
This paper is a a pre-print paper accepted in Journal of Web Engineering. The final version is available on: https://doi.org/10.13052/jwe1540-9589.1927
Citation information: Morán, J., Augusto, C., Bertolino, A., De La Riva, C., & Tuya, J. (2020). FlakyLoc: Flakiness Localization for Reliable Test Suites in Web Applications. Journal of Web Engineering, 267-296.
Journal of Web Engineering, Vol. 19_2, 267-296
doi: 10.13052/jwe1540-9589.1927
(c) 2020 River Publishers
FlakyLoc: F

Comp

Comp

I

Comp

Comp

Abstract.
Web application te

asynchronous comm

heterogeneity of reso

the same conditions

environmental facto

memory issues or th

which occurs when

another outcome in

tester usually stops

executions. To fix a

which environmenta

of the root cause o

different environme

flakiness is located b
lakiness Localization for Reliable Test Suites

in Web Applications

JESUS MORÁN
uter Science Department, University of Oviedo, Gijón, Spain

 moranjesus@uniovi.es

CRISTIAN AUGUSTO
uter Science Department, University of Oviedo, Gijón, Spain

 augustocristian@uniovi.es

ANTONIA BERTOLINO
STI-CNR, Consiglio Nazionale delle Ricerche, Pisa, Italy

antonia.bertolino@isti.cnr.it

CLAUDIO DE LA RIVA,
uter Science Department, University of Oviedo, Gijón, Spain

 claudio@uniovi.es

JAVIER TUYA,
uter Science Department, University of Oviedo, Gijón, Spain,

tuya@uniovi.es

Received XXX XX, 2019

Revised XXX XX, 2019

sting is a great challenge due to the management of complex

unications, the concurrency between the clients-servers, and the

urces employed. It is difficult to ensure that a test case is re-running in

 because can be executed in undesirable ways according to several

rs that are not easy to fine-grain control like the network bottlenecks,

e screen resolution. These environmental factors can cause flakiness,

the same test case sometimes obtains one test outcome and other times

the same application due to the environmental factors execution. The

to rely on flaky test cases because their outcome varies during the re-

nd reduce the flakiness it is very important to locate and understand

l factors cause the flakiness. This paper is focused on the localization

f flakiness in web applications based on the characterization of the

ntal factors that are not controlled during testing. The root cause of

y means of spectrum-based localization techniques that analyse the test

2

execution under different combinations of the environmental factors that can trigger the

flakiness. This technique is evaluated with an educational web platform called FullTeaching.

As a result, our technique was able to locate automatically the root cause of flakiness and

provided enough information to both understand and fix the flakiness.

Keywords. Software testing and debugging, Spectrum-based localization, Web

applications, Test flakiness.

1. INTRODUCTION

Software testing and debugging play an important role in the evaluation of software quality,

but they pose several challenges [1]. The design and execution of the test cases of web

applications are complex due to the distributed interoperations between heterogeneous

clients and servers. These test cases can be executed each time in different ways according

to varying environmental factors like the underlying network bandwidth, the memory or the

timeouts in web server responses. The non-deterministic execution can introduce flakiness

in the test cases of web applications. A test case is considered flaky when the same test case

run on the same system-under-test obtains different outcomes due to the environmental

factors [2]. Testers cannot rely on the outcome of flaky test cases.

According to a recent study, developers face flakiness frequently and they usually stop to

rely on potentially flaky tests [3]. Despite debugging these tests is considered time-

consuming, the majority of developers considers that finding the root cause of flakiness is

relevant in order to fix it, but it is also a very difficult challenge [3].

In this paper, we introduce a technique to locate the root cause of flakiness in test cases for

web applications. This technique is based on a characterization of the environmental factors

that are not controlled during testing and can cause flakiness. Based on this characterization,

a test case is executed several times under different environmental factors to get insights

about flakiness. These executions are analysed with a spectrum-based localization technique

[4] considering that the factors that usually triggers the flakiness are more prone to be the

root cause of flakiness.

This article extends our earlier work [5] improving the technique proposed and its

evaluation, as well as expanding the survey of related work. The localization technique is

enhanced to analyze combinatorial test executions with different ranking metrics like Ochiai

and Tarantula. The evaluation of the technique is also extended providing insights not only

of the localization but also about the fixing of flakiness in a real-world application. The

related work is extended introducing a thorough analysis of the state-of-the-art.

 The contributions of this article thus include:
1. A technique called FlakyLoc to locate the root cause of flakiness in web

applications. This technique characterizes the test environment, executes the test
case in different ways based on combinatorial testing, and analyses the test
execution using different ranking metrics.

2. The localization of the root cause of flakiness in a real-world web application using
the technique proposed.

This paper is a a pre-print paper accepted in Journal of Web Engineering. The final version is available on: https://doi.org/10.13052/jwe1540-9589.1927
Citation information: Morán, J., Augusto, C., Bertolino, A., De La Riva, C., & Tuya, J. (2020). FlakyLoc: Flakiness Localization for Reliable Test Suites in Web Applications. Journal of Web Engineering, 267-296.
Journal of Web Engineering, Vol. 19_2, 267-296
doi: 10.13052/jwe1540-9589.1927
(c) 2020 River Publishers

3

3. The mitigation and fixing of the flakiness in a real-world web application based on
the information provided by the technique proposed.

The remainder of this paper is organized as follows. The testing of web applications is

introduced in Section 2. The related work about flaky tests is discussed in Section 3. The

technique FlakyLoc is introduced in Section 4 and a practical working example of this

technique is described in Section 5. Finally, conclusions and future work are in Section 6.

2. FLAKINESS IN TESTING WEB APPLICATIONS

The functionality of web applications is implemented with code executed in a distributed

architecture. The client-side code performs web requests that are responded by the server-

side code. These interactions from the client to the server are tested performing the user

actions across the web interface and checking if the server responds properly. The

WebDrivers allow the automatization of the test cases controlling the user actions in a

browser. There exist different tools to support the automatic execution of test cases for web

applications, such as Selenium [6].

These tools provide several WebDrivers that support the execution of the test in different

browsers. However, there are other environmental factors that can affect the execution of

the test cases. For example, suppose a simple test case that pushes a button and awaits 2

seconds to check if the server response is right. The execution of the previous test case can

be affected by several environmental factors like the screen resolution, memory or network.

These factors can cause flakiness in the test case, so that it sometimes passes and other times

fails, as in the following examples. The test case passes when it is executed in large screen

resolutions because it is able to find the button. In contrast, the test case can fail when it is

executed in small screen resolutions because the button can be hidden automatically inside

of the response menu. The test case can also fail if the button is not rendered due to lack of

memory. In case the button is pushed correctly, the test case waits 2 seconds for the server

response, however, the test case can also fail if the server employs more time due to network

congestion. In the previous examples, the test case is flaky because the tester cannot rely on

its outcome as sometimes the test case fails, and other times it passes.

