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Abstract: The classical thermal cycle in a Hot Dip Galvanizing (HDG) line has four steps: heating,
soaking, cooling, and aging. The furnace of an ArcelorMittal HDG line was revamped to increase
its heating capacity. This new configuration without the soaking step led to the redefinition of the
thermal cycles for all the steel grades, especially for High Strength Low Alloyed (HSLA) steels, where
it was necessary to define a new control parameter based on time and temperature. This paper
presents the work done to improve the control of the mechanical properties of HSLA steels in the
HDG line. Four different types of numerical models (linear and polynomial regressions, artificial
neural networks, and Multivariate Adaptive Regression Splines), are applied to predict the yield
strength and the tensile strength of individual coils. It is concluded that the introduction of the
time–temperature parameter improves the accuracy of the predictions over 10% in most of the cases.
An additional improvement is obtained with the use of the process values corresponding to the
sampling area instead of the coil average ones. The use of these models makes it possible, if necessary,
to adjust individually the presets of the coils before processing them in the galvanizing line and
reduce the scattering of the mechanical properties.

Keywords: hot-dip galvanizing; continuous annealing; HSLA steel; data-driven modeling; prediction
of mechanical properties

1. Introduction

The mechanical properties of a coated coil are obtained after passing the material along several
stages. The initial one is in the Steel Mill (SM), where the chemical composition of the liquid steel
is adjusted and then solidified in the continuous caster. The next step is the Hot Strip Mill (HSM),
where the slab, a steel ingot of rectangular shape, is rolled and transformed into a coil. In the Pickling
Line (PL), the scale formed in the surface of the coil during the hot rolling is removed by immersion
in tanks with acid. The pickled coil is then rolled again in the Cold Rolling Mill (CRM) to adjust
the thickness to the target one. The last stage is the coating process; it is carried out in the Hot Dip
Galvanizing line (HDG), where before the coating process, it is necessary to anneal the steel to recover
the microstructure and grain size. These are key factors in the properties of the coil, and which were
affected by the rolling process in the Cold Rolling Mill.

Figure 1 shows the layout of the annealing furnace and the traditional thermal cycle (Figure 1a),
where the peak temperature is achieved at point P2. The revamping of the annealing furnace of a
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galvanizing line meant the redesign of the thermal cycles for the product mix produced. Figure 1b
shows the new cycle without soaking, where the peak temperature is achieved at point P3. In the case
of the High Strength Low Alloyed (HSLA) steels, it was necessary to introduce a new control parameter
to ensure the mechanical properties, called the time–temperature [1], and its value corresponds to the
area comprised in between the thermal profile and the recrystallization temperature, Trec with a value
of 725 ◦C, as is shown in Figure 1c.Metals 2020, 10, x FOR PEER REVIEW 3 of 17 
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number of lab tests has been addressed previously [3]. Other researches have combined process 
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Figure 1. Layout of the annealing furnace, and thermal profiles of the strip with soaking (a) and
without soaking (b). The value of the temperature-time T-t parameter is the area indicated by the
shaded area (T-t).

The definition of the cycles also changed from a classical cycle with a target temperature plus-minus
a given margin. Whatever the speed, it is passed to a speed given by a combination of target temperature
and strip thickness [1]. For example, a classical cycle can point to 815 ± 15 ◦C, with an annealing time
between 2 to 5 min, depending on the strip thickness. The speed range, and so the annealing time, is
calculated with the following equations:

Smin,i =
3∑
1

a jth3− jT2
i +

3∑
1

b jth3− jTi +
3∑
1

c jth3− j (1)
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Smax,i =
3∑
1

d jth3− jT2
i +

3∑
1

e jth3− jTi +
3∑
1

f jth3− j (2)

where th is the thickness of the strip, Smin,i and Smax,i are the minimum and maximum speeds allowed
for a target temperature Ti, and the coefficients aj to cj and dj to fj are calculated from the upper and
lower limits of the time–temperature parameter, respectively. Therefore, for the same steel grade, the
target temperature and annealing time depends on the strip thickness.

