
Original Paper

Using String Metrics to Improve the Design of Virtual
Conversational Characters: Behavior Simulator Development
Study

Santiago García-Carbajal1*, PhD; María Pipa-Muniz2*, MSc; Jose Luis Múgica3*, MSc
1Computer Science Department, Universidad de Oviedo, Gijón, Spain
2Cabueñes Hospital, Gijón, Spain
3Signal Software SL, Parque Científico Tecnológico de Gijón, Gijón, Asturias, Spain
*all authors contributed equally

Corresponding Author:
Santiago García-Carbajal, PhD
Computer Science Department
Universidad de Oviedo
Campus de Viesques Office 1 b 15
Gijón, 33203
Spain
Phone: 34 985182487
Email: sgarcia@uniovi.es

Abstract

Background: An emergency waiting room is a place where conflicts often arise. Nervous relatives in a hostile, unknown
environment force security and medical staff to be ready to deal with some awkward situations. Additionally, it has been said
that the medical interview is the first diagnostic and therapeutic tool, involving both intellectual and emotional skills on the part
of the doctor. At the same time, it seems that there is something mysterious about interviewing that cannot be formalized or
taught. In this context, virtual conversational characters (VCCs) are progressively present in most e-learning environments.

Objective: In this study, we propose and develop a modular architecture for a VCC-based behavior simulator to be used as a
tool for conflict avoidance training. Our behavior simulators are now being used in hospital environments, where training exercises
must be easily designed and tested.

Methods: We define training exercises as labeled, directed graphs that help an instructor in the design of complex training
situations. In order to increase the perception of talking to a real person, the simulator must deal with a huge number of sentences
that a VCC must understand and react to. These sentences are grouped into sets identified with a common label. Labels are then
used to trigger changes in the active node of the graph that encodes the current state of the training exercise. As a consequence,
we need to be able to map every sentence said by the human user into the set it belongs to, in a fast and robust way. In this work,
we discuss two different existing string metrics, and compare them to one that we use to assess a designed exercise.

Results: Based on the similarities found between different sets, the proposed metric provided valuable information about
ill-defined exercises. We also described the environment in which our programs are being used and illustrated it with an example.

Conclusions: Initially designed as a tool for training emergency room staff, our software could be of use in many other areas
within the same environment. We are currently exploring the possibility of using it in speech therapy situations.

(JMIR Serious Games 2020;8(1):e15349)  doi: 10.2196/15349

KEYWORDS

spoken interaction; string metrics; virtual conversational characters; serious games; e-learning

JMIR Serious Games 2020 | vol. 8 | iss. 1 | e15349 | p. 1http://games.jmir.org/2020/1/e15349/
(page number not for citation purposes)

García-Carbajal et alJMIR SERIOUS GAMES

XSL•FO
RenderX

mailto:sgarcia@uniovi.es
http://dx.doi.org/10.2196/15349
http://www.w3.org/Style/XSL
http://www.renderx.com/


Introduction

Virtual Conversational Characters
The field of virtual conversational characters (VCCs) is an
emerging research field that is growing in importance, both in
industrial and academic applications. Our company started to
include VCCs as a component of our simulators in 2014, mainly
oriented to military and police environments, and recently it
was proposed to migrate this type of simulator to hospital
environments.

VCCs, also known as embodied conversational agents by Poggi
et al [1], are 2D and 3D models of real persons that must be
capable of human-like behavior. Apart from high-quality
graphics, the most important characteristics that define VCCs
are as follows:

1. Degree of embodiment: a full embodiment implies rendering
a complete body. A talking head is an example of partial
embodiment.

2. Believable talking: the VCC must be able to maintain a
conversation with the human user. The most difficult
problem to solve is to manage communication in a way that
the human user does not perceive his or her dialogue partner
as an emotionally numb agent.

3. Gesturing: nonverbal behavior is key when trying to solve
the traditional lack of naturalness of VCCs. Nonverbal
behavior can be introduced in one or both of the following
ways:
a. Facial gesture: different models and taxonomies for

facial movement have been proposed by Ekman and
Friesen [2] and Martinez and Shichuan [3]. An excellent
state of the artwork on facial expressions for VCCs is
that of Ochs et al [4].

b. Body gesture: this usually involves hand and arm
movements while talking, as included by Hartholt et
al [5] in the virtual human toolkit.

4. Emotional behavior of the character: for a VCC, it is
desirable not only to be able to maintain a conversation,
but also to do so while showing some kind of personality,
mood, or attitude.

In this work, we focus on the dialogue management problem.
Involving a VCC in a meaningful conversation often implies
huge knowledge databases, syntactic and semantic analysis,
and the use of artificial intelligence techniques to achieve a
convincing result. Designing conversational situations as graphs
in the way described in García et al [6], we restrict the possible
states of the dialogue, the sentences to be said by the VCC, and
the sets of sentences that it will understand. This method does
not decrease the applicability of our behavior simulator, as it is
intended to be used in strictly constrained situations.
Unfortunately, two problems arise when using such an approach:
(1) the need for a huge number of similar but slightly different
sentences to be said by the VCC if we want the agent not to
appear too repetitive and (2) on the other hand, we want the
VCC to be able to understand an order, question, or command
expressed in as many ways as possible.

