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Abstract 12 

Having rapid and reliable knowledge of the quality of dairy farm forage is crucial for technicians 13 

and producers. However, the necessary equipment to fulfil these requirements is oftentimes 14 

expensive and complex to use. This work presents a portable instrument system to analyze the 15 

nutritional values of dairy farm forage using near-infrared spectrometry (NIRS) techniques. Using 16 

the Internet of Things (IoT) tools, data are sent to the cloud for processing; following this, they 17 

are accessible to any device. To analyze the nutritional values of dairy farm forage a chemometric 18 

model and implemented the instrument to understand the relationship between the measured 19 

spectrum and the concentration of the substances of interest was developed. The quality of the 20 

proposed methodology was validated by comparing reference and NIR data by using the statistic 21 

Standard Error of Calibration. 22 
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1. Introduction 27 

Possessing quick and reliable knowledge of the nutritive values of dairy farm forage is 28 

crucial for technicians and producers. Most instrumental techniques employed for quality 29 

evaluation are time-intensive, expensive, and involve a considerable amount of manual work. 30 

There is growing interest in developing simpler and faster instrumental devices for determining 31 

the physical and chemical characteristics in agricultural system samples. In spectroscopic 32 

analysis, an alternative for raw sample analysis is near-infrared spectroscopy (NIRS), which has 33 

taken its place among other proven spectroscopic tools for determining the chemical and physical 34 

properties of foods. The NIRS absorption originated from the overtones of CH, NH, OH, and SH 35 

stretching vibrations and from stretching–bending combinations involving these groups. The 36 

near-infrared spectrum is located between the infrared and visible spectrum, from 2500 nm to 800 37 

nm (4000–12500 cm-1) (Ozaki et al., 2007; Williams et al., 2001), and the spectral signal can be 38 

used for advanced analytics. However, this technology traditionally has been reserved as an 39 

expensive laboratory instrument for experts. Because of the numerous publications that support 40 

the efficacy of analytical applications that use NIRS for the quantification of quality and safety 41 

parameters in agri-food (Decruyenaere et al., 2009; Baeten et al., 2008; De la Haba et al., 2007; 42 

Fernández Pierna et al., 2006; Okparanma et al., 2013; Volkers et al., 2003; Hermida et al., 2005), 43 

researchers are working on developing new portable NIRS instruments.  44 

Related to feed analysis, numerous authors have reported using NIRS to conduct rapid 45 

analysis of feed nutritional quality (Nie et al. 2008; Huang et al. 2008; van Barneveld et al. 2018). 46 

NIRS holds real potential for routine on-site analyses, for example at the point of feed delivery or 47 

for use in stock feed manufacturing (Yan et al., 2018). 48 

The NIRS researcher, user, and engineer must give special attention to sample presentation 49 

devices that directly govern the quality of spectra themselves. There is a technique available for 50 

any type of liquid, slurry, powdered or solid sample. Radiation interacting with a sample may be 51 

absorbed, transmitted, or reflected. For raw forage analysis, the solid sample is used as a diffuse 52 

reflectance because most of the incident radiation is reflected. In this mode, the incident radiation 53 



 
 

3 
 

illuminates perpendicularly to the sample surface. Normally, the incident radiation cannot reach 54 

a deeper position in a sample because of high absorption or multiple scattering (Ozaki et al., 55 

2007).  56 

NIR spectra contain a lot of physical and chemical molecule information. However, this 57 

information cannot always be extracted straightforwardly from the spectra because the NIR 58 

spectra consists of a number of bands arising from overtones and combination modes that overlap 59 

heavily with one another. Additionally, multicollinearity is quite strong in this region; therefore, 60 

powerful chemometric techniques are essential for allowing reliable extraction of relevant 61 

information hidden in the NIR spectral data. Chemometrics covers all methods of multivariable 62 

calibration, including spectral data preprocessing, and calibration model development for 63 

qualitative and quantitative analyses. 64 

Advances in NIR spectroscopy have made this technology one of the most efficient tools for 65 