This parameter is useful for the online assessment of the coil, but the limits are calculated for the
whole steel grade, which includes all the coils with the same chemical composition without considering
the parameters used in upstream processes. So, if the more accurate prediction of the mechanical
properties of a specific coil is desired, further development is needed.

It is possible to develop a metallurgical model based on laboratory tests, linking the mechanical
properties with the microstructure obtained for a given composition and manufacturing parameters of
the sample [2], but it is hard to reproduce the complete process (hot rolling, cold rolling, and annealing)
in the lab. Working with individual industrial samples adds uncertainty about the exact values of
the process parameters because of dimensional changes produced by the processes themselves or
the reparation of the coils, which implies removing parts of the coils between the mills. This makes
it difficult, in some cases, to match the sampling area with the corresponding value of the process
parameter along with all the mills.

When the effect of several different processes is to be studied, the use of data-driven models seems
to be a good option. The correct selection of the variables and the quality of the data will impact on the
reliability of these models. In this study, the results of the prediction of the yield strength and ultimate
tensile strength of the coils using different types of data models are compared. The modeling of the
effect of process parameters on the mechanical properties using neural networks to reduce the number
of lab tests has been addressed previously [3]. Other researches have combined process parameters
and initial microstructure to analyze the effect of each one on the sensitivity of the model and for
modeling the influence of alloying elements on the final properties [4,5].

Studies about the effect of modifying the architecture of an artificial neural network to reduce the
number of epochs required to reach the targeted error and comparisons of the performance of neural
networks versus the Multivariate Adaptive Regression Splines (MARS) can also be found [6,7]. There
are also examples of the combination of neural networks and computer simulations with computational
fluid dynamics software to predict the mechanical properties and microstructure [8], and recently neural
networks with genetic algorithms for designing dual-phase steels with the improved performance [9].
Combining physical models with neural networks has proven to be an effective method for improving
the accuracy of the prediction of hot deformation behavior [10].

In light of previous research, the trend is to combine different tools and build more complex
models to improve the accuracy of the predictions. In some cases, this may not be necessary if
additional process parameters can be defined. The aim of this work is to evaluate the improvement in
the predictions of the mechanical properties of the HSLA steels in an annealing furnace without the
soaking phase when including the time–temperature parameter in the different studied models.

The final objective is to improve the prediction of the yield strength (YS) and ultimate tensile
strength (UTS) of individual coils using data-driven models. The final values of the tensile strength and
ultimate yield strength of the coil at the exit of a galvanizing line depend on the chemical composition
of the coil and the process parameters used in the line and in the upstream mills [11].

The rest of the paper is organized as follows; first the applied methodology and the selection of
parameters are explained. Then, the composition of the datasets used and the four types of models are
presented. Finally, the results of the predictions for different models are analyzed, and the practical
application of this study is explained.
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2. Materials and Methods

This work was addressed using the Cross-Industry Standard Process for Data Mining (CRISP-DM)
methodology [12], which is used for carrying out data mining projects independent of both the industry
sector and the technology used. This methodology is based in six phases: the initial stages of this
method imply the business understanding, the data understanding, and the data preparation. The next
phases include the modeling itself, the evaluation of the results obtained, and the deployment of the
model. In the present study, the results of four different models will be compared: linear regression,
polynomial regression, artificial neural networks, and MARS.

Fifty-two process parameters from Steel Mill, Hot Strip Mill, Pickling Line, Cold Rolling Mill, and
Hot Dip Galvanizing line were collected and organized from the different databases. These parameters
included the chemical composition of the coils and the main process parameters of each installation
(processing speeds, temperatures, forces, tensions, reduction rate). Figure 2 shows the different stages
of the process and where the variables used in the models are obtained. The data correspond to the
period 2018–2019. The data were filtered to select the coils belonging to HSLA260 and HSLA300 grades
and all registers with zeros in the YS, UTS, or any of the process parameters were removed to obtain
the final datasets.Metals 2020, 10, x FOR PEER REVIEW 5 of 17 
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Figure 2. Stages of the process.

