 

under a compressive load 𝑃(𝑡), which can be time dependent. The authors derived a 

simple model using the quasi-elastic approximation which neglects the memory effect 

and assuming that the deflection of the beam is given by: 

𝑤(𝑥, 𝑡, 𝑇) = 𝑎(𝑡, 𝑇) sin (
𝜋𝑥

𝐿
) (46) 

The critical load is given by: 

𝑃𝑐𝑟𝑖𝑡(t, T) =
𝜋2

𝐿2
EIT(1 +

𝑌

1 +
𝐸𝐻1𝐻2𝐻3

G2(𝑡, 𝑇)(𝐻1 +𝐻3)
𝜋2

𝐿2 

) (47) 

It can be easily demonstrated that Eq. (47) coincides with Eq. (44) developed by 

Blaauwendraad [15] and with Eq. (43) derived  by  Feldmann et al. [18]. 

Aenlle et al. [19] proposed to calculate the critical load of a laminated glass beam using 

the equation of the critical load of a linear-elastic monolithic beam according to the Euler 

theory, but using an effective stiffness, i.e.: 

𝑁𝑐𝑟𝑖𝑡(t, T) =
𝜋2

𝛽2𝐿2 
EI(t, T)eff (48) 
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where EI(t, T)eff is given by Eq. (41). Due to the fact that the deflection of a beam in 

buckling differs from that of a beam under static loading, new parameters 𝜓𝐵 have to be 

calculated for buckling. In Table 2, the values of 𝜓𝐵 for the buckling of the most common 

boundary conditions are presented where it has been assumed that the buckling mode 

shapes of the laminated glass beams are equal to those of an elastic monolithic beam with 

the same boundary conditions. 

Table 2. 𝜓𝐵 for the first buckling mode shape of a beam 

Boundary condition 𝑔(𝑥) 𝜓𝐵 

Simply supported 𝐴𝑠𝑖𝑛 (
𝜋𝑥

𝐿
)   𝜋2

𝐿2
 

Cantilever 𝐴(1 − 𝑐𝑜𝑠 (
𝜋𝑥

2𝐿
)) 

𝜋2

4𝐿2
 

Fixed-pinned 𝐴(
𝑥

𝐿
+ 1.02 ∙ 𝑠𝑖𝑛 (

𝜋𝑥

0.699𝐿
)) 

𝜋2

0.4886𝐿2
 

Fixed-fixed 𝐴(1 − 𝑐𝑜𝑠 (
2𝜋𝑥

𝐿
)) 

𝜋2

0.25𝐿2
 

 

From Table 2, it can be easily inferred that the parameter 𝜓𝐵 is related to the buckling 

ratio 𝛽 by means of the equation: 

𝜓𝐵 =
 𝜋2

(𝛽𝐿)2 
 (49) 

and Eq. (48) can be expressed as: 

𝑁𝑐𝑟𝑖𝑡(t, T) = 𝜓𝐵EI(t, T)eff (50) 

Eqs. (48) and (50) are general equations to calculate the critical load of a laminated glass 

beam, and they can be considered a generalization of Eq. (47), derived for simply 

supported beams to any boundary condition through the buckling ratio 𝛽. 
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2.11 Buckling of laminated glass Plates 

Amadio and Bedon [24, 25] developed an analytical model for the buckling of laminated 

glass plates based on the Euler theory and using an effective stiffness 𝐷(𝑡, 𝑇)𝑒𝑓𝑓: 

 𝑁𝑐𝑟𝑖𝑡 =
𝜋2

𝑏2
 𝑘 D(t, T)eff 

(51) 

where D(t, T)eff is given by:  

D(t, T)eff =
𝐸𝑡𝑒𝑞

3 (t, T)

12(1 − 𝜈2)
 (52) 

In Eq. (52) 𝑡𝑒𝑞
 (t, T) is an equivalent thickness derived from Eq. (38). Due to the fact that 

Eq. (38) provides the effective stiffness for a laminated glass beam, it is corrected through 

a parameter 𝛽 dependent on the ratio 𝑎/𝑏. 

The accuracy of Eq. (51) was studied in laminated glass panels in-plane compressed in 

one direction [24] and subject to in-plane shear loading [25]. 

 

3 CRITICAL LOAD OF RECTANGULAR LAMINATED GLASS PLATES  

In this paper, it is proposed to calculate the critical load of a laminated glass plate using 

the equations of the critical load of a linear-elastic monolithic thin plate, but with an 

effective stiffness  D(t, T)eff i.e.: 

𝑁𝑐𝑟𝑖𝑡 =
𝜋2

𝑏2
𝑘 D(t, T)eff (53) 

Where k is a parameter dependent on the boundary conditions and on the ratio 𝛾 =
𝑎

𝑏
 [20,  

21]. 

With Respect to the effective stiffness D(t, T)eff, the expression formulated by Galuppi 

and Royer Carfagni for rectangular plates under static loadings is considered, i.e.: 
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𝐷(𝑡, 𝑇)𝑒𝑓𝑓 = 𝐷𝑇 (1 +
𝑌𝑃

1 +
12 𝐷1 𝐷3𝐻2

G2(t, T)(𝐷1𝐻3
2 + 𝐷3𝐻1

2)
𝜓𝑃

) (54) 

where 𝑌𝑃 is a constant parameter dependent on the material properties and thicknesses of 

the laminated plate layers through the expression: 

𝑌𝑃 =
𝐻13
2 𝐸 𝐻1
(1 − 𝜈2)

𝐸 𝐻3
(1 − 𝜈2)