The presence of a flaky test case is common [3], and some researchers propose the aphorism

‘Assume Test are Flaky’ (ATAF) [7]. In order to deal with this flakiness, the testing tools

usually provide different mechanisms based on the re-execution. JUnit has the

@RepeatedTest(10) tag that executes the test case 10 times to avoid “failures” due to the

environmental factors of the execution [8]. In a similar way, the Spring framework has the

@Repeat(10) tag [9]. For the case of progressive web applications, Android provides the

@FlakyTest(tolerance=10) tag [10]. Maven also support the re-execution of those test cases

that fail using the Surefire plugin with the option -Dsurefire.rerunFailingTestsCount=10

[11]. Based on the previous, Jenkins provides the Flaky Test Handler plugin [12].

The previous tools re-execute several times the flaky test case in order to check if the test

case passes in at least one execution. However, the tester could not rely on the test case

because it is still flaky, and its execution is not easy to reproduce. In order to both avoid and

fix the flakiness, the developers consider very important to identify the root cause of

This paper is a a pre-print paper accepted in Journal of Web Engineering. The final version is available on: https://doi.org/10.13052/jwe1540-9589.1927
Citation information: Morán, J., Augusto, C., Bertolino, A., De La Riva, C., & Tuya, J. (2020). FlakyLoc: Flakiness Localization for Reliable Test Suites in Web Applications. Journal of Web Engineering, 267-296.
Journal of Web Engineering, Vol. 19_2, 267-296
doi: 10.13052/jwe1540-9589.1927
(c) 2020 River Publishers

4

flakiness [3]. In this paper, we introduce FlakyLoc to locate the root cause of flakiness in

web applications.

3. RELATED WORK

This section discusses different works that are related to FlakyLoc classified in the following

subsections: (1) Classification of flakiness, (2) Detection of a flaky test, (3) Localization of

root cause of flakiness and (4) Fixing the flakiness.

Classification of flakiness

The root causes of faults have been widely studied and several authors propose different

taxonomies to classify them [13], [14]. Although the flakiness in software testing is not a

new problem [15], its interest has increased in the last few years. The first classification of

flakiness analyzed 51 open source projects [2], classifying the flakiness into 11 different

categories: asynchronous waits, concurrency, test order dependency, resource leak, network,

time, IO, randomness, floating-point operations, unordered collections and others. The

majority of flakiness is caused by asynchronous waits [2], as for example when the Selenium

WebDriver sends an asynchronous web request and does not wait enough time for the server

response. Thorve et al. [16], after analyzing 29 Android Applications, extend the

classification of flakiness with the following three categories: Dependency, Program Logic,

and UI. All of these kinds of flakiness can happen also in web applications, especially the

Dependency and UI. The Dependency flakiness is caused by the use of specific hardware,

devices or thirty party libraries. The UI flakiness is caused by the misunderstood of the

rendering process and user interface. Eck et al. [3] also extend the flakiness classification

with the following four new categories after analyzing the Bugzilla reports: Restrictive

Range, Test Case Timeout, Platform Dependency, and Test Suite Timeout. These kinds of

flakiness can also happen in web applications, especially Test Case Timeout and Platform

Dependency. The Test Case Timeout flakiness is caused when the test case does not finish

in proper time and it is killed. The Platform Dependency flakiness is caused when the test

case passes in one platform, but it fails in another, such as for example those test cases that

pass in one version of the browser, but they fail in another.

The previous studies about the classification of flakiness are the basis of our paper, that
proposes a technique to locate the root causes of flakiness. Based on these studies, we
characterize a series of environmental factors that are prone to trigger flakiness in web
applications.

Detection of a flaky test:

The interest in the literature about test flakiness begins with the so-called “false alarm” tests.

The false alarm tests are those that indicate failure but there is no fault in the code. Several

works have addressed the detection of those false alarm tests. Herzing and Nagappan [17]

propose to detect false alarm test using association rules that classify the test case in real

This paper is a a pre-print paper accepted in Journal of Web Engineering. The final version is available on: https://doi.org/10.13052/jwe1540-9589.1927
Citation information: Morán, J., Augusto, C., Bertolino, A., De La Riva, C., & Tuya, J. (2020). FlakyLoc: Flakiness Localization for Reliable Test Suites in Web Applications. Journal of Web Engineering, 267-296.
Journal of Web Engineering, Vol. 19_2, 267-296
doi: 10.13052/jwe1540-9589.1927
(c) 2020 River Publishers

5

faults or false alarms based on a series of test execution parameters. This work has been put

in production into the Microsoft continuous integration system achieving savings of 1.7

hours per day in development velocity [17].

Jiang et al [18] also classify the test cases at Huawei proposing to analyze the tests logs with
an NLP technique that classifies the cause of flakiness between product code, configuration
error, test script defect, among others.

Flaky test cases and false alarm tests are sometimes referred interchangeably in the literature.

Several authors argue that flaky tests are prevalent in practice [19]. The common way to

detect if a test case is flaky is to re-execute it several times until detecting different outcomes

when the test case is executed under similar conditions. However, some researchers propose

different approaches. Palomba and Zaidman [20] studied the relationship between flakiness

and code smells, concluding that the flakiness of 54% of flaky test cases can be attributed to

code smells. Muslu et al. [21] propose to isolate the execution of each test case to detect

problems related to dependencies. Bell et al. [22] propose to detect the flakiness when the

same test case in two executions covers the same code of the system-under-test but in one

execution passes and in the other execution fails.

The detection of a flaky test case or a false alarm test is outside the scope of the present
paper, which focuses on techniques to the root cause of the flakiness in a given (i.e., already
detected) flaky test case .

Localization of root cause of flakiness

Lam et al. [23] propose to classify the category of flakiness by analyzing the logs after

several test executions and locating the suspicious lines of code that trigger the flakiness.

The previous technique and our paper are orthogonal because both techniques aim to

improve the understanding of the flakiness but providing complementary insights about the

root cause of flakiness. Some authors [24] have also proposed to detect Order and Non-

Order dependent flakiness with a tool called iDFlakies. These tools aim to change the

execution order of the test suite in order to discover underlying dependencies between the

test cases. The technique proposed in our paper is not only focused on the flakiness caused

by order dependencies but also to localize more types of root causes of flakiness like those

presented in the previous sections.

Our technique, FlakyLoc, instead of providing the category of flakiness, the line of code or
the order that triggers the flakiness, provides the suspicious environmental factors that cause
the flakiness. These environmental factors are obtained by FlakyLoc based on both the
characterization and analysis of several executions through a spectrum-based localization
and combinatorial testing.