The Self-Organized Maps (SOM) technique [13] was used to reduce the initial number of input
variables, comparing the similarities of the resulting maps for each variable with the yield strength
map because the observed scattering in its measurements was higher than the scattering on the
measurements of the ultimate tensile strength [1].

Figure 3 shows the output of the SOM analysis for the initial set of values. The SOM is a type of
neural network which creates a two-dimensional representation of a multidimensional space, where
more neurons point to regions with high training sample concentration and fewer where the samples
are scarce. The discarded variables are shown in Table 1 and the final variables used for building
the models are in Table 2; a reduction in the input parameters from 52 to 14 was achieved. This
selection was based on the similarity of the map of each parameter with the map of the yield strength
(Y1 in Figure 3). The U-matrix represents the distance between the neurons to assess the topological
correctness of the SOM and to identify clusters [14].
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Figure 3. Output of the Self-Organized Maps (SOM) analysis for the initial set of parameters.

Most of the variables of the list have a clear relation with the mechanical properties: the
chemical composition plays obviously an important role as the formation of stable carbides enhances
the strength [15], and it has also been reported that the presence of titanium can interfere with
the precipitation of vanadium nitrides and carbonitrides [16,17]. The effect of decreasing the
coiling temperature in Nb-alloyed HSLA was pointed is some papers [18,19]. It is also in literature
that the higher the cold reduction of the material before annealing, the lower the recrystallization
temperature [20]. The effect on mechanical properties of skin-pass parameters [21], or annealing time
and temperature [22–24] were also proved.

Including width and thickness parameters is interesting for classification purposes, and additional
process parameters from the HDG line as speed or end cooling temperature were also included because
in the SOM there are some ranges of them (corresponding to areas of the map of these parameters),
where similarity with the map of the yield strength can be established.

The next step of the methodology is modeling. Four different types of modeling techniques are
used for the predictors: multiple linear regression, multiple polynomial regression, artificial neural
network (ANN), and Multivariate Adaptive Regression Splines (MARS). The multiple linear regression
has advantages such as its ease and speed of computation, but on the other hand, they make a strong
assumption about linearity. Multiple polynomial regressions are an extension of linear regressions
to capture nonlinear relationships by adding additional predictors obtained by raising each of the
original predictors to a power. An artificial neural network ANN contains layers of interconnected
nodes, where each node or perceptron is similar to a multiple linear regression [25]. The perceptron
feeds the signal produced by a multiple linear regression into an activation function that may be
nonlinear. The Multivariate Adaptive Regression Splines (MARS) provide a convenient approach to
capture the nonlinearity aspect of polynomial regression by assessing cut points (knots) similar to step
functions [26]. The procedure assesses each data point for each predictor as a knot and creates a linear
regression model with the candidate features.

In the present study, the four types of models were applied to two different families of HSLA
steels with the characteristics shown in Table 3.
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Table 1. List of variables discarded by means of the SOM analysis.

Name Description Type of Variable Origin

Z1 Boron content Chemical SM
Z2 Calcium content Chemical SM
Z3 Cobalt content Chemical SM
Z4 Chrome content Chemical SM
Z5 Copper content Chemical SM
Z6 Molybdenum content Chemical SM
Z7 Nitrogen content Chemical SM
Z8 Nickel content Chemical SM
Z9 Phosphorus content Chemical SM
Z10 Lead content Chemical SM
Z11 Sulfur content Chemical SM
Z12 Silicon content Chemical SM
Z13 Tin content Chemical SM
Z14 Vanadium content Chemical SM
Z15 Maximum speed Process Parameter HDG
Z16 Coiling tension Process Parameter CRM
Z17 Intermediate cooling temperature Process Parameter HSM
Z18 Deviation of skin pass force Process Parameter HDG
Z19 Width at hot rolling mill Process Parameter HSM
Z20 Cooling exit temperature Process Parameter HSM
Z21 Heating temperature Process Parameter HSM
Z22 Average elongation at skin pass Process Parameter HDG
Z23 Maximum elongation at skin pas Process Parameter HDG
Z24 Minimum elongation at skin pass Process Parameter HDG
Z25 Rolling entry temperature Process Parameter HSM
Z26 Deviation of cooling exit temperature Process Parameter HSM
Z27 Deviation at P3 Process Parameter HDG
Z28 Skin pass entry tension Process Parameter HDG
Z29 Skin pass exit tension Process Parameter HDG
Z30 Entry temperature at heating Process Parameter HDG
Z31 Temperature at slow cooling Process Parameter HDG
Z32 Deviation at P2 Process Parameter HDG
Z33 In/Out skin tension difference Process Parameter HDG
Z34 % of austenite calculated Process Parameter HDG
Z35 Cooling ratio Process Parameter HDG
Z36 Deviation T-t Process Parameter HDG
Z37 Maximum T-t Process Parameter HDG
Z38 Minimum T-t Process Parameter HDG