(𝐷1 + 𝐷3) (
𝐸 𝐻1

(1 − 𝜈2)
+

𝐸 𝐻3
(1 − 𝜈2)

)
 (55) 

and the parameter 𝜓𝑃 is given by: 

𝜓𝑃 =
∬ [(𝑔𝑥

′′ + 𝑔𝑦
′′)
2
− 2(1 − 𝜈) (𝑔𝑥

′′𝑔𝑦
′′ − (𝑔𝑥𝑦

′′ )
2
)] 𝑑𝑥𝑑𝑦

𝑎  𝑏

 0  0

∬ [(𝑔𝑥′ )2 + (𝑔𝑦′ )
2
] 𝑑𝑥𝑑𝑦

𝑎  𝑏

 0  0

 (56) 

where 𝑔(𝑥, 𝑦) is the buckling mode shape of an elastic monolithic plate with constant 

cross section under the same boundary conditions of the problem at hand. 

With respect to parameter 𝑘, values for the most common boundary conditions can be 

found in the literature [20, 21].  

If the expressions of 𝐷1 and 𝐷3 are substituted in Eqs. (54) and (55), they become: 

𝐷(𝑡, 𝑇)𝑒𝑓𝑓 = 𝐷𝑇 (1 +
𝑌𝑃

1 +
𝐸

(1 − 𝜈2)
 𝐻1𝐻3𝐻2

G2(t, T)(𝐻1 + 𝐻3)
𝜓𝑃

) (57) 

and 
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𝑌𝑃 =
12𝐻1𝐻3𝐻12

2

(𝐻1 + 𝐻3)(𝐻1
3 + 𝐻3

3)
 (58) 

respectively. 

3.1 Methodology 

The critical load of a laminated glass plate can be calculated with Eq. (53) using 

appropriate parameters 𝑘 and 𝜓𝑃. We assume that the parameter 𝑘 consider in Eq. (53) is 

the same as that consider in monolithic plates, which means that the buckling mode shape 

is the same for the monolithic and the laminated glass plate. This also means that the 

critical load of a laminated glass plate with dimensions 𝑎 × 𝑏 can also be calculated by 

means of the equation: 

𝑁𝑐𝑟𝑖𝑡(t, T) = 𝑁𝑐𝑟𝑖𝑡−𝑀𝑂𝑁
D(t, T)eff

D
 (59) 

Where 𝑁𝑐𝑟𝑖𝑡−𝑀𝑂𝑁 is the buckling load of a monolithic plate with same dimensions 𝑎 × 𝑏 

and stiffness 𝐷. The  following procedure can be followed: 

1) To assemble a finite element monolithic model with thickness 𝐻𝑇𝑂𝑇 , dimensions 𝑎 ×

𝑏 and material properties 𝐸 and 𝜈.  

2) To calculate the buckling load of the finite element monolithic model. Alternatively, 

𝑁𝑐𝑟𝑖𝑡−𝑀𝑂𝑁 can be calculated using the analytical equations proposed in the literature [20, 

21] for elastic monolithic plates. 

3) To calculate the effective stiffness D(t, T)eff. Previously, the parameter 𝜓𝑃 must be 

calculated or taking from the literature [3]. 

4) To predict the critical load by means of Eq. (59) 

If the monolithic and the laminated glass models have the same total thickness 𝐻𝑇𝑂𝑇, the 

critical load can also be calculated with the equation: 

𝑁𝑐𝑟𝑖𝑡(t, T) = 𝑁𝑐𝑟𝑖𝑡−𝑀𝑂𝑁
E(t, T)eff

E
 (60) 
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where: 

E(t, T)eff =
𝐸(𝐻1

3 + 𝐻3
3)

𝐻𝑇𝑜𝑡
3 (1 +

𝑌𝑃

1 +
𝐸𝐻1𝐻2𝐻3

𝐺2(𝑡, 𝑇)(𝐻1 + 𝐻3)
 𝜓𝑃

) (61) 

is an effective Young modulus.  

Eqs. (59) and (60) show that the critical load of a laminated glass plate can be predicted 

using a monolithic model with the same dimensions 𝑎 × 𝑏 and the same boundary 

conditions as the laminated plate. Therefore, the assembly of a layered model can be 

avoided. 

An alternative consists of assembling a monolithic model with constants thickness but 

defining a time and temperature dependent Young modulus given by 𝐸(𝑡, 𝑇)eff. 

4. EXAMPLES OF APPLICATION 

Three different cases of rectangular laminated glass plates simply supported along the 

fourth edges, are now examined using different configurations of loading and dimensions 

𝑎 and 𝑏. The elastic properties used for both glass and PVB layers are presented in Table 

3. The mechanical behaviour of the PVB interlayers was considered viscoelastic in terms 

of  Prony series and the data used in this paper was obtained in previous works  [27]. 

Table 3. Material properties for glass and PVB [27]. 
 

