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Abstract Several systemic diseases affect the retinal blood vessels, thus their
assessment allows an accurate clinical diagnosis. This assessment entails the
estimation of the arteriolar-to-venular ratio (AVR), a predictive biomarker of
cerebral atrophy and cardiovascular events in adults. In this context, different
automatic and semi-automatic image-based approaches for artery/vein (A/V)
classification and AVR estimation have been proposed in the literature, to the
point of having become a hot research topic in the last decades. Most of these
approaches use a wide variety of image properties, often redundant and/or
irrelevant, requiring a training process that limit their generalization ability
when applied to other datasets. This paper presents a new automatic method
for A/V classification that just uses the local contrast between blood vessels
and their surrounding background, computes a graph that represents the vas-
cular structure, and applies a multilevel thresholding to obtain a preliminary
classification. Next, a novel graph propagation approach was developed to ob-
tain the final A/V classification and to compute the AVR. Our approach has
been tested on two public datasets (INSPIRE and DRIVE), obtaining high
classification accuracy rates, specially in the main vessels, and AVR ratios
very similar to those provided by human experts. Therefore, our fully auto-
matic method provides reliable results without any training step, which makes
it suitable for use with different retinal image datasets and as part of any clin-
ical routine.
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1 Introduction

Human blood circulation can be observed in-vivo in the eye, allowing to diag-
nose several systemic diseases that affect the retinal vessels in such a way that
they become thicker or narrower [1,2]. Some of these diseases include diabetes,
with a 8.5% of global prevalence among adults according to the WHO1; raised
blood pressure, which is estimated to cause about the 12.8% of the total of
all deaths worldwide as reported by WHO; and different vascular disorders.
More specifically, diabetic retinopathy frequently causes vessel diameter alter-
ations [3], whilst dilatation and elongation of main arteries and veins are often
associated with hypertension and other cardiovascular pathologies [4].

In this context, the arteriolar-to-venular ratio (AVR) plays an important
role since it has been shown to be associated with several risk factors such
as cardiovascular or inflammatory biomarkers [5], and correlated with differ-
ent diseases including stroke or atherosclerosis [6]. The AVR represents the
relationship between the calibers of both arteries and vein, measured within a
standard ring area around the optical disc. Consequently, the automatic cal-
culation of the AVR requires an accurate classification of blood vessels into
arteries and veins, also known as A/V classification, which has become a lead-
ing topic in retinal image analysis over the last years [7].

Arteries are brighter and thinner than veins, and the central reflex at the
inner part is more obvious in arteries. This difference between arteries and
veins has been used in many A/V classification approaches to assign A/V la-
bels to vessel pixels. In this sense, Montoro et al. [8] analyzed the appearance
of the retinal tree in different color spaces, including RGB and HSV, to extract
relevant features such as the hue mean, the variance of the red contrast and
the mean of the saturation contrast. Irshad et al. [9] presented an automatic
method for A/V classification based on intensity and gradient features. Us-
ing only four color features, Relan et al. [10] proposed a squared-loss mutual
information clustering to perform the retinal vessel classification. An early di-
agnostic tool for various diseases was presented by Xu et al. [11], using not only
color features extracted from the CIE xyY color space, but also texture fea-
tures based on both first- and seconder-order statistics. With the final target
of detecting hypertensive retinopathy, Akbar et al. [12] proposed the used of
a hybrid set of features that includes both color and statistical based textural
features for A/V classification. Huang et al. [13] proposed a wide set of fea-
tures and then applied a feature selection method based on genetic-search. In
this manner, they obtained a subset of features that fed a linear discriminant
analysis for the final A/V classification.

In addition to image properties, the structural information of both arteries
and veins in the retinal tree has also been considered for A/V classification. For

1 World Health Organization: http://www.who.int/en/
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example, Mirsharif et al. [14] presented a structural method for blood vessel
classification in which intersection and bifurcation points were processed, after
computing features such as vessel widths or pixel intensities in different color
spaces (RGB, HSL, and LAB). In the field of structural information, graph-
based approaches are also commonly found in the literature. Graph search
was used in [15] as part of an automatic method for retinal vessel identifica-
tion, in which features such as orientation, width and intensity of each vessel
segment were used to find the optimal graph. A different approach for A/V
classification was presented in [16], whose authors used the graph extracted
from the retinal vasculature combined with a set of intensity features. Estrada
et al. [17] proposed a graph-theoretic framework using the vessel tree topol-
ogy along with domain-specific features. On the other hand, a more global
framework was proposed by Hu et al. [18], who generated a vessel network
composed of vessel segments and their potential connectivity, and made use
of a graph-based meta-heuristic algorithm for the final A/V classification. In
this context, although applied to ultra-wide-field-of-view retinal images, Pelle-
grini et al. [19] proposed a graph cut approach for A/V classification by using
hand-crafted features, which include local vessel intensity and vascular mor-
phology. More recently, Zhao et al. [20] adapted the concept of dominant set
clustering to estimate the vascular network of the retinal blood vessels, and
used intensity and morphology features to finally classify its pixels.

Deep learning techniques started to be applied to the A/V classification
problem. Meyer et al. [21] proposed a novel approach based on convolutional
neural networks (CNN) to classify the pixels belonging to the retinal vascula-
ture tree into arteries and veins. Some popular datasets include vessels pixels
manually labeled not only as artery or vein, but also as uncertain. This un-
certainty is due to the difficulty found by the specialists to label some vessel
pixels in retinal images, mainly because of the limitations of acquisition de-
vices. In this context, Galdran et al. [22] proposed a CNN trained to classify
the pixels into one of four classes (background, artery, vein, and uncertain),
thus providing an automatic segmentation of the vasculature tree.

