
Improving Wearable-based Fall Detection

with unsupervised learning

Mirko Fáñez

Instituto Tecnológico de Castilla y León, Burgos, 09001, Spain

mirko@mirkoo.es

José R. Villar

University of Oviedo, Computer Science Department, Oviedo, 33005,

Spain

villarjose@uniovi.es

Enrique de la Cal

University of Oviedo, Computer Science Department, Oviedo, Asturias,

33005, Spain

delacal@uniovi.es

Vı́ctor M. González

University of Oviedo, Electrical Engineering Department, Gijón, 33204,

Spain

vmsuarez@uniovi.es

Javier Sedano

Instituto Tecnológico de Castilla y León, Burgos, 09001, Spain

javier.sedano@itcl.es

February 10, 2020

Abstract

1

Fall detection (FD) is a challenging task that has received the attention of the

research community in the recent years. This study focuses on FD using data

gathered from wearable devices with tri-axial accelerometers (3DACC), developing

a solution centered in elderly people living autonomously. This research includes

three different ways to improve a FD method: i) an analysis of the event detection

stage, comparing several alternatives, ii) an evaluation of features to extract for

each detected event and, iii) an appraisal of up to 6 different clustering scenarios

to split the samples in subsets that might enhance the classification. For each

clustering scenario, a specific classification stage is defined. The experimentation

includes publicly available simulated fall data sets. Results show the guidelines

for defining a more robust and efficient FD method for on-wrist 3DACC wearable

devices.

Keywords: Fall Detection; Unsupervised Learning; Clustering; One-Class Classifier

1 Introduction

Fall Detection (FD) is a major challenge with many applications to healthcare, work

safety, etc. The best rated commercial products only reach an 80% of success [19]. The

publicly available solutions include context-aware systems (like video systems [24]) or

wearable systems [13]. These latter allow care institutions to optimize their services at

lower cost and be available to a wider part of the population. They are crucial because

the high percentage of non-completely self-sufficient people (e.g. elderly people), and

their desire to live autonomously at their own house. By far, tri-axial accelerometers

(3DACC) represents the preferred wearable-based solution [3, 11, 12, 23, 25].

For instance, a feature extraction stage and Support Vector Machines have been ap-

plied directly in [23, 25], using some transformations and thresholds with very simple

rules [3, 12, 14]. A comparison of different classification algorithms has been presented

in [11], and several threshold-based fall detection algorithms using 3DACC data were

presented in [3, 9, 10]. There are also studies concerned with the dynamics in a fall event

[2, 7]. Additionally, Abbate et al. proposed the use of these dynamics as the basis of

the FD algorithm [1], with moderate computational constraints but a high number of

thresholds to tune. The common characteristic in all these solutions is that the wearable

devices were placed on the waist or in the chest. In [15], the sensors were placed on the

wrist, using Abbate et al. solution plus an over-sampling data balancing stage (using

the Synthetic Minority Over-sampling Technique - SMOTE) and a feed-forward Neural

Network.

This study makes use of the solution in [1, 16] as the base line, experimenting with

several options for the event detection and the feature extraction. Furthermore, a clus-

tering stage is introduced to split the domain in smaller sub-problems; each obtained

2

cluster induces a different classification model specialized in the assigned instances. Up

to 6 different clustering scenarios are evaluated, each one with a different classification

strategy. The solution is evaluated using publicly available simulated FD data sets; the

experimentation evaluates each part of this study, leading to the selection of the best

configuration for FD.

The structure of this study is as follows. The next section deals with the description

of the base line solution. Afterwards, the different issues to study in this research are

introduced in 3. The complete experimentation is described in Sect. 4, while the obtained

results and discussion are included in Sect. 5. The study ends with the conclusions draw

from this research.

2 A three stage FD solution

The base-line solution is the FD system proposed in [1, 16], where a peak detection is

followed by a feature extraction; these features are then classified using either Neural

Networks (NN) and Support Vector Machines (SVM) among other well-known machine

learning techniques. The dynamics of a fall used to detect peaks and the very simple

Finite State Machine (FSM) that is used to detect the falls are shown in the left and

right part of Figure 1.

The data gathered from a 3DACC located on the wrist is processed using a sliding

window. A peak candidate is detected if the magnitude of the acceleration at is higher

than a specified value th1×g (th1 is a predefined threshold and g = 9.8 m/s is the gravity)

followed by a period of calm greater than 2500 milliseconds (the sum of the two timers

used in the FSM). The time of the peak occurrence is call peak time (pt, point 1 in the

left part of Figure 1).