The first problem can be solved merely by including a high
number of different ways to express what the VCC is going to
say and by randomly picking one of them at execution time.
The second problem requires the mapping of the expressions
said by the human user to any of those the VCC can accept,
converting it into the associated label, and delivering it to the
situation manager, all within the execution time. This is where
string metrics come into play, as a way of measuring the
similarities between sentences said by the human user and the
sets of expressions the VCC is expecting.

Related Work
Related works include Rosmalen et al [7], where an existing
serious game is extended to include a chatbot, as well as those
related to the formalization and use of behavior trees by
Johansson and Dell’Acqua [8], Isla [9], or Imbert and de
Antonio [10], where COGNITIVA is proposed as an emotional
architecture for VCCs. The most closely related works to that
reported here are those of Hartholt et al [5] and Morie et al [11],
where the virtual human toolkit is described. More recently, a
framework for the rapid development of Spanish-speaking
characters has been presented in Herrera et al [12].

In this context, our system's characteristics are as follows:

1. Full embodiment: our VCCs are complete human models
rendered inside a realistic 3D scene.

2. We solve the dialogue management problem by defining
our training situations as graphs and by introducing a
statistical process of strings returned by the speech
recognition library as a way of directing the evolution of
the exercise.

3. Inclusion of a facial action code system, as described by
Ekman and Friesen [2], as a way of manipulating the VCC's
facial gesture.

4. Emotional behavior is based on an emotional engine that
permits the design and testing of the underlying personality
of the VCC, described in García et al [6], and is mainly
oriented to the simulation of violent behaviors, as this has
been the main application field of our software.

The rest of the paper is structured as follows:

1. The Environment section describes the context where string
metrics are being used.

2. In the Situation Graphs section, we describe the component
of the behavior simulator to be analyzed using string
metrics.

3. The String Metrics section is devoted to the explanation of
some string metrics and their comparison to the one we are
using.

4. In the Graph Validation section, three different string
metrics are applied to an example graph using our graph
validation tool.

5. Finally, in the Conclusions and Future Work sections, we
present the main achievements of our work and some
possible future lines of research.

JMIR Serious Games 2020 | vol. 8 | iss. 1 | e15349 | p. 2http://games.jmir.org/2020/1/e15349/
(page number not for citation purposes)

García-Carbajal et alJMIR SERIOUS GAMES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Methods

Environment
In this section, we describe the context in which we are using
string metrics. Our simulators are designed to be used in conflict
avoidance training contexts, including situations where a
member of the security staff must ask a suspect for his or her
identity card, begin the initial evaluation process of a patient,
or deal with an annoyed relative. Such situations are
characterized by the fact that there is a clear policy the trainee
must follow in order to fulfill the exercise. Conversely, the VCC
will have a small set of expected behaviors. Therefore, we need
to build a believable VCC that is able to communicate in a
clearly constrained scene.

Our tool lets the user give a formal description of the training
exercise. The output of the tool is a directed graph in Graphviz
format, following the description of Emden and North [13], that
represents the current and possible states of the exercise and
defines transitions from one state to another, in terms of the
labels associated with each arc. The main components of our
behavior simulator are as follows:

1. A situation graph, defining the exercise.
2. A set of sentences associated with each node of the graph.

Whenever the situation enters a state, the system will
randomly pick one of the sentences associated with that
node. The higher the number of sentences, the lower the
probability of repeating a sentence, while increasing the
perception of talking to a real human.

3. One or various sets of sentences that the VCC must
recognize when the graph is in a valid state.

Each node in the graph will be connected to one or more other
nodes. The arcs representing these connections will be labeled
with names like Ask_For_ID, which require an action from the
human user. Each label will be associated with a set of sentences
that the human user can say in order to trigger that transition.
We keep this kind of information stored in files sharing the
.lang extension. The other elements of the system are as follows:

1. An emotional engine that drives the emotional state and
behavior of the VCC, as described in García et al [6].

2. A body language interpreter that is developed using the
Microsoft Kinect sensor, which analyzes the body gesture
of the human interacting with the simulator, in order to give
advice about good or bad practices while interacting with
real humans.

Situation Graphs
Any one of our situation graphs will contain, at least, the
following states:

1. Init: in this state, the system performs some basic tasks,
such as graph file parsing, audio and graphical setup, and
some initial calculations that increase performance, which
will be explained in the Histogram Matching section.

2. Success: this state will be reached when the human
performing the training exercise completes it in a
satisfactory manner.

3. Failure: the opposite of the Success state.

In order to clearly state the role of the situation graph, we will
describe an unreal, simple training situation with its associated
states and sets of sentences. Describing a medical interview in
terms of one of our situation graphs generates a huge image,
too big for the illustrative purposes of this section.

We have a situation where the behavior simulator, once
initialized, will present the user with a VCC. The goal is to
obtain their identification card, to avoid the start of a fight, or
to prevent the individual from running away from the scene.
The situation graph is shown in Figure 1.

Associated with each state in the graph are a stored set of
sentences that the VCC will keep saying until the answer
received from the user triggers a transition to another state. The
system stores these sets in files named after the state they are
associated with; all of them share the .talk extension in their
file names. Based on the contents of the .talk files, the behavior
simulator will keep the VCC saying a sentence picked at random
from those associated with the current active node of the
situation graph. The behavior simulator will also try to map
what the human user says into the labels that can trigger a
transition from the current state to any other.