Glass  

(𝐻1 = 𝐻3 = 4 𝑚𝑚) 

PVB 

(𝐻2 = 0.38 𝑚𝑚) 

E 

(Young’s 

Modulus) 

ν 

(Poisson’s 

ratio) 

 ρ  

(Density) 

G0 

(Instantaneous 

shear modulus) 

K 

(Bulk 

Modulus) 

ν 

(Poisson’s 

ratio) 

𝜌 

(Density) 

𝐶1        𝐶2 

(WLF: Tref=20 C) 

[GPa]  [kg/m3] [GPa] [GPa]  [kg/m3]   

72 0.22 2500 0.3696 2 0.44 1030 12.60 74.46 

 

The critical load predicted with the analytical Eq. (53) is always compared with the results 

obtained with a finite element model (FEM) assembled in ABAQUS. 
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In the FEM, 3D linear shell continuum elements (SC8R) were used for the glass layers 

whereas the PVB layers were meshed with 3D linear hexahedral elements (C3D8R). This 

meshing technique has been demonstrated to be adequate to reproduce the laminated glass 

behaviour with a relatively low computational time [27, 28]. The material properties 

considered in the simulations were the same as those used in the analytical predictions 

(Table 3) but modelling the PVB interlayer as a linear elastic material. The buckling load 

was calculated iteratively for each considered time 𝑡 = 𝑡𝑖 being the interlayer Young’s 

modulus 𝐸𝑡 = 𝐸𝑡(𝑡𝑖, 𝑇)) and the Poisson ratio 𝜈𝑡 = 0.44 [29]. The same temperature 𝑇 =

20𝑜𝐶 was considered for both the numerical simulations and the analytical predictions. 

 

4.1 Simply supported plate under uniaxial compression. 

The first case studied in this paper is a rectangular simply supported laminated glass plate 

compressed in the x direction with the load 𝑁𝑥 (force per unit length) i.e. 𝑁𝑦 = 0 and 

𝑁𝑥𝑦 = 0  (see Figure 2).  In the case of elastic simply supported plates the buckling mode 

shape can be represented by the double series [20, 21]: 

𝑔(𝑥, 𝑦) = ∑ ∑𝐴𝑚𝑛𝑠𝑖𝑛 (
𝑚𝜋𝑥 

𝑎
) sin (

𝑛𝜋𝑦 

𝑏
)

∞

𝑛=1

∞

𝑚=1

 (62) 

Using the Energy method [20, 21] with an approximate buckling mode shape  𝑔(𝑥, 𝑦) 

and considering 𝑁𝑦 = 0 and 𝑁𝑥𝑦 = 0 in Eq. (31), the critical load can be obtained 

minimizing the equation: 

𝑁𝑥𝑐𝑟𝑖𝑡 = D(t, T)eff
∬ [(𝑔𝑥

′′ + 𝑔𝑦
′′)
2

− 2(1 − 𝜈) (𝑔𝑥
′′𝑔𝑦
′′ − (𝑔𝑥𝑦

′′ )
2

)] 𝑑𝑥𝑑𝑦
𝑎  𝑏

 0  0

∬ (𝑔𝑥
′ )
2
𝑑𝑥𝑑𝑦

𝑎  𝑏

 0  0

 (63) 

which results in: 

𝑁𝑥𝑐𝑟𝑖𝑡 = 𝜋
2𝑏2D(t, T)eff

∑ ∑ 𝐴𝑚𝑛
2∞

𝑛=1
∞
𝑚=1 (

𝑚2𝑏
𝑎 + 𝑎𝑛

2

𝑏
)

2

∑ ∑ 𝑚2𝐴𝑚𝑛
2∞

𝑛=1
∞
𝑚=1

 
(64) 

Eq. (64) becomes a minimum [20, 21] if all coefficients 𝐴𝑚𝑛
 , except one, are taken equal 

to zero. This means that each mode shape is given by: 
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𝑔(𝑥, 𝑦) = 𝐴𝑚𝑛𝑠𝑖𝑛 (
𝑚𝜋𝑥 

𝑎
) sin (

𝑛𝜋𝑦 

𝑏
) (65) 

Identifying Eq. (53) and Eq. (64) it is derived that: 

 𝜋2𝑘

𝑏2
=
∬ [(𝑔𝑥

′′ + 𝑔𝑦
′′)
2
− 2(1 − 𝜈) (𝑔𝑥

′′𝑔𝑦
′′ − (𝑔𝑥𝑦

′′ )
2
)] 𝑑𝑥𝑑𝑦

𝑎  𝑏

 0  0

∬ (𝑔𝑥′ )2𝑑𝑥𝑑𝑦
𝑎  𝑏

 0  0

 (66) 

If Eq. (65) is substituted in Eq. (66), the later becomes: 

 𝜋2𝑘

𝑏2 
=
 𝜋2

𝑏2 

(
𝑚2𝑏
𝑎 +

𝑎𝑛2

𝑏
)
2

𝑚2
 

(67) 

and parameter k is given by: 

𝑘 = (
𝑚𝑏

𝑎
+
𝑎𝑛2

𝑚𝑏
)

2

 (68) 

On the other hand, substitution of Eq. (65) in Eq. (56) leads to: 

𝜓𝑃 =
𝜋2

𝑏2
(𝑛2 +

𝑚2𝑏2

𝑎2
)

 

 (69) 

From Eqs. (68) and (69) is inferred that the parameters 𝜋2𝑘/𝑏2 and 𝜓𝑃 are different 

(except for same particular cases), contrary to laminated glass beams where 

𝜓𝐵 =
𝜋2

(𝛽𝐿)2
 (70) 

It must also be remarked that the parameter 𝜓𝑃 given by Eq. (69) for a simply supported 

laminated glass plate loaded in the “x” direction is equal to the paremeter 𝜓𝑡ℎ𝑖𝑛 (Eq. (36)) 

for a simply supported sandwich plate subjected to the same loading. 

