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Abstract 

Predictive maintenance of industrial equipment has become a critical aspect in the Industry 4.0. This paper shows the design, implementation and 
testing of an Industrial Internet of Things (IIoT) system designed to monitor electric motors in real-time. This system will be the basis for detection 
of operating anomalies and a future predictive maintenance system. The system has been designed using low-cost hardware components (wireless 
multi-sensor modules and single-board computer as gateway), open-source software and a free version of an IoT analytics service in the cloud, 
where all the relevant information is stored. The module gathers real-time data about the vibrations and temperature of an electric motor. Vibration 
analysis in the temporal and frequency domains was carried out. Furthermore, analysis in the frequency domain was carried out both in the 
module and in the gateway to compare their capabilities. This approach is also the springboard to take advantage of edge and fog computing as a 
complement to cloud computing. The prototype has been tested in a laboratory and in an industrial dairy plant. 
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1. Introduction 

Equipment maintenance is a critical aspect in industry. 
Traditional reactive maintenance only carries out maintenance 
activities after failure detection. Widespread preventive mainte-
nance implies periodic maintenance activities based on 
previous experience about the periodicity of failure. Finally, 
predictive maintenance has arisen as an ideal approach for 
saving costs and preventing equipment failure in industry. In 
the Industry 4.0, failures are predicted based on real-time 
information received from sensors in industrial equipment [1]. 

In this paper, we present a prototype of a real-time 
monitoring system based on wireless sensors. It will be used for 
detection of operating anomalies and predictive maintenance of 
electrical motors. The rest of the paper is organized as follows. 
Previous works in the research context are outlined in section 
2. The proposed monitoring system is presented in section 3. 
Section 4 details the experimental plan carried out. Results are 
discussed in section 5, and finally, section 6 presents 
conclusions and future work. 

2. Background 

Real-time monitoring is one of the bases of the Industry 4.0 
[2], and many systems have been developed to monitor 
currents, pressures, temperatures and other variables in 
industrial plants. With the advances in micro-electromechanical 
systems, it is possible to deploy myriads of lowcost sensors 
capable of sensing, computing and communicating wirelessly 
to gather information for environment and equipment 
monitoring [1]. These sensors are connected using wireless 
sensor networks. They send data to the cloud for storage or 
further processing using IoT protocols and technologies [4]. 
Many of the public cloud service providers offer IoT services 
using standard proto-cols for real-time storage and extract 
analytics from the data. This makes it possible to use historical 
data to predict future failures of equipment. 

On occasions, the amount of data to be sent to the cloud or 
the latency of sending data to the cloud and back to the 
sensors/actuators is excessive. In these cases, moving part of 
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the computation close to the sensors may alleviate the resources 
con-sumed in the network and the cloud. The fog computing 
paradigm promotes the use of resources of smart sensors and 
gateways interconnecting sensors in conjunction with the cloud 
resources [3]. Fog deployments require defining the topology 
for interconnecting sensors among them and with the gateways 
providing access to the cloud. Sensors usually generate data 
streams that can be pre-processed, aggregated or filtered before 
reaching the cloud [5]. Similarly, some of the data analytics 
may be carried out by gateways. Thus, the organization of the 
fog is critical for balancing computing load and network 
resource consumption in order to save public cloud costs and 
reduce latency. 

Detection of operation anomalies is the kind of predictive 
maintenance that can be carried out even when no data from 
previous failures in the equipment is available [9]. When 
available, machine-learning models based on binary 
classification are used to predict failures in the near future in 
order to plan repairs or substitution of equipment [8]. The 
prediction models are trained and tested using the historical 
labelled data with information about previous failures in the 
equipment. The amount of historical data can be huge, so real-
time storage in the cloud is an effective solution, giving rise to 
cloud based predictive maintenance [10]. 

Induction electrical motors are major actuators in most 
industrial factories, so cloud based predictive maintenance of 
electric motors is of special importance. This state is supported 
by the amount of research work on this field in recent years [6].  

Mechanical failures produce vibrations in electrical motors 
with different amplitude and frequency [11]. Thus, solutions 
monitoring the health of motors mainly focus on measuring 
vibrations and temperature.  