Regarding the computation of the AVR, Niemeijer et al. [23] presented an
automatic method for AVR estimation where arteries and veins were classified
by means of an iterative algorithm that used centerline pixel features and
crossing/bifurcation points of the vascular tree. In [24], an AVR monitoring
system was presented, which analyzed different images from the same patient
using a registration approach to measure the vessel widths at the same points
in all the images. Three automatic approaches for the estimation of the AVR
were compared in [25], defined as different methodologies for optic disc and
vessel segmentation, vessel caliber estimation, and A/V classification.

Improving the illumination properties of retinal images for a more accu-
rate A/V classification was also the focus of attention in several recent works.
Mustafa et al. [26] proposed a new approach, based on low pass and Gaus-
sian filters, to correct the illumination. Varnousfaderani et al. [27] presented
a method for non-uniform illumination removal by normalizing the luminance
using the LUV color space, and for contrast enhancement by histogram shift-
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ing. Huang et al. [28] presented a new normalization technique that allows to
compute four new features related to the lightness reflection of vessels, ade-
quate for A/V classification.

1.1 Rationale of the approach

Most of the previous approaches use a wide variety of features, ranging from
the 3 features suggested by Estrada et al. [17] to the 100 proposed by Huang
et al. [13]. These sets of features are often redundant and/or irrelevant, as
evidenced by some research works that applied feature selection techniques
to select the optimal subset of features [13,14,16]. Additionally, Dashtbozorg
[29] analyzed the individual impact of each of the 30 features considered,
demonstrating that the two most relevant features were extracted from the red
component of the RGB color space. In particular, they are two basic features:
the red intensity of the centerline pixels, and the standard deviation of the
red intensity in the vessels. With respect to the graph-based approaches that
represent the vascular tree, they commonly use an initial classification based on
different images features, subsequently modified taking into account the graph
structure. During this process, a correct classification achieved with the image
features can be wrongly modified later due to possible errors made during
graph computation. Regarding the technique followed to assign the A/V classes
to the vessel pixels, there are supervised and unsupervised approaches. In this
sense, it is worth noting that supervised techniques require a training process
on a given dataset, thus limiting their generalization ability and providing
worse results when applied to other datasets.

In clinical practice, specialists focused not only on the higher intensity of
arteries against veins in absolute terms, but mainly on their relative contrast
with respect to the surrounding background. For this reason, we propose to use
the local contrast as a simple, yet powerful image feature for A/V classification.
More specifically, we present a new method, based on multilevel thresholding
and graph propagation, to automatically classify blood vessels into arteries
and veins, allowing the final computation of an accurate AVR useful for both
medical and research purposes. Notice that the graph propagation procedure
combines the labels obtained by applying multilevel thresholding to the local
contrast feature with the graph structure. In this manner, we can make the
most of both steps and thus reduce the cases in which errors in only one of
the two steps imply an increase in terms of misclassification rate. Note also
that it is an unsupervised method that can be easily applied to any retinal
dataset, without requiring a previous training phase. The main contributions
of our approach are three-fold: (1) the use of the local contrast as a single
feature for A/V classification that imitates the perception of specialists, (2)
the multilevel image thresholding based on local contrast for a robust initial
classification, and (3) a graph propagation procedure that takes full advantage
of the multilevel thresholding and the vascular network to provide a final A/V
classification.
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The remainder of this manuscript is structured as follows: Section 2 presents
the approach proposed in this research, Section 3 shows the experimental re-
sults obtained using two retinal image datasets and, finally, Section 4 includes
the conclusions and future lines of research.

2 Methods

The automatic classification of retinal blood vessels requires the detection of
several landmarks, allowing the A/V classification and the final computation
of the AVR. Figure 1 illustrates the whole procedure, where the main contri-
butions are highlighted with a blue background. In the following sections, we
make special emphasis on these four main steps, whilst the rest of them are
briefly explained and properly referenced.

AVR

Optic disc segmentation

Vessel segmentation & 
caliber estimation

Input image

ROI definition
& AVR estimation

Feature measurement
(local contrast)

Multilevel thresholding (partial and total classification)

Graph propagation

Graph computation

Fig. 1 Workflow of the proposed method for A/V classification and AVR estimation, with
the novel steps in blue. Input image from INSPIRE [30].

Broadly speaking, a retinal image is first segmented to obtain the optic
disc and the blood vessels. Next, the feature measurement step is carried out
to calculate the local contrast of vessel pixels and, in parallel, the vasculature
graph is computed. Using both of them, a multilevel thresholding is applied to
obtain two A/V classified images: a robust initial classification that includes
the uncertain label, and a total classification used for achieving a full coverage
rate. Next, the artery/vein labels of the initial classification are propagated to
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those segments classified as uncertain, using the graph structure. Finally, the
region of interest is defined and the AVR is estimated.

2.1 Optic disc segmentation

The optic disc (OD), one of the main structures visible in a retinal image, is
the entry point for the major retinal blood vessels. Its segmentation is an im-
portant step in the automatic calculation of the AVR index, as the measuring
region is centered in the OD and depends on the OD diameter, as mentioned
before.

OD segmentation is carried out following the method proposed in [31], a
robust algorithm based on multi-resolution sliding band filters.