If D(t, T)eff is expressed as: 
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𝐷(𝑡, 𝑇)𝑒𝑓𝑓 =
𝐷𝑇𝑂𝑇
1 + 𝑌𝑃

(1 +
𝑌𝑃

1 +
12 𝐷1 𝐷3𝐻2

G2(t, T)(𝐷1𝐻3
2 + 𝐷3𝐻1

2)
𝜓𝑃

) (71) 

The critical load can also be expressed as [3]: 

𝑁𝑥𝑐𝑟𝑖𝑡 =
𝜋2

𝑏2
𝑘1DTOT (72) 

Where the new parameter 𝑘1(𝑡, 𝑇) depends on the ratio 𝛾 = 𝑎/𝑏 through the parameters 

𝑘 and 𝜓𝑃, and on the thicknesses and material properties of the glass and viscoelastic 

layers, and it is expressed as [3]: 

𝑘1(𝑡, 𝑇) =
𝑘

1 + 𝑌𝑃
(1 +

𝑌𝑃

1 +
12 𝐷1 𝐷3𝐻2

G2(t, T)(𝐷1𝐻3
2 +𝐷3𝐻1

2)
𝜓𝑃

) (73) 

 

If Eqs. (68) and (69) are substituted in Eq. (73), the later becomes: 

𝑘1(𝑡, 𝑇) =
(
𝑚 𝑏
𝑎
+
𝑎 𝑛2

𝑚 𝑏
)
2

1 + 𝑌𝑃
(1 +

𝑌𝑃

1 +
12 𝐷1 𝐷3𝐻2

G2(t, T)(𝐷1𝐻3
2 + 𝐷3𝐻1

2)
 
𝜋2

𝑏2
 (𝑛2 +

𝑚2𝑏2 
𝑎2

)
) (74) 

 

Since the critical value of 𝑁𝑥 is the smallest value that satisfy Eq. (64), the values of 𝑚 

and 𝑛 that minimize Eq. (64) must be determined. The value of 𝑁𝑥 increases as 𝑛 increases 

and therefore 𝑛 = 1, i.e., the plate buckles in a single half wave in the y direction. Since 

a simply supported plate must buckle into a whole number of half-waves, m must be an 

integer [20, 21]. To determine the buckling pattern in the x direction the variation of 𝑘1 

with the ratio  𝑎/𝑏 for different values of m must be consider. Moreover, due to the fact 

that the shear stiffness G2(t, T) is not constant but it depends on time and temperature, 

the parameter 𝑘1 will also vary with G2(t, T). This means that the number of half-waves 
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m in which the plate buckles into may not be constant but it might change with time and 

this fact has to verified before predicting the critical loading of a plate [3]. 

In order to validate the equations and parameters presented in this section, the critical 

load 𝑁𝑥𝑐𝑟𝑖𝑡 of a simply supported rectangular laminated glass plate with three different 

configurations  𝑎 = 𝑏, 𝑎 = 0.5𝑏 and 𝑎 = 2𝑏, respectively were predicted with Eq. (53). 

The parameters, 𝑚, 𝑛, 𝑘 and  𝜓𝑃 corresponding to the three configurations are shown in 

Table 4, together with the corresponding mode shape obtained with a finite element 

model. The parameter 𝜓𝑃 can also be expressed as: 

𝜓𝑃 =
𝜋2

𝑏2
𝑘𝜓 (75) 

The values of 𝑘𝜓 are presented in Table 4. 

Table 4. Parameters 𝑘 and 𝜓𝑃 for a simply supported laminated glass plate with different 

ratios 𝑎/𝑏. 

a 

[m] 

b 

[m] 

𝑎

𝑏
 

m n k 𝜓𝑃 𝑘𝜓 Mode shape 

1 2 .5 1 1 6.25 12.34 5 

 

2 2 1 1 1 4 4.93 2 
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2 1 2 2 1 4 19.74 2 

 

 

The parameter 𝑘1 for this simply supported laminated glass plate considering 𝑛 = 1, 𝑚 =

1, 2, 3 and ratios 0.3 < 𝑎/𝑏 < 3 is shown in Figure 4. The figure confirms that the values 

taken for 𝑚 in Table 4 are correct, i.e., they are valid for all the range of the shear 

parameter G2 (see Figure 5) [27]) where 2 ∙ 105 < 𝐺2 <  4 ∙ 10
8 MPa. The case 𝑎 = 2 𝑚 

and 𝑏 = 1 𝑚 is not covered in Figure 4 (only valid for 𝑏 = 2 𝑚). In this case, the plate 

buckle with 2 or 3 half-waves depending of the values of 𝐺2(𝑡, 𝑇). In table 4, the mode 

shape with two half-waves is presented. 

 

Figure 4. Parameter 𝑘1 for a simple-supported laminated glass plate loaded in the 𝑥 

direction (curves valid for plates with 𝑏 = 2 𝑚). 
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Figure 5. Shear modulus, G2, of the PVB interlayer. 

 

The predicted critical loads 𝑁𝑥𝑐𝑟𝑖𝑡 using Eq. (53) and the parameters presented in Table 

3 are shown in Figure (6)  for 𝑎 = 1 𝑚, 𝑏 = 2 𝑚, in Figure (7)  for 𝑎 = 2𝑚, 𝑏 = 2 𝑚 and 

in Figure (8) for 𝑎 = 1 𝑚, 𝑏 = 2 𝑚. The critical load of each case, obtained with the FEM, 

are also presented in Figures (6) to (8), respectively. It is inferred that Eq. (53) provides 

a good accuracy the error being less than 7.5% for the three cases considered in this 

section.  
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Figure 6. Critical load 𝑁𝑥𝑐𝑟𝑖𝑡 of a simply-supported laminated glass plate uniaxialy 

loaded in the 𝑥 direction for Temperature 𝑇 = 20𝑜 𝐶 (𝑎 = 1 𝑚, 𝑏 = 2 𝑚, 𝐻1 = 𝐻3 =

4 𝑚𝑚, 𝐻2 = 0.38 𝑚𝑚).  