At the moment of writing this paper, we have designed four
different training situations, or exercises, each with their own
learning goals:

1. A lost child in the waiting room: the goals are to discover
where the child came from and what she is doing at the
hospital.

2. An aggressive young man under the influence of drugs: the
goal is to gain time while security personnel arrive.

3. An elderly woman with cognitive impairment: the goals
are to make an initial assessment of the woman's condition
and to reassure her.

4. A nervous young lady asking for information about one of
her relatives: the goal is to convince her to leave the area
and retire to the waiting room.

Figure 2 shows the system a moment after starting one of these
training exercises. The system can be run in silent mode,
showing sentences said by the VCC only on the screen in text,
and the microphone can be disconnected to allow input of
sentences using the keyboard.

JMIR Serious Games 2020 | vol. 8 | iss. 1 | e15349 | p. 3http://games.jmir.org/2020/1/e15349/
(page number not for citation purposes)

García-Carbajal et alJMIR SERIOUS GAMES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Simple situation graph. Init: the state in which the system performs some basic tasks. Success: this state will be reached when the human
performing the training exercise completes it in a satisfactory manner. Failure: the opposite of the Success state. Regular_Chat: as soon as the exercise
starts, the scene enters this state, with the virtual conversational character (VCC) engaging in small talk. Asked_ID: the situation enters this state if the
user says one of the sentences associated with the Ask_For_Identification label; when in this state, the VCC will probabilistically decide to collaborate
or not, showing ID, or returning to Regular_Chat. The former means reaching the Success state. The latter means that the VCC refused to obey and
show their ID card. In practice, this implies remaining in the same state, Regular_Chat. Buying_Time: if the user does not ask for identification, the
scene enters a dumb state, with the VCC trying to escape. If the user continues asking for ID, the situation reaches an impasse. To return to Regular_Chat,
the security guard must warn the VCC about trying to escape. Any other kind of conversation triggers a Failure.

Figure 2. A user facing the system a moment after starting a training exercise.

String Metrics

Overview
In order to trigger transitions from one state of the graph to
another, we need some kind of metric to evaluate the distance

between the string returned by the speech recognition library
and all the strings that are acceptable for the current state. There
is a large number of metrics that can be used to measure the
difference between pairs of strings. In this section, we compare
two different well-known metrics—that proposed by
Levenshtein [14] and the Gestalt pattern-matching algorithm

JMIR Serious Games 2020 | vol. 8 | iss. 1 | e15349 | p. 4http://games.jmir.org/2020/1/e15349/
(page number not for citation purposes)

García-Carbajal et alJMIR SERIOUS GAMES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


proposed by Ratcliff and Metzener [15]—when used for our
purposes and justify the use of our own metric, which we will
call histogram matching.

String distance functions or string similarity metrics are defined
between two strings, for example, s and t. Distance functions
map a pair of strings s and t to a real number r, where a smaller
value of r indicates greater similarity between s and t. Similarity
functions are analogous to distance functions, except that larger
values indicate greater similarity.

Levenshtein Distance
One important class of distance functions are edit distances, in
which distance is the cost of the best sequence of edit operations
that converts s to t. Typical edit operations are character
insertion, deletion, and substitution, and each operation much
be assigned a cost. Levenshtein distance is defined in
Levenshtein [14]. However, even in its normalized version
proposed by Yujian and Bo [16], it is not useful for us, as it
gives high values to pairs of strings that are a word-by-word
permutation of the original, for example, “Don't resist, please”
and “Please, don't resist.” See Table 1 for results.

Table 1. Levenshtein distances for the strings s1, s2, and s3.

String, Levenshtein distanceString

s3cs2bs1a

14140s1

16014s2

01614s3

as1: “Please show me your ID.”
bs2: “Show me your ID please.”
cs3: “Your ID. Show it to me.”

Gestalt Pattern Matching
Ratcliff and Metzener’s pattern-matching algorithm [15] has
been described as a wild-card search process without wild cards.
The algorithm builds its own wild cards, based on the matches
found between two strings, s and t. First, the algorithm examines
s and t and locates the largest common subsequence between
them. It then uses this group of characters as an anchor between
s and t. Any group of characters found to the left or the right of
this anchor is placed on a stack for further examination. The
procedure is repeated for all substrings on the stack until it is
empty.

The returned value is twice the number of characters found in
common, divided by the total number of characters in the two
strings; the score is returned as an integer, reflecting a
percentage match. We are currently using the SequenceMatcher
version of Ratcliff's algorithm, included in the difflib package
from Python, version 3.7 (Python Software Foundation), that
returns a real number instead.

Histogram Matching
We will now describe the numerical procedure that lets us assign
a label to any string returned from speech recognition libraries,
such as Microsoft Speech Application Programming Interface
(API). When the exercise starts, we take each .lang file, and for
each sentence we perform the following procedure (see Figure
3, Equation 1):

1. Convert the sentence to lowercase letters, discarding any
punctuation marks.

2. Calculate the number of letter “a”s, “b”s, etc, that the
sentence contains. This array is what we call a letter
histogram. Letter histograms for every single possible
sentence that the human user can potentially say are
calculated and stored before the exercise starts.