determining feed nutritive parameters. Based on the type of detector, the portable NIRS can be an 66 

array detector or single-detector instrument. Comparing both detectors, the price for a single one 67 

is lower and thus reduces the hardware costs. These reasons have facilitated the development of 68 

instruments with single detectors (Olakunle et al., 2018). Besides the price and portability of the 69 

miniaturized NIRS systems to carry out on-site and in-field measurements, there is another 70 

problem to solve, one related to data transference and management. Existing NIRS instruments 71 

cannot extract the spectra data easily because they do not usually have the appropriate 72 

connectivity. This causes a problem when it comes to following the evolution of the data. This 73 

information can be useful for technicians, producers, or administration responsible for food 74 

quality and safety. Having data history is always an added benefit that can provide valuable 75 

information about what is happening on the farm or factory. In this sense, advances in 76 

communication technologies and smartphones open a range of new possibilities that could be 77 

applied to develop a solution fitting the desired conditions. Thus, Olakunle et al. discussed in 78 

detail the benefits and challenges of Internet of Things (IoT) technologies and data analytics in 79 

agriculture. Liu et al. (Liu et al., 2019) developed and implemented a modern agriculture IoT 80 
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system for the cloud, whereas Crocombe (Crocombe, 2018) provided detailed information about 81 

the technologies used in portable/miniaturized spectroscopy, discussing their applications and 82 

emerging fields. A review of recent smartphone spectroscopy systems is provided in (Rateni et 83 

al., 2017).  84 

In summary, the main contributions of this work are the following: 85 

• From a NIR evaluation module, a high-performance portable NIR spectrometer was 86 

developed. 87 

• A chemometric model into the instrument to extract relevant information about forage 88 

quality was implemented. 89 

• IoT capability were included in the developed NIR spectrometer to process and 90 

communicate data everywhere and all the time, with different devices with access to the 91 

Internet. 92 

The remainder of this paper is organized as follows: Section II presents the materials used in 93 

this work. Section III describes the implementation of the IoT NIR measurement system. Section 94 

IV is devoted to the chemometrics analysis. Cloud computing is addressed in section V. Finally, 95 

Section VI contains the conclusion. 96 

 97 

2. Materials 98 

Generally, an NIRS system comprises four components: light source, light-isolating 99 

mechanisms, detector, and sampling device (Wang et al. 2007). Most of the instruments utilize 100 

tungsten filament halogen lamps as the light source. This is because they are an effective 101 

compromise between performance and cost. This type of lamp is particularly suitable for use in 102 

low voltage settings. The light source must be close to the sample to light it up with strong intensity. 103 

The employed technology for the wavelengths selection greatly influences the performance of the 104 

instrument.  105 
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Regarding portable applications in food sector instruments equipped with a diffraction grating 106 

and an array detector, the Si-diode array or InGaAs-diode array have seen increased use due to 107 

their compact size, versatility, robustness, and low cost. Fig. 1 shows the spectrometer approach 108 

proposed by Texas Instruments (TI) (Texas Instruments, 2016). The light source is first collimated 109 

and then sent to the diffraction grating to split into different wavelengths. The focusing mirror 110 

collects the diffracted radiation and sends it to a digital mirror array (DMD) instead of an array 111 

detector. The DMD consists of an array of hundreds of thousands of micromirrors. 112 

However, when activating or not activating the mirror columns, only the desired wavelengths 113 

are reflected by the detector. This programmable architecture allows the use of a high-performance, 114 

cost-effective single element detector—for example a photonic device based on InGaAs. This 115 

approach has a small form factor suited for field analysis, which provides mechanical stability. In 116 

this work, the TI NIRscan Nano evaluation module is used (Texas Instruments, 2017) (see Fig. 117 

2a). It is a compact battery-operated evaluation module for portable NIRS solutions. It supports 118 