 

Figure 7. Critical load 𝑁𝑥𝑐𝑟𝑖𝑡 of a simply-supported laminated glass plate uniaxialy 

loaded in the 𝑥 direction for Temperature 𝑇 = 20𝑜 𝐶 (𝑎 = 2 𝑚, 𝑏 = 1 𝑚, 𝐻1 = 𝐻3 =

4 𝑚𝑚, 𝐻2 = 0.38 𝑚𝑚).  
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Figure 8. Critical load 𝑁𝑥𝑐𝑟𝑖𝑡 of a simply-supported laminated glass plate uniaxialy 

loaded in the 𝑥 direction for Temperature 𝑇 = 20𝑜 𝐶 (𝑎 = 2 𝑚, 𝑏 = 2 𝑚, 𝐻1 = 𝐻3 =

4 𝑚𝑚, 𝐻2 = 0.38 𝑚𝑚).  

 

4.2. Simply supported plate under biaxial compression 

For the case of a rectangular simply supported laminated glass plate subject to biaxial 

compression with loads 𝑁𝑥 and 𝑁𝑦 ( 𝑁𝑥𝑦 = 0 ), the same expression for the deflection 

shape given by Eq. (63) can be used. Moreover, it can be proved again that only one term 

of the series should be considered in calculating the critical values of 𝑁𝑥 and 𝑁𝑦 [20, 21]. 

Thus, the buckling mode shape is given by: 

𝑔(𝑥, 𝑦) = 𝐴𝑚𝑛𝑠𝑖𝑛 (
𝑚𝜋𝑥 

𝑎
) sin (

𝑛𝜋𝑦 

𝑏
) (76) 

Applying the Energy method [20, 21] with the approximate buckling mode shape  𝑔(𝑥, 𝑦) 

the bending energy is given by: 

𝑈𝑏 =
𝐷𝑒𝑓𝑓(𝑡, 𝑇)

2
∬ [(𝑔𝑥

′′ + 𝑔𝑦
′′)
2

− 2(1 − 𝜈) (𝑔𝑥
′′𝑔𝑦
′′ − (𝑔𝑥𝑦

′′ )
2

)] 𝑑𝑥𝑑𝑦

𝑎  𝑏

 0  0

 (77) 

which after substitution of Eq. (76) results in: 

𝑈𝑏 =
𝜋4𝐷𝑒𝑓𝑓(𝑡, 𝑇)

8𝑎𝑏
𝐴𝑚𝑛
2
(
𝑚2𝑏
𝑎
+
𝑎𝑛2

𝑏
)

2

 (78) 

The potential energy of the external loads is given by: 

𝑈𝑁 = −
1

2
∬ [𝑁𝑥(𝑔𝑥

′ )
2
+ 𝑁𝑦 (𝑔𝑦

′ )
2

] 𝑑𝑥𝑑𝑦

𝑎  𝑏

 0  0

 (79) 

which leads to: 

𝑈𝑁 = −
𝜋2

8
𝐴𝑚𝑛
2 (𝑁𝑥

𝑚2𝑏

𝑎
+ 𝑁𝑦

𝑎𝑛2

𝑏
)

 

 (80) 

Minimization of the total energy gives:  
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𝑁𝑥𝑚
2 + 𝑁𝑦 ∙ 𝑛

2 (
𝑎

𝑏
)
2

=
𝜋2

𝑏2
𝐷𝑒𝑓𝑓(𝑡, 𝑇) (

𝑚2𝑏

𝑎
+
𝑎𝑛2

𝑏
)

2

 (81) 

If the load 𝑁𝑦 is expressed as: 

𝑁𝑦 = 𝛽 𝑁𝑥 (82) 

the critical load 𝑁𝑥𝑐𝑟𝑖𝑡 can be obtained from: 

𝑁𝑥𝑐𝑟𝑖𝑡 =
𝜋2

𝑏2

(
𝑚𝑏
𝑎 +

𝑎𝑛2

𝑚𝑏
)
2

(1 + 𝛽
𝑎2𝑛2

𝑏2𝑚2
)
 𝐷𝑒𝑓𝑓(𝑡, 𝑇) (83) 

from which is obtained that the parameter 𝑘  is given by: 

𝑘 =

(
𝑚𝑏
𝑎 + 𝑎𝑛

2

𝑚𝑏
)

2

(1+𝛽𝑎
2

𝑏
2
𝑛2

𝑚2
)

 (84) 

With respect to parameter 𝜓𝑃, substitution of eq. (76) in eq. (56) gives: 

𝜓𝑃 =
𝜋2

𝑏2
𝑘 =

𝜋2

𝑏2

(
𝑚𝑏
𝑎 +

𝑎𝑛2

𝑚𝑏
)
2

(1 +
𝑎2

𝑏2
𝑛2

𝑚2
)

 (85) 

 

The number of half waves in which the plate buckles into depends also on the 

parameter 𝛽. The parameter 𝑘1 for a plate with 𝑏 = 2 𝑚, and ratios  𝛽 = 0.2 and 𝛽 = 1  

is presented in Figures 9 and 10, respectively, for different ratios 𝑎/𝑏. 
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Figure 9. Parameter 𝑘1 for a simply-supported laminated glass plate biaxially loaded 

with 𝑁𝑥 and 𝑁𝑦 = 0.2 𝑁𝑥 (curves valid for 𝑏 = 2 𝑚). 

 

Figure 10. Parameter 𝑘1 for a simply-supported laminated glass plate biaxially loaded 

with 𝑁𝑥 = 𝑁𝑦 (curves valid for 𝑏 = 2 𝑚). 

