
symmetryS S

Article

DSP: Schema Design for Non-Relational Applications

Abdullahi Abubakar Imam 1,2,*, Shuib Basri 1, Rohiza Ahmad 1, Amirudin A. Wahab 3,
María T. González-Aparicio 4 , Luiz Fernando Capretz 5, Ammar K. Alazzawi 1 and
Abdullateef O. Balogun 1

1 Department of Computer and Information Science, Universiti Teknologi PETRONAS, Bandar Seri
Iskandar 32610, Malaysia; shuib_basri@utp.edu.my (S.B.); rohiza_ahmad@utp.edu.my (R.A.);
ammar_16000020@utp.edu.my (A.K.A.); abdullateef_16005851@utp.edu.my (A.O.B.)

2 Department of Computer Science, Faculty of Science, Ahmadu Bello University, Zaria 1044, Nigeria
3 Cybersecurity HQ Malaysia, Menara Cyber Axis, Jalan Impact, Cyberjaya 63000, Malaysia;

amirudin@cybersecurity.my
4 Computing Department, University of Oviedo, 3, 33003 Gijon, Spain; maytega@uniovi.es
5 Department of Electrical and Computer Engineering, Western University, London, ON 1151, Canada;

lcapretz@uwo.ca
* Correspondence: abdullahi_g03618@utp.edu.my

Received: 14 August 2020; Accepted: 12 October 2020; Published: 30 October 2020
����������
�������

Abstract: The way a database schema is designed has a high impact on its performance in relational
databases, which are symmetric in nature. While the problem of schema optimization is even more
significant for NoSQL (“Not only SQL”) databases, existing modeling tools for relational databases
are inadequate for this asymmetric setting. As a result, NoSQL modelers rely on rules of thumb to
model schemas that require a high level of competence. Several studies have been conducted to
address this problem; however, they are either proprietary, symmetrical, relationally dependent or
post-design assessment tools. In this study, a Dynamic Schema Proposition (DSP) model for NoSQL
databases is proposed to handle the asymmetric nature of today’s data. This model aims to facilitate
database design and improve its performance in relation to data availability. To achieve this, data
modeling styles were aggregated and classified. Existing cardinality notations were empirically
extended using synthetically generated queries. A binary integer formulation was used to guide the
mapping of asymmetric entities from the application’s conceptual data model to a database schema.
An experiment was conducted to evaluate the impact of the DSP model on NoSQL schema production
and its performance. A profound improvement was observed in read/write query performance and
schema production complexities. In this regard, DSP has significant potential to produce schemas
that are capable of handling big data efficiently.

Keywords: big data applications; NoSQL databases; query processing; schema optimization

1. Introduction

With the rise of asymmetric data, there emerge new concerns about how data can be managed
efficiently and effectively in a conventionally symmetric environment [1,2]. One of these concerns
is the storage capability of the relational databases. This is because the inherent complexity, high
access latency demand, and unpredictable nature of today’s data (i.e., big data) has rendered relational
databases less capable due to their structural rigidity and untimely response [3–7]. Relational databases
provide engines that provide central control of redundancy and data access patterns, enforce a schema,
and eliminate inconsistencies [8]. This has led to the invention of a more flexible database called
NoSQL (“Not only SQL”) to handle such complex asymmetric data. These types of databases do
not require full knowledge of the target data at the initial stage of database design, because they are

Symmetry 2020, 12, 1799; doi:10.3390/sym12111799 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-6615-821X
http://www.mdpi.com/2073-8994/12/11/1799?type=check_update&version=1
http://dx.doi.org/10.3390/sym12111799
http://www.mdpi.com/journal/symmetry

Symmetry 2020, 12, 1799 2 of 33

easily extendable, scalable, and can tolerate limitless partitions [9] (Section 2). The schemas of such
databases are flexible and are enforced by client-side application developers rather than database
engines, as in the case of relational databases [4,10]. This means, however, that the quality of NoSQL
schema depends solely on the designers’ competence and professionalism [3,5,11–14].