Fixing the flakiness

Several authors have proposed to fix or decrease the undesirable effects of the test flakiness

into the test suites. Some approaches [25][26] isolate the flaky test cases into a quarantine

subset that is executed after the whole test suite execution to provide extra insights without

to stop the continuous production cycle. Lam et al. also give insights about how these test

This paper is a a pre-print paper accepted in Journal of Web Engineering. The final version is available on: https://doi.org/10.13052/jwe1540-9589.1927
Citation information: Morán, J., Augusto, C., Bertolino, A., De La Riva, C., & Tuya, J. (2020). FlakyLoc: Flakiness Localization for Reliable Test Suites in Web Applications. Journal of Web Engineering, 267-296.
Journal of Web Engineering, Vol. 19_2, 267-296
doi: 10.13052/jwe1540-9589.1927
(c) 2020 River Publishers

6

cases interact between them and provide the correct way to fix the flakiness [27]. In his PhD

dissertation, Gao [28] proposes a test flakiness filter that reaches a tradeoff between the

minimization of the flakiness effects and real failure detection.

Our technique, FlakyLoc, is aimed to help the developer to understand the root cause of
flakiness providing statistical insights that can also provide valuable information to fix or
decrease the flakiness.

4. FLAKYLOC: LOCALIZATION OF ROOT CAUSE OF FLAKINESS

In this section, we describe the FlakyLoc technique to locate the root cause of flakiness in

the flaky test of web applications. A flaky test is a test that sometimes passes and other times

fails depending on a combination of different environmental factors that are not controlled

and therefore can introduce non-determinism in the test, as for example the screen size, the

version of the browser, or the network traffic. We refer as “factor” to each one of the

environmental characteristics that can alter the test execution, and we refer as a

“configuration” to one of the possible combinations of the previous factors.

The proposed technique, FlakyLoc, is summarized in Figure 1. This technique locates the

root cause of flakiness based on the characterization of the different environmental factors

that are not controlled in the flaky tests (Characterization). FlakyLoc executes the flaky test

case in different configurations selected with a combinatorial approach (Execution). The

root cause of the flakiness is then automatically located by a spectrum-based localization

technique that analyses what factors are shared by those executions that trigger the “failure”

(Analysis). In the remainder of this section, we detail the main processes proposed:

characterization of the factors that can cause flakiness, execution of the test in different

combinations of configurations, and analysis of the root cause of flakiness.

4.1. Characterization

We characterize the configuration that triggers the flakiness according to the potential

environmental factors that can cause the flakiness. In web applications, a configuration is

characterized according to a set of factors, such as those indicated below:

▪ Memory can cause issues in the WebDrivers, especially when several sessions and

browsers are not properly closed and they consume the same memory.

▪ The network is one of the main causes of flakiness [2] that can produce delays and

race conditions in the asynchronous web requests.

Characterization Execution
Flacky

Test Analysis Root Cause

of Flakiness

Figure 1 Technique to locate the flakiness

This paper is a a pre-print paper accepted in Journal of Web Engineering. The final version is available on: https://doi.org/10.13052/jwe1540-9589.1927
Citation information: Morán, J., Augusto, C., Bertolino, A., De La Riva, C., & Tuya, J. (2020). FlakyLoc: Flakiness Localization for Reliable Test Suites in Web Applications. Journal of Web Engineering, 267-296.
Journal of Web Engineering, Vol. 19_2, 267-296
doi: 10.13052/jwe1540-9589.1927
(c) 2020 River Publishers

7

▪ CPU can increase or decrease the computation and the concurrency, which is one

of the main issues of flakiness [2].

▪ Browsers and different versions of these browsers can alter the execution of the test

cases making flakiness for different reasons such as rendering the objects in a

different way.

▪ Screen resolution can modify the test execution, especially for those interactive

applications as it can hide/expose relevant web elements during testing.

▪ The operating system can also produce flakiness, especially when the application

uses a workspace or other environmental variables.

Each one of these factors takes one discrete value from those depicted in Figure 2. The

configurations are modelled according to the factors and the values that takes these factors.

Thus, each configuration is composed of several factor-value pairs. For example, a

configuration can be composed by 400KB/s as network bandwidth (Network bandwidth -

400KB/s pair), 1 core CPU (CPU - 1 core pair), Chrome v75 (Browser - Chrome v75 pair),

SVGA screen resolution (Screen resolution - SVGA pair), and Windows 10 (Operating

system. - Windows 10 pair).

Figure 2: Model of the configurations with several characteristics.

This paper is a a pre-print paper accepted in Journal of Web Engineering. The final version is available on: https://doi.org/10.13052/jwe1540-9589.1927
Citation information: Morán, J., Augusto, C., Bertolino, A., De La Riva, C., & Tuya, J. (2020). FlakyLoc: Flakiness Localization for Reliable Test Suites in Web Applications. Journal of Web Engineering, 267-296.
Journal of Web Engineering, Vol. 19_2, 267-296
doi: 10.13052/jwe1540-9589.1927
(c) 2020 River Publishers

8

4.2. Execution

The same test case can be executed in different ways according to the combination of the

previous characterization, some of which cause flakiness while others hide flakiness.

FlakyLoc proposes to execute the same flaky test case under different representative

configurations using a combinatorial approach [29], [30]. Testing all combinations of the

environmental factors may be inefficient because the number of configurations grows

exponentially according to the number of factors-values. All combinations of the

environmental factors represented in Figure 2 require at least to execute the test case in 64

configurations.

However, combinatorial approaches as t-wise (also known as t-way) can be used to obtain a

representative subset of combinations. T-wise proposes to test only all combinations of each

t environmental factors [31]. Based on this approach, 1-Wise (also known as each use) [32]

proposes that all values of each environmental factors appear in at least one configuration,

whereas 2-Wise (also known as pairwise) proposes that the combination of all values per

pair of environmental factors appears in at least one configuration. The 2-Wise approach is

almost as effective as all combinations in software testing [33], but employs much fewer

resources in terms of time and cost [34]. Therefore, the FlakyLoc proposes to execute the

test case in 2-Wise combinations of the environmental factors. For the environmental factors

represented in Figure 2, FlakyLoc proposes to execute the test case in the configurations

represented in Figure 3. These 9 configurations cover 2-Wise because all combinations of

Figure 3 2-Wise configuratations of network, CPU ,browser, Screen resolution and S.O.

factors

Conf. 1

Conf. 2

Conf. 3

Conf. 4

Conf. 5

Conf. 6

Network CPU Browser Screen Resolution

800KB/s 400KB/s 1C 3C SVGA XGA

Conf. 7

Conf. 9

Conf. 8

75 68 74 67

S.O.

This paper is a a pre-print paper accepted in Journal of Web Engineering. The final version is available on: https://doi.org/10.13052/jwe1540-9589.1927
Citation information: Morán, J., Augusto, C., Bertolino, A., De La Riva, C., & Tuya, J. (2020). FlakyLoc: Flakiness Localization for Reliable Test Suites in Web Applications. Journal of Web Engineering, 267-296.
Journal of Web Engineering, Vol. 19_2, 267-296
doi: 10.13052/jwe1540-9589.1927
(c) 2020 River Publishers

9

each pair of environmental factors (Network, CPU, Browser, Screen resolution and

Operating system) are executed in at least one configuration.