The critical load of a square plate with = 𝑏 = 2 𝑚, 𝑁𝑥 = 𝑁𝑦, 𝛾 = 1 and 𝑚 = 𝑛 = 1 is 

predicted with Eq. (53) and shown in Figure (11) . The critical load for this example was 
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calculated with a FEM (see Figure (11)), following the same steps described previously. 

The maximum error between the numerical and the predicted critical load is 8.5%. 

 

 

Figure 11. Critical load 𝑁𝑥𝑐𝑟𝑖𝑡 of a simply-supported laminated glass plate byaxially 

loaded for Temperature 𝑇 = 20𝑜 𝐶 (𝑎 = 𝑏 = 2 𝑚, 𝐻1 = 𝐻3 = 4 𝑚𝑚, 𝐻2 = 0.38 𝑚𝑚).  

4.3. Simply supported plate under in-plane shear 

We consider in this section the case of a simply supported plated subject to shearing forces 

𝑁𝑥𝑦 uniformly distributed along the four edges (see Figure 3). The boundary conditions 

are satisfied by taking for the deflection of the buckled plate the double series expression 

given by Eq. (63) [20, 21]. 

Using the Energy method with an approximate buckling mode shape  𝑔(𝑥, 𝑦) and 

considering 𝑁𝑥 = 0 and 𝑁𝑦 = 0 in eq. (30), the critical load can be obtained minimizing 

the equation: 

𝑁𝑥𝑦𝑐𝑟𝑖𝑡 =
D(t, T)eff

2

∬ [(𝑔𝑥
′′ + 𝑔𝑦

′′)
2

− 2(1 − 𝜈) (𝑔𝑥
′′𝑔𝑦
′′ − (𝑔𝑥𝑦

′′ )
2

)] 𝑑𝑥𝑑𝑦
𝑎  𝑏

 0  0

∬ (𝑔𝑥
′ 𝑔𝑦
′ ) 𝑑𝑥𝑑𝑦

𝑎  𝑏

 0  0

 (86) 

from which: 
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 𝜋2𝑘

𝑏2
=

1

2
∬ [(𝑔

𝑥
′′ + 𝑔

𝑦
′′)

2

− 2(1 − 𝜈) (𝑔
𝑥
′′𝑔
𝑦
′′ − (𝑔

𝑥𝑦
′′ )

2

)] 𝑑𝑥𝑑𝑦
𝑎  𝑏

 0  0

∬ (𝑔
𝑥
′ 𝑔
𝑦
′ ) 𝑑𝑥𝑑𝑦

𝑎  𝑏

 0  0

 (87) 

If eq. (62) is substituted in eq. (87), the later becomes: 

 𝜋2𝑘

𝑏2
=
𝑎𝑏

32

∑ ∑ 𝐴𝑚𝑛
2∞

𝑛=1
∞
𝑚=1 (

𝜋2𝑚2

𝑎2
+
𝜋2𝑛2

𝑏2
)
2

∑ ∑ ∑ ∑ 𝐴𝑚𝑛𝐴𝑝𝑞
𝑚𝑛𝑝𝑞

(𝑚2 − 𝑝2)(𝑞2 − 𝑛2)
∞
𝑞=1

∞
𝑝=1

∞
𝑛=1

∞
𝑚=1

 (88) 

where 𝑚, 𝑛, 𝑝 and 𝑞 are such integers that 𝑚 ± 𝑝 and 𝑛 ± 𝑞 are odd numbers. 

 For short elastic monolithic plates (𝑎/𝑏 < 2) [21] the minimum value 𝑁𝑥𝑦𝑐𝑟𝑖𝑡 is obtained 

when 𝑚+ 𝑛 are even numbers. With respect to the parameter 𝜓𝑝, it can be calculated 

from: 

𝜓𝑃 =
∬ [(𝑔

𝑥
′′ + 𝑔

𝑦
′′)

2

− 2(1 − 𝜈) (𝑔
𝑥
′′𝑔
𝑦
′′ − (𝑔

𝑥𝑦
′′ )

2

)] 𝑑𝑥𝑑𝑦
𝑎  𝑏

 0  0

∬ [(𝑔
𝑥
′ )
2
+ (𝑔

𝑦
′ )

2

] 𝑑𝑥𝑑𝑦
𝑎  𝑏

 0  0

 (89) 

Substitution of Eq. (62) in eq. (89, leads to: 

 

𝜓𝑃 =

𝑎𝑏

4
∑ ∑ 𝐴𝑚𝑛

2∞
𝑛=1

∞
𝑚=1 (

𝜋2𝑚2

𝑎2
+
𝜋2𝑛2

𝑏2
)
2

1

4
∑ ∑ 𝐴𝑚𝑛2 (𝜋2𝑚2

𝑏
𝑎 + 𝜋

2𝑛2
𝑎
𝑏
)∞

𝑛=1
∞
𝑚=1

 (91) 

In monolithic elastic plates [21] a good accuracy is obtained considering the first five 

terms (𝑚 + 𝑛  even numbers), i.e. 𝐴11, 𝐴22, 𝐴13, 𝐴31 and 𝐴33. With this assumption, the 

buckling deflection shape is given by: 

𝑔(𝑥, 𝑦),= ∑ ∑ 𝐴𝑚𝑛

 

𝑛=1,3

 𝑠𝑖𝑛 (
𝑚𝜋𝑥 

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦 

𝑏
)

 

𝑚=1,3

 (92) 

where [21]: 

𝐴11 = −
4

9

𝛾2

𝜆(1 + 𝛾2)2
𝐴22 (93) 
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𝐴22 = −
25

36

𝜆(9 + 9𝛾2)2

𝛾2
𝐴33 

𝐴13 =
4

5

𝛾2

𝜆(1 + 9𝛾2)2
𝐴22 

𝐴13 =
4

5

𝛾2

𝜆(9 + 𝛾2)2
𝐴22 

𝜆2 =
𝛾4

81(1 + 𝛾2)4
(1 +

81

625
+
81

25
(
1 + 𝛾2

1 + 9𝛾2
)

2

+
81

25
(
1 + 𝛾2

9 + 𝛾2
)

2

) 

The parameters 𝑘 and 𝑘𝜓 are shown in Figure 12 for different ratios  0.5 < 𝑎/𝑏 < 2 

whereas the parameter 𝑘1 is shown in Figure 13 for different ratios  𝑎/𝑏 and different 

values of G2(t, T). 