2.2 Vessel segmentation and caliber estimation

Since the AVR index is calculated from the vessel calibers, another important
step is to segment the retinal blood vessels and estimate their calibers.

For the vessel segmentation, the method originally presented in [32] was
considered, including the further improvements proposed in [33], which added
an increased adaptation to image size and field-of-view, and a decreased sen-
sitivity to parameter settings.

To estimate the vessel calibers, we used the Euclidean distance from the
central pixel of the segmented vessels and its closest background pixel.

2.3 Feature measurement

On color retinal images, arteries are often brighter than veins since their blood
contains, respectively, oxygenated and deoxygenated hemoglobin. Based on
this fact, it would seem reasonable to directly use intensity features measured
on different channels or color spaces. However, the background of retinal im-
ages is not homogeneous and it affects the visual appearance of vessel pixels.
For this reason, we propose a novel approach that uses a simple and single fea-
ture for artery-vein discrimination: the local contrast. More specifically, this
feature represents the local variation measured as the difference between vessel
pixel intensities and the background tissue intensities that surrounds them in
a local neighborhood.

In order to calculate the local contrast, we considered the red channel of the
RGB color space, since it shows the best discrimination power between arteries
and veins [29]. Taking into account that the illumination of retinal images is
non uniform due to the acquisition procedure, we applied the normalization
method proposed by Foracchia et al. [34] to the red channel of the input image.
For each vessel pixel (i, j), the local contrast C is calculated as:

C[i, j] = |I[i, j]−B[i, j]|, (1)
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where I is the normalized red channel of the original image [29], and B is the
average of the background pixels in a neighborhood determined by a (2k + 1)
square window centered at (i, j) calculated as:

B[i, j] =
1

Ni,j

k∑
u=−k

k∑
v=−k

I[i + u, j + v]M [i + u, j + v], (2)

where Ni,j is the number of background pixels in the neighborhood:

Ni,j =

k∑
u=−k

k∑
v=−k

M [i + u, j + v], (3)

and M is the mask corresponding to the vessel segmented images:

M [i′, j′] =

{
0 if (i′, j′) is a vessel pixel
1 if (i′, j′) is a background pixel.

(4)

2.4 Graph computation

The graph extracted from the segmented retinal vasculature proved to be ade-
quate for A/V classification [16,17]. This section summarizes the algorithm for
graph computation proposed by Dashtbozorg et al. [16], which was improved
in this research as further explained.

The original procedure consists of the following main steps [16]:

1. Graph extraction: The vessel centerlines are firstly obtained from the seg-
mented image to finally generate a vascular network composed of nodes and
links. Nodes represent the intersection points in the vascular tree, whilst
links represent vessel segments between intersection points.

2. Graph modification: Due to the segmentation and centerline extraction pro-
cesses, the vascular network initially generated may include some misrep-
resentations. For this reason, the graph is modified to avoid the following
common errors: node splitting, missing link, and false link. Next, all vessels
around the optic disc are removed since, in this area, the vessels are not
relevant for the AVR estimation and the graph may not be reliable.

3. Node type decision: Once the final graph is obtained, the nodes are classified
into different categories: connecting point, meeting point, bifurcation point,
and crossing point. For this purpose, we use the degree of a node (i.e., the
number of adjacent nodes) and other characteristics that include the angle
between its connected links. The possible node types for each degree are
summarized in Table 1, and the detailed process can be found in [16].

The graph originally obtained may include some errors regarding the node
types. For this reason, we propose some improvements that, in addition to
avoiding theses errors, are able to reduce the number of unknown points com-
pared to the previous approach [16]. The improvements are detailed as follows:
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Degree Possible types of nodes
Nodes of degree 2 Connecting point

Meeting point
Nodes of degree 3 Meeting point

Bifurcation point
Nodes of degree 4 Meeting point

Bifurcation point
Crossing point

Nodes of degree 5 Crossing point

Table 1 Possible types of nodes and corresponding degrees.

– Nodes of degree 2 and 3: The central retinal artery and vein emerge from
the optic nerve, and bifurcate into several branches [35]. These branches
of arteries and veins alternate along the retinal surface. Based on that, we
introduced the concept of almost parallel vessels by including a condition to
check if the angle between links is ≤ 15◦ (see Figure 2(a)). If this condition
is met, the node is classified as a meeting point in order to distinguish
between the artery link and the vein link.

– Nodes of degree 2: As stated before, the central artery and vein bifurcate
into several branches over the retinal surface, but they never converge.
Therefore, if two vessels converge at some point of the retinal surface, they
correspond to different types. Based on that, we introduced the concept
of link convergence by including a condition to the check if the angle be-
tween links is ≤ 90◦ and is oriented to the optic disc (see Figure 2(b)). If
this condition is met, the node is classified as meeting point in order to
distinguish between the artery link and the vein link.

node of 
degree 3

node of 
degree 2

l1
l2

l1
l2

(a)

node of 
degree 2

l1

l2

OD

(b)

Fig. 2 (a) Nodes of degree 2 and 3 with almost parallel vessels, l1 and l2 (angle ≤ 15◦).
(b) Node of degree 2 with an angle ≤ 90◦ oriented to the optic disc.

2.5 Multilevel thresholding

After computing the local contrast and the graph, the average contrast of each
graph link (segment) is computed as:
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Cs =
1

N

∑
(i,j)∈s

C[i, j] (5)

where N is the number of pixels (i, j) that belongs to the segment s, and C[i, j]
refers to the local contrast (Eq. 1).