The impact end, ie (point 2), denotes the end of the fall event; it is the last time

for which the at value is higher than th2 × g (th2 = 1.5). Finally, the impact start, is

(point 3), denotes the starting time of the fall event, computed as the time of the first

sequence of an at <= th3 × g (th3 = 0.8) followed by a value of at >= th2 × g. The

impact start must belong to the interval [ie − 1200 ms, peak time]. If no impact end is

found, then it is fixed to peak time plus 1000 ms. If no impact start is found, it is fixed

to peak time. The interval [impact start, impact end] is called peak window.

Whenever a fall-like peak is found, the following transformations are then calculated

using the data in the peak window :

• Average Absolute Acceleration Magnitude Variation, AAMV =
∑ie−1

t=is
|at+1−at|

N
, with

N the number of samples in the interval.

• Impact Duration Index, IDI = impact end− impact start.

• Maximum Peak Index, MPI = max(at), ∀t ∈ [is, ie].

3

Figure 1: The base-line solution. To the left, the dynamics of a fall and the times and
thresholds used for defining the peak window. To the right, the finite state machine.

• Minimum Valley Index, MV I = min(at), ∀t ∈ [is− 500, ie].

• Peak Duration Index, PDI = peak end−peak start, with peak start defined as the

time of the last magnitude sample below thPDI = 1.8 × g occurred before pt, and

peak end defined as the time of the first magnitude sample below thPDI = 1.8× g

occurred after pt.

• Activity Ratio Index, ARI, calculated as the ratio between the number of samples

not in [thARIlow = 0.85 × g, thARIIhigh = 1.3 × g] and the total number of samples

in the 700 ms interval centered in (is + ie)/2.

• Free Fall Index, FFI, the average acceleration magnitude in the interval [tFFI , pt].

The value of tFFI is the time between the first acceleration magnitude below thFFI =

0.8× g occurring up to 200 ms before pt; if not found, it is set to pt− 200ms.

• Step Count Index, SCI, measured as the number of peaks in the interval [pt −
2200, pt].

The real-time fall detection is proposed as follows (see Fig. 2). The acceleration

magnitude value for each instant of time t is analyzed looking for a peak that marks where

a fall event candidate appears. Whenever a 2500 ms of low activity occurs after a peak,

the entire time series (TS) for the last 7500 ms is passed to the feature extractor, which

determines the impact end, impact start and all the remaining features. These features

are passed to the trained clustering and classifier models, which determine whether it was

a FALL or NOT FALL.

4

Figure 2: Block diagram of the base line method. Samples are continuously monitored
to detect peaks. When a peak is detected, a feature extraction stage takes place. Finally,
the extracted features are classified.

3 Improvement issues to analyze

The base line method described before has several drawbacks. For instance, some of

the features extracted might have small variation between samples belonging to different

labels. Moreover, the peak window usually approximates to [pt, ie], which also reduces the

significance of some features. Finally, some upper classification limits might be found due

to considering a single classifier; if a suitable division in clusters of the domain is found

then several classifiers can be obtained and the overall performance can be enhanced.

All these issues have been addressed in this study. On the first hand, the event

detection method described before (using a peak threshold and an FSM) is compared with

the alternative proposed in a previous research [8]. On the second hand, unsupervised

learning is used to group the instances that arise from each detected peak; up to 6

different clustering configurations (from now on, they are called scenarios) are presented

and compared. In between, an alternative for the feature subset presented in [8] is

compared with the feature subset proposed in [1, 16].

3.1 An event detection alternative

As mentioned before, the event detection method produces a peak window closer to

[pt, ie], penalizing several extracted features. In past research [8], we have used this event

detection together with the same FSM and threshold th1 proposed in [1]. In this research

we perform differently: we fix the peak window to [pt−200, pt+1000]; this change makes

some features to become irrelevant, so they need to be substituted by new independent

ones. This modification was suggested by the fact that a relevant number of instances

included nearly constant features, such as IDI.