3. Let h(c)s be the number of occurrences of character c inside
string s.

4. Let T(s) be the sum of h(c)s for each possible value of c
inside string s.

When the exercise starts, we need to know the distance between
the words said by the human user as well as all the sentences
stored inside the .lang files. We define the histogram-matching
function between strings s and t as expressed in Equation 2 (see
Figure 3). In the histogram-matching formula (see Figure 3,
Equation 2), s represents the sentence said by the human user,
and t is each one of the sentences included in the .lang files that
is associated with outgoing arcs from the current active node
in the situation graph. The maximum of these values determines
the label we assign to the sentence that was said and, eventually,
a transition to another node inside the graph.

In Equation 3 (see Figure 3), set (t) is a function returning the
set that t belongs to, and $set(t)$ is an outgoing arc.

JMIR Serious Games 2020 | vol. 8 | iss. 1 | e15349 | p. 5http://games.jmir.org/2020/1/e15349/
(page number not for citation purposes)

García-Carbajal et alJMIR SERIOUS GAMES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. Equations for our histogram-matching metric.

Results

Data Evaluation
In this section we describe the results obtained when applying
the three string metrics described in the Methods section to a
set of sentences, and the process that we follow to validate a
graph.

Levenshtein Distance
Table 1 shows the value of Levenshtein distance for three
different strings—s1, s2, and s3—with s2 being a word-by-word
permutation of s1, and being very similar to s3, at least
semantically. The strings s1, s2, and s3 stand for “Please show
me your ID,” “Show me your ID please,” and “Your ID. Show
it to me,” respectively.

As we do not process commas, nor any other punctuation marks,
s1 and s2 should be equivalent sentences for our system, and
the distance between s3 and the others should be minimal. We
are showing not-normalized values here, but it can be seen that
the distance between s1 and s2 is not equal to zero, forcing us
to include all the valid permutations of a sentence in the
respective .lang file if we want the VCC to understand all of
them. This renders the Levenshtein distance metric inappropriate
for our labeling needs.

Gestalt Pattern Matching
Table 2 shows the values of the Gestalt pattern-matching
algorithm by Ratcliff and Metzener [15] when applied to s1,
s2, and s3. It returns a 100% similarity value over the main
diagonal, as expected, but the reported value is not symmetric
for s2 and s3. Additionally, it gives a similarity value of 68%
between s1 and s2, too low for a pair of sentences that must be
considered equivalent for our system.

Table 2. Python SequenceMatcher similarities for the strings s1, s2, and s3, based on the Gestalt pattern-matching algorithm.

String, SequenceMatcher similarityString

s3cs2bs1a

32.5568.18100.0s1

41.86100.068.18s2

100.046.5132.55s3

as1: “Please show me your ID.”
bs2: “Show me your ID please.”
cs3: “Your ID. Show it to me.”

Histogram Matching
Table 3 shows histogram-matching values between the strings
s1, s2, and s3. The main diagonal values are 100%, as expected,
but we also see total similarity between s1 and s2. Reported
similarity between s1 and s3, and between s2 and s3, is higher
than 70%, which is far from being an almost complete match,
but significantly higher than the value reported by the Gestalt
pattern algorithm (32%).

Figures 4 and 5 show the letter histograms associated with every
sentence included inside the Stop_Playing.lang and
Ask_For_Identification.lang files.

The example has been intentionally kept simple but practical,
in order to explain how histogram matching works. Similarities
between the different sentences associated with the same label
(ie, inside the same set) present no practical problem. Problems
arise when, for two different labels associated with arcs that
come out of the same graph node, any of the sentences included
in the corresponding files can be misunderstood as any of those
defined for a different transition. In other words, the distance
between each of the sentences included in any .lang file and
those included in a .lang file whose initial graph node is the
same, should be as large as possible, in order to have the least
confusing exercise definition. Additionally, as a reinforcement
factor, we also count the number of blank spaces included in

JMIR Serious Games 2020 | vol. 8 | iss. 1 | e15349 | p. 6http://games.jmir.org/2020/1/e15349/
(page number not for citation purposes)

García-Carbajal et alJMIR SERIOUS GAMES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


the sentence, to avoid strange coincidences that would confuse
the system.

In the exercise we are using as an example, there is only one
situation to analyze—there are three different arcs coming out
from the Buying_Time state, and we need the triggering
sentences for these arcs to be as different as possible: (1)
Stop_Playing, (2) Ask_For_Identification, and (2)
Anything_Else.

Of these three transitions (ie, labels), only the first two are
interesting, as Anything_Else is a special case that we will assign

if it is not possible to assign any of the others, up to a defined
tolerance. We mark this kind of label, leaving the corresponding
.lang file almost empty, containing only a # symbol. Therefore,
it is clear that the exercise would be ill defined if any sentence
inside Stop_Playing.lang is too similar to any of the sentences
included in Ask_For_Identification.lang. Our exercise validation
tool analyzes this kind of situation and highlights potentially
conflicting labels, sentences, and states. The example is analyzed
in the Graph Validation section

Table 3. Histogram-matching similarities for the strings s1, s2, and s3.