Given that the local contrast on the veins is higher than the local contrast
on the arteries, we propose to use this feature to classify the graph segments
into arteries and veins. For this purpose, we applied a multilevel thresholding
based on the Otsu’s method [36]. The idea is to consider the local contrast
of the graph segments, and compute the histogram of each contrast level.
Then, the Otsu’s algorithm is applied to search the two thresholds (th1 and
th2) that minimize the intra-class contrast variance. As in this step we aim
at achieving a robust classification, th1 and th2 should be sufficiently low and
high, respectively, to get the minimum amount of false negatives.

Based on the thresholds th1 and th2, a partial classification (PC) is com-
puted with three target classes: artery, vein, and uncertain. In parallel, an
average threshold is computed as thµ = th1+th2

2 , to avoid any unclassified seg-
ment and guarantee a full coverage rate at some point in the process. In this
case, a total classification (TC) is achieved by classifying all the segments into
one of the two main classes: artery and vein. Figure 3 depicts this process.

TOTAL CLASSIFICATIONPARTIAL CLASSIFICATION

segment s

Cs≤ th1?

Cs≥ th2?

Cs≤ thμ?

artery vein uncertain artery vein

yes

yes

no

no

yes no

Fig. 3 Flowchart for segment classification: the partial classification is characterized by
being robust, but at the expense of some unclassified segments (uncertain); whilst the total
classification guarantees a full coverage rate.

As stated before, the background brightness varies along the retinal image
due to light reflection changes from the spherical-shaped eye surface. This af-
fects the local brightness and contrast of the vessel pixels, and can be easily
confirmed by inspecting the image mean intensity on the four quadrants cen-
tered at the OD, or by observing the decreasing intensity when moving away
from the OD. For these reasons, the multilevel thresholding is not applied to
the graph segments of the whole image, but to the segments located at different
regions of interest. In particular, we consider two different regions of interest
(see Figure 4): four quadrants Q centered at the OD, and three bands B with
different distances to the OD. Therefore, if we combine these two options for
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the regions of interest with the two approaches for segment classification, we
obtain four A/V classified images: PCQ and PCB as partial classifications
for quadrants and bands, respectively; and, equivalently, TCQ and TCB as
total classifications.

(a) (b)

Fig. 4 Regions of interest: (a) four quadrants centered at the optic disc, (b) three bands
with different distances to the optic disc.

With the main aim of benefiting from both approaches, and given the het-
erogeneity of images and datasets, the four A/V classified images are combined
as detailed in Algorithm 1. In this manner, we obtain two final classifications:
a partial classification (PCF ) that includes three categories (artery, vein, and
uncertain), and a total classification (TCF ) that only includes the two main
categories (artery and vein). The first one can be defined as an initial, robust
A/V classification that is further completed by means of graph propagation.
Note that this classification is definitive; i.e., it cannot be modified in further
stages, thus avoiding any change due to possible inaccuracies in the graph
computation. Given that in the graph propagation step (Section 2.6) not all
the uncertain segments of the PCF can be finally classified, TCF is here de-
fined to be used in case of uncertainty, thus allowing to achieve a fully coverage
rate in A/V classification. Note that in this case, and according to some pre-
liminary experiments, the TCQ is used in case of disagreements between both
total classifications (TCQ and TCB).

2.6 Graph propagation

A novel algorithm for graph propagation is proposed to obtain the final A/V
classification, which consists in combining the information obtained in the
previous steps; i.e., the node types of the graph (see Section 2.4), and the
classified segments (see Section 2.5).

Given an initial classification for the graph segments, the algorithm for
graph propagation is detailed as follows:

1. For each uncertain segment, get the classes of its two nodes using the
following rules defined for the different node types:
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Algorithm 1: Combination of the four A/V classified images.

Data: graph G, A/V classified images for quadrants Q and bands B: partial
classifications PCQ and PCB, and total classifications TCQ and TCB

Result: final A/V classified images: partial classification PCF , total classification TCF

1 initialize partial classification PCF := 0
2 for each segment s ∈ G do
3 if PCQs = PCBs then
4 PCFs := PCQs

5 else if PCQs = uncertain then
6 PCFs := PCBs

7 else if PCBs = uncertain then
8 PCFs := PCQs

else
9 PCFs := uncertain

end

end
10 initialize total classification TCF := PCF
11 for each segment s ∈ G do
12 if TCFs = uncertain then
13 TCFs := TCQs

end

– Connecting point : There is only one connected link, so the class of the
node is the class of the connected link.

– Bifurcation point : There are two connected links, so the class of the
node depends on their classes: 1) if one link is labeled as uncertain,
then the class of the node is the class of the other link; 2) if both links
are labeled equally, then the class of the node is their class; 3) otherwise,
the class of the node is uncertain.

– Meeting point with two adjacent links: There is only one connected link,
so the class of the node is the opposite of the connected link.

– Meeting point with three adjacent links: Using angles and distances be-
tween the adjacent links, we determine which one is the meeting link.
Based on that, we apply the rules for connecting and meeting points
with two adjacent links, as appropriate.

– Crossing point : Using angles and distances between the adjacent links,
we determine which one is the connecting link. Based on that, we apply
the rules for connecting and bifurcation points, as appropriate.

2. For each uncertain segment, if both node classes are the same, then apply
the propagation by labeling the segment with the corresponding class.