An IoT solution for the monitoring of industrial machinery 
in an electric plant is presented in [12]. The authors use an IoT 
protocol stack composed of 802.15.4, 6LoWPAN, RPL and 
CoAP to monitor temperature and vibrations of several pumps. 
However, they do not analyze vibrations in the frequency 
domain nor include any cloud processing.  

There are also solutions using the cloud as storage for further 
processing of the monitored temperature and/or vibration 
signals of inductive motors [13, 14]. The main drawback of this 
approach is data is rarely filtered or pre-processed taking ad-
vantage of intermediate systems between the sensors and the 
cloud. The authors in [20] propose sending raw data to a private 
cloud in order to prepare training and testing data sets to be sent 
to a machine-learning model in the public cloud.    

Finally, there are deployments using low-cost equipment to 
monitor vibrations in industrial equipment [15, 18, 19]. A 
framework for distributing computational demanding tasks 
across sensors, fog nodes and the cloud is presented in [16]. 
Gateways at the Fog layer perform computation and 
classification of vibration signals coming from sensors attached 
to motors. However, this solution does not analyze vibrations 
in the frequency domain. 

After this background revision, we can state that the IIoT 
prototype presented in this paper brings together low-cost 
sensors and gateways, vibration frequency analysis and fog 
computing to propose an innovative way towards predictive 
maintenance in the Industry 4.0.   

3. Monitoring system 

The following subsections present the architecture, 
components and software features of the monitoring system. 

3.1. System architecture 

As can be seen in Figure 1, the system architecture is 
composed of three layers in which the information can be 
processed. The first layer is the “Edge” layer, which is 
composed of all the IoT sensors. The second layer is the “Fog” 
layer, which is formed of the gateways. The last layer is the 
“Cloud”, where all the relevant data is stored. visualized and 
analyzed. 

All the layers have computing capacity. In the Edge layer, 
the filtering, aggregation and data transformation is carried out 
directly on the sensors. The Fog layer allows the gateways to 
collect data from multiple sensors using wireless 
communications (p.e. Bluetooth Low Energy, BLE) and 
continue processing them. Both the Edge and Fog layers help 
distribute the processing of the information between sensors 
and cloud, improving latency and reducing the amount of data 
to transfer to the cloud. 

3.2. System components 

The multi-sensor module used in the Edge layer is the low-
cost SensorTag CC2650 from Texas Instruments shown in 
Figure 2, which has an ARM Cortex-M3 processor, 128 KB of 
programmable flash memory and five integrated sensors, 
including movement and humidity sensors. The movement 
sensor is the MPU9250. It has an accelerometer, a 
magnetometer and a gyro, measuring vibrations with a capture 
frequency of 1 KHz. The humidity sensor is the HDC1000. It 
measures the relative humidity and also the temperature. The 
module support wireless communication with the Bluetooth 
Low Energy (BLE) protocol. The wireless nature of the module 
allows for a very fast and economical deployment in the 
industrial environment. 

Fig. 1. System architecture 
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The gateway used in the Fog layer is the low-cost single-

board computer Raspberry Pi 3 Model B+, also shown in 
Figure 2, which has 1 GB Ram, 1 HDMI port and 4 USB 2.0 
ports, as well as a CSI and a DSI port to connect a camera and 
a touchscreen. The Ethernet data rates up to 100 Mbps. It also 
allows WiFi, Bluetooth 4.2 and Bluetooth Low Energy (BLE). 
The CPU + GPU is the Broadcom BCM2837B0, Cortex A-53 
(ARMv8) 64-bit SoC @1.4GHz. 

 

Finally, the Cloud layer is implemented using a free version 
of ThingSpeak, an IoT analytics platform service that allows 
aggregation, visualization and analysis of live data streams in 
the cloud (see Figure 3). It provides instant visualizations of 
data posted by the system gateways and can also perform online 
data stream analysis and processing. ThingSpeak is often used 
for prototyping and proof of concept IoT systems that require 
analytics. 