String, histogram-matching similarityString

s3cs2bs1a

70.5100.0100.0s1

70.5100.0100.0s2

100.070.570.5s3

as1: “Please show me your ID.”
bs2: “Show me your ID please.”
cs3: “Your ID. Show it to me.”

Figure 4. Letter histogram for the Stop_Playing.lang file.

JMIR Serious Games 2020 | vol. 8 | iss. 1 | e15349 | p. 7http://games.jmir.org/2020/1/e15349/
(page number not for citation purposes)

García-Carbajal et alJMIR SERIOUS GAMES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 5. Letter histogram for the Ask_For_Identification.lang file.

Graph Validation
For the purpose of explaining how graph validation works, we
intentionally added the following sentence to the
Ask_For_Identification set file: “Don't resist, please.”

Besides the lack of utility of such a sentence inside the file that
stores different ways of asking a person for his or her hospital
identity card, this sentence causes problems: when it is said by
the human user, it would lead to ambiguity. In Figures 6 and 7,
letter histograms for “Don't resist, please” and “Please, don't
resist” are highlighted in red; this is not because of the absolute
similarity between them, but because of their similarity to this
extra sentence included in another .lang file, which would render
the system unable to decide which transition is the correct one
to be triggered.

The system informs us that sentences highlighted in red can
confuse the situation manager when pronounced by the trainee.
In this case, the solution is straightforward, as we have
artificially generated the problem. The problem is solved simply
by removing the extra sentence from the
Ask_For_Identification.lang file. However, in more complex
situations, the person in charge of the exercise design should
look for alternatives.

After determining all the conflicting labels, our graph validation
tool also marks in red each graph node with ill-defined outgoing

arcs, helping in the identification and fixing of such problems.
The output is a file in the Graphviz format: see Figure 8, where
the graph for the working exercise is colored to highlight
problematic nodes. An arc whose arrow is highlighted in red
means that triggering transitions from the source state is not
possible. Nonproblematic arcs are highlighted in green. The
goal is to rewrite the sentences associated with each arc or to
modify the graph definition of the exercise until no ambiguity
is detected by the tool.

The use of the string metric defined in this paper is not
mandatory. In fact, the user can choose one of the following
string metrics and select the one that guarantees a better exercise
definition to be used by the behavior simulator: (1) Levenshtein
distance, as defined by Levenshtein [14], (2) Gestalt pattern
matching [15], (3) histogram matching, as proposed in this
paper, (4) Damerau-Levenshtein distance [17], or (5)
Jaro-Winkler distance [18].

The explanation of each of these string metrics is outside the
scope of this paper. In practice, we use the graph validation tool
to choose a string metric that guarantees the absence of
ambiguities when the simulator is running. If none of them can
guarantee such a condition, the .lang files must be modified.
The main window of the graph validation tool is pictured in
Figure 9.

JMIR Serious Games 2020 | vol. 8 | iss. 1 | e15349 | p. 8http://games.jmir.org/2020/1/e15349/
(page number not for citation purposes)

García-Carbajal et alJMIR SERIOUS GAMES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 6. Processed histogram for the Stop_Playing.lang file.

Figure 7. Processed histogram for the Ask_For_Identification.lang file.

JMIR Serious Games 2020 | vol. 8 | iss. 1 | e15349 | p. 9http://games.jmir.org/2020/1/e15349/
(page number not for citation purposes)

García-Carbajal et alJMIR SERIOUS GAMES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 8. Validated graph. Init: the state in which the system performs some basic tasks. Success: this state will be reached when the human performing
the training exercise completes it in a satisfactory manner. Failure: the opposite of the Success state. Regular_Chat: as soon as the exercise starts, the
scene enters this state, with the virtual conversational character (VCC) engaging in small talk. Asked_ID: the situation enters this state if the user says
one of the sentences associated with the Ask_For_Identification label; when in this state, the VCC will probabilistically decide to collaborate or not,
showing ID, or returning to Regular_Chat. The former means reaching the Success state. The latter means that the VCC refused to obey and show their
ID card. In practice, this implies remaining in the same state, Regular_Chat. Buying_Time: if the user does not ask for identification, the scene enters
a dumb state, with the VCC trying to escape. If the user continues asking for ID, the situation reaches an impasse. To return to Regular_Chat, the security
guard must warn the VCC about trying to escape. Any other kind of conversation triggers a Failure.

Figure 9. The main window of the graph validation tool. From this window, the user can (1) choose a Graphviz (.dot file) example to be analyzed, (2)
obtain a graphic representation of the training exercise that it encodes, (3) select one of the available string metrics, (4) view letter histograms for each
label, and (5) generate a .pdf file summarizing all the problems encountered during the analysis of the graph.

Discussion

We have developed a system for the fast design and testing of
conflict avoidance situations, involving interactions between

humans and VCCs. VCC-enhanced simulators present many
advantages for multimodal communication, but also have the
disadvantage of dealing with complex processes in order to
provide effective verbal communication between VCCs and the

JMIR Serious Games 2020 | vol. 8 | iss. 1 | e15349 | p. 10http://games.jmir.org/2020/1/e15349/
(page number not for citation purposes)

García-Carbajal et alJMIR SERIOUS GAMES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


human user. Speech recognition software is available and
working, but we needed a way to assign labels to the outputs
produced by these APIs. As the number of possible sentences
to be recognized is potentially huge, even for a simple training
exercise, we decided to use string metrics as a way of labeling.
We have developed a tool that, after designing a training
exercise, analyzes the sets of sentences associated with each
transition inside the situation graph, highlighting potential signs
of ill-defined exercises. The tool is also used to check the
existence of all the files needed for the system to work properly
before the exercise starts and to dynamically change some
settings, such as the minimal matching confidence level required
for a positive match, once the simulation has begun. This is
useful for cases when the speech recognition library is not
working properly, due to suboptimal acoustic conditions of the
environment or incorrect vocalization by the human user.