The raw data correspond to the period from July 2018 to July 2019. The initial dataset is composed
of the coils produced using the denomination HSLA 260 and HSLA 300. Registers of the database with
errors or zeros in any of the parameters were removed.

Table 4 shows the composition of the dataset used: 1A is composed of the average values of
the input parameters of the coils; the dataset 2A changes the average values in the HDG by those
associated with the tail of the coil (sampling area). In both datasets, a B version was built by adding
the value of the time–temperature parameter to evaluate the improvement in the results. The number
of samples used is 725 in the case of HSLA 260 and 1176 in the case of HSLA 300.
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Table 2. List of variables used in the models.

Name Description Type of Variable Origin Model

X1 Carbon content Chemical SM Input
X2 Manganese content Chemical SM Input
X3 Niobium content Chemical SM Input
X4 Titanium content Chemical SM Input
X5 Coiling temperature Process Parameter HSM Input
X6 Coil width Dimensional PL Input
X7 Coil thickness Dimensional CRM Input
X8 Cold rolling reduction Process Parameter CRM Input
X9 Line speed Process Parameter HDG Input
X10 Intermediate temperature Process Parameter HDG Input
X11 Coil target temperature Process Parameter HDG Input
X12 End cooling temperature Process Parameter HDG Input
X13 Time–temperature parameter Process Parameter HDG Input
X14 Skin pass force Process Parameter HDG Input
Y1 Yield strength Measurement Lab Output
Y2 Ultimate tensile strength Measurement Lab Output

Table 3. Composition (% in mass) and mechanical properties of steel grades studied.

Grade C Max Mn Max Si Max YS (MPa) UTS (MPa)

HSLA 260 0.080 0.50 0.04 260–320 350–410
HSLA 300 0.080 0.60 0.04 300–360 390–450

Table 4. Composition of the datasets used in the study.

Parameters
Dataset Composition

1A 1B 2A 2B

X1, X2, X3, X4, X5, X6, X7, X8 Average Average Average Average
X9, X10, X11, X12, X14 Average Average Tail Tail

X13 No Yes No Yes

2.1. Multiple Linear Regression

Multiple linear regression is a statistical technique that uses several explanatory variables to
predict the outcome of a response variable. This method assumes a linear relationship between the
dependent variables and the independent variables, and that the independent variables are not too
highly correlated with each other.

In this case, the predictor was developed with the open software KNIME Analytics Platform v4.1
(KNIME AG. Zurich, Switzerland) [27], and the diagram block is shown in Figure 4. For the validation,
the X-Partitioner block is used, which divides the total set of samples in ten groups, taking eight for
creating the model and two for testing. This process is repeated ten times, taking the groups randomly
to avoid the overestimation of the error done when fixed learning and test groups are taken.

The regressions have the following expression:

Y1 =
14∑
1

(AiXi) + CLRYS (3)

Y2 =
14∑
1

(BiXi) + CLRUTS (4)
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where Y1 is the yield strength, Y2 is the ultimate tensile strength, Ai and Bi are the coefficients calculated,
Xi the independent variables, and CLRYS and CLRUTS constants.
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2.2. Multiple Polynomial Regression

The predictor was also developed with the open software KNIME, and the block diagram is the
same as in Figure 4, only changing the regression block. The partitioner block was also configured
with ten cross-validations and random sampling, as in the previous case. The absolute mean error
(MAE) was the indicator taken for the selection of the regression degree, being n the number of samples
available for each steel grade.