Besides, the threshold proposed in [1] is fixed for all the users. We have found that

this might not be the case [16], proposing an optimized value. However, we do believe this

threshold must be specific for each user; in this study we propose a method to determine

it. To do so, walking was defined as the standard activity for determining this value. The

user should walk during a relatively short period; meanwhile, the 1000 maximum values

of the acceleration magnitude are recorded (amax[k], with k ∈ {1, . . . , 1000}). The value

of the threshold is determined as th1 = 0.9 ×
∑1000

k=1 amax[k]/1000, that is, a value a bit

smaller than the mean maximum value of the acceleration when walking.

5

Furthermore, the mean and standard deviation during this walking period will be

stored and used later to standardize the TS.

3.2 A second set of features

If the event detection from previous subsection is used, the features proposed in [1, 16]

might become meaningless. Therefore, in [8] a new set of features was evaluated. This

second set of features eliminates those transformations that were found meaningless after

fixing the peak window size and includes three more variables that focus on specific

intervals of the peak window. The list of the new set of features is:

• Average Absolute Acceleration Magnitude Variation (AAMV).

• Maximum Peak Index (MPI).

• Minimum Valley Index (MV I).

• Free Fall Index (FFI).

• Step Count Index (SCI).

• Pre-impact Activity Index (PrAI), measuring the AAMV in the part of the fall

window before the peak, Eq. 1.

PrAI =

pt∑
t=is

|at+1 − at|
N

(1)

• Post-impact Activity Index (PoAI), measuring the AAMV in the part of the fall

window after the peak, Eq. 2.

PoAI =

pt+500∑
t=pt

|at+1 − at|
N

(2)

• Long-term Activity Index (LAI), measuring the AAMV in the interval where the

user must be more or less still after a fall, Eq. 3.

LAI =
ie∑

t=pt+500

|at+1 − at|
N

(3)

3.3 Unsupervised learning scenarios

As explained before, event detection is performed on a TS; for each detected peak the

defined feature subset is computed. Therefore, a new data set is extracted containing

6

an instance for each detected peak. In previous research [1, 15, 8, 22], all the instances

were considered to obtain a single model which would be used to classify incoming new

instances. However, the performance of the models showed an upper bound which was

not possible to overcome. In this research we consider the divide and conquer approach

to split the data into clusters, and to classify each cluster with a suitable technique.

This study includes the evaluation of several scenarios of clustering; the clustering is

based on the K-Means Clustering Algorithm using R stats package [20] version v3.5.0.

Each scenario defines a specific data pre-processing before clustering. Furthermore, each

scenario also defines a technique to classify the instances belonging to each cluster. To

classify, two different methods were proposed: i) Support Vector Machine (SVM) classi-

fication using R e1071 package [17] version v1.7.0, and ii) k-Nearest Neighbour (k-NN)

classification using R class package [21] version v7.3.15.

All these options are described next; in all of them, we use the ratio of 0.4 to determine

whether there is class balance or not:

Scenario 1 Clustering all the data together. The clustering algorithm analyzes all the

instances; the optimal number of clusters is fetched from 2 to 20 using the elbow’s

rule. In any resulting group where all the instances belong to the same label A

(FALL or NOT FALL), a new instance belonging to the group is labelled as A.

On the other hand, when for a group there exists instances belonging to different

classes, a new instance assigned to this group is labelled using a specific SVM. That

is, for each of these groups a SVM model is obtained with the instances belonging

to the group; whenever the balance of the instances is in compromise, SMOTE

balancing is applied [6].

Scenario 2 Clustering the NOT FALL data only. In this scenario, the training data set

is split in NOT FALL and FALL instances; the mean and standard deviation of

the NOT FALL instances are used later to standardize all them before determin-

ing what cluster an instance belongs to. The clusters are determined using the

normalized NOT FALL training data. Afterwards, the normalized FALL training

instances are assigned to the closest cluster. However, the centroids are not up-

dated. As before, when all the instances in a cluster belong to the same class, this

latter is used to classify new instances assigned to this cluster. When a cluster in-

cludes instances from more than one class, a SVM trained with the instances of the

cluster (if needed, balanced with SMOTE as well) is used to classify new instances

assigned to the group.

Scenario 3 Clustering the NOT FALL data only adding the FALL data and recomputing

the centroids. This scenario works as in the previous case for the clustering but just

recomputing the clusters’s centroids.

7

Scenario 4 Clustering data from each label independently and using the computed cen-

troids. This is a totally different concept. The training NOT FALL instances and

the training FALL instances are clustered independently. The optimum number of

clusters K varies from 4 to 22 for NOT FALL instances, and from 2 to 12 for FALL

instances.