After trying several existing string metrics, we decided to design
one of our own: histogram matching. Histogram matching does
this work for us at a reasonable speed, as half of the needed
calculations are performed as soon as the training exercise is
defined and before the whole system is running. The method is
working correctly for the exercises we have defined to date. As
a result, we can anticipate and solve design problems in the
training exercise definition process and improve collaborative
work between instructors and our development team.

For the future, we are planning the development of a module
that automatically assigns violence levels to the sentences

included inside .lang files, as a function of the kind of
vocabulary employed. There is another feature that has not yet
been implemented, which would be very useful in the exercise
definition process. That is, being able to check the exercise
without the whole graphics system working, running only the
speech recognition and language synthesis modules, and
allowing the interactive visualization of the active node of the
situation graph, histogram-matching level, emotional state of
the VCC, etc.

Our software was initially designed to help in the training of
staff working for emergency services within a hospital. We
think that it could also prove useful in speech therapy as a way
of visually representing the differences between any goal
sentence and what a human user actually says. We have
identified some works using serious games in this field, such
as Grossinho et al [19] and Cagatay et al [20]. In this sense, no
structural modifications should be needed on our software, just
a different philosophy in the design of the training exercises.
That is to say, we have a VCC that the human must interact
with. The goal would be to speak as correctly as possible in
order to, for example, make the VCC do some work for us.

We also think that VCCs, in general, and our system, in
particular, can be useful in helping patients make informed
decisions when asked about the treatment plan they prefer, as
discussed in Sherwin et al [21].

Conflicts of Interest
None declared.

References

1. Poggi I, Pelachaud C, de Rosis F, Carofiglio V, De Carolis B. Greta. A believable embodied conversational agent. In: Stock
O, Zancanaro M, editors. Multimodal Intelligent Information Presentation. Text, Speech and Language Technology. Volume
27. Dordrecht, the Netherlands: Springer; 2005:3-25.

2. Ekman P, Friesen V. Facial Action Coding System. Palo Alto, CA: Consulting Psychologists Press; 1978.
3. Martínez A, Shichuan D. A model of the perception of facial expressions of emotion by humans: Research overview and

perspectives. J Mach Learn Res 2012;1:1589-1608. [doi: 10.1007/978-3-319-57021-1_6]
4. Ochs M, Niewiadomski R, Pelachaud C. Facial expressions of emotions for virtual characters. In: Calvo R, D'Mello S,

Gratch J, Kappas A, editors. The Oxford Handbook of Affective Computing. Oxford, UK: Oxford University Press;
2015:261-272.

5. Hartholt A, Traum D, Marsella S, Shapiro A, Stratou G, Leuski A, et al. All together now: Introducing the virtual human
toolkit. In: Proceedings of the 13th International Conference on Intelligent Virtual Agents, IVA 2013. 2013 Presented at:
13th International Conference on Intelligent Virtual Agents, IVA 2013; August 29-31, 2013; Edinburgh, UK URL: https:/
/www.researchgate.net/profile/Jonathan_Gratch/publication/
285590059_All_Together_Now_Introducing_the_Virtual_Human_Toolkit/links/58191c8408ae1f34d24aba23/
All-Together-Now-Introducing-the-Virtual-Human-Toolkit.pdf [doi: 10.1007/978-3-642-40415-3_33]

6. Carbajal SG, Polimeni F, Múgica JL. An emotional engine for behavior simulators. Int J Serious Games 2015 Jun
17;2(2):57-67 [FREE Full text] [doi: 10.17083/ijsg.v2i2.76]

7. Eikelboom P, Bloemers E, Winzum KV, Spronk P. Towards a game-chatbot: Extending the interaction in serious games.
In: Proceedings of the 6th European Conference on Games-Based Learning. 2012 Presented at: 6th European Conference
on Games-Based Learning; October 4-5, 2012; Cork, Ireland URL: http://eprints.teachingandlearning.ie/2469/1/
Proceedings%20of%206th%20European%20Conference%20on%20Games%20Based%20Learning%202012.pdf

8. Johansson A, Dell Acqua P. Emotional behavior trees. In: Proceedings of the IEEE Conference on Computational Intelligence
and Games. 2012 Presented at: IEEE Conference on Computational Intelligence and Games; September 11-14, 2012;
Granada, Spain. [doi: 10.1109/cig.2012.6374177]

JMIR Serious Games 2020 | vol. 8 | iss. 1 | e15349 | p. 11http://games.jmir.org/2020/1/e15349/
(page number not for citation purposes)