3.3. System software 

The movement sensor returns the accelerations in time 
domain, but this does not give enough information about the 
vibrations of the electric motor. It is necessary to use the Fast 
Fourier Transformation (FFT) over the accelerations measured 
on the motor. The output of the FFT is the acceleration 
amplitude as a function of frequency. FFT has been computed 
in both multi-sensor module and gateway. With the module, the 
library used is CMSIS DSP software library, designed for use 
in Cortex-M processor based devices. The FFT compute using 
this library is done using an array of 256 continuous 
accelerations over time because no more accelerations could be 
stored in the internal memory of the module. With the gateway, 
the function used is FFT from the library Scipy, using an array 
of up to 4096 accelerations formed of 16 arrays of 256 

accelerations, which are continuous over time, covering the 
whole dynamic behavior of the motor. 

Multi-sensor modules and gateway are communicated with 
the BLE protocol, that is used to transmit small packets of data 
read by the sensors, while consuming less battery power than 
other protocols. The main drawback of this protocol is its 
communication range, because only about ten meters is what 
can be achieved between two BLE devices in indoor areas 
tipically. Finally, data is transferred from the gateway to the 
Cloud layer via HTTP calls to the ThingSpeak REST API. 

4. Experimental plan 

The IIoT prototype developed has been tested in two 
different scenarios. The first one involved a low power motor 
in laboratory with no workload. After performing this initial 
test, the prototype was installed in an industrial diary plant, 
where the monitored electric motors work with a real workload. 

4.1. Scenario 1: low power motor in laboratory 

The first scenario (see Figure 4) corresponds to a single-
phase asynchronous electric motor with a permanent condenser 
and a frequency of 1500 rpm. It has a power output of 0.25 kW 
and a voltage of 250 V/50 Hz. As indicated in Figure 5, this 
motor was bolted to the floor of the laboratory. The multi-
sensor module was stuck to the motor plate using double-sided 
adhesive tape. The gateway was positioned close to the module. 
The gateway processes the data received from the module and 
sends only the high amplitude harmonics to the Cloud layer. 

4.2. Scenario 2:pumps in an industrial dairy plant 

The second scenario corresponds to an industrial dairy plant. 
In this case, the electric motors monitored are two pumps 
located close to each other. These pumps have a frequency of 
3000 rpm, a power output of 15 kW and a voltage of 230 V/50 
Hz. Each of them works as vacuum pump for a different 
sterilization line (see Figure 6). The main difference between 
them is that pump 1 is in the third month of the annual 
maintenance cycle for changing bearings, while pump 2 is in 
the eleventh. Both modules have been fixed to the pumps as in 
scenario 1 and connected to a gateway that communicates with 
the Cloud layer via a WiFi Access Point (AP), as shown in 
Figure 7. Figure 8 shows where the gateway and pump 2 are 
placed in the diary plant. 

Fig. 2. Wireless multi-sensor module  (left) and gateway (right) 

Fig. 4. Scenario 1 in laboratory 

Fig. 3. IoT analytics platform 
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5. Results 

The preliminary results presented here were obtained after 
computing the Fast Fourier Transformation over accelerations 
from the Z axis for both scenarios of the experimental plan. 

5.1. Scenario 1 

 In scenario 1, as seen in Figure 9, computing the Fast 
Fourier Transformation in the multi-sensor module gives worse 
results than when it is computed in the gateway. Both graphs 
show three fundamental harmonics with outstanding 
amplitudes of 100, 200 and 300 Hz. Those frequencies are 
multiples of the base frequency of the motor used in scenario 
1, which is 25 Hz. 

Figure 10 shows the amplitudes of the 100 Hz harmonic 
stored in the Cloud layer after computing the FFT. 

 

Fig. 5. Scenario 1 in laboratory 

Fig. 7. Scenario 2 in an industrial dairy plant 

Fig. 9. Scenario 1: FFT in module (left) and gateway (right) 