MAEYS =

∑n
i=1|Y1 −X15|

n
; MAEUTS =

∑n
i=1|Y2 −X16|

n
(5)

The regression was set as the 4th degree because a higher degree made the error in the YS raise, as
is shown in Table 5.

Table 5. Study of the error (MPa) with different polynomial degrees.

Steel Grade

YS UTS

Poly. Grade Poly. Grade

3 4 5 3 4 5

HSLA 260 7.25 7.3 14.15 5.72 5.22 4.88
HSLA 300 10.20 9.83 10.12 7.66 7.15 7.02

The polynomial regression has the following expression:

Y1 =
14∑
1

(
D4iX4

i + D3iX3
i + D2iX2

i + D1iXi
)
+ CPRYS (6)

Y2 =
14∑
1

(
E4iX4

i + E3iX3
i + E2iX2

i + E1iXi
)
+ CPRUTS (7)

where Dxi and Exi are the calculated coefficients, and CPRYS and CPRUTS are constants.

2.3. Artificial Neural Network

A multilayer perceptron (MLP) is a group of perceptrons, organized in several layers, that can
accurately answer complex questions. Each perceptron of the first layer (Figure 5 on the left) sends
signals to all the perceptrons of the second layer, and so on. An MLP contains an input layer, at least
one hidden layer, and an output layer.
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The neural network was implemented with the software KNIME. It has one layer because the
tests with more layers did not improve the results. The number of perceptrons was also tested, with
the results being quite homogeneous but with slightly lower errors when using six neurons, as shown
in Table 6. The MAE becomes stable around one hundred iterations, as can be seen in Figure 6.

Table 6. Study of the error (MPa) with a different number of perceptrons.

Steel Grade
Dataset 1A Dataset 1B

Number of Neurons Number of Neurons

4 6 8 4 6 8

HSLA 260 6.11 6.07 6.24 6.31 6.17 6.28
HSLA 300 7.50 7.44 7.66 8.08 8.11 8.14
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2.4. Multivariate Adaptive Regression Splines

The predictor was developed using the commercial software, Salford Predictive Modeler 8 (Salford
Systems San Diego, CA, USA) [28]. The configuration parameters were a maximum of 15 basis
functions, 1 interaction, and 3 degrees of freedom for the knot optimization. The testing was a
10-fold cross-validation.

Y1 =
14∑
1

(Fimax(0, Xi −Gi)) + CMARSYS (8)

Y2 =
14∑
1

(Himax(0, Xi − Ji)) + CMARSUTS (9)

where Fi and Hi are the coefficients calculated, Gi and Ji are the knots, and CMARSYS and CMARSUTS
are constants.

3. Results

As YS and UTS are predicted independently, the total number of developed models was sixty-four
(2 mechanical properties × 4 types of models × 2 steel families × 2 data sets × 2 versions of the dataset).
Figure 7 illustrates the results obtained for the test dataset 2B.

Tables 7 and 8 show the results of the MAE obtained for each predictor, both datasets and each
steel grade using the different models. The error reduction column shows the improvement obtained
using the B version of both datasets for each model, the minimum error values for each model, and the
steel grade marked in bold.

Error reduction =
MAEdataset A −MAEdataset B

MAEdataset A
(10)

Table 7. Results of the different models and datasets for the prediction of yield strength YS. The minimum
error values for each model and steel grade are marked in bold.

