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PREVIOUS RESEARCH

Wearable sensors and illness and abnormalities detection

* Stroke movement detection [1,2] * Sleep apnea detection, SAX dictionaries [3]

< ’2 ( .2 . 1. Data pre-processing
N "
/ S 2 > 2. Posture identification
k\ Seated ) | Upright j (Walking ) . . .
& S . >~ 3. Breath-cycle identification
4 Apnea identification
Procedure: Boosting Fuzzy Rules 0,012 ppeer————
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PREVIOUS RESEARCH

Wearable sensors and illness and abnormalities detection

Tonic-Clonic Epilepsy seizure detection [4]

* Finding the most interesting features that could
be computed from a sliding window. A TS is
represented with the most relevant features.

Generalized models for abnormal
movement detection [5]
» Is it possible to extract features and learn

generalized models to identify abnormal
movements?

* The main problem here was the availability of

data.

Input Data

a" a¥ a*

Stage 1 - Feature Selection

Genetic Fuzzy Finite
State Machine

PCA and Local PCA have been found suitable,

| s | TS porsiess ﬂ whlle LLE did not.
/ ; / . / Fold PCA LPCA ‘ :
grouping groupin oupin .
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PREVIOUS RESEARCH

Wearable sensors and illness and abnormalities detection

* Tonic-Clonic Epilepsy seizure detection
* Not so many calculations to avoid draining the battery = sliding window and a restricted set of features.
* Ant-Colony Optimization and Fuzzy Rule Based Systems [6]
* Comparison of SVM, KNN, DT and Fuzzy Rule System [7]
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PREVIOUS RESEARCH

Wearable sensors and illness and abnormalities detection
* Tonic-Clonic Epilepsy seizure detection
* A wearable seizure epilepsy detection platform [8].
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Get to know the problem with the

elder

» Falls occur everyday: one of three elderly people
suffer a fall [9].

» The sooner the detection the better.

e Confidence is all.

@ © The ergonomic factor.

Hey, is fall detection still a
224

A REASON FORA
CHANGE unexpected whirls

sometimes life turns in




COMMERCIAL DEVICES

Video, sound, radar ...

Sensifall, the smart
floor detection system

Sensifall can automaticaly detect any activity, analyse it and inform the right people.




COMMERCIAL DEVICES

Personal emergency response systems (PERS) - Necklaces

Types of PERS Characteristics

HLELE * False alarms: the price to pay.
' » Access to health services 24/7 [16,17].

*  Well, let's accept it: they are not nice to use...
"That 1s a really neat feature at our age,
instead of a necklace, says John Helmus, 76
[19].

e (Confidence reinforcement.

» The person needs to be conscious and able to
reach the button [9].

* 80% of older adults wearing a PERS did not
use their alarm system to call for help after :
experiencing a fall [9]. K




COMMERCIAL DEVICES

Wearables and smartwatches

*  Well-known trademarks are pursuing
Close 10:09 wearable fall detection systems.

'tté?(?;sa' iﬁir‘é"fiﬁ_e * Apple Watch Series 4 [18]
e Alarms when hard falls only.

EMERGENCY
S0S

S0S ,; * Ifyou are immobile — a Heatlh service call in 1 1"}\4
minute time. 7 =

« If you keep moving, the call is delayed until a
positive feedback.

”Apple says it studied the falls of 2,500 people
of varying ages. Yet the company hasn’t said
how often it catches real falls or sets off false
alarms.

Apple’s disclaimer says: “Apple Watch cannot
detect all falls. The more physically active you ,
are, the more likely you are to trigger Fall |

Detection due to high impact activity that can e B R
appear to be a fall.”’[19,20] o S R i AW

M 3iLEREVIEWSEH




SCIENTIFIC LITERATURE

Video and motion sensor based solutions

3D Range cameras Video and sound [25]

- 4 T s * Video and sound pre-
i processed
: independently.
1
i * Event detection by
! determining the
g acceleration and speed
; \ of a subject PLUS a
* Video surveillance systems with/without ! E peak in the sound.
sound. I ond . :
* Simulated falls using stuntmen or i - e i E:ianugfraess ifli/[ (flass1ﬁed
volunteers. : )| e |
* Participants are relatively young. | MTJ;“ |
* Some studies analyse different types of fall || [emvm oo, ] ‘
events. W00 5
 All studies performed heuristic rules [23] == Ao , 3
or matching of specific patterns [24]. am -E} ----- . AT g
* Indoor only Privacy, Occlusions ... L . _ef"“’f _____ ! '




SCIENTIFIC LITERATURE

Video and motion sensor based solutions

Video and Deep Learning [26]
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Motion sensors

* Kinect and LiDAR have been reported
[27,28].