In the example of Figure 3, the executions of the test case in the 9 configurations with 2-

Wise combinatorial approach provides insights about the root cause of flakiness, especially

those factors that usually trigger the flakiness. The test case executed in Configurations 2,

6, 7 and 9 succeeds, but on the other hand, the same test case executed in Configurations 1,

3, 4 and 5 triggers a “failure” because the test case cannot perform the user interactions due

to the lack of the web elements required.

The environmental factors of Configurations 1, 3, 4 and 5 cause flakiness whereas those

factors of Configurations 2, 6, 7 and 9 hide the flakiness. Some configurations trigger the

“failure” with 400KB/s (Configuration 1, 3, 4 and 5), they do not provide enough insights

about the root cause of flakiness because other configurations with 400KB/s mask the

flakiness (Configuration 9). The same happens with the remainder environmental factors

because the test executions trigger the flakiness in a non-deterministic way without an

apparently clear pattern. However, the test executions provide evidences about the most

suspicious environmental factor that causes the flakiness. These evidences are analysed

systematically with the following approach based on the fault localization techniques and

statistical rankings of suspiciousness.

4.3. Analysis

We analyse several executions with a ranking metric to obtain a prioritized list of the

suspicious factors that cause flakiness. Whereas the ranking metrics in fault localization

analyse the lines of code that cause the fault [35], [36], in FlakyLoc the ranking metrics

analyse the factors that cause flakiness.

The ranking metrics analyse the similarity between the values of the factors executed and

the configurations that fail/hide the flakiness. The environmental factors that are executed

in the configurations that trigger the flakiness are more suspicious than those executed in the

configurations that do not trigger the flakiness. In contrast, the environmental factors not

executed in the configurations that trigger the flakiness are less suspicious than those not

executed in the configurations that not trigger the flakiness. There are different ways to

obtain the suspiciousness based on the previous, and the ranking metrics use different

weights to obtain the suspicious per each environmental factor based on the following:

▪ NCF is the number of configurations that execute the environmental factor and trigger

the flakiness.

▪ NCS is the number of configurations that execute the environmental factor but do not

trigger the flakiness.

▪ NF is the number of configurations that trigger the flakiness.

▪ NS is the number of configurations that do not trigger the flakiness.

FlackyLoc uses the Ochiai [37] and Tarantula [38] rankings metrics that calculate the

suspiciousness per each environmental factor in the following way:

▪ Ochiai:
𝑁𝐶𝐹

√𝑁𝐹⋅(𝑁𝐶𝐹+𝑁𝐶𝑆)

This paper is a a pre-print paper accepted in Journal of Web Engineering. The final version is available on: https://doi.org/10.13052/jwe1540-9589.1927
Citation information: Morán, J., Augusto, C., Bertolino, A., De La Riva, C., & Tuya, J. (2020). FlakyLoc: Flakiness Localization for Reliable Test Suites in Web Applications. Journal of Web Engineering, 267-296.
Journal of Web Engineering, Vol. 19_2, 267-296
doi: 10.13052/jwe1540-9589.1927
(c) 2020 River Publishers

10

▪ Tarantula:

𝑁𝐶𝐹
𝑁𝐹

𝑁𝐶𝐹
𝑁𝐹

 +
𝑁𝐶𝑆
𝑁𝑆

In the example of Figure 3, the 9 configurations are analyzed with the Ochiai and Tarantula

ranking metrics (Table 1). Both ranking metrics obtain automatically that the most

suspicious root cause of flakiness is 400KB/s of network bandwidth.

Despite the failure is triggered with the Windows 10 operating system in Configuration 1, 4

and 5, apparently is not the root cause of flakiness because Windows 10 also hides the

flakiness in Configuration 7 and 8. The same happens with the remainder of the

environmental factors. The Firefox v67 browser is not the root cause of flakiness because it

never triggers the flakiness. In contrast, 400KB/s of network bandwidth triggers the flakiness

most of the times. After analyzing automatically all factors through the localization

technique, both Ochiai and Tarantula determine statistically that the most suspicious root

cause of flakiness is 400KB/s of network bandwidth. According to Ochiai ranking metric,

the top of the rank of suspiciousness is 400KB/s (0.894 out of 1 of suspiciousness), followed

by both 4 cores and Windows 10 (0.714 out of 1 of suspiciousness). The Tarantula ranking

metric also determines 400Kb/s of bandwidth network as most suspicious (0.833 of 1 of

suspiciousness), followed by the Chrome v75 browser with 0.714 of suspiciousness.

The localization of the root cause of flakiness can improve the understanding of the flaky

test in order to avoid it or fix it. The previous test case succeeds with 5Mb/s of network

Table 1. Localization of the root cause of flakiness with Ochiai and Tarantula ranking

metrics

Environmental factors

Configurations Ochiai Tarantula

1 2 3 4 5 6 7 8 9 S
u

sp
ic

io
u

sn
es

s

R
a

n
k

in
g

S
u

sp
ic

io
u

sn
es

s

R
a

n
k

in
g

Network

bandwidth

5 MB/s X X X X 0 11 0 11

400 KB/s X X X X X 0.894 1 0.833 1

CPU
1 core X X X X 0.25 9 0.294 9

4 cores X X X X X 0.671 2 0.652 3

Browser

Firefox v67 X X 0 11 0 11

Firefox v68 X X 0.354 7 0.556 5

Chrome v74 X X 0.354 7 0.556 5

Chrome v75 X X X 0.577 4 0.714 2

Screen

resolution

SVGA X X X X 0.5 5 0.556 5

XGA X X X X X 0.447 6 0.455 8

Operating

sytem

Windows 10 X X X X X 0.671 2 0.652 3

Ubuntu 18.04 X X X X 0.25 9 0.294 9

Failures X X X X

This paper is a a pre-print paper accepted in Journal of Web Engineering. The final version is available on: https://doi.org/10.13052/jwe1540-9589.1927
Citation information: Morán, J., Augusto, C., Bertolino, A., De La Riva, C., & Tuya, J. (2020). FlakyLoc: Flakiness Localization for Reliable Test Suites in Web Applications. Journal of Web Engineering, 267-296.
Journal of Web Engineering, Vol. 19_2, 267-296
doi: 10.13052/jwe1540-9589.1927
(c) 2020 River Publishers

11

bandwidth because the web requests are responded quickly just before the user interaction

takes place. However, with less network bandwidth (400KB/s), the web requests are

responded slowly causing that the test case fails because it tries to execute the user

interactions before the responses. This flakiness can be avoided in different ways like

increasing the time of sleep or waitFor to wait for the web responses.

5. EVALUATION

In this section, we evaluate how FlakyLoc is able to locate the root cause of flakiness on a

web application called FullTeaching [39]. This web application is an educational online

platform on which teachers and students can perform the lessons and share their teaching

materials, like calendars dashboards and forum. The Fullteaching project has several test

cases including End-to-End tests that execute the whole system (web application, streaming

server, and database). Several of these End-to-End tests are flaky because the same test case

sometimes passes and other fails in a non-deterministic way. In the remainder of this section,

we detail both the localization of the root cause of flakiness and the fixing of one flaky test

of FullTeaching web application.