3. Repeat steps 1 and 2 until no more graph segments are re-labeled as artery
or vein.

Next, the partial and total classifications obtained in Section 2.5 are used
to apply the graph propagation algorithm as detailed in the following:

1. Use the partial classification (PCF) to initially label all the segments as
artery, vein or uncertain.

2. Apply the algorithm for graph propagation.
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3. Use the total classification (TCF) to label the fully uncertain segments
(i.e., those segments with the two nodes labeled as uncertain).

4. Apply the algorithm for graph propagation.
5. Apply the algorithm for graph propagation but also spreading to the par-

tially uncertain segments (i.e., those segments with one of the two nodes
labeled as uncertain), using the label of the known node.

6. Use the total classification (TFC) to label all the remaining uncertain seg-
ments.

Notice that by partially applying the process previously described, we can
achieve different coverage rates in the A/V classification. Figure 5 illustrates
this process, which can be divided in four different versions, from v.1 that cor-
responds to the minimum coverage rate to v.4 that guarantees a full coverage.
These four versions will be referred in the analysis of the results.

start

Apply graph propagation

Use PCF to label all the segments

Use TCF to label the fully uncertain 
segments

Apply graph propagation but also spreading 
to the partially uncertain segments

Use TCF to label all the uncertain segments

v.1

v.2

v.3

v.4

Apply graph propagation

Fig. 5 Flowchart for graph propagation: the different levels of propagation together with
the use of the partial and total classifications allow us to achieve different coverage rates in
the final A/V classification.

2.7 ROI definition and AVR estimation

AVR is computed from the vessel calibers inside a standard region of inter-
est (ROI), a ring-shaped area within 0.5 to 1.0 OD diameter from the OD
boundaries [37].

The AVR index is defined as the quotient between two values, which are
calculated using the Knudtson’s revised formula [37]: the central retinal artery
equivalent (CRAE) and the central retinal vein equivalent (CRVE). For AVR
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measurement, an approach similar to the one proposed by Niemeijer el al.
[23] was applied: 1) six regions are considered to obtain distinct AVR regional
values, based on the six largest arteries and veins of each region; and 2) the
AVR index for the whole image is computed as the average of the six regional
values.

3 Results and discussion

In this section, we present the results obtained by applying the proposed
method to two different datasets, as described below. Additionally, we report
some comparative studies with other approaches as well as qualitative results
in terms of the graph network.

3.1 INSPIRE dataset

The INSPIRE dataset [30] is composed of 40 eye fundus images with a spatial
resolution of 2392 × 2048 pixels, which are optic disc-centered. It includes
two AVR measures for each image computed by two ophthalmologists using a
semi-automated computer program developed at the University of Wisconsin.
Additionally, a manual classification of the arteriolar-to-venular tree has been
considered as the ground truth for the A/V classification. It was obtained by
labeling each vessel pixel with one of the following labels: artery, vein, and
uncertain.

In order to provide a comparative analysis with other A/V classification
methods applied to the INSPIRE dataset, we considered seven state-of-the-art
approaches [13,16,17,20,23,29,38]. Table 2 depicts the confusion matrix that
can be obtained as part of their experimental procedures.

A/V reference
A/V algorithm Artery Vein Uncertain
Artery TA FA –
Vein FV TV –
Uncertain U U –

Table 2 Confusion matrix for the INSPIRE dataset.

The terms of the confusion matrix are used to define the performance
metrics considered in the evaluation process, detailed as follows:

– Accuracy (Acc.): it represents the proportion of correctly classified pixels,
among all the classified pixels.

Acc. =
TA + TV

TA + FA + FV + TV
(6)

Note that both centerline accuracy (CA) and pixel-wise accuracy (PA)
were calculated.
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– Sensitivity (Sens.): it represents the proportion of positives (veins) correctly
classified.

Sens. =
TV

TV + FV
(7)

– Specificity (Spec.): it represents the proportion of negatives (arteries) cor-
rectly classified.

Spec. =
TA

TA + FA
(8)

– Vessel caliber (vc): it makes reference to the caliber of the vessel pixels
considered in the evaluation. Therefore, vc > 0 means that all the vessel
pixels are taken into account.

Table 3 shows the results achieved with the proposed method and, as stated
before, includes a comparison with seven state-of-the-art approaches, some of
them supervised and others unsupervised. Analyzing the individual results in
terms of the different vessel calibers, it can be observed that, in general, the
pixel-wise accuracy (PA) is greater than the centerline accuracy (CA). This
fact shows that the three automatic methods that provide the accuracy rates
in this manner tend to classify correctly the largest vessels. Therefore, there
is an increase in the accuracy rates when all the vessel pixels are considered
instead of just those on the centerline. These two methods, Dashtbozorg [29]
and Dashtbozorg et al. [16], are quite similar in terms of image features, with
the main difference in terms of the learning process: the first one is an unsu-
pervised method, whilst the second one is supervised. If these two approaches
are compared, it can be observed that the supervised method slightly out-
performs the unsupervised one for all vessel calibers, except the largest one
(vc > 20 pixels). However, the unsupervised approach has the main benefit of
be independent of a previous image labeling since no training phase is needed.
If we include the proposed method in the comparisons, it outperforms the un-
supervised method in most cases (vc > 5, 10, 15 and 20 pixels). Besides, it
also outperforms the supervised approach when considering the three largest
vessel calibers and provides accuracy rates over 96% in the best case. We note
that these results are particularly relevant because a key requirement for AVR
calculation is the correct classification of the main (largest) vessels. Further-
more, the proposed method has the same advantage of the unsupervised one:
it does not require training, which means stability and independence of the
image dataset. With respect to the other methods, they do not provide re-
sults in terms of vessel calibers, limiting the comparative analysis. Huang et
al. [13] provides the highest accuracy rate in terms of CA, but at the expense
of 100 features and a supervised classifier, thus limiting the generalization to
new datasets. In terms of sensitivity and specificity, the most competitive re-
sults are achieved with the method proposed by Zhao et al. [20]. However, the
authors do not analyze how their algorithm behaves with the largest vessels,
since they do not estimate the AVR index.