Model Type Steel Grade
MAE Dataset 1 (MPa) Error

Reduction
MAE Dataset 2 (MPa) Error

ReductionA B A B

Linear
Regression

HSLA 260 10.39 8.70 16.3% 9.21 7.48 18.7%

HSLA 300 10.88 10.44 4.1% 10.88 9.35 14.1%

Polynomial
Regression

HSLA 260 9.51 7.30 23.3% 10.59 8.71 17.7%

HSLA 300 10.92 9.83 10.0% 9.90 9.17 7.4%

Neural Network
HSLA 260 8.59 7.42 13.6% 10.33 9.27 10.3%

HSLA 300 9.55 9.19 3.8% 10.36 8.65 16.5%

Multivariate
Regression

HSLA 260 8.96 8.95 0.1% 8.94 8.65 3.3%

HSLA 300 10.43 10.35 0.8% 10.14 9.92 2.2%

A reduction in the error when the temperature-time T-t parameter is introduced can be observed
by comparison of the errors in columns A and B of Table 8. This is especially the case for the regression
models. On the other hand, if the same version of both datasets is compared, it is clear that the use of
the data at the tail of the coil also has an impact on the error reduction.
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Table 8. Results of the different models and datasets for the prediction of ultimate tensile strength UTS.
The minimum error values for each model and steel grade are marked in bold.

Model Type Steel Grade
MAE Dataset 1 (MPa) Error

Reduction
MAE Dataset 2 (MPa) Error

ReductionA B A B

Linear
Regression

HSLA 260 5.81 5.34 8.0% 5.04 5.13 −1.7%

HSLA 300 8.93 7.45 16.6% 9.72 7.63 21.5%

Polynomial
Regression

HSLA 260 5.75 5.22 9.3% 5.26 5.07 3.6%

HSLA 300 7.93 7.15 9.8% 9.23 7.22 21.7%

Neural Network
HSLA 260 6.17 6.07 1.6% 5.87 5.30 9.7%

HSLA 300 8.11 7.44 8.3% 6.97 6.62 5.0%

Multivariate
Regression

HSLA 260 5.41 5.31 1.8% 5.22 5.17 0.9%

HSLA 300 8.11 8.06 0.6% 7.70 7.56 1.8%

4. Discussion

It is well known that the value of the mechanical properties of a coil depends on several factors,
from the chemical composition to the effect on the final microstructure of the process parameter along
the different production stages.

Traditionally, the evaluation of the quality of the coils at the exit of the HDG depends on the lab
tests done in a sample taken from the coil head or tail. This method has the main drawback. As the
galvanizing is a continuous process where the tail of one coil is welded to the head of next one, these
parts of the coils could be affected by the transitions due to changes in the temperatures, speeds, etc.
making it necessary to discard part of the coil to obtain a representative sample of the coil for the
analysis. Since the characterization of all the coils can create a bottleneck in the quality evaluation
process, sensors and predictive models have been developed to help with this issue. As highlighted
in the introduction, these models include simple regressions to more complex solutions combining
different techniques.

In previous work, a new quality control parameter was defined for HSLA steels processed without
soaking—the time–temperature parameter [1]. It was calculated for each grade based on the results of
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the lab tests and without considering the effect of the upstream processes. This method has proven to be
completely valid and has been working in production for years, but if a more accurate prediction of the
mechanical properties is required, a more detailed analysis should be done. In this study, the accuracies
of different types of models to predict the YS and UTS have been evaluated. Additionally, the effect on
the accuracy of the models when including the time–temperature parameter has been assessed.

The results of the tested models are satisfactory since the errors are below 11 MPa, which is aligned
with the obtained in other studies [29]. It can also be observed that the MAE is quite similar using
the four different models; the reduced number of samples could be a drawback for improving the
accuracy of some of these models. It is also observed that the trend of obtaining errors in the prediction
of the UTS in the case of HSLA260 is lower than in case of HSL300. It seems that the difference is more
related to the stability of this property in this grade than to the number of samples, because the errors
in the prediction of the YS are similar for both steel grades.

The linear regression shows a significant improvement with the addition of the time–temperature
parameter of up to 20%. By definition, it assumes a linear relationship between the predictors and the
target variable, but the addition of the time–temperature parameter, which is an interaction parameter
between speed and temperature, helps to improve the accuracy by reducing the error up to 18% in one
of the datasets. The polynomial regression shows a similar performance than the linear, with an error
reduction of 23% in one of the datasets with the use of the time–temperature parameter.