  

 

 

Figure 12. Parameters 𝑘 and 𝑘𝜓 for a simply-supported laminated glass subject to in-

plane shear. 
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Figure 13. Parameters 𝑘1 for a simply-supported laminated glass subject to in-plane 

shear (valid for 𝑏 = 2 𝑚). 

The critical load of a square plate with 𝑎 = 𝑏 = 2 𝑚  was predicted with Eq. (63) using 

the parameters 𝑘 and 𝑘𝜓  shown in Figure 12 and it is presented in Figure 14 together 

with critical load obtained with a FEM. The maximum error between the numerical and 

the predicted is less that 10%. 
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Figure 14. Critical load 𝑁𝑥𝑐𝑟𝑖𝑡 of a simply-supported laminated glass plate subjected to 

in-shear loading for Temperature 𝑇 = 20𝑜  𝐶 (𝑎 = 𝑏 = 2 𝑚, 𝐻1 = 𝐻3 = 4 𝑚𝑚, 𝐻2 =

0.38 𝑚𝑚).  

 

4 CONCLUSIONS 

Structural stability is a design criterion to be considered when laminated glass elements 

are subject to compressive loads. The critical load of a laminated glass plate is time and 

temperature dependent due to the viscoelastic behavior exhibited by the polymeric 

interlayers. However, in order to avoid failures due to buckling, the compressive load 

must be less than the critical load given by the long-term limit of the interlayer shear 

modulus 𝐺2∞, which means that the quasi-elastic solution [10, 17] can be used 

advantageously to calculate safe critical loads in laminated glass elements.  

In this paper, an analytical expression (Eq. (53) ) to predict the critical load of laminated 

glass plates subject to different compressive loading conditions has been proposed, which 

has been derived extending the buckling theory of isotropic monolithic plates [20, 21] to 

laminated glass plates, using the concept of effective stiffness. This effective stiffness 

takes into account the time and temperature dependency of the polymeric interlayers.  

The effective stiffness derived by Galuppi and Royer Carfagni [26] for laminated glass 

plates has been used with Eq. (53), which is dependent on the boundary conditions trough 

parameter 𝜓𝑃. However, the concepts of effective stiffness, effective thickness and 

effective Young’s modulus can be used interchangeably with the same accuracy [13].  

Moreover, it has been assumed that the buckling mode shapes of the laminated glass plate 

is equal to that of a monolithic plate subject to the same loading and with the same 

boundary conditions.  

When using Eq. (53), two parameters, 𝑘 and 𝜓𝑃, dependent of the boundary and loading 

conditions, have to be known. With respect to parameter 𝑘, the same expressions used in 

monolithic plates have been considered, which can be found in the classical books of 

structural stability [20, 21] for the most common boundary and loading conditions. As 

regards parameter 𝜓𝑃, the analytical expression derived by Galuppi and Royer Carfagni 
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[26] has been used to determine the values of this parameter corresponding to the 

boundary and loading conditions considered in the paper.  

Parameters 𝑘 and 𝜓𝑃 are dependent on the number of half-waves in which the plate 

buckles into through the parameters m and n. Due to the fact that the shear modulus of 

the interlayer 𝐺2(𝑡, 𝑇) is time and temperature dependent, when a plate is subject to a 

buckling, the number of half-waves of the buckling mode shape can change also with 

time and temperature. This can be observed in Figures 4 and 9, where for some specific 

ratios 𝑎/𝑏, the number of half-waves depend on the magnitude of the shear modulus of 

the interlayer.  

The accuracy provided by Eq. (53) has been validated by numerical simulations. A finite 

element model of simply-supported laminated glass plates were assembled in ABAQUS. 

The plates were subject to uniaxial, biaxial and in plane shear loadings at a temperature 

𝑇 = 20𝑜𝐶. It has been proved that the discrepancies between the numerical and the 

analytical results are less than10% for all the boundary and loading conditions considered 

in the simulations, which demonstrates that Eq. (53) can predict with a good accuracy the 

buckling critical load of a laminated glass plates. Moreover, the monolithic limit and the 

long-term limit, corresponding to the interlayer shear modulus 𝐺2
∞, are predicted with a 

good accuracy the error being less than 5% 
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Figure Captions 

Figure 1. Sandwich beam with two external faces of thicknesses 𝐻 = 𝐻1 = 𝐻2 and one 

interlayer with thickness 𝐻2. 

Figure 2. Rectangular monolithic plate subject to a compressive uniaxial loading in the 

𝑥 direction. 

Figure 3: Rectangular monolithic plate subject to loadings 𝑁𝑥, 𝑁𝑦 and 𝑁𝑥𝑦. 

Figure 4. Parameter 𝑘1 for a simple-supported laminated glass plate loaded in the 𝑥 

direction (curves valid for plates with 𝑏 = 2 𝑚). 

Figure 5. Shear modulus, G2, of the PVB interlayer. 