Bluetooth Low Energy (BLE) to enable mobile measurements for hand-held spectrometers. This 119 

module operates by illuminating the test sample at an angle so that specular reflections are not 120 

collected. At the same time, it gathers and focuses diffuse reflections through the slit. The 121 

embedded processor commands the DMD controller turn on only the precise mirrors, which are 122 

illuminated by the specific light wavelengths to be measured at each instant of time. The easy 123 

programmability of the processor allows users to command specific column widths or other 124 

patterns for their spectroscopy requirements to achieve high signal-to-noise ratio values. This 125 

architecture enables adaptive scanning techniques, which are not possible with array detectors—126 

for example, chemometric methods with multiple patterns to look for physical and chemical 127 

substances. A microcontroller board (LOLIN D32) is attached over the spectrometer module (see 128 

Fig. 2b) to control the servomotor (MG90S) that moves the sample holder. A DC-DC converter 129 

(Pololu U1V10F5) is used to convert the 3.7 V from the battery to 5 V to power the servomotor. 130 

 131 

 132 
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3. IoT Measurement System 133 

Fig. 3 shows the general scheme of the proposed measurement system. It consists of the 134 

NIRscan Nano module and a microcontroller board based on the well-known ESP32 module, 135 

which is responsible for turning the servomotor (M) where the sample holder is placed. The 136 

spectrometer will make several measurements when the sample holder is rotating, which ensures 137 

the measurements are as homogeneous as possible. These data can be sent to a mobile application 138 

via Bluetooth, which is integrated into the NIRscan. There is also the option of sending them to 139 

the computer via a USB connection.  140 

Due to the limitation of storage and computing capability of the local system on chip, some 141 

researchers use a limited chemometrics model for portable spectra instruments. However, in the 142 

proposed instrument, spectra data are sent to the cloud, where, with the rapid progress of IoT and 143 

cloud computing, along with the development of machine-learning algorithms, real-time 144 

applications can be guaranteed. Once the model or models are deployed on the cloud, there is no 145 

limitation on storage or computing capability. In addition, the results are accessible from other 146 

mobile devices with Internet access. 147 

The small size of the sample window (10 mm x 10 mm) makes it difficult to obtain 148 

reproducible spectra analyzing raw samples with a particle size larger than the instrument sample 149 

window when measuring them directly. To avoid this drawback, a semi-circular sample holder 150 

was attached to the spectrometer, as shown in Fig. 4. This holder rotates and, in each position, 10 151 

measurements are made. The microcontroller board has two buttons, one to start the 152 

measurements and another to set the load position of the sample holder. 153 

When the start button is pressed, the servomotor begins to turn, stopping at different positions 154 

where the measurements are made. In this research work, it was optimized the number of positions 155 

to be scanned per sample going from 5 to 20 positions. The best results were obtained when 156 

scanning 10 points per sample. Once the sample holder reaches the 180º position, it returns to the 157 

initial position, where it waits to make a new measurement. When the load button is pressed, the 158 
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servomotor goes to an intermediate position of about 90º, facilitating the loading and unloading 159 

of the sample. When the device is not performing either of these two actions, the microcontroller 160 

will go into sleep mode to minimize power consumption. The movement of the alfalfa inside the 161 

holder does not affect the measure because the quantity of alfalfa that is introduced, is large 162 

enough so that the movement of it inside the sample holder is minimal. What is sought when 163 

performing the 10 measurements is to obtain the most homogeneous results possible in the 164 

sample, so that even if it moved, it would not affect the result since the exact measurement points 165 

are not really important, but the important thing is to cover the largest sample area. 166 

Autonomy is fundamental in any portable IoT device. In this work a 3.7 V, 1800 mAh 167 

Lithium polymer battery is used to power the system, providing an estimated autonomy of 15 168 

hours when it is at rest. A 10 kΩ NTC thermistor is required to safely charge the battery and 169 

monitor its temperature. When the measurement is being made, the spectrometer alone consumes 170 

500 mA, but the measurement time is only about 16 s. Therefore, if the user makes an average of 171 

10 measurements per hour, the autonomy of the prototype will be 12 hours (if it is on all the time). 172 