We consider a test case that checks if the user is able to log into the application, get into the

settings menu and logout. Despite the test cases are executed in an isolated environment

through a containerized instance, the test case sometimes crashes due to the configuration in

which the test case is executed. This test case was correctly executed in the tester’s computer,

but the same test case failed in the Continuous Integration server. In both environments, the

test case was executed isolated inside of a container with the same resources. We have

checked that the system-under-test and the test case were properly deployed in the

Continuous Integration server, but the flakiness remains.

In order to locate the root cause of flakiness, the technique proposed in Section 4, FlakyLoc,

is applied to the previous flaky test:

5.1. Characterization

We characterize those factors that can trigger the failure. This example is illustrated with the

following factors-values pairs:

1. Memory: the test execution is modelled with 90MB and 240MB to increase or decrease

the WebDriver resources.

2. CPU: the execution is modelled with 1 and 4 cores to increase or decrease the

concurrency between the threads executed by the test case.

3. Browser: the execution is modelled with Mozilla Firefox and Google Chrome that can

render the web elements in different ways.

4. Screen resolution: the execution is modelled with SVGA (800×600), XGA(1024×768),

and WFHD(2560×1024) resolutions. These resolutions can increase or decrease the web

elements that are rendered in the navigator window.

This paper is a a pre-print paper accepted in Journal of Web Engineering. The final version is available on: https://doi.org/10.13052/jwe1540-9589.1927
Citation information: Morán, J., Augusto, C., Bertolino, A., De La Riva, C., & Tuya, J. (2020). FlakyLoc: Flakiness Localization for Reliable Test Suites in Web Applications. Journal of Web Engineering, 267-296.
Journal of Web Engineering, Vol. 19_2, 267-296
doi: 10.13052/jwe1540-9589.1927
(c) 2020 River Publishers

12

5.2. Execution

A combination of the previous factor-values characterizes the execution of the test case. We

execute the test case with the 6 configurations of Figure 4 obtained by the 2-wise

combination of the previous environmental factors. These 6 configurations guarantee that

all combinations of each pair of environmental factors are executed at least once.

After the execution of the test case in the previous 6 configurations, the test case fails 50%

of times (Configurations 1, 2 and 4) and masks the “failure” in other 50% of times

(Configurations 3, 5 and 6) without an apparently clear pattern. The test case executed with

90MB of memory sometimes fails (Configurations 1 and 4) whereas other times succeeds

(Configuration 5). Increasing the memory to 240MB still makes that the test case sometimes

fails (Configuration 2) and other times succeeds (Configurations 3 and 6). The test case fails

more times with 90MB than with 240MB. However, there is no clear evidence that memory

size causes flakiness, and the same happens with the remainder environmental factors. The

test case fails with 1 core sometimes (Configuration 1), but the test executions that increase

the CPU to 4 cores still fail sometimes (Configurations 2 and 4). The same happens with the

browser, the test case fails sometimes with Firefox (Configuration 2), but apparently, the

browser is not the root cause of flakiness because the test case also fails with Chrome

browser (Configurations 1 and 4). The same happens with the screen resolution because the

test case sometimes fails in 800x600 (Configurations 1 and 2) and other times fails in

1024x768 (Configuration 4). Apparently, the screen resolution is not the root cause of

flakiness because the test case executed with the same screen resolution sometimes fails and

other times succeeds: the test case fails with 1024x768 in Configuration 4 and succeeds in

Configuration 3. Therefore, it is difficult to obtain strong clues about the root cause of

flakiness analyzing the test executions by hand.

All of the failures produce the following trace:

Conf. 1

Conf. 2

Conf. 3

Conf. 4

Conf. 5

Conf. 6

Memory CPU Screen Resolution Browser

90 Mb 240 Mb 1C 4C SVGA XGA WFHD

Figure 4 Configurations executed in FullTeaching application

This paper is a a pre-print paper accepted in Journal of Web Engineering. The final version is available on: https://doi.org/10.13052/jwe1540-9589.1927
Citation information: Morán, J., Augusto, C., Bertolino, A., De La Riva, C., & Tuya, J. (2020). FlakyLoc: Flakiness Localization for Reliable Test Suites in Web Applications. Journal of Web Engineering, 267-296.
Journal of Web Engineering, Vol. 19_2, 267-296
doi: 10.13052/jwe1540-9589.1927
(c) 2020 River Publishers

13

Expected condition failed: waiting for visibility of element located by
By.id: settings-button (tried for 10 second(s) with 500 MILLISECONDS
interval)

The previous error trace can be caused by timeouts (“Test case timeouts” according to the

Eck et al. [3] classification) because of issues in the network or processing, among others.

However, this is misleading, and in fact the root cause of flakiness is not related to timeouts

as the following subsection details.

5.3. Analysis

We apply the FlakyLoc technique to locate automatically the root cause of the flakiness

analysing the test executions. FlakyLoc employs a ranking metric to analyse the previous 6

test executions considering statistically those factors both covered (marked with an “X” in

Table 2) and non-covered when a test case fails (marked with an “X” in the botton row of

Table 2), and also when it succeeds. In this subsection, we are going to analyse the test

executions with FlakyLoc using the Ochiai and Tarantula ranking metrics that are often used

in the localization of root causes.

Table 2 details the most suspicious environmental factors obtained by the FlakyLoc

technique. Regardless of the ranking metric used (Ochiai or Tarantula), the most suspicious

environmental factor ranked in the first position is the screen resolution of 800×600 (0.816

of suspiciousness in Ochiai and 1 in Tarantula), followed by the Chrome browser, 4 cores

of CPU and 90MB of memory that are ranked in the second position (0.667 of suspiciousness

in both Ochiai and Tarantula).

Table 2 . Localization of the root cause of flakiness in FullTeaching application

Environmental factors

Configurations Ochiai Tarantula

1 2 3 4 5 6 S
u

sp
ic

io
u

sn
es

s

R
a

n
k

in
g

S
u

sp
ic

io
u

sn
es

s

R
a

n
k

in
g

Memory
90MB X X X 0.667 2 0.667 2

240MB X X X 0.333 6 0.333 6

CPU
1 core X X X 0.333 6 0.333 6

4 cores X X X 0.667 2 0.667 2

Browser
Firefox X X X 0.333 6 0.333 6

Chrome X X X 0.667 2 0.667 2

Screen

resolution

800x600 X X 0.816 1 1 1

1024x768 X X 0.408 5 0.5 5

2560x1024 X X 0 9 0 9

Failures X X X

This paper is a a pre-print paper accepted in Journal of Web Engineering. The final version is available on: https://doi.org/10.13052/jwe1540-9589.1927
Citation information: Morán, J., Augusto, C., Bertolino, A., De La Riva, C., & Tuya, J. (2020). FlakyLoc: Flakiness Localization for Reliable Test Suites in Web Applications. Journal of Web Engineering, 267-296.
Journal of Web Engineering, Vol. 19_2, 267-296
doi: 10.13052/jwe1540-9589.1927
(c) 2020 River Publishers

14

The localization of the root cause of flakiness (800x600 screen resolution) is valuable to

understand the flakiness in order to avoid it or fix it. In FullTeaching application, the flaky

failure was triggered sometimes in the Continuous Integration server but masked in the tester

computer. Once the root cause of flakiness is located, we are able to understand that the

tester computer masked the flakiness because it has a widescreen resolution, whereas the

Continuous Integration server sometimes triggers the flaky failure because it isolates the test

case in a container with low screen resolutions.