Figure 6. Critical load 𝑁𝑥𝑐𝑟𝑖𝑡 of a simply-supported laminated glass plate uniaxialy 

loaded in the 𝑥 direction for Temperature 𝑇 = 20𝑜 𝐶 (𝑎 = 1 𝑚, 𝑏 = 2 𝑚, 𝐻1 = 𝐻3 =

4 𝑚𝑚, 𝐻2 = 0.38 𝑚𝑚).  

Figure 7. Critical load 𝑁𝑥𝑐𝑟𝑖𝑡 of a simply-supported laminated glass plate uniaxialy 

loaded in the 𝑥 direction for Temperature 𝑇 = 20𝑜 𝐶 (𝑎 = 2 𝑚, 𝑏 = 1 𝑚, 𝐻1 = 𝐻3 =

4 𝑚𝑚, 𝐻2 = 0.38 𝑚𝑚).  

Figure 8. Critical load 𝑁𝑥𝑐𝑟𝑖𝑡 of a simply-supported laminated glass plate uniaxialy 

loaded in the 𝑥 direction for Temperature 𝑇 = 20𝑜 𝐶 (𝑎 = 2 𝑚, 𝑏 = 2 𝑚, 𝐻1 = 𝐻3 =

4 𝑚𝑚, 𝐻2 = 0.38 𝑚𝑚).  

Figure 9. Parameter 𝑘1 for a simply-supported laminated glass plate biaxially loaded 

with 𝑁𝑥 and 𝑁𝑦 = 0.2 𝑁𝑥 (curves valid for 𝑏 = 2 𝑚). 

Figure 10. Parameter 𝑘1 for a simply-supported laminated glass plate biaxially loaded 

with 𝑁𝑥 = 𝑁𝑦 (curves valid for 𝑏 = 2 𝑚). 

Figure 11. Critical load 𝑁𝑥𝑐𝑟𝑖𝑡 of a simply-supported laminated glass plate byaxially 

loaded for Temperature 𝑇 = 20𝑜 𝐶 (𝑎 = 𝑏 = 2 𝑚, 𝐻1 = 𝐻3 = 4 𝑚𝑚, 𝐻2 = 0.38 𝑚𝑚).  

Figure 12. Parameters 𝑘 and 𝑘𝜓 for a simply-supported laminated glass subject to in-

plane shear. 

Figure 13. Parameters 𝑘1 for a simply-supported laminated glass subject to in-plane 

shear (valid for 𝑏 = 2 𝑚). 
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Figure 14. Critical load 𝑁𝑥𝑐𝑟𝑖𝑡 of a simply-supported laminated glass plate subjected to 

in-shear loading for Temperature 𝑇 = 20𝑜  𝐶 (𝑎 = 𝑏 = 2 𝑚, 𝐻1 = 𝐻3 = 4 𝑚𝑚, 𝐻2 =

0.38 𝑚𝑚).  
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Table 1. Parameters 𝜓𝑡ℎ𝑖𝑛 and 𝛾 for simply supported beams. 

Beam 𝜓𝑡ℎ𝑖𝑛 𝛾 

Central point load 12/𝐿2 
1 −

sinh𝜃 +
(1 − 𝑐𝑜𝑠ℎ𝜃)

𝑡𝑎𝑛ℎ𝜃 + 1/𝑡𝑎𝑛ℎ𝜃

𝜃
 

Distributed load 9.6/𝐿2 1 +
2

𝜃2𝑐𝑜𝑠ℎ𝜃
(1 − 𝑐𝑜𝑠ℎ𝜃) 

 

Table 2. 𝜓𝐵 for the first buckling mode shape of a beam 

Boundary condition 𝑔(𝑥) 𝜓𝐵 

Simply supported 𝐴𝑠𝑖𝑛 (
𝜋𝑥

𝐿
)   𝜋2

𝐿2
 

Cantilever 𝐴(1 − 𝑐𝑜𝑠 (
𝜋𝑥

2𝐿
)) 

𝜋2

4𝐿2
 

Fixed-pinned 𝐴(
𝑥

𝐿
+ 1.02 ∙ 𝑠𝑖𝑛 (

𝜋𝑥

0.699𝐿
)) 

𝜋2

0.4886𝐿2
 

Fixed-fixed 𝐴(1 − 𝑐𝑜𝑠 (
2𝜋𝑥

𝐿
)) 

𝜋2

0.25𝐿2
 

 

Table 3. Material properties for glass and PVB [27]. 
 

Glass  

(𝐻1 = 𝐻3 = 4 𝑚𝑚) 

PVB 

(𝐻2 = 0.38 𝑚𝑚) 

E 

(Young’s 

Modulus) 

ν 

(Poisson’s 

ratio) 

 ρ  

(Density) 

G0 

(Instantaneous 

shear modulus) 

K 

(Bulk 

Modulus) 

ν 

(Poisson’s 

ratio) 

𝜌 

(Density) 

𝐶1        𝐶2 

(WLF: Tref=20 C) 

[GPa]  [kg/m3] [GPa] [GPa]  [kg/m3]   

72 0.22 2500 0.3696 2 0.44 1030 12.60 74.46 
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Table 4. Parameters 𝑘 and 𝜓𝑃 for a simply supported laminated glass plate with different 

ratios 𝑎/𝑏. 

a 

[m] 

b 

[m] 

𝑎

𝑏
 

m n k 𝜓𝑃 𝑘𝜓 Mode shape 

1 2 .5 1 1 6.25 12.34 5 

 

2 2 1 1 1 4 4.93 2 

 

2 1 2 2 1 4 19.74 2 
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