» Spatio-temporal fall event detection using
DeepLearning might solve part of the
problem [29].
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Perhaps video approaches need to
focus on normal behavior: any other
activity might be anomalous [30)].

A
» 9, H




SCIENTIFIC LITERATURE

Sound and floor solutions

) [ 3 2] Match the
= | 1) NFI detection } Track the vibration )
E T vibration pattern Wireless
- changes in with the el LrANSMISSION |y \ —

z l 2) Data ESSQCIEUC‘F ..................................... | the floor pattern to activate f
=1 Greedy assignment method H ~ continuously generated the fall alarm "';-
k=l - : by a
E ‘ 3) Tracking I I_ f ; human fall \

Kalman filter ! i
o ' -

}l 3 Special Piezo Fall Event Intemal- Transmitter Communication  Caregiver/Care
< | [ 4) Feature extraction n / m Transducer Sircmifny Portal Provider
o n Number of observations
= 1 Longest dimension
8 m Sum of magnitudes [3 1 ]
= i Py
o
— | | 5) Pose estimation &

o Markov chain state mode! g)raken g
L Bayesian filtering =

\utomation

. . —
Audio |  Silent Zone Feature Fall 34 CEnter

) ification ®
Signal |~ Suppression —  Extraction = eestonting Detection |

Virginia
[33]

MFCCs
MFCC UBM
FExtraction Training

Extraction
GMS

Extraction

GMS
Extraction

SVM
Classification

SVM
Parameters

SVM
Training

SVM Model

Event class




SCIENTIFIC LITERATURE

Wearables
e Wearables makes the use 1. Record data using the sensory The computation is run on the
easier system. device, on the edge or on the
* The focused population 2. Pre-process and feature cloud.
infers the sensor or sensors . The data come from an ad-hoc
: extraction. .
selection. dataset, a published dataset or a

3. Learning a model.

combination of both.
4. Deployment.

Generalized Vs user-centered
modelling.

Design and learning

* The focused population
infers the sensory location.

Why and where General procedure

TT———

Sensor location

« 3DACC: [35,36,37,38,39,
41,42,43,44,45,46,47,48,49,
50,51,52,53,54,55,56,59]

* Barometer:[45,52]

* Gyroscope:[38,43,45,52,53]

SVM: [42,44,45,49,50,51, 56]

. * Wrist: [36,37,39,40,41,42
KNN: [42,49,50,51,54,57, 59] ,37,37,:40,41,42,
NN: [35.40.44.49] 43,44,48,50,52,54,55,59]

Trees: [38.42.51] . Waist: [35,38,45,46,47,53,

_ 54,56,58]
Rule Set: [39,41,46,47,48,52 >
ule Set: [39.41,80.4748.52, | Tnigh: [37.39.49.51,58]

53,55
* Electromyography:[60] . Heurgstics:[S 6,43] * Other: chest [51], ankle
* Sensor fusing:[36],angle « HMM [53]

[58]



FALL DETECTION: OUR ML DEVELOPMENTS

The publication path

[35] [61] [64] :\a'
Abbate HAIS SOCO ICCCBDA [ i
PC2012 2018 » 2018 ’ 2018 :;%/ fif
v [aﬂ§:’——_’;;A. [63)m
Y
SENSORS ICMA e ~

67
[67] 2018 2018 .

FINO
2018

PAI 2019




FALL DETECTION: OUR ML DEVELOPMENTS

The publication path

Abbate

PC2012

HAIS 2018

SOCO 2018

ICMA 2018

Sensor on the waist

Finite State Machine for Event Detection
Feature extraction

Neural Network

Highly imbalanced data
Too many thresholds and timers
Seems logical

Sensor on the wrist 2> more challenging
Finite State Machine for Event Detection
Feature extraction but changing a bit
Neural Network

Data Normalization

SMOTE 60/40 to balance the classes
UMA Fall ‘

5x2 and 10-f cv

Reducing the computational cost of
model evaluation: C5.0 decision trees.