The analysed test case aims to check the setting configuration of the FullTeaching. During

the test execution, the Selenium WebDriver pushes a “SETTING” button to enter the setting

configuration and finally checks that the settings are fine. Once the root cause of flakiness

is located, we can understand that in computers with wide resolutions like the tester

computer, the SETTING button is visible and the test case checks the settings properly as in

Figure 5 (2560x1080 screen resolution). However, we can understand that in computers with

low screen resolution like sometimes it may happen in Continuous Integration deployment,

the SETTING button is not visible because it is hidden inside of response menu as in Figure

6 (800x600 screen resolution).

Once FlakyLoc determines automatically that the low screen resolution causes the flakiness,

we have enough clues to understand the flakiness. However, the test case fails sometimes in

1024x768 screen resolution (Configuration 4) and other times succeeds (Configuration 3)

depending on the browser. The test case succeeds in 1024x768 screen resolution over

Firefox browser because the SETTING button is visible (Figure 7), but fails in Chrome

Figure 5 Test case executed in

2560×1080 screen resolution

Figure 6 Test case executed in 800×600

screen resolution

Figure 7 Test case executed in 1024×768

screen resolution over Firefox browser

Figure 8 Test case executed in 1024×768

screen resolution over Chrome browser

This paper is a a pre-print paper accepted in Journal of Web Engineering. The final version is available on: https://doi.org/10.13052/jwe1540-9589.1927
Citation information: Morán, J., Augusto, C., Bertolino, A., De La Riva, C., & Tuya, J. (2020). FlakyLoc: Flakiness Localization for Reliable Test Suites in Web Applications. Journal of Web Engineering, 267-296.
Journal of Web Engineering, Vol. 19_2, 267-296
doi: 10.13052/jwe1540-9589.1927
(c) 2020 River Publishers

15

browser because the web elements are rendered in a different way and the button is again

hidden inside of the response menu (Figure 8). Despite the test case aims to be executed

inside of a container deployed on Docker during Continuous Integration, the test case

succeeds and fails depending mainly on screen resolution and also on the browser.

According to the taxonomy of flakiness proposed by Eck et al. [3], this flaky test case is

considered ‘Platform Dependent’ from both browser and screen resolution. We have

analysed how the web elements are rendered in both the screen and browser, observing that

the browser window is not maximized. Therefore, the test case does not take advantage of

the whole screen to display the buttons properly and sometimes place the buttons inside of

the response menu.

5.4. Fixing/Decreasing the flakiness:

In order to fix/decrease the flakiness, we modify the test case maximizing the window of the

browser programmatically to avoid the platform dependency. After several executions with

maximized windows, we observed that the test case has reduced the flakiness, but it is still

flaky. We re-execute again the 6 configurations obtained with the 2-Wise combinatorial

approach (Figure 9). The test case fails 33.33% of times (Configurations 1 and 2) and masks

the “failure” in other 66.66% of times (Configurations 3, 4, 5 and 6). Note that the

programmatic maximization of the window decreases the flakiness from 50% (3 failures out

of 6 in Figure 9) to 33.33% (2 failures out of 6 in Figure 9).

We can observe that the test case stops to fail with 1024x768 screen resolution over the

Chrome browser because the maximization of the browser window provides more space to

Memory CPU Screen Resolution Browser

90 Mb 240 Mb 1C 4C SVGA XGA

WFHD

Conf. 1

Conf. 2

Conf. 3

Conf. 4

Conf. 5

Conf. 6

Figure 9 Configurations executed in FullTeaching application over a browser

with a maximized window

This paper is a a pre-print paper accepted in Journal of Web Engineering. The final version is available on: https://doi.org/10.13052/jwe1540-9589.1927
Citation information: Morán, J., Augusto, C., Bertolino, A., De La Riva, C., & Tuya, J. (2020). FlakyLoc: Flakiness Localization for Reliable Test Suites in Web Applications. Journal of Web Engineering, 267-296.
Journal of Web Engineering, Vol. 19_2, 267-296
doi: 10.13052/jwe1540-9589.1927
(c) 2020 River Publishers

16

place the web elements. However, the test case is still flaky because it fails in 800x600

screen resolution regardless of the browser or other environmental factors. We use again the

FlakyLoc technique as Table 3 details. As we expected, FlakyLoc still pinpoints

automatically that the root cause of flakiness is the 800x600 screen resolution. The test case

fails in 800x600 screen resolution because the SETTING button is hidden inside of the

response menu and the test case does not find it.

The programmatic maximization of the browser windows removes the browser dependency

(platform dependency [3]) of the test case because the test case stops to fail in Chrome and

succeed in Firefox for 1024x768. However, the test case is still platforming dependent from

the screen resolution because the FlakyLoc indicates us that the test case is just a little bit

flaky and the root cause of flakiness is the 800x600 screen resolution.

In order to avoid the flakiness, we modify again the test case to force programmatically to

be deployed in a container with 2560x1080 screen resolution modifying the capabilities of

the Docker deployment during Continuous Integration. We execute the test case several

times and the flakiness disappears because the test case stops to fail due to the browser or

screen resolution issues. The test case is executed all times as Figure 10 depicts with the

SETTING button always visible. Therefore, the test case is able to push the SETTING button

and finally it checks that the settings are fine.

Before we used the FlakyLoc technique, we thought that the flakiness was caused by

timeouts (Test case timeouts [3]). Once we use FlakyLoc, we located the root cause of

flakiness and we understood that the flakiness is triggered due a dependency from both

browser and screen resolution (Platform dependency [3]) because sometimes a button is

Table 3. Localization of the root cause of flakiness in FullTeaching application over a

browser with maximized window

Environmental factors

Configurations Ochiai Tarantula

1 2 3 4 5 6 S
u

sp
ic

io
u

sn
es

s

R
a

n
k

in
g

S
u

sp
ic

io
u

sn
es

s

R
a

n
k

in
g

Memory
90MB X X X 0.408 2 0.5 2

240MB X X X 0.408 2 0.5 2

CPU
1 core X X X 0.408 2 0.5 2

4 cores X X X 0.408 2 0.5 2

Browser
Firefox X X X 0.408 2 0.5 2

Chrome X X X 0.408 2 0.5 2

Screen

resolution

800x600 X X 1 1 1 1

1024x768 X X 0 8 0 8

2560x1024 X X 0 8 0 8

Failures X X

This paper is a a pre-print paper accepted in Journal of Web Engineering. The final version is available on: https://doi.org/10.13052/jwe1540-9589.1927
Citation information: Morán, J., Augusto, C., Bertolino, A., De La Riva, C., & Tuya, J. (2020). FlakyLoc: Flakiness Localization for Reliable Test Suites in Web Applications. Journal of Web Engineering, 267-296.
Journal of Web Engineering, Vol. 19_2, 267-296
doi: 10.13052/jwe1540-9589.1927
(c) 2020 River Publishers

17

rendered in the main windows and other times inside of the response menu. We fixed the

platform dependency of the browser through the programmatic maximization of the browser

window aimed to provide enough space to the browser to place the web elements. Once the

platform dependency of the browser was fixed, the test case decreased the flakiness, but it

was still failing in some screen resolution (platform dependency of screen resolution). We

have modified the test case to force its execution inside of a Docker container with a fixed

resolution that avoids the platform dependency of the screen resolution. The FlakyLoc

technique locates the root cause of flakiness of the test case, and it provides valuable

information to fix/decrease the flakiness.