Figure 6a,b illustrates the qualitative results of two sample images from
the INSPIRE dataset. The results of the proposed A/V classification method
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Num. Vessel Acc.
Method S/U feats. caliber CA PA Sens. Spec.

Proposed method (v.4) U 1 vc > 0 px 0.79 0.84 0.91 0.79
vc > 5 px 0.84 0.88 – –
vc > 10 px 0.91 0.92 – –
vc > 15 px 0.93 0.94 – –
vc > 20 px 0.96 0.96 – –

Dashtbozorg [29] U 30 vc > 0 px 0.82 0.86 0.85 0.80
vc > 5 px 0.83 0.86 – –
vc > 10 px 0.87 0.89 – –
vc > 15 px 0.90 0.91 – –
vc > 20 px 0.94 0.95 – –

Estrada et al. [17] U 3 vc > 0 px 0.91 – 0.92 0.90
Zhao et al. [20] U 23 vc > 0 px – – 0.96 0.97
Lyu et al. [38] U – vc > 0 px 0.85 – 0.79 0.90

Dashtbozorg et al. [16] S 30 vc > 0 px 0.85 0.88 0.91 0.86
vc > 5 px 0.87 0.89 – –
vc > 10 px 0.90 0.91 – –
vc > 15 px 0.93 0.93 – –
vc > 20 px 0.93 0.93 – –

Huang et al. [13] S 100 vc > 0 px 0.92 – 0.90 0.91
Niemeijer et al. [23] S 27 vc > 0 px – – 0.78 0.78

Table 3 INSPIRE dataset: results of the proposed method compared with other state-
of-the-art approaches for A/V classification. S/U stands for supervised and unsupervised
methods, respectively; and Num. feats. refers to the number of image features used for the
classification.

can be visually compared with the manual labeling (ground truth images).
As can be observed, the partial classification provides a robust, preliminary
categorization of the blood vessels into arteries (blue), veins (red), and uncer-
tain (green). These initial labels are next spread trough the graph by means
of the different propagation stages, in order to achieve the final classification
into arteries and veins.

Table 4 summarizes some AVR statistics for the complete INSPIRE dataset,
including the two human observers and two previous approaches [23,25], in ad-
dition to our method. As can be seen, the mean errors generated by comparing
the automatic results to the reference ones are very similar, regardless the ap-
proach considered. In order to statistically analyze them, the Friedman test has
been applied [39]. It is a non-parametric test equivalent to ANOVA, but which
does not require that some assumptions, such as normal distribution of the
data, are met. Thus, the Friedman test was applied using two different error
sets: the errors of the observer 2 and the three automatic methods compared
to the observer 1, and the errors of the observer 1 and the three automatic
methods compared to the observer 2. According to the results obtained in
both cases, there are no significant differences among the different automatic
approaches and the two observers, thus demonstrating the adequacy of the
proposed method for the automatic AVR calculation.



16 Beatriz Remeseiro et al.

Method Measure Mean St. deviation Maximum Minimum

Observer 1 AVR 0.67 0.08 0.93 0.52
Observer 2 AVR 0.66 0.08 0.85 0.45

E 0.05 0.05 0.29 0.00
Proposed method (v.4) AVR 0.64 0.08 0.91 0.53

E1 0.06 0.07 0.28 0.00
E2 0.06 0.05 0.23 0.00

Niemeijer et al. [23] AVR 0.67 0.07 0.81 0.55
E1 0.06 0.04 0.15 0.01
E2 0.06 0.06 0.28 0.00

Dashtbozorg et al. [25] AVR 0.65 0.07 0.82 0.49
E1 0.05 0.04 0.16 0.00
E2 0.05 0.05 0.22 0.00

Table 4 INSPIRE dataset: arteriolar-to-venular ratios (AVR) and errors (E), considering
two human observers. Note that E1 and E2 refer to the errors with respect to the observers
1 and 2, respectively.

3.2 DRIVE dataset

The DRIVE dataset [40] is composed of 40 retinal images, which are fovea-
centered and were captured with a resolution of 565 × 584 pixels. It includes
manual segmented images for validation purposes and, based on them, the
RITE dataset was created in [41] to provide a A/V reference standard, which
has been considered in this research. Note that this standard was generated
by labeling each vessel pixel with one of the following options: artery, vein,
overlap, and uncertain.

As with the INSPIRE dataset, we carried out a comparative analysis with
other A/V classification methods applied to the DRIVE dataset. In this case,
we considered eight state-of-the-art approaches [13,16–18,20,23,29,38]. Table
5 depicts the confusion matrix that can be obtained as part of their experi-
mental procedures.

A/V reference
A/V algorithm Artery Vein Overlap Uncertain
Artery TA FA TAg –
Vein FV TV TVg –
Uncertain U U U –

Table 5 Confusion matrix for DRIVE dataset.