The centroids from both sets of clusters (FALL and NOT FALL) are used for a

k-NN classifier for which better value k is also found. A new instance is labeled

as FALL if the probability of FALL (pF) returned from the k-NN model is higher

that the probability of NOT FALL (pNF) plus a certain threshold (pF > pNF + th).

Vice versa, when pNF > pF + th, the instance is classified as NOT FALL. For those

cases in which there is no clearly greater probability, the Equation 4 and Equation

5 are used. The highest value decides what label will be assigned. The value of th

has been set experimentally to 0.10.

ppF (instance) = (1−
∑QF

i=0
dist(instance, centroid F

i)∑QCL
i=0

CL∈{F, NF}
dist(instance, centroid CL

i)
) ∗ pF (4)

ppNF (instance) = (1−
∑QNF

i=0
dist(instance, centroid NF

i)∑Q
i=0

CL∈{F, NF}
dist(instance, centroid CL

i)
) ∗ pNF (5)

We call ppF the predicted probability of being a FALL and ppNF the predicted

probability of being a NOT FALL for an instance. These predicted probabilities

are computed for the instance. The denominator makes use of the same number

of clusters belonging to each class; more specifically, the minimum between the

number of FALL clusters (QF) and the number of NOT FALL clusters (QNF). For

the label with higher number of clusters, the closest clusters are used.

Scenario 5 One-class SVM for each cluster. Clustering takes place using the training

NOT FALL instances only. For each cluster, the assigned NOT FALL instances

are used in training a one-class SVM (OCSVM). To classify a new instance, the

OCSVM from the closest cluster is used to determine whether it belongs to the

normal NOT FALL class or it should be labeled as FALL.

Scenario 6 95% PCA + Scenario 4. In this scenario we apply PCA to the normal-

ized subset of features, trying to reduce the dimension of the input. The level of

representation is set to 95%. Then, the same scheme as in Scenario 4 is used.

8

4 Experimentation set up

This section deals with up to four different topics: the data sets used in this research

and the three stages in the experimentation. These three stages are i) the comparison of

the two event detection methods, ii) the comparison of the two feature extraction subsets

and iii) the evaluation of the clustering scenarios together with the classification results.

For the last part of the evaluation, the best event detection and the best feature subset

will be chosen. Each of these topics is cover in the following 4 different subsections.

4.1 Experimental data sets

This experimentation includes two publicly available simulated falls data sets; these data

sets were gathered with participants wearing, at least, one 3DACC sensor placed on a

wrist. Each participant performed several repetitions from a certain catalogue of Activi-

ties of Daily Living (ADL) and fall types. Each of the repetitions is stored as a multivari-

ate TS with the three acceleration axis, along with the corresponding label of the ADL

or fall type. Due to the lack of homogeneity in the ADL set and in the experimentation

design [4], in this study we will manage each data set independently. Furthermore, we

are going to focus on the fall types that are common to both data sets: we consider only

forward, backward and lateral falls when the participant is standing still upright.

The data sets that are going to be considered are:

UMA Fall data set [5] : 17 participants for a total of 531 TS (208 of them are labelled

with one of the possible fall types). The sampling frequency is 20 Hz. Includes

forward, backward and lateral simulated falls, as well as several ADL (running,

hopping, walking and sitting). The number of repetitions of each ADL or fall

varies from one user to another. We have only considered those participants with

more than 20 TS, provided that at least 9 of them are simulated falls. Although

participant 17 did not performed any backward fall, we kept it due to the number

of falls of the other types.

Ozdemir&Barshan [18] : 17 participants for a total of 4406 fall TSs and 8891 ADL

TSs. The sampling frequency is 25 Hz. Includes 20 different FALL classes: front-

lying, front-protecting-lying, front-knees, back-lying, syncope, etc.; as well as 16

types of ADL. Each participant performs, on average, 5 runs of every ADL and

FALL simulation.

4.2 Evaluation of event detection methods

Two different aspects are evaluated: on the one hand, what event detection method

identifies more fall events. On the second hand, the number of fall alarms proposed by

9

each method is analyzed. It is worth noticing that this evaluation is performed for each

data set independently.