ICCCBDA
2018

CEA BIO
2018

Model tuning: fog/cloud computilftg. b 2
Basic requirements for the design’ of a fall F
detection platform. :3‘\

Developed platform to deploy at a Senior
Residence Hall in Burgos (Spain), belonging
to the Health Care System.

Analysis of the 5x2 cv results - poor generalization capabilities.
The models can not cope with the whole solution = new solutions are needed: i) user

centred design, ii) ensemble of classifiers, iii) divide and conquer: a model |__per fall 'EP7 €.
Can a smartwatch analyse so many models? ROMER - > WY
AR e LT




FALL DETECTION: OUR ML DEVELOPMENTS

The publication path

ICMA 2018

SENSORS

2018

FINO 2018 DT (C5.0), NN, RBS, SVM.

[
NEURO
COM 2018

PAI 2018

Participant based cross validation.
More models: NN, DT, RBS & NN.
Threshold analysis and optimization.
Are simulated falls similar to real?

UMA Fall

DaLIAC

UNIOVI EPILEPSY
FARSEEING

Participant-based 5x2 cv.

Ensemble basic voting.

UMA FALL - TST — UNIOVI EPILEPSY —
DaLIAC

Esemble (voting &weighted): RBS, SVM,
NN. Also, Random Forest.

Solutions are far to be reliable.
Ad-hoc datasets allow smooth results.
User centred solutions might be helpful.

Data from real falls are needed.

User centred.

* Supervised: KNN and SAX-TFIDF

* On-line learning & Transfer learning:
SAX-TFIDF

More analysis on thresholds: 3 scenarios.
UMA FALL - TST

Too many false alarms but OL-TL SAX-TFIDF
showed the best fall detection M EDTO T5

(| | ERIN(
Al “

T gy e i
e




The publication path

PAI 2019

SOCO 2019

FALL DETECTION: OUR ML DEVELOPMENTS

User centred. UMA FALL - TST
SAX-MAX to reduce false alarm rate

I
NEURO
COM 2018 On-line Learning & Transfer Learning but

K-means to reduce the data base size

FALLOVI draft 1 released.
4 Clustering scenarios

« F & NF + SVM on mixed clusters

* NF clusters + SVM for each cluster containing both F & NF

* NF clusters + F assignment and centroid recalculation + SVM
for each cluster containing both F & NF

* F clusters + NF clusters + centroids KNN

NEURO
COM 2019

Three stage solution: Event
Detection + SVM one class +
SVM on suspicious
Automatic threshold setting

IGPL 2019

More clustering strategies
UMA FALL + TST + Oznedir
A model per fall type
Perhaps, new features

ICAE 2019

Hierarchical HMM ; o

Activity Level + ADL + Peak M
Classify sequences of states \ -
UMA FALL + TST + Oznedir

Hierarchical HMM £ D Y
Activity Level + ADL + Peak | = 8 28
Grammar of a fall BN, B
UMA FALL + TST + Oznédiyv!

FDITC

g RV



FALL DETECTION: OUR ML DEVELOPMENTS

The publication path

SENSORS Traini.ng &
2018 St

Threshold tuning

Mooel training

Peak Detection Feature extraction
EE E E :ﬂ dataset
______________ 1
1Moy | o A0 rining s
= and testing datasets
5x2 ov