The proposed method was evaluated using the following performance mea-
sures (see Section 3.1): centerline accuracy (CA), pixel-wise accuracy (PA),
sensitivity (Sens.), and specificity (Spec). Two additional metrics suggested
by Hu et al. [18] were also considered:

– Coverage rate: it represents the ratio of vessel pixels classified as arteries
and veins (A/V algorithm) over all the vessel pixels labeled in the ground
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truth, except the ones labeled as uncertain (A/V reference).

Coverage rate =
TA + FA + TAg + FV + TV + TVg

TA + FA + TAg + FV + TV + TVg + U
(9)

– Overall accuracy (OA): it represents the pixel-wise accuracy but also in-
cluding the terms TAg and TVg.

OA =
TA + TAg + TV + TVg

TA + FA + TAg + FV + TV + TVg
(10)

Table 6 depicts the results obtained with the proposed method compared
with eight state-of-the-art approaches. The results achieved with the proposed
method demonstrate its robustness, with really similar performance values
regardless the coverage rate, which ranges from 93.79% to 100.00% depending
on the version applied (see Section 2.6). In addition, these results are also
comparable with those obtained for the INSPIRE dataset, which show the
adequacy of our method to the problem at hand, regardless of the dataset. In
this sense, it is worth noting the poor performance of the approach proposed
by Huang et al. [13] with this dataset, with an accuracy of 0.72 compared
with the 0.92 achieve with INSPIRE. The rest of the methods included in
the comparison present similar performances with a full coverage rate (100%),
but the approach proposed by Hu et al. [18]. Given that Hu’s method does
not provide a full coverage rate, it allows us to do a deeper analysis in terms
of this metric. When using all the steps of our method, i.e. version v.4, no
vessels remain unlabeled and so the coverage rate is 100%, against the 83.55%
of the Hu’s method. In particular, the difference in terms of accuracy is of
3.71%. A lower coverage rate can be achieved with the proposed method by
considering the different alternatives or versions. Notice that each one implies
less computation and so a reduction of the coverage rate. As expected, the
lower the coverage rate, the greater the accuracy. More specifically, the method
is able to provide a maximum accuracy of 83.53%, slightly lower than the one
obtained with the Hu’s method, even though the coverage remains above the
93.5%, i.e. over a 10% higher.

The nature of our method does not allow getting a coverage rate as low
as the Hu’s method, and so the results above are not directly comparable. In
order to shed more light on the results obtained with DRIVE, we used three
new metrics defined from the same confusion matrix depicted in Table 5:

– Global accuracy: the percentage of correctly classified vessel pixels among
all the pixels detected in the segmentation process.

G-acc =
TA + TAg + TV + TVg

TA + FA + TAg + FV + TV + TVg + U
(11)

– Global error: the complementary percentage of the accuracy. It can be
divided into the percentage of wrongly classified vessel pixels and the per-
centage of unclassified ones, which are respectively:
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Num. CR Acc.
Method S/U feats. (%) CA PA OA Sens. Spec.

Proposed method (v.1) U 1 93.78 0.80 0.83 0.84 0.89 0.80
(v.2) U 1 95.48 0.79 0.83 0.83 0.89 0.79
(v.3) U 1 96.78 0.79 0.83 0.83 0.88 0.79
(v.4) U 1 100 0.79 0.82 0.82 0.88 0.79

Estrada et al. [17] U 3 100 0.92 – – 0.92 0.92
Zhao et al. [20] U 23 100 – – – 0.93 0.94
Dashtbozorg [29] U 30 100 – – – 0.87 0.84
Lyu et al. [38] U – 100 0.83 – – 0.87 0.78

Huang et al. [13] S 100 100 0.72 – – 0.71 0.74
Dashtbozorg et al. [16] S 30 100 0.87 – – 0.90 0.84
Hu et al. [18] S 31 83.55 – – 0.86 – –
Niemeijer et al. [23] S 27 – – – – 0.80 0.80

Table 6 DRIVE dataset: results of the proposed method compared with other state-of-the-
art approaches for A/V classification. S/U stands for supervised and unsupervised methods,
respectively; and Num. feats. refers to the number of images features used for the classifi-
cation.

G-error1 =
FA + FV

TA + FA + TAg + FV + TV + TVg + U
(12)

G-error2 =
U

TA + FA + TAg + FV + TV + TVg + U
(13)

Table 7 illustrates these new measures for the different approaches pre-
viously presented in Table 6. As can be observed, the global accuracy of
our method surpasses the previous approach [18] regardless the configuration.
More specifically, the highest accuracy is obtained when applying all the steps
of the proposed methodology (version v.4).

Method G-acc (%) G-error1 (%) G-error2 (%)

Proposed method (v.1) 78.33 15.45 6.22
(v.2) 79.09 16.39 4.52
(v.3) 80.05 16.73 3.22
(v.4) 82.40 17.60 0.00

Hu et al. [18] 71.94 11.61 16.45

Table 7 DRIVE dataset: global accuracy and global error rates. The global error refers to
the wrongly classified vessel pixels (G-error1), and the unclassified ones (G-error2).

Figure 6c,d depicts the qualitative results of two sample images from the
DRIVE dataset. The ground truth images can be visually compared with the
partial classifications, which include some uncertain segments (green), and the
outcomes obtained after applying each propagation step, including the final
classification that guarantees a full coverage rate.