6. CONCLUSIONS AND FUTURE WORK

The test cases of web applications can be executed differently depending on the

environmental factors i.e. network bandwidth, memory or screen resolution. If the test case

sometimes obtains one outcome and other times obtains another different outcome due to

the environmental factors executed, then this test case is considered flaky. The flaky test

cases reduce the reliability of the test suite because the tester stops to rely on test outcomes.

Despite the developers face frequently flaky test cases, it is difficult to both locate the root

cause of flakiness and fix them. In this paper, we propose a technique called FlakyLoc to

locate automatically the root cause of flakiness in web applications based on the

characterization of the environmental factors that make the test case more prone to be flaky.

FlakyLoc executes the test case in different environmental factors through combinatorial

testing and analyzes statistically each environmental factor with spectrum-based approach

obtaining a ranking of the suspicious root cause of flakiness.

We performed an evaluation of FlakyLoc in a web platform with a real flaky test case.

FlakyLoc allowed the automatic detection of the root cause of flakiness and provided the

appropriate insights to fix the flakiness. As a conclusion, the characterization of the

environmental factors together with the spectrum-based analysis of several test executions

Figure 10 Test case executed over a Docker instance with a fixed 2560×1024 screen

resolution

This paper is a a pre-print paper accepted in Journal of Web Engineering. The final version is available on: https://doi.org/10.13052/jwe1540-9589.1927
Citation information: Morán, J., Augusto, C., Bertolino, A., De La Riva, C., & Tuya, J. (2020). FlakyLoc: Flakiness Localization for Reliable Test Suites in Web Applications. Journal of Web Engineering, 267-296.
Journal of Web Engineering, Vol. 19_2, 267-296
doi: 10.13052/jwe1540-9589.1927
(c) 2020 River Publishers

18

can locate automatically the root cause of flakiness of web applications and could provide

valuable information to fix the flakiness.

FlakyLoc is promising for helping the developers to automatically locate the root cause of

flakiness and also to provide insights that improve the understanding of the flakiness. In

future work, we plan to evaluate FlakyLoc empirically in several web applications that have

test suites with flaky test cases. We need to evaluate more extensively its effectiveness

properly identifying the cause of flakiness, but also to quantify the involved costs: in fact

detecting flakiness is known as a very costly activity, and also locating the causes requires

resources to re-execute the test cases under several configurations We also plan to enhance

the characterization of the different environmental factors that could cause flakiness in order

to determine those that are more prone to trigger flakiness in web applications and in other

related domains.

Acknowledgements

This work was supported in part by the Spanish Ministry of Economy and Competitiveness

under project TestEAMoS (TIN2016-76956-C3-1-R) and project POLOLAS (TIN2016-

76956-C3-2-R), ERDF funds, and by the European Project ElasTest in the Horizon 2020

research and innovation program (GA No. 731535).

7. REFERENCES

[1] A. Bertolino, “Software Testing Research: Achievements, Challenges, Dreams,” in

2007 Future of Software Engineering, 2007, pp. 85–103.

[2] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis of flaky tests,”

in Proceedings of the ACM SIGSOFT Symposium on the Foundations of Software

Engineering, 2014, vol. 16-21-Nove, pp. 643–653.

[3] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli, “Understanding flaky tests:

the developer’s perspective,” in to appear FSE19/ESEC, 2019, pp. 830–840.

[4] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on software fault

localization,” IEEE Transactions on Software Engineering, vol. 42, no. 8. pp. 707–

740, 01-Aug-2016.

[5] J. Morán, C. Augusto, A. Bertolino, C. de la Riva, and J. Tuya, “Debugging Flaky

Tests on Web Applications,” in Proceedings of the 15th Int. Conf. on Web

Information Systems and Technologies, 2019, pp. 454–461

[6] Selenium HQ, “Selenium - Web Browser Automation,” 2019. [Online]. Available:

https://www.seleniumhq.org/. [Accessed: 29-Jun-2019].

[7] M. Harman and P. O’Hearn, “From start-ups to scale-ups: Opportunities and open

problems for static and dynamic program analysis,” in Proceedings - 18th IEEE

International Working Conference on Source Code Analysis and Manipulation,

SCAM 2018, 2018, pp. 1–23.

[8] S. Bechtold, S. Brannen, J. Link, M. Merdes, M. Philipp, and C. Stein,

“RepeatedTest (JUnit 5.2.0 API),” 2019. [Online]. Available:

https://junit.org/junit5/docs/5.2.0/api/org/junit/jupiter/api/RepeatedTest.html.

This paper is a a pre-print paper accepted in Journal of Web Engineering. The final version is available on: https://doi.org/10.13052/jwe1540-9589.1927
Citation information: Morán, J., Augusto, C., Bertolino, A., De La Riva, C., & Tuya, J. (2020). FlakyLoc: Flakiness Localization for Reliable Test Suites in Web Applications. Journal of Web Engineering, 267-296.
Journal of Web Engineering, Vol. 19_2, 267-296
doi: 10.13052/jwe1540-9589.1927
(c) 2020 River Publishers

19

[Accessed: 29-Jun-2019].

[9] Pivotal Software, “Repeat (Spring Framework 5.1.8.RELEASE API),” 2014.

[Online]. Available: https://docs.spring.io/spring/docs/current/javadoc-

api/org/springframework/test/annotation/Repeat.html. [Accessed: 28-Jun-2019].

[10] Google, “FlakyTest | Android Developers,” 2019. [Online]. Available:

https://developer.android.com/reference/android/support/test/filters/FlakyTest.html

. [Accessed: 28-Jun-2019].

[11] F. Apache Software, “Maven Surefire Plugin – Rerun failing tests,” 2018. [Online].

Available: https://maven.apache.org/surefire/maven-surefire-

plugin/examples/rerun-failing-tests.html. [Accessed: 29-Jun-2019].

[12] Q. Luo and J. Micco, “Flaky Test Handler v1.04,” 2015. [Online]. Available:

https://plugins.jenkins.io/flaky-test-handler. [Accessed: 29-Jun-2019].