A better performance of the neural network and MARS models could be expected because they
should model with better accuracy the complex relations between chemistry and the effect of the
process parameters, but the lack of a dataset large enough could be the reason for the similarity of their
results with those obtained with regressions. The use of the time–temperature parameter achieves a
reduction of up to 16% in the case of the neural networks; meanwhile, the maximum improvement is
only 3% in the case of the MARS.

Therefore, in an industrial environment where the size of the dataset could be limited, it makes
more sense to focus the efforts in defining parameters that can provide additional information in order
to improve the results of the predictions. It has also been proven that the accuracy slightly increases by
using the process data in the sampling area, so that could be interesting to improve the traceability of
the samples in the upstream processes to get better results.

The integration of these prediction models in the production requires the architecture shown
in Figure 8—the input parameters related to the upstream installations (chemical composition, hot
and cold-rolling parameters, dimensional parameters) are fixed, but the parameters related to the
galvanizing process are preset. As the developed models estimate the values of YS and UTS, it is
possible to assess if the presets are optimal to reduce the scattering of the mechanical properties and
consider modifying any of the process values (like speed, temperature, skin-pass parameters) if a
quality risk is detected.
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Since not all of these parameters are completely independent in the sense that the own limitations
of the furnace (heating capacity and the maximum speed of the line for example) or the interrelation
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between them (changes in the temperature or speed will modify the value of the time–temperature
parameter), it is necessary to include in the architecture an element which provides the required
consistency. In this case, the HSLA models are coupled with a furnace model developed in-house [30].
The aim is to avoid inconsistencies in the results, and in case of modifying any parameter of the furnace,
the rest of them are also recalculated and used in the calculations of the HSLA model.

As both, the upstream process values and the presets foreseen for the HDG line, are known in
advance, it is possible to make an evaluation of the full program of coils in advance in a server and,
in the case that it is needed, modify the presets to be sent to the control of the line. As the calculation
time is reduced, if some of the proposed changes create abrupt transitions between coils, the line staff

can decide to either reorganize the program or remove a coil from it.

5. Conclusions

The values of YS and UTS for HSLA coils produced without the soaking phase in the HDG line
have been modeled using the chemical composition of the steel and the main process parameters from
hot rolling to downstream. The results of four types of data-driven models have been compared for
two different steel grades. The improvement of the results was evaluated using the average process
values versus values in the sampling area and the effect of the addition of a new control parameter
defined for the HDG line.

The overall conclusion is that for both grades, the simpler solution as a linear or polynomial
regression can be used with good results. It was also confirmed that adding the time–temperature
parameter helps to reduce the error in all cases, being obtained improvements over 10% in most of the
cases. These models can be used to calculate, in advance, the values of the YS and UTS for each coil,
and if coupled with a furnace model, it is possible to modify the presets in the HDG line and reduce
the number of rejected coils.
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Nomenclature

X1 Carbon content (% in mass)
X2 Manganese content (% in mass)
X3 Niobium content (% in mass)
X4 Titanium content (% in mass)
X5 Coiling temperature at the Hot Strip Mill (◦C)
X6 Strip width at the Pickling Line (mm)
X7 Strip thickness at the Cold Rolling Mill (mm)
X8 Reduction ratio at the Cold Rolling Mill (%)
X9 Line speed at the Hot Dip Galvanizing line (m/s)
X10 Intermediate temperature at the Hot Dip Galvanizing line (◦C)
X11 Coil target temperature at the Hot Dip Galvanizing line (◦C)
X12 End cooling temperature at the Hot Dip Galvanizing line (◦C)
X13 Time–temperature parameter
X14 Skin-pass force (kg)
X15 Measured Yield Strength (MPa)
X16 Measured Ultimate Tensile Strength (MPa)
Y1 Calculated Yield Strength (MPa)
Y2 Calculated Ultimate Tensile Strength (MPa)
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