Texas Instruments provides free software and firmware downloads to give developers flexibility 173 

and advanced control of the spectrometer. 174 

 175 

4. Chemometric Analysis 176 

Chemometrics are a wide range of statistical and mathematical methods for extracting useful 177 

information from the NIR spectra. These methods use a multivariable calibration in which the 178 

wide spectrum is considered to establish a relationship between spectra data and analytical 179 

parameter quantification. Fig. 5 shows the process to develop the chemometric model for the 180 

quantification of nutritive forage value. 181 

A. Sample Selection 182 

The first task of this process is the selection of the sample group for calibration, which must 183 

be well defined statistically, including a wide variability of the type of samples. In this work, 90 184 

samples were collected from different farms in Asturias Province (north Spain) during 2018–2019 185 
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and analyzed using the NIRS designed instrument and reference procedures. For reference data, 186 

we performed the chemical analysis using traditional analytical methodologies: Crude Protein 187 

(CP) through Kjeldahl analysis, Neutral Detergent Fiber (NDF), and Acid Detergent Fiber (ADF) 188 

through Van Soest analysis (Van Soest et al., 1991). Table 1 provides the range, mean, and 189 

standard deviation of the reference analysis. As can be seen, it was observed a wide variability 190 

when determining fiber parameters (Standard deviation >5) due to different maturity stages of the 191 

plant; however, it was noted a lower standard deviation for the crude protein parameter. The 192 

protein content of alfalfa as cut varies according to the cut and vegetative stage of the crop and 193 

the leaf content after the drying procedure. 194 

Table 1. Statistic for Nutritive Value of Alfalfa Samples (N = 90) 195 

Analytical 

Methodologies 
Range (%) Mean 

Standard 

Deviation 

CP 7.19 – 17.27 14.49 1.61 

ADF 20.15 – 39.24 29.22 4.00 

NDF 29.24 – 60.44 39.36 5.40 

 196 
CP: Crude Protein; ADF: Acid Detergent Fibre; NDF: Neutral Detergent Fibre. 197 

 198 

B. Spectral Acquisition 199 

To scan a sample, a scan configuration must be created. Two scan configurations come 200 

preloaded in factory settings: “Column” and “Hadamard.” Column selects one wavelength at a 201 

time. The Hadamard scan creates a set with several wavelengths multiplexed at a time and then 202 

decodes the individual wavelengths. Fig. 6 displays the spectrum plot and the scan configuration 203 

parameters. A scan can be divided into 1–5 sections, being configured in each section: the method 204 

(Column or Hadamard), spectral range (start and end wavelength), digital resolution (wavelength 205 

points captured into the defined spectral range), exposure time (between 0.635 – 60.960 ms) and 206 

the number of scans per sample (in this work, 10 scans in 10 different points of the sample). 207 

The NIR spectrum contains information about the major X-H chemical bonds in an 208 

agricultural product such as lucerne. The spectrum is dependent on all the functional groups that 209 
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absorb NIR radiation, and this information has important implications in agricultural products due 210 

to the relationship between NIR vibration bands of functional groups and nutritional parameters. 211 

Moreover, the reference bands related to crude protein are associated to N-H vibrations in the 212 

spectra regions around 1470, 1500 to 1530 and 1640 to 1680 nm.  213 

For the major fiber components, the tentative bands assignments are associated to structures 214 

of cellulose, pectins and lignin, with absorbance at 1170, 1420 and 1490nm. Lucerne spectra 215 

collected with the developed device are shown in Fig. 7 (Burns and Ciurczak, 2008). 216 

C. Spectral Preprocessing 217 

An important effect related to analysing intact samples by NIR is the particle size, being 218 

desirable to try to eliminate or reduce it, using a variety of mathematical approaches for spectra 219 

preprocessing. The aim of this step is to improve the signal-to-noise ratio, removing the redundant 220 

information contained in the spectra. There are several methods for preprocessing spectra data, 221 

such as averaging all the individual spectra collected for one sample or using smoothing or 222 

derivative procedures. The first one consists of performing a median of all the measures. The result 223 

is a single spectrum of each sample with a reduced thermal noise. Another effect to be minimized 224 

is scattering: in NIRS, the reflected energy is a mixture of diffuse and specular reflections, which 225 

are dependent on the scattering nature and absorption characteristics of the sample (Bertrand et 226 

al. 2000). This makes the baseline/intensity of each sample vary, introducing challenges when 227 

making a model. To solve this issue, transformations such as the multiplicative scatter correction 228 