García-Carbajal et alJMIR SERIOUS GAMES

XSL•FO
RenderX

http://dx.doi.org/10.1007/978-3-319-57021-1_6
https://www.researchgate.net/profile/Jonathan_Gratch/publication/285590059_All_Together_Now_Introducing_the_Virtual_Human_Toolkit/links/58191c8408ae1f34d24aba23/All-Together-Now-Introducing-the-Virtual-Human-Toolkit.pdf
https://www.researchgate.net/profile/Jonathan_Gratch/publication/285590059_All_Together_Now_Introducing_the_Virtual_Human_Toolkit/links/58191c8408ae1f34d24aba23/All-Together-Now-Introducing-the-Virtual-Human-Toolkit.pdf
https://www.researchgate.net/profile/Jonathan_Gratch/publication/285590059_All_Together_Now_Introducing_the_Virtual_Human_Toolkit/links/58191c8408ae1f34d24aba23/All-Together-Now-Introducing-the-Virtual-Human-Toolkit.pdf
https://www.researchgate.net/profile/Jonathan_Gratch/publication/285590059_All_Together_Now_Introducing_the_Virtual_Human_Toolkit/links/58191c8408ae1f34d24aba23/All-Together-Now-Introducing-the-Virtual-Human-Toolkit.pdf
http://dx.doi.org/10.1007/978-3-642-40415-3_33
https://www.researchgate.net/profile/Santiago_Carbajal/publication/278667126_An_Emotional_Engine_for_Behavior_Simulators/links/5581ab1508ae12bde6e4aa0b/An-Emotional-Engine-for-Behavior-Simulators.pdf
http://dx.doi.org/10.17083/ijsg.v2i2.76
http://eprints.teachingandlearning.ie/2469/1/Proceedings%20of%206th%20European%20Conference%20on%20Games%20Based%20Learning%202012.pdf
http://eprints.teachingandlearning.ie/2469/1/Proceedings%20of%206th%20European%20Conference%20on%20Games%20Based%20Learning%202012.pdf
http://dx.doi.org/10.1109/cig.2012.6374177
http://www.w3.org/Style/XSL
http://www.renderx.com/


9. Isla D. Handling complexity in the Halo 2 AI. In: Proceedings of the Game Developers Conference. 2005 Mar 07 Presented
at: Game Developers Conference; March 7-11, 2005; San Francisco, CA URL: https://www.gamasutra.com/view/feature/
130663/gdc_2005_proceeding_handling_.php

10. Imbert R, de Antonio A. An emotional architecture for virtual characters. In: Proceedings of the 3rd International Conference
on Virtual Storytelling. Berlin, Germany: Springer Verlag; 2005 Presented at: 3rd International Conference on Virtual
Storytelling; November 30-December 2, 2005; Strasbourg, France p. 63-72. [doi: 10.1007/11590361_7]

11. Morie E, Chance K, Haynes K, Rajpurohit D. Embodied conversational agent avatars in virtual worlds: Making today's
immersive environments more responsive to participants. In: Hingston P, editor. Believable Bots: Can Computers Play
Like People?. Berlin, Germany: Springer-Verlag; 2012:99-118.

12. Herrera A, Herrera L, Velandia Y. HVUAN: A rapid-development framework for Spanish-speaking virtual humans. In:
Proceedings of the International Conference on Practical Applications of Agents and Multi-Agent Systems. 2018 Presented
at: International Conference on Practical Applications of Agents and Multi-Agent Systems; June 20–22, 2018; Toledo,
Spain p. 318-321. [doi: 10.1007/978-3-319-94580-4_29]

13. Gansner ER, North SC. An open graph visualization system and its applications to software engineering. Softw Pract Exp
2000 Sep;30(11):1203-1233. [doi: 10.1002/1097-024x(200009)30:11<1203::aid-spe338>3.0.co;2-n]

14. Levenshtein V. Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics Doklady
1966;10(8):707-710.

15. Metzener D, Ratcliff J. Pattern matching: The gestalt approach. Dr. Dobb's Journal of Software Tools 1988 Jan;13(7):46-47,
59-51, 68-72.

16. Yujian L, Bo L. A normalized Levenshtein distance metric. IEEE Trans Pattern Anal Mach Intell 2007 Jun;29(6):1091-1095.
[doi: 10.1109/tpami.2007.1078]

17. Damerau FJ. A technique for computer detection and correction of spelling errors. Commun ACM 1964;7(3):171-176.
[doi: 10.1145/363958.363994]

18. Winkler WE. Proceedings of the Survey Research Methods Section. Washington, DC: American Statistical Association;
1990. String comparator metrics and enhanced decision rules in the Fellegi-Sunter model of record linkage URL: https:/
/www.researchgate.net/profile/William_Winkler/publication/
243772975_String_Comparator_Metrics_and_Enhanced_Decision_Rules_in_the_Fellegi-Sunter_Model_of_Record_Linkage/
links/5522cd090cf2f9c1305447d9/
String-Comparator-Metrics-and-Enhanced-Decision-Rules-in-the-Fellegi-Sunter-Model-of-Record-Linkage.pdf [accessed
2020-01-17]

19. Guimares I, Grossinho A, Magalhes S, Cavaco S. Robust phoneme recognition for a speech therapy environment. In:
Proceedings of the IEEE International Conference on Serious Games and Applications for Health. 2016 Presented at: IEEE
International Conference on Serious Games and Applications for Health; May 11-13, 2016; Orlando, FL. [doi:
10.1109/segah.2016.7586268]