Train

Test

Validation
dataset e ————i

[ e o

Train

1 NN | 5VM| DT (RES NN 5VM| DT RES

Test

Train best model ‘

Peak Detection Feature extraction

Evaluate robustness

D1 P2
D2 P3
Dk P3




SENSORS

2018

FALL DETECTION: OUR ML DEVELOPMENTS

The publication path

M
Fold Acc Kp Se Sp Pr G | Acc Kp S¢ Sp Pr
1 09226 08440 09239 09211 09341 09290 | 08988 0936 09565 0820 08713
2 8810 07586 09130 DB LB7S0 (LB938 09286 nB548 0974 8816 (902
3 08810 .7 a0E (LBe9 08947 LR L (LEET] LE333 LebY 0974 6711 07807
4 08750 07468 09022 0841 DEFAT  OBETE | 0B  0BMS 09457 (08553 DESTR
5 L5988 .79 [LER0 09211 a3 (9054 07798 D5540 08152 .7 368 .75
f DEBRE DLFTIS (LR 0847 D91 (LB952 | DERI0 O7Fe03 OR8M 08816 09000
7 08988 0795 08913 0N 09214 09062 | 081 07405 0735 0906 0905
kL 8810 0.7624 LB3F 09342 93K LBEAS | 09226 B4 09%74 L8654 (L H9H)
9 08691 0.7351 LEF13 DB MBFZ3 OBBIE | DB 0OTFR3E 09022 088le D922
i LEFS0 (.50 [LE2E] 05342 0.93853 (BB 09165 B3 09130 0521 L9333
AT (LERED 07725 (LEETS  OB934 04 0LB95L | OEELS 0623 0909 OB4E7 (LBE32
median 8810 7616 (LERSY 09013 sz (LR915 L8958 L7887 09294 NLE7S0 (LB995
std 00159 .03 uo30e 00380 0274 L0147 | D59 n93s o4l 00856 nsE2
RES SWM
Fold Acc Kp Se 5p Pr G| Ac Kp Se Sp Pr
1 087 a2 L9130 DSy ez 09181 089345 L8671 0974 087 D95
2 08929 07847 (088 09070 09206 09002 | 08988 07955 0930 0886 09032 !
3 0.BB69 07694 57 08158 8614 0902% | 09107 DBEMNY 09130 Q979 09231 09181
4 0H9EE 7936 565 OB DEF13 0929 | D9dE 0806 09348 208684 DEYSE 09151
5 08691 0737 08261 09211 09268 OETS0 | 0907 08192 09348 0886 09053 09199
i 09107 LE19% 9239 0847 09141 (L9189 (LERHD 077 0Be9s (L9 0919 (L8942
K LEA3T (.25 LFE2G 0565 IR OLBG6E | 0.9405 B/ 09787 BT 9184 9478
b 09286 0835 09783 08684 09000 09383 | 08988 07951 09739 08684 0897 09092
9 09107 0&1% 09239 05947 09140 09189 | 09107 08183 0955 (8553 0888 092N
1o 09256 N.B562 0923% 09342 9444 09341 09167 B3I 09022 09342 05432
TTLEATE 09000 07985 (L2054 05934 n9135 090856 | 09113 DBMY 09294 08895 09110
median | 0948 08066 09239 05013 09172 0915 | 09107 08188 09204 08882 09114
std 00x24  0M3E 00602 00449 D030 00232 | 0UM&2 00324 00325 00234 ned




FALL DETECTION: OUR ML DEVELOPMENTS

The publication path
SENSORS
2018
Threshold 2.5
Reference Reference RKeferenoe Reference
MM Fall Mot Fall T Fall Mot Fall RES Fall Mot Fall SVM Fall Mot Fall
Fall ] 47 Fall 1] M Fall L] 42 Fall 8 18
Mot Fall . 2500 Mot Fall o L Mot Fall 2 25 Mok Fall 4 P
Threshold 3.0
Reference Reference Reference Reference
MM Fall Mot Fall T Fall Mot Fall KBS Fall Mot Fall SVM Fall Mot Fall
Fall 12 52 Fall 11 18 Fall 11 | Fall 1 12
Mot Fall Ll 245 Mot Fall 1 PR Mol Fall 1 26R Mot Fall 2 285
Threshold 308280
Reference Reference Keference Reference
MM Fall Mot Fall DT Fall Mot Fall RES Fall Mot Fall SVM Fall MNot Fall
Fall 12 by Fall 11 b Fall 12 a5 Fall 1 13
Mot Fall a 234 Mot Fall 1 F | Mot Fall 0o i ¥ Mot Fall z 284

= N
¥ 4 .
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FALL DETECTION: OUR ML DEVELOPMENTS

The publication path

norm T'SnormTH: normalised TS and normalised thresholds

PAI 2019 KMNN TF-IDF

SO parll} | T'N TH 1 "M | TN T rFP FM

TaT I il 47 3 i i 53 3 i

TST i i a7 ] 3 i1 Lih] i i

TST 3 0 50 1] 10 6 BT 13 3

1TH1 4 i L] | il i 43 4 17

TST 5O i 41 ] 0 16 44 11 T

T=T i i 55 ] ] i 55 ] i

11 T ] L] i i i i) i i

TST B i i3 3 4 i i 3 1

=T 1 ] ha ] ] i 52 ] 1]