As such, numerous techniques have been developed to aid designers in modeling NoSQL schemas
properly [6,15]. However, existing modeling tools are inadequate for the NoSQL setting [11,16]. They
are either proprietary [17,18], symmetrical [3,19,20], or post-development assessment tools [17,21,22].
As a result, NoSQL modelers rely on rules of thumb to model schemas that require a high level of
competence [23]. In this study, a Dynamic Schema Proposition (DSP) model for NoSQL databases is
proposed to handle the asymmetric nature of today’s data. This model aims to ease database design
and improve its query performance. The model covers both the physical and logical stages of database
designs. It consists of the following contributions:

• Design and development of a new model that takes into account both user and system requirements
of NoSQL clients and proposes a NoSQL schema accordingly.

• Relationship classifications: mathematical formulas that calculate all relationship expectations
and finally classify entities.

• Automatic prioritization of guidelines using a feedforward neural network concept.
• An algorithm that calculates parameters and maps entities based on relationship classifications.
• Accelerating incremental records view through bucketing as opposed to non-relational caching.

A small scale of DSP was originally introduced in an earlier article [24,25] as SPM. In this extended
presentation, we focus on one impotent parameter (i.e., performance) and also describe how DSP
supports a broader class of query complexities, like single-selectivity, drill-down, and rollup. We also
include additional formulas to make the model more dynamic and accurate. These advancements
have become necessary as data increase asymmetrically in size and complexity daily, thus necessitating
dynamic modeling solutions for a more generic application [11,17,26,27].

The remainder of the paper is structured as follows. Section 2 presents an overview of the NoSQL
databases. Section 3 discusses related works. Section 4 presents the proposed DSP model. Section 5
highlights the method adopted. Section 6 presents and discusses the results of our study. Finally, the
conclusions and future direction are described in Section 7.

2. Overview of the NoSQL Databases

Not only SQL (NoSQL) databases are powerful databases created to handle big data that are
asymmetric in nature. These databases differ from relational databases in many significant ways, such
as their avoidance of rigid symmetric table structure and SQL as the only query language. In addition,
joint operations are indirectly performed or not allowed in some cases. The Atomicity, Consistency,
Isolation, and Durability (ACID) properties are not guaranteed. In contrast to traditional ACID, the
NoSQL databases are based on semantics known as BASE (Basically Available, Soft state, Eventual
consistency), which are rooted in the Consistency, Availability, and Partition-tolerance (CAP) theorem.
In the context of read/write query performance of voluminous data, the Availability of the CAP theorem
will be the focus in this study. It also important to note that NoSQL databases are scaled horizontally
rather than vertically, as in the case of relational databases. These types of databases may be classified in
many ways; however, the most significant factor for NoSQL classification is the data model, i.e., the way
data is organized and stored [28]. The most common are key-value, document-store, column family,
and graph databases [29,30]. In this research, we focus on document-stores for their popularity [27].
Although DSP was experimented with on this type of data model, it can also be used on the key-value
data model with very limited adjustments.

Symmetry 2020, 12, 1799 3 of 33

3. Related Work

Numerous techniques and tools are available for solving related schema design issues in relational
databases. These solutions organize collections of indexes, select an optimized version of them, and
finally support workloads by materializing views [31–38]. However, as highlighted in Sections 2 and 4,
many important differences exist between NoSQL schema design and the relational schema design,
which DSP addresses. Other solutions have emphasized partitioning relations vertically, either to
identify covering indexes and offer some recommendations [39] or to classify relations and determine
their physical representation [40,41]. Similarly, automatic partitioning and layout tools do exist for
relational layout across servers [33,42] or storage devices [43,44]. DBDesigner [45] uses projections
to physically represent tables used by Vertica [40] column-store, based on the incoming workloads.
However, recommending single projection may not produce optimal solutions, especially when the
effects of updates are not explicitly considered, as when DBDesigner limits its number of projections
based on heuristics only.

Normally, physical designs of relation include identifying physical structures and their candidates,
followed by candidates’ selections. DSP uses a slightly different approach. The order of the process is
altered to start with the identification before the structural selection. This is to make DSP dynamic in
producing structure, based on both old and new candidates. Some design tools for relational databases,
including CORADD [46], CoPhy [47,48], and a technique used for physical design called C-Store [41],
have communicated some steps that should be followed to choose good candidates. A binary
integer program also was presented through a simple problem formulation by Papadomanolakis
and Ailamaki [36]. This work was extended as CoPhy [38], which aims to reduce several trips to the
relational query optimizer. In their work, queries are broken down into components that are analyzed
independently. This approach has some sets of extendable constraints that may be utilized by DSP.