(Barnes et al. 1989) and the standard normal variate correction (SNV) (aes et al., 2004) are 229 

common in NIRS chemometrics. In this work, the SNV was applied to each spectrum individually 230 

and calculated the mean and standard deviation of each point. To calculate the SNV spectra, the 231 

average at that point (µ) is subtracted from each point and divided by the standard deviation (σ). 232 

The correction can be seen in Figs. 7 and 8. 233 

To improve the quality of the spectra, a Savitzky–Golay filter was used. This is a low-pass 234 

filter which applies least squares smoothing to reduce noise while maintaining the shape and 235 

height of waveform peaks, which is why it is widely used in spectrometry. In this work, a window 236 
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size of 19, a polynomial of order 3, and a derivative of order 2 were used. The result of the 237 

pretreatment can be seen in Fig. 9. In addition, to improve model results, the wavelengths that do 238 

not provide information from the model were analyzed and removed. 239 

When applying SNV and Detrend on spectra population (Fig. 7), the effects of particle size 240 

are compensated and shift of the base line is removed or minimized (see Fig. 8). 241 

 242 

D. Calibration Model 243 

The next step after preprocessing is the calibration of the model. It consists of obtaining a 244 

correlation between the reference method and the spectral data. The most widely used regression 245 

methods in NIRS are multiple linear regression (Martens et al. 1989), principal components 246 

regression, and partial least squares regression (PLSR) (Wold et al., 2001). This last method can 247 

improve the precision of the model parameters with the increase in number of relevant variables 248 

and observations, and it is widely used in NIRS calibration developments. To attempt this work, 249 

a PLSR model has been employed using all the data included in the spectra. To select the best 250 

equations, the following statistics have been considered: standard error of calibration (SEC) and 251 

determination coefficient of calibration (R2
C). The first one (𝑅𝐶

2) establishes a correlation between 252 

the analytical data obtained in the laboratory and those predicted by the calibration (𝑅𝐶
2). 253 

Mathematically, 254 

                                                      𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

                                                 (1)     255 

where n is the number of samples used in the calibration, 𝑦𝑖 refers to the reference values, 𝑦̂𝑖  is 256 

the value predicted by the model, and 𝑦̂𝑖 is the average reference value. 257 

The second parameter is calculated using the formula:  258 

                                                      𝑆𝐸𝐶 = √
1

𝑛
∙ ∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑀

𝑖=1

                                             (2) 259 
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where  𝑦̂𝑖 and  𝑦𝑖 are the predicted and measured values for sample ith. This value provides the 260 

averages of expected typical uncertainty for the prediction of future samples.  261 

Table 2 shows the best statistics of chemometric models for predicting nutritive values in 262 

alfalfa samples. These characteristics were selected according to the lowest standard error of 263 

calibration and the lowest error of prediction. As can be seen, when increasing variability in 264 

calibration, population R2
C is increased. For CP with a lower variability (SD = 1.61), the R2

C is 265 

0.516. To evaluate the statistical data of developed models, this work focused on the SEC and the 266 

ability of being useful to farms for feeding management. 267 

The standard errors in the developed models were obtained according to Commission 268 

Regulation (EU) 2017/2279 of 11 December 2017 amending Annexes II, IV, VI, VII, and VIII to 269 

Regulation (EC) No 767/2009 of the European Parliament and to the ISO 13906 and 16472 related 270 

to these nutritive parameters. 271 

Table 2. Statistics of Chemometric Models to Predict Nutritive Parameters of Alfalfa Samples 272 

Analytical  

Methodologies 

 