20. Ege P, Cagatay M, Tokdemir G, Cagiltay N. A serious game for speech disorder children therapy. In: Proceedings of the
7th International Symposium on Health Informatics and Bioinformatics, HIBIT. 2012 Presented at: 7th International
Symposium on Health Informatics and Bioinformatics, HIBIT; April 19-22, 2012; Kapadokya, Nev ehir, Turkey p. 18-23.
[doi: 10.1109/hibit.2012.6209036]

21. Sherwin H, McKeown M, Evans M, Bhattacharyya O. The waiting room "wait": From annoyance to opportunity. Can Fam
Physician 2013 May;59(5):479-481 [FREE Full text] [Medline: 23673581]

Abbreviations
API:  application programming interface
VCC:  virtual conversational character

Edited by G Eysenbach; submitted 03.07.19; peer-reviewed by P Stourac, A de Gloria, S Sarbadhikari; comments to author 03.10.19;
revised version received 13.10.19; accepted 16.12.19; published 27.02.20

Please cite as:
García-Carbajal S, Pipa-Muniz M, Múgica JL
Using String Metrics to Improve the Design of Virtual Conversational Characters: Behavior Simulator Development Study
JMIR Serious Games 2020;8(1):e15349
URL: http://games.jmir.org/2020/1/e15349/
doi: 10.2196/15349
PMID:

JMIR Serious Games 2020 | vol. 8 | iss. 1 | e15349 | p. 12http://games.jmir.org/2020/1/e15349/
(page number not for citation purposes)

García-Carbajal et alJMIR SERIOUS GAMES

XSL•FO
RenderX

https://www.gamasutra.com/view/feature/130663/gdc_2005_proceeding_handling_.php
https://www.gamasutra.com/view/feature/130663/gdc_2005_proceeding_handling_.php
http://dx.doi.org/10.1007/11590361_7
http://dx.doi.org/10.1007/978-3-319-94580-4_29
http://dx.doi.org/10.1002/1097-024x(200009)30:11<1203::aid-spe338>3.0.co;2-n
http://dx.doi.org/10.1109/tpami.2007.1078
http://dx.doi.org/10.1145/363958.363994
https://www.researchgate.net/profile/William_Winkler/publication/243772975_String_Comparator_Metrics_and_Enhanced_Decision_Rules_in_the_Fellegi-Sunter_Model_of_Record_Linkage/links/5522cd090cf2f9c1305447d9/String-Comparator-Metrics-and-Enhanced-Decision-Rules-in-the-Fellegi-Sunter-Model-of-Record-Linkage.pdf
https://www.researchgate.net/profile/William_Winkler/publication/243772975_String_Comparator_Metrics_and_Enhanced_Decision_Rules_in_the_Fellegi-Sunter_Model_of_Record_Linkage/links/5522cd090cf2f9c1305447d9/String-Comparator-Metrics-and-Enhanced-Decision-Rules-in-the-Fellegi-Sunter-Model-of-Record-Linkage.pdf
https://www.researchgate.net/profile/William_Winkler/publication/243772975_String_Comparator_Metrics_and_Enhanced_Decision_Rules_in_the_Fellegi-Sunter_Model_of_Record_Linkage/links/5522cd090cf2f9c1305447d9/String-Comparator-Metrics-and-Enhanced-Decision-Rules-in-the-Fellegi-Sunter-Model-of-Record-Linkage.pdf
https://www.researchgate.net/profile/William_Winkler/publication/243772975_String_Comparator_Metrics_and_Enhanced_Decision_Rules_in_the_Fellegi-Sunter_Model_of_Record_Linkage/links/5522cd090cf2f9c1305447d9/String-Comparator-Metrics-and-Enhanced-Decision-Rules-in-the-Fellegi-Sunter-Model-of-Record-Linkage.pdf
https://www.researchgate.net/profile/William_Winkler/publication/243772975_String_Comparator_Metrics_and_Enhanced_Decision_Rules_in_the_Fellegi-Sunter_Model_of_Record_Linkage/links/5522cd090cf2f9c1305447d9/String-Comparator-Metrics-and-Enhanced-Decision-Rules-in-the-Fellegi-Sunter-Model-of-Record-Linkage.pdf
http://dx.doi.org/10.1109/segah.2016.7586268
http://dx.doi.org/10.1109/hibit.2012.6209036
http://www.cfp.ca/cgi/pmidlookup?view=long&pmid=23673581
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23673581&dopt=Abstract
http://games.jmir.org/2020/1/e15349/
http://dx.doi.org/10.2196/15349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


©Santiago García García-Carbajal, María Pipa-Muniz, Jose Luis Múgica. Originally published in JMIR Serious Games
(http://games.jmir.org), 27.02.2020. This is an open-access article distributed under the terms of the Creative Commons Attribution
License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work, first published in JMIR Serious Games, is properly cited. The complete bibliographic
information, a link to the original publication on http://games.jmir.org, as well as this copyright and license information must be
included.

JMIR Serious Games 2020 | vol. 8 | iss. 1 | e15349 | p. 13http://games.jmir.org/2020/1/e15349/
(page number not for citation purposes)

García-Carbajal et alJMIR SERIOUS GAMES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