Fig. 5. Scenario 1 in laboratory 

Fig. 10. 100 Hz harmonic amplitudes  

Fig. 6. Scenario 2 in an industrial dairy plant 

Fig. 8. Scenario 2 in an industrial dairy plant 
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An important performance metric is the total latency of the 
data (accelerations) until it is transformed to the frequency 
domain and available at the gateway. Latency has two 
components (see Figure 11): the processing time of the FFT 
(either at the multi-sensor module or the gateway) and the 
transmission time of data from the multi-sensor to the gateway. 
There are two situations to consider for the transmission time: 
when the FFT is computed in the multi-sensor module, this 
time corresponds to the transmission of FFT results (see Figure 
11a); and when the FFT is computed in the gateway, this time 
corresponds to the transmission of the accelerations (see Figure 
11b). The times indicated in Figure 11 are defined as follows: 
 

tc    time to capture the accelerations 
tpm  processing time in the multi-sensor module 
tt     transmission time of FFT results to gateway 
Lpm  latency when processing in the multi-sensor  
  
tt1   first part of transmission time of  accelerations to gateway 
tt2   second part of transmission time 
tpg  processing time in the gateway 
Lpg  latency when processing in the gateway  

 

Processing time for several FFT sizes in both the multi-
sensor module and the gateway has been measured, but sizes 
over 1024 measurements have been predicted in multi-sensor 
module by extrapolation due to limitations in memory. Figure 
12, which compares the processing time for both situations, 

shows that the higher computing power of the gateway causes 
the difference to increase with the FFT size.  

Figure 13 compares the data transmission time in both 
situations. According to model in Figure 11, latency is the sum 
of processing and transmission times when the FFT is 
computed in the multi-sensor module. In contrast, when the 
FFT is computed in the gateway the data transmitted from the 
multi-sensor module is the data coming directly from the 
acceleration sensor. The capture of this data is carried out using 
two memory buffers, so that while one of them is filled the 
other is transmitted. That is the reason because most of the 
transmission time of data to the gateway is overlapped with the 
capture time and so it does not contributes to latency. The result 
is a difference of transmission times that also increases with the 
FFT size.  

Finally, Figure 14 compares the data latency time in both 
situations. Taking everything into account, it can be concluded 
that the transmission time is the one that most affects latency.  

5.2. Scenario 2 

In scenario 2, the FFT was computed in the gateway, as 
these results were more accurate. Figure 15 shows the results 
after computing the FFT in both pumps. Both pumps 
correspond to the same model, work in similar sterilization 
lines and are in the third and eleventh month of the annual 
maintenance cycle respectively. Pump 1 has some harmonics 

Fig. 13. Data transmission time from multi-sensor to gateway 

Fig. 14. Data latency 

Fig. 12. Data processing time for FFT 

Fig. 11. Latency components 
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of 25 Hz, 100 Hz and some close to 300 Hz, while pump 2 has 
harmonics of 25 Hz and some around 200 Hz. The biggest 
difference between pumps 1 and 2 is the appearance of the 
harmonic 200 Hz and the disappearance of those of 100 and 
300 Hz. The noise level is much higher in the second scenario 
than in the first because the pumps were surrounded by many 
other vibrating motors. In both pumps, the temperature was 
near 40 ºC. 

6. Conclusions and future work 

Preliminary results of our IIoT prototype open the way to 
the detection of operating anomalies and predictive 
maintenance of electric motors through low-cost real-time 
monitoring. Capabilities of multi-sensor module and gateway 
has been also compared, conducting vibration frequency 
analysis in both of them and giving results that will be readily 
transferable to other sensors and gateways with similar 
characteristics. This approach takes advantage of edge and fog 
computing as a complement to cloud computing, also 
contributing to a low-cost solution for the Industry 4.0. 

Future work can be classified as short term, medium term 
and long term. In the short term, the development of an 
automatic anomaly detection system in the gateway is envised. 
If this detects important changes in the amplitudes of the 
harmonics, the system will notify the maintenance technicians, 
warning that there may be a problem in one of the motors 
monitored and preventing unforeseen stops. 

In the medium term, it is necessary to label all the data that 
is stored in the cloud with information about the state of the 
motor when the data was sent, accompanied by the qualitative 
status reported by technicians after preventive maintenance. 
This will improve the reliability of the notifications sent to the 
maintenance technicians and help them to take decisions about 
advancing or delaying the maintenance tasks.  

Finally, in the long term, after having stored enough data to 
make a broad historical record in the cloud, a predictive model 
based on machine-learning will be developed and run (in the 
Cloud or in the gateway) to estimate the failure probability of 
the motor before carrying out the maintenance, thus reducing 
maintenance costs. 
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Fig. 15. Scenario 2: FFT in pump 1 (left) and pump 2 (right) 