Therefore, we split the data sets in two: the FALL TS and the NOT FALL TS. With

the first group (FALL TS), the number of peak candidates should be ideally equal to

the number of TS. For the second group (NOT FALL TS), we manually split again in

two: those TS gathered from high level ADL (HADL, such as Running, etc.) and those

TS gathered from low level ADL (LADL, such as standing still, etc.). For the LADL

there should not be any peak candidate; for the HADL, the smaller the number of peak

candidates the better.

The activities selected as LADL are WALKING, CLIMBING UPSTAIRS, CLIMBING

DOWNSTAIRS, LIMPING, WASHING DISHES, VACUUMING, SWEEPING, LYING

AND STANDING, SITTING AND STANDING, RESTING, SLEEPING, STANDING,

SITTING, LYING, RISING, SQUATTING, and COUGHING. The activities selected as

HADL are: RUNNING, JOGGING, JUMPING, HOPPING, STUMBLE, SAWING, and

BENDING.

For each case, we record the True Positive (TP), True Negative (TN), False Positive

(FP) and False Negative (FN). With these values, the performance of the two event

detection methods will be evaluated.

4.3 Evaluation of the feature subsets

It is worth noticing that the feature subset in [1, 16] is not compatible with the event

detection proposed in [8]: due to the fact that the peak window is of fixed size, several

features become meaningless. Therefore, for this evaluation, the event detection and

feature subset described in Sect.2 will be compared with the event detection and feature

subset detailed in Sect. 3.1 and Sect. 3.2.

To select the best feature subset, we use the corresponding event detection method

to identify the peaks and then, for each peak window, we compute the feature subset. A

final classification stage using SVM follows afterwards, so a label is assigned to each 8

features instance. The best parameter subset will be found using 10-fold cross validation.

The overall performance obtained with the best parameter subset and the complete data

set will be used as comparison. As before, this evaluation is performed once for each data

set.

4.4 Evaluation of the different scenarios

The aim of this experimentation is to determine what scenario performs better together

with the previously selected best event detection method and feature subset. Because

each scenario includes a classification method, the results of this experimentation stage is

measured in terms of classification error, with the TP, TN, FP and FN, and the associated

10

measurements Sensitivity and Specificity.

The experimentation runs as follows. For each data set, perform a 10-fold shuffling

of the participants, splitting the participants in 10 different subsets to be used later. At

each cross-validation stage, we perform as follows. For each participant belonging to a

train fold, standardize the TS as proposed in [16] in case that the Abbate et al pair of

<event detection, feature subset> is the best one; otherwise, standardize the TS using

the mean and standard deviation of the tuning Walking ADL (see Sect. 3.1). Afterwards,

perform the event detection and the feature extraction for each detected peak.

The instances of feature extraction computed for the TS of all the participants from

training constitute the Scenario Training Data Set (STDS). Performing similarly with

the participants that belong to the validation data set we obtain the Scenario Validation

Data Set (SVDS). Both STDS and SVDS are z-scored with the STDS mean and standard

deviation.

Finally, with the STDS we perform the scenario training (for all the scenarios), while

we use the SVDS for the validation.

5 Results and discussion

The results follow the explicit order shown in the previous section. Therefore, Table 1 to

Table 3 include the results obtained in the comparison of the event detection methods.

The results concerning the comparison of the two features subsets are depicted in Table

4. Finally, the comparison among the different scenarios is shown in Table 5.

In Table 1, the results when the event detection method analyzes each of the TS

labelled as FALL are shown. The ideal case would be that a peak should be detected for

all the FALL TS belonging to each data set. The real case is that there are peaks that

have raised due to a fall that has not been detected. However, the improvements with

the proposal in [8] are clear: up to a 16% in the decrease of the number of undetected

falls.

On the other hand, Table 2 and Table 3 show the performance of the event detection

methods when analyzing low activity ADL TS and high activity ADL TS. As it can be

seen, the number of peaks detected when having high level activities (HADL) is also

higher with the proposal in [8]. Although these are false alarms, it is interesting noticing

that the method detects these peaks that are to be classified later, relying in the quality

of the classifier.

However, when analyzing the LADL, it can be seen that the proposal from [1, 16] fires

at a higher rate than the proposal in [8]. In this case, the smaller the number of detected

peaks the better as long as these are low level activities.

11

Table 1: Comparison of the event detection methods when analyzing the FALL TS from
each data set. Sens represents the Sensitivity.