ST [ 1) i ol i 3 i ad T H

TST 11 i ) ] ] i Gl i (b
UMA Fall 1 14 & LF Ll 1 a3 14 2
UMA Fall F' i i i 2 i Ll i ]
UIMA Fall 5 20 Th 23 14 St T3 1] 17 !
UMA Fall 4 3 71 q 3 i T T | gq
LIMA Fall 9 ] B2 3 11 i a3 3 (b i
LUIMA Fall 12 5 23 1] s a 29 1] 2
UMA Fall 15 2 41 |2 1 2 45 12 1]
LIMA Fall 16 26 270 13 2 7 263 32 b
UMA Fall 17 ] T LK i3 i T | 13 0




FALL DETECTION: OUR ML DEVELOPMENTS

The publication path

norm'I'SnormTH: normalized TS and normalized thresholds

PAI 2019 KNN TF-IDF

source parlD | TN TP FP FN | TN TP FP F'N
18T 1 a7 47 3 13 o7 03 3 7
TST 2 60 87 0 3 60 60 0 0
1oL 3 a0 o0 10 10 47 o7 13 3
TST 1 o6 60 1 0 56 43 1 17
18T ) 40 11 20 19 19 43 11 17
ST 6 60 05 0 ) 60 0o 0 5
TST 7 60 60 0 0 60 60 0 0
TsT 8 o7 06 3 1 o7 o9 3 1
TST 9 60 02 0 8 60 52 0 8
TsT 10 53 o7 7 3 H3 D2 7 8
TST 11 60 60 0 0 60 60 0 0
UMA Fall 1 74 85 16 15 76 93 11 7
UMA Fall 2 90 o8 0 2 90 60 0 0
UMA Fall 3 67 76 23 14 80 73 10 17
UMA Fall 1 96 71 4 9 93 70 7 10
UMA Fall 9 87 81 3 9 87 90 3 0
UMA Fall 12 100 23 10 17 100 29 10 11
UMA Fall 15 38 11 12 9 38 45 12 D
UMA Fall 16 307 270 13 10 | 203 263 27 17

UMA Fall 17 71 o7 16 33 77 o4 13 36




FALL DETECTION: OUR ML DEVELOPMENTS

The publication path
normTSnormTH: normalized TS and normalized thresholds
PAI 2019 TF-1DF TF-1IDF 4+ TL
source parID | TN TP FP FN | TN TP FP FN
TST 1 0 53 3 0 0 53 3 0
TST 2 0 60 0 0 0 o6 0 4
TST 3 9 a5 10 5 0 60 19 0
TST 4 0 15! 4 25 0 60 4 0
TST 51 17 35 10 15 0 5l 27 0
TST 6 0 oh 0 0 0 Do 0 0
TST T 0 60 0 0 0 60 0 0
TST 8 0 61 3 6 0 67 3 0
TST 9 0 % 0 0 0 52 0 0
TST 10 0 41 T 19 0 60 7 0
TST 11 0 60 0 0 0 60 0 0
UMA Fall | 24 52 6 43 0 95 30 0
UMA Fall 2 0 60 0 0 0 60 0 0
UMA Fall 3 41 35 2 515] 0 90 43 0
UMA Fall 4 2 6 H 10 0 74 T 0
UMA Fall 9 0 &1 3 12 0 93 3 0
UMA Fall 12 7 13 8 18 0 31 15 0
UMA Fall 15 o 28 6 17 2 45 12 0
UMA Fall 16 35 217 4 55 0 272 39 0
UMA Fall 17 12 37 4 26 0 63 16 0




FALL DETECTION: OUR ML DEVELOPMENTS

CHALLENGES IN DEVELOPMENT V"7

* Gathering data from real falls

* Presumably. the fall events will be unusual.