R2
C SEC 

CP 0.516 2.11 

ADF 0.742 3.96 

NDF 0.704 8.03 

 273 

CP: Crude Protein; ADF: Acid Detergent Fibre; NDF: Neutral Detergent Fibre; R2
C: 274 

Determination coefficient for calibration; SEC: Standard Error of Calibration; RPD: Standard 275 
deviation/SEC. 276 

 277 

5. Cloud Computing 278 

According to the schema in Fig. 5, after performing the measurement, the spectrometer sends 279 

the data in the “csv” format to the computer via BLE. Once there, the spectra data is sent to the 280 

cloud, where the statistical treatment presented in Section IV was carried out. Using the Python 281 

language, a dashboard to display the data and allow users to upload and download the spectra was 282 

developed.  283 
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The provider used to host the application is Amazon Web Services. Fig. 10 shows the 284 

dashboard structure on the cloud. To facilitate its deployment in other platforms, the developed 285 

application runs inside a Docker container. The user, using a web browser, where the dashboard is 286 

displayed, communicates with the cloud through the free and open source software, Nginx. This 287 

works as a web server and allows users to communicate with the application itself, giving the 288 

system a layer so that the data are not directly exposed. After that, a Python WSGI HTTP Server 289 

for UNIX (Gunicorn) is find. The developed application utilizes this software. The application was 290 

developed using Dash, which is a framework for building analytical web applications. The data 291 

spectra are stored in a database, a nonrelational and open source database called MongoDB. 292 

Finally, the pre-processed spectra data (see C. Spectral Preprocessing section) are displayed 293 

in a dashboard where the user can see the results and the graphics generates, as can be seen in Fig. 294 

11. Deploying the entire system in the cloud allows us to adapt new volumes of data in the future 295 

with relative ease. It is possible also do so in such a way that any authorized person can access it 296 

from anywhere in the world if they have access to the Internet and not depend on the construction 297 

and maintenance of their own servers, which makes a very low initial cost. 298 

 299 

6. Conclusion 300 

This work utilizes an affordable IoT portable NIRS system to analyze the nutritional 301 

parameters of dairy farm forage. This system can be useful for the owners or technicians 302 

responsible for the nutritional state of animals in farms. The proposed instrumentation allows 303 

users to evaluate the quality of the forage, increase sampling without incurring a cost, obtain 304 

results in real time, and make it possible to make quick decisions, avoiding delays related to 305 

carrying samples from the farm to the laboratory. Moreover, specialized training is not required 306 

for users of this instrument. Thanks to the storage and processing in the cloud, the data are 307 

accessible from any site with Internet access, facilitating the visualization and use of the data for 308 

making decisions. The potential offered by cloud computing suggests this system would be useful 309 

not only for agriculture monitoring but also for environmental and biomedical sensing. 310 
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FIGURES 388 

 389 

 390 

Fig. 1. Spectrometer using a micromirror array and a single element detector. 391 
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 399 

a)                                                                     b) 400 

Fig. 2. (a) NIRscan Nano module and (b) Microcontroller board places over NIRscan module. 401 
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 403 

 404 

Fig. 3. General scheme of the proposed measurement system (M = servomotor). 405 
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 412 

 413 

Fig. 4. NIRS system showing the sample holder (a) without alfalfa and (b) sample holder with 414 

alfalfa. 415 
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 418 

Fig. 5. Process to obtain the chemometric model. 419 

 420 

 421 

Fig. 6. NIRscan Nano GUI scan screen. 422 



 
 

19 
 

 423 

 424 

Fig. 7. Spectra of alfalfa samples (N = 90). 425 

 426 

 427 

 428 

Fig.8. Spectra after applying SNV correction to alfalfa samples. 429 

 430 

 431 



 
 

20 
 

 432 

Fig. 9. Savitzky–Golay filter applied to alfalfa sample data. 433 

 434 

 435 

 436 

Fig. 10. Dashboard structure on the cloud. 437 
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 443 

Fig. 11. Dashboard for user visualization. 444 
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