Dataset
Abbate algorithm Neurocomputing’19 algorithm

TN TP FP FN Sens TN TP FP FN Sens

UMA Fall 0 153 0 57 0.7285 0 162 0 48 0.7714
OzmedirBarshan 0 4112 0 294 0.9332 0 4231 0 175 0.9602

Table 2: Comparison of the event detection methods when analyzing the NOT FALL TS
from each data set. The figures are the obtained counters.

Dataset
Abbate algorithm Neurocomputing’19 algorithm

TN TP FP FN TN TP FP FN

UMA Fall
High-Act 0 132 0 98 0 141 0 89
Low-Act 68 0 23 0 70 0 21 0

OzmedirBarshan
High-Act 0 1023 0 1191 0 952 0 1262
Low-Act 5960 0 717 0 5982 0 695 0

Table 3: Comparison of the event detection methods when analyzing the FALL TS from
each data set. The statistical results.

Dataset
Abbate algorithm Neurocomputing’19 algorithm

Sens Spec Sens Spec

UMA Fall
High-Act 0.5739 0 0.6130 0
Low-Act 0 0.7472 0 0.7692

OzmedirBarshan
High-Act 0.4620 0 0.4299 0
Low-Act 0 0.8926 0 0.8959

Table 4 shows the results obtained for the comparison of the two feature subsets.

In this case, the classification Sensitivity and Specificity are included; these values were

obtained with the best parameter subset using 10-fold cross validation. The set of features

detailed in Sect. 3.2 clearly outperforms the proposed in [1, 16]; therefore, this feature

subset will be used in the last stage of this experimentation.

Finally, the comparison of the different scenarios using the event detection and feature

subset detailed in Sect. 3.1 and Sect. 3.2 is shown in Table 5. The results in this table are

the counters, the Sensitivity and the Specificity for the validation data set; these values

were obtained for the best parameter subset found with 10-fold cross validation in each

scenario. All these figures were obtained training the SVM with the caret package in R.

The number of clusters for each scenario were {8, 6, 6, 6, 22 for NOT FALL and 8 for

FALL, 6, 8} for Scenario 1 to Scenario 6, respectively. In case of Scenario 5, the best

number of neighbors was 5, with a th set to 0.10.

12

Table 4: Comparison of the statistical results of the two feature subsets evaluated for
each data set.

Dataset
Abbate algorithm Neurocomputing’19 algorithm

Sens Spec Sens Spec

UMA Fall 0.8038 0.8170 0.8393 0.9350
OzmedirBarshan 0.8177 0.9737 0.9202 0.9940

A quick glance at these results shows the Scenario 4 as the best learning configuration.

Reporting a high remarkable performance with the OzmedirBarshan data set and a more

discrete one with the UMA Fall data set. These results suggest that perhaps introducing

probabilistic models or methods based in possibility (such Fuzzy Rule Based Systems)

might improve the FD performance. Surprisingly, Scenario 6 showed very poor results;

we need to investigate why these unexpected figures.

Interestingly, if you compare Table 4 with Table 5, it might seem that just using SVM

is enough; no clustering might be needed. However, it is important to remember that

the results depicted in Table 4 were obtained with the training data set, that is, after

the cross validation to find the best configuration; this is the output of the model with

the best parameter subset when trained with the complete training data set, as stated in

the package caret. In case of the results in Table 5, these results were obtained with the

validation data set, which explains the worse performance.

Table 5: Comparison of the different Scenarios’ performance. Sens and Spec stand for
Sensitivity and Specificity, correspondingly.

Scenario Dataset TN TP FP FN Sens Spec

Scenario 1
UMA Fall 255 129 66 81 0.6142 0.7943
OzmedirBarshan 6312 3260 2579 1146 0.7399 0.7099

Scenario 2
UMA Fall 223 144 98 66 0.6857 0.6947
OzmedirBarshan 7023 3659 1868 747 0.8304 0.7898

Scenario 3
UMA Fall 272 135 49 75 0.6428 0.8473
OzmedirBarshan 6857 3521 2034 885 0.7991 0.7712

Scenario 4
UMA Fall 263 148 58 62 0.7047 0.8193
OzmedirBarshan 8090 4094 801 312 0.9291 0.9099

Scenario 5
UMA Fall 194 151 127 59 0.7190 0.6043
OzmedirBarshan 5866 3985 3025 421 0.9044 0.6597

Scenario 6
UMA Fall 214 137 107 73 0.6523 0.6667
OzmedirBarshan 6143 3327 2748 1079 0.7551 0.6909

6 Conclusions

The detection of falls is very important mainly for the elderly population. In this study,

the use of an unsupervised learning stage prior to the classification of an event is analyzed.