* From the ML point of view, is like no real
data 1s given
* Need to generate almost real TS
* Considering the few TS from real falls
*  What is "an almost real TS"?
* Grouping or clustering TS

* Applications in many fields apart from fall
detection
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BALANCING

2010 2012 2012 201

What is it?
What is it for? [72,73]




MULTIVATIATE TS BALANCING

From SMOTE to TS SMOTE

6_

4_

Original set

T T T
=5 0 5
y  Class #0

SMOTE + Tomek

£

»
L

¥

T T T
=5 0 3

Class #1 [75]




MULTIVATIATE TS BALANCING

From SMOTE to TS SMOTE

Feature
%
P 3
Pond ¥ . . »TS:I ‘ :: £1 \a
. AN NS AT % ] oy
. Original set . SMOTE + Tomek 5 o T /L _"‘*-Q,,H ] ,f \ ms{a q+b,)/2
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MULTIVATIATE TS BALANCING

From SMOTE to TS SMOTE
g T SMOTE + Tomek STILL PENDING WHERE TO USE _
| | * Outlier avoidance e Fall detection ‘
N el * but needs a clear . §
1] .- e TS augmentation in user
2 BB - definition. centred
* Alternatives to the need of .
a ouidine sienal * Evaluation of the
% 57 & 8518 robustness of TS clustering

N

50 60 70
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MULTIVARIATE TS CLUSTERING

m’@ \
TYPES OF mTS CLUSTER WHOLE TS CLUSTERING
Model based: Gaussian Mixture Models [83], FE + SOM [84] L .
* Whole TS clustering * Features based: PCA [79], discords [80], hash functions [81],
* Subsequence m-TS stats & patterns [78]
clustering * Shape based: HMM [82], Dynamic Time Warping [77]
* Time point clustering * Hybridized and multi-step

A PRELIMINARY STUDY [85] CLUSTERING ISSUES *

The prediction error of a Recurrent Neural Networks (RNN)
serves as a distance measurement to compare variables within
an instance.

* Transfer learning from one instance to others helps in relaxing
the computational costs.

* TS representation: raw data

* RNN error prediction as
distance measurement

* No prototyping needed




MULTIVARIATE TS CLUSTERING

A preliminary study [85]

Algorithm 1 Computing similarities between features in an example .

1: procedure IN-EXAMPLE-SIMILARITY (T'S?, LoRNN) > LoRNN list of
pre-learnt RNNs, if available

2: sim 4+ zeroes matrix of size n x n

3: for each variable j in T'S® do

4: X} « normalize(X})

5: RNN;} + Train-RNN(X}, LoRNN[j])

6: LoRNN[j] + RNN; _

7: e; +— RMSE(RNNj, test(Xj) )

8: for each variable k in T'S*, k # j do

9: X} « normalize(X7})

10: el m-ISE(RNN;,_test.(X;;) ) i
11; simlj, k] + abs(%)

12: end for ’

13: end for C
14: return sim

15: end procedure

16:

17: procedure TRAIN-R \I\I(}L; RNN) > RNN is a RNN, if available
18: if is.NULL(RNN) then

19: RNN <« full train RNN for the train part of X}

20: else

213 RNN + tune RNN for the train part of X ::

22: end if

23: return RNN
24: end procedure

Within-instance's similarities are
converted to adjacency matrices
o ifsim(j, k) < th,
* For example i, x;predicts x;, denoted
as k < j.
* And SIM;[j, k] = 1.
* Otherwise SIM;[j, k] = 0.

Adjacency matrices from each
instance are aggregated: SIM .

Thresholding the SIM,, 5, matrix.
o« IfSIMgy,lj, k] = th,

¢ SIMfinal[i: k] =1

c k<«j
* Otherwise

¢ SIMfinal[i: k] =0

This final adjacency matrix allows to
represent the dependency graph!
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A toy problem T1 HIR PHI TIN

* Indoor and outdoor temperatures in the weather
station (TIN, TOUT).

 Horizontal and Vertical Irradiance reference

measurement (HIR and VIR). i | 12 PVI TOUT
* The voltage at the weather station's battery

(BV).
* The temperature of 4 photovoltaic panels linked 13 VIR BV

to an inverter (T1 to T4).

* An In-panel Horizontal and Vertical Irradiance

measurement (PHI, VHI). STILL PENDING

Formal definition of all the stages
* Developing a more optimized and robust method.
» Extending the solution to cluster similar instances.
* Developing of suitable distances and efficiency measurements.

» Testing with a complete battery of m-TS datasets.
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