3.3 Graph computation results

The graph propagation step is only applied to the segments initially labeled as
uncertain. For this reason, the modifications proposed in the graph computa-
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tion step (see Section 2.4) only have a real impact in the final A/V classification
when they correspond to uncertain segments. That is, we cannot measure the
individual impact of the graph computation process on the final A/V classifica-
tion results. For this reason, this section illustrates the improvements achieved
with the graph modifications proposed in Section 2.4.

Figure 7 depicts five image samples from the two different datasets consid-
ered in the experimentation. Rows 1 and 2 show two images from the INSPIRE
dataset, both of them with a node of degree 3 that has two almost parallel
vessels (i.e., the angle between them is ≤ 15◦). Based on this condition, the
node is correctly classified as a meeting point, instead of a bifurcation point,
thus allowing to distinguish between the artery and the vein. Rows 3 and 4
illustrate two images from the DRIVE dataset, both of them with a node of
degree 2 that has two almost parallel vessels. As in the two previous samples,
the node is correctly classified as a meeting point. Finally, row 5 depicts a
node of degree 2 with a angle between segments ≤ 90◦). In this case, the angle
is oriented to the optic disc and so the node is correctly classified as a meeting
point, allowing again to distinguish between the artery and the vein.

4 Conclusions

Given the relevance of A/V classification for the AVR estimation, this research
presents a simple, yet powerful method for the automatic classification of reti-
nal blood vessels. It makes a simplification of the classical approaches by using
one single feature (the local contrast) and without any training step, thus fa-
cilitating its application to different retinal image datasets. Our approach also
includes some improvements in the graph construction procedure, that make
it more robust and reliable, and a novel graph propagation step that allows us
to avoid errors in the final result caused by the graph when the initial A/V
classification was correct.

The proposed method has been validated on two different datasets. The
INSPIRE dataset was first considered to analyze the accuracy of the vessel
classification. Broadly speaking, the accuracy in main vessels (caliber > 10
pixels) has been improved compared to both supervised and unsupervised
approaches. Note the relevance of properly classifying main vessels since they
are the ones used to compute the AVR. This dataset was also used to compute
some AVR statistics, and the obtained results demonstrate that there are no
significant differences between our approach and the human observers. The
DRIVE dataset was also used for validation, and the experimentation carried
out shows a higher coverage rate compared to other state-of-the-art approach,
with notable improvements in terms of global accuracy.

Adding new image features to the proposed method requires a deep anal-
ysis focused on their individual and combined effect on both partial and final
classifications. Our future research includes the study of other powerful fea-
tures that can complete and/or complement the local contrast to improve
the A/V classification results. We also plan to consider different deep learn-
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ing techniques, including not only pixel-wise classification approaches but also
semantic segmentation techniques.
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18. Q. Hu, M.D. Abràmoff, M.K. Garvin. Automated construction of arterial and venous
trees in retinal images. Journal of Medical Imaging 2(4), 044001 (2015)

19. E. Pellegrini, G. Robertson, T. MacGillivray, J. van Hemert, G. Houston, E. Trucco. A
graph cut approach to artery/vein classification in ultra-widefield scanning laser oph-
thalmoscopy. IEEE Transactions on Medical Imaging 37(2), 516 (2017)

20. Y. Zhao, J. Xie, H. Zhang, Y. Zheng, Y. Zhao, H. Qi, Y. Zhao, P. Su, J. Liu, Y. Liu.
Retinal vascular network topology reconstruction and artery/vein classification via dom-
inant set clustering. IEEE Transactions on Medical Imaging (2019)

21. M.I. Meyer, A. Galdran, P. Costa, A.M. Mendonça, A. Campilho. Deep convolutional
artery/vein classification of retinal vessels. in International Conference Image Analysis
and Recognition (2018), pp. 622–630

22. A. Galdran, M.I. Meyer, P. Costa, A.M. Mendonça, A. Campilho. Uncertainty-Aware
Artery/Vein Classification on Retinal Images. in IEEE International Symposium on
Biomedical Imaging (2019), pp. 556–560

23. M. Niemeijer, X. Xu, A.V. Dumitrescu, P. Gupta, B. van Ginneken, J.C. Folk, M.D.
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nal Images for Vessel Extraction. http://www.isi.uu.nl/Research/Databases/DRIVE
(2004)

41. Q. Hu, M.K. Garvin, M.D. Abràmoff. RITE: Retinal Images vessel Tree Extraction.
https://medicine.uiowa.edu/eye/rite-dataset (2015)



Automatic classification of retinal blood vessels 23

(a) (b) (c) (d)

Fig. 6 (a,b) INSPIRE dataset, (c,d) DRIVE dataset. From top to bottom: original images,
ground truth for A/V classification, partial classification (PCF), initial stage of graph prop-
agation (v.1), intermediate stages of graph propagation (v.2, v.3), and final classification
after full graph propagation (v.4). Note that the intermediate stages (v.2, v.3) are shown
together for the sake of simplicity.
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(a) (b) (c) (d)

Fig. 7 Qualitative results of the graph computation step: (a) original image with the region
of interest highlighted (magenta square), (b) zoomed region of interest of the original image,
(c) computed graph with the region of interest highlighted (magenta square), and (d) zoomed
region of interest of the graph. Blue arrows point to arteries, and red arrows to veins. The
two top images are from the INSPIRE dataset, and the three bottom images are from the
DRIVE dataset.