13

Up to 6 different scenarios are proposed, including i) Clustering all the data together, ii)

Clustering the NOT FALL data only, iii) Clustering the NOT FALL data only, adding

the FALL data, and re-calculating the centroids, iv) Clustering data from each label

independently and using the computed centroids as the training data of a k-NN algorithm,

v) Clustering the NOT FALL instances plus learning One-class SVM for each cluster and

vi) 95% PCA + Scenario 4. Furthermore, the comparison of two event detection methods

and of two feature extraction subsets is performed as well. In the experimentation, two

publicly available simulated fall data sets including ADLs have been used.

Results show that the best performance has been found for i) the event detection based

on selecting an activity as the base line, standardizing the TS with the mean and standard

deviation of the user when performing this ADL, ii) the new feature subset proposed in

[8] and detailed in this research and, iii) the fourth scenario that independently cluster

the NOT FALL TS and the FALL TS, using the obtained centroids as the training data

of a k-NN classifier. Further research includes introducing probabilistic and possibility

models and also studying the poor performance obtained with the PCA method.

Acknowledgement

This research has been funded by the Spanish Ministry of Science and Innovation un-

der project MINECO-TIN2017-84804-R and by the Grant FCGRUPIN-IDI/2018/000226

project from the Asturias Regional Government.

References

[1] Abbate, S., Avvenuti, M., Bonatesta, F., Cola, G., Corsini, P., AlessioVecchio: A

smartphone-based fall detection system. Pervasive and Mobile Computing 8(6), 883–

899 (Dec 2012)

[2] Abbate, S., Avvenuti, M., Corsini, P., Light, J., Vecchio, A.: Wireless Sensor Net-

works: Application - Centric Design, chap. Monitoring of human movements for fall

detection and activities recognition in elderly care using wireless sensor network: a

survey, p. 22. Intech (2010)

[3] Bourke, A., O’Brien, J., Lyons, G.: Evaluation of a threshold-based triaxial ac-

celerometer fall detection algorithm. Gait and Posture 26, 194–199 (2007)

[4] Casilari, E., Santoyo-Ramón, J.A., Cano-Garćıa, J.M.: Analysis of public datasets

for wearable fall detection systems. Sensors 17(1513), 4324 – 4338 (2017), http:

//www.mdpi.com/1424-8220/17/7/1513

14

http://www.mdpi.com/1424-8220/17/7/1513
http://www.mdpi.com/1424-8220/17/7/1513

[5] Casilari, E., Santoyo-Ramn, J.A., Cano-Garca, J.M.: Umafall: A multisensor dataset

for the research on automatic fall detection. Procedia Computer Science 110(Sup-

plement C), 32 – 39 (2017), http://www.sciencedirect.com/science/article/

pii/S1877050917312899

[6] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic mi-

nority over-sampling technique. Journal of artificial intelligence research pp. 321–357

(2002)

[7] Delahoz, Y.S., Labrador, M.A.: Survey on fall detection and fall prevention using

wearable and external sensors. Sensors 14(10), 19806–19842 (2014), http://www.

mdpi.com/1424-8220/14/10/19806/htm

[8] Fañez, M., Villar, J.R., de la Cal, E., González, V.M., Sedano, J., Khojasteh, S.B.:

Anomaly intelligent fall detection: mixing user-centered and generalized models. in

evaluation for Neurocomputing (2019)

[9] Fang, Y.C., Dzeng, R.J.: A smartphone-based detection of fall portents for construc-

tion workers. Procedia Eng. 85, 147–156 (2014)

[10] Fang, Y.C., Dzeng, R.J.: Accelerometer-based fall-portent detection algorithm for

construction tiling operation. Autom. Constr. 84, 214–230 (2017)

[11] Hakim, A., Huq, M.S., Shanta, S., Ibrahim, B.: Smartphone based data mining for

fall detection: Analysis and design. Procedia Computer Science 105, 46–51 (2017),

http://www.sciencedirect.com/science/article/pii/S1877050917302065

[12] Huynh, Q.T., Nguyen, U.D., Irazabal, L.B., Ghassemian, N., Tran, B.Q.: Optimiza-

tion of an acc. and gyro.-based fall det. algorithm. Journal of Sensors (2015)