[13] G. Catolino, F. Palomba, A. Zaidman, and F. Ferrucci, “Not all bugs are the same:

Understanding, characterizing, and classifying bug types,” J. Syst. Softw., vol. 152,

pp. 165–181, Jul. 2019.

[14] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, B. K. Ray, and D. S.

Moebus, “Orthogonal Defect Classification—A Concept for In-Process

Measurements,” IEEE Trans. Softw. Eng., vol. 18, no. 11, pp. 943–956, 1992.

[15] Google, “Google Testing Blog: TotT: Avoiding Flakey Tests,” 2008. [Online].

Available: https://testing.googleblog.com/2008/04/tott-avoiding-flakey-tests.html.

[Accessed: 02-Nov-2019].

[16] S. Thorve, C. Sreshtha, and N. Meng, “An empirical study of flaky tests in android

apps,” in Proceedings - 2018 IEEE International Conference on Software

Maintenance and Evolution, ICSME 2018, 2018, pp. 534–538.

[17] K. Herzig and N. Nagappan, “Empirically Detecting False Test Alarms Using

Association Rules,” in Proceedings - International Conference on Software

Engineering, 2015, vol. 2, pp. 39–48.

[18] H. Jiang, X. Li, Z. Yang, and J. Xuan, “What Causes My Test Alarm? Automatic

Cause Analysis for Test Alarms in System and Integration Testing,” in Proceedings

- 2017 IEEE/ACM 39th International Conference on Software Engineering, ICSE

2017, 2017, pp. 712–723.

[19] A. Vahabzadeh, A. M. Fard, and A. Mesbah, “An empirical study of bugs in test

code,” in 2015 IEEE 31st International Conference on Software Maintenance and

Evolution, ICSME 2015 - Proceedings, 2015, pp. 101–110.

[20] F. Palomba and A. Zaidman, “Does refactoring of test smells induce fixing flaky

tests?,” in Proceedings - 2017 IEEE International Conference on Software

Maintenance and Evolution, ICSME 2017, 2017, pp. 1–12.

[21] K. Muşlu, B. Soran, and J. Wuttke, “Finding bugs by isolating unit tests,” in

SIGSOFT/FSE 2011 - Proceedings of the 19th ACM SIGSOFT Symposium on

Foundations of Software Engineering, 2011, pp. 496–499.

[22] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov, “DeFlaker:

Automatically detecting flaky tests,” in Proceedings of the 40th International

Conference on Software Engineering - ICSE ’18, 2018, pp. 433–444.

[23] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta, “Root causing

flaky tests in a large-scale industrial setting,” in Proceedings of the 28th ACM

SIGSOFT International Symposium on Software Testing and Analysis - ISSTA 2019,

2019, pp. 101–111.

This paper is a a pre-print paper accepted in Journal of Web Engineering. The final version is available on: https://doi.org/10.13052/jwe1540-9589.1927
Citation information: Morán, J., Augusto, C., Bertolino, A., De La Riva, C., & Tuya, J. (2020). FlakyLoc: Flakiness Localization for Reliable Test Suites in Web Applications. Journal of Web Engineering, 267-296.
Journal of Web Engineering, Vol. 19_2, 267-296
doi: 10.13052/jwe1540-9589.1927
(c) 2020 River Publishers

20

[24] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, “IDFlakies: A framework for

detecting and partially classifying flaky tests,” in Proceedings - 2019 IEEE 12th

International Conference on Software Testing, Verification and Validation, ICST

2019, 2019, pp. 312–322.

[25] M. Fowler, “Eradicating Non-Determinism in Tests,” Martin Fowler Personal Blog,

2011. [Online]. Available: https://martinfowler.com/articles/nonDeterminism.html.

[Accessed: 11-Nov-2019].

[26] J. Micco, “Flaky Tests at Google and How We Mitigate Them,” Google Testing

Blog. p. 4, 2016.

[27] A. Shi, W. Lam, R. Oei, T. Xie, and D. Marinov, “iFixFlakies: a framework for

automatically fixing order-dependent flaky tests,” in Proceedings of the 2019 27th

ACM Joint Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering - ESEC/FSE 2019, 2019, pp. 545–555.

[28] Z. Gao, “Quantifying Flakiness and Minimizing Its Effects on Software Testing,”

University of Maryland, 2017.

[29] M. Grindal, J. Offutt, and S. F. Andler, “Combination testing strategies: A survey,”

Softw. Test. Verif. Reliab., vol. 15, no. 3, pp. 167–199, Sep. 2005.

[30] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM Comput. Surv., vol.

43, no. 2, pp. 1–29, Jan. 2011.

[31] ISO/IEC/IEEE, “29119-4:2015 -ISO/IEC/IEEE International Standard for Software

and systems engineering —Software testing — TR-2017-35316 Part 4: Test

techniques.” pp. 1–150, 2015.

[32] P. Ammann and J. Offutt, “Using formal methods to derive test frames in category-

partition testing,” in COMPASS - Proceedings of the Annual Conference on

Computer Assurance, 1994, pp. 69–79.

[33] D. R. Kuhn and M. J. Reilly, “An investigation of the applicability of design of

experiments to software testing,” in Proceedings - 27th Annual NASA Goddard /

IEEE Software Engineering Workshop, SEW 2002, 2003, pp. 91–95.

[34] J. Huller, “Reducing Time to Market With Combinatorial Design Method Testing,”

International Council on Systems Engineering (INCOSE) Conference. 2000.

[35] M. J. Harrold, G. Rothermel, R. Wu, and L. Yi, “An Empirical Investigation of

Program Spectra,” SIGPLAN Not. (ACM Spec. Interes. Gr. Program. Lang., vol. 33,

no. 7, pp. 83–90, 1998.

[36] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi, “Empirical investigation

of the relationship between spectra differences and regression faults,” Softw. Test.

Verif. Reliab., vol. 10, no. 3, pp. 171–194, Sep. 2000.

[37] R. Abreu, P. Zoeteweij, and A. J. C. Van Gemund, “On the accuracy of spectrum-

based fault localization,” in Proceedings - Testing: Academic and Industrial

Conference Practice and Research Techniques, TAIC PART-Mutation 2007, 2007,

pp. 89–98.

[38] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula automatic fault-

localization technique,” in 20th IEEE/ACM International Conference on Automated

Software Engineering, ASE 2005, 2005, pp. 273–282.

[39] P. F. Pérez, “Fullteaching: A web application to make teaching online easy.”

Universidad Rey Juan Carlos, 2017.

This paper is a a pre-print paper accepted in Journal of Web Engineering. The final version is available on: https://doi.org/10.13052/jwe1540-9589.1927
Citation information: Morán, J., Augusto, C., Bertolino, A., De La Riva, C., & Tuya, J. (2020). FlakyLoc: Flakiness Localization for Reliable Test Suites in Web Applications. Journal of Web Engineering, 267-296.
Journal of Web Engineering, Vol. 19_2, 267-296
doi: 10.13052/jwe1540-9589.1927
(c) 2020 River Publishers