[13] Igual, R., Medrano, C., Plaza, I.: Challenges, issues and trends in fall detection

systems. BioMedical Engineering OnLine 12(66) (2013), http://www.biomedical-

engineering-online.com/content/12/1/66

[14] Kangas, M., Konttila, A., Lindgren, P., Winblad, I., Jämsaä, T.: Comparison of

low-complexity fall detection algorithms for body attached accelerometers. Gait and

Posture 28, 285–291 (2008)

[15] Khojasteh, S.B., Villar, J.R., de la Cal, E., González, V.M., Sedano, J., YAZG̈AN,

H.R.: Evaluation of a wrist-based wearable fall detection method. In: 13th Inter-

national Conference on Soft Computing Models in Industrial and Environmental

Applications. pp. 377–386 (2018)

15

http://www.sciencedirect.com/science/article/pii/S1877050917312899
http://www.sciencedirect.com/science/article/pii/S1877050917312899
http://www.mdpi.com/1424-8220/14/10/19806/htm
http://www.mdpi.com/1424-8220/14/10/19806/htm
http://www.sciencedirect.com/science/article/pii/S1877050917302065
http://www.biomedical-engineering-online.com/content/12/1/66
http://www.biomedical-engineering-online.com/content/12/1/66

[16] Khojasteh, S.B., Villar, J.R., Chira, C., González, V.M., de la Cal, E.: Improving

fall detection using an on-wrist wearable accelerometer. Sensors 18(5) (2018)

[17] Meyer, D., Dimitriadou E, Hornik K., Weingessel A., Leisch F., Chang C.C., Lin

C.C.: Probability Theory Group (Formerly: E1071), TU Wien - Package ’e1071’

(2019), https://cran.r-project.org/web/packages/e1071/e1071.pdf

[18] Ozdemir, A.T., Barshan, B.: Detecting falls with wearable sensors using machine

learning techniques. Sensors 14, 10691–10708 (2014)

[19] Purch.com: Top ten reviews for fall detection of seniors. www.toptenreviews.com/

health/senior-care/best-fall-detection-sensors/ (2018)

[20] R Core Team and contributors: K-Means Clustering in R Stats Package (2019),

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans.html

[21] Ripley B. and Venables W.: Functions for Classification - Package ’class’ (2019),

https://cran.r-project.org/web/packages/class/class.pdf

[22] Villar, J.R., de la Cal, E., Fañez, M., González, V.M., Sedano, J.: User-centered fall

detection using supervised, on-line learning and transfer learning. Progress in Ar-

tificial Intelligence 8(4), 453–474 (Dec 2019), https://doi.org/10.1007/s13748-

019-00190-2

[23] Wu, F., Zhao, H., Zhao, Y., Zhong, H.: Development of a wearable-sensor-based fall

detection system. International Journal of Telemedicine and Applications 2015, 11

(2015), https://www.hindawi.com/journals/ijta/2015/576364/

[24] Zhang, S., Wei, Z., Nie, J., Huang, L., Wang, S., Li, Z.: A review on human activ-

ity recognition using vision-based method. Journal of Healthcare Engineering 2017

(2017)

[25] Zhang, T., Wang, J., Xu, L., Liu, P.: Fall detection by wearable sensor and one-class

svm algorithm. In: Huang DS., Li K., I.G. (ed.) Intelligent Computing in Signal Pro-

cessing and Pattern Recognition, Lecture Notes in Control and Information Systems,

vol. 345, pp. 858–863. Springer Berlin Heidelberg (2006)

16

https://cran.r-project.org/web/packages/e1071/e1071.pdf
www.toptenreviews.com/health/senior-care/best-fall-detection-sensors/
www.toptenreviews.com/health/senior-care/best-fall-detection-sensors/
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans.html
https://cran.r-project.org/web/packages/class/class.pdf
https://doi.org/10.1007/s13748-019-00190-2
https://doi.org/10.1007/s13748-019-00190-2
https://www.hindawi.com/journals/ijta/2015/576364/

	Introduction
	A three stage FD solution
	Improvement issues to analyze
	An event detection alternative
	A second set of features
	Unsupervised learning scenarios

	Experimentation set up
	Experimental data sets
	Evaluation of event detection methods
	Evaluation of the feature subsets
	Evaluation of the different scenarios

	Results and discussion
	Conclusions