Our approach to the schema design problem has inherited some existing techniques from the
relational schema design proposed by Peter Chen [49] and Gordon Everest [50]. In their approach, data
should be modelled in only three different ways: one-to-one, one-to-many, and many-to-many. The
authors produced these categories out of a desire to cover all possible data modeling options. However,
this system was introduced before the emergence of big data with its numerous characteristics. In the
late 1990s, a Unified Modeling Language (UML) was introduced by Dembczy [51], which was later
improved by Rumbaugh et al. [52] to consolidate the data modeling symbols and notations invented by
Peter Chen [49] and Gordon Everest [50]. They are harmonized into one standardized language, all for
the purpose of visualization, construction, and documentation of the artifacts of software systems, and
for business modeling of the non-software systems. UML uses mostly graphical notations to express the
design of software projects. In our solution, these techniques are adopted out of necessity to minimize
the learning curve of our extended cardinalities, which are produced as a result of the emergence
of big data. The second technique DSP adopted owes an intellectual debt to Zola William [11], who
initiated the idea of modeling classifications. In his view, whether entities are modelled together as
one or separately has a significant effect on query performance. This is because, unlike in relational
databases, queries make several trips to NoSQL databases for retrieving related data from different
collections. In contrast, we found that schema optimization can be best started right from its time
of creation [14]. Moreover, our solution added more new techniques, such as modeling guidelines,
performance computations, and a schema generation algorithm (please refer to Section 4 for details).

Other solutions focus more on enhancing the performance of NoSQL through queries that are
written against a conceptual model. For instance, instead of improving the structural design or
mapping each query to a given set of physical structures, NoSE [1], which extends many features of
GMAP [53], chooses a set of physical structures that are suitable for a given workload. In addition,
ERQL [47] enhances the entity relationship diagram using a conceptual query language. This approach
refers to a series of entities using the path expressions it has defined. Our query models, however,
adopted the relational modeling structure as defined in Section 5.4. The performance of the physical
structure that our approach recommends relies on the foundations of the structure rather than the

Symmetry 2020, 12, 1799 4 of 33

queries. Our argument is that although NoSQL databases were originally designed to be flexible, the
way the data is modeled has a significant correlation with its performance. This has also been argued
by Bertino and Kim [46] where path indexes and nested indexes are introduced.

Michael et al. [22] presented a schema design in a similar way to our setting. They used a
cost-driven approach to optimize the schema design. It analyzes the workloads and execution costs
required to map the physical data model with the application data model. Like our method, this
approach makes several decisions from vital inputs, such as entity types, indices, estimated number of
each type, and estimated cardinality of each field. While in our approach, only the initial entities and
their expected number of records are required, the DSP model handles the remaining schema design
processes. As in our proposed solution, the cost-driven approach also does not consider modeling data
in a more in-depth way using the new cardinalities and relations classifications.

Vertica [40] used a similar technique that resides only on the C-Store database [54]. It consists of
an SQL interface that uses multiple encoding techniques to improve the query performance via views
denormalizations. This approach is an extension of earlier work by Zodnik et al. [41] who initiated an
automated schema design for C-Stores.

Conversely, the work of the Object Management Group [55–57] has scientifically proved that
separating platform technologies from application logic can provide more generic models that can
be applied on virtually any platform. As such, a Model Driven Architecture (MDA) was proposed.
MDA provides guidelines for structuring software specifications that are expressed as models. MDA
was utilized by [58–60] for different purposes, such as data collection and aggregation in a mobile
context, controlling short- and long-term adaptive behavior, and modeling of a cataract intervention.
While it is significant to make both the business and technical aspects of an application independent, it
is equally imperative to make their relationship as efficient. DSP comes in here to provide optimal
database designs that can handle requests from the application layer efficiently.

However, Atzeni et al. [61] believed that, instead of emphasizing more on separating the application
logic from the platform technologies, as proposed by [55], a unified interface would play a better role,
leaving both sections untouched. As such, Save Our Systems (SOS) was proposed by [61] as a common
programming interface to the NoSQL systems. This system aims to map specific interfaces of the
individual systems regardless of their individual differences; thus, interoperability. In a similar work
conducted by Tan et al. [62], an interface known as Tempo was created for DBAs to have a simpler
way of specifying performance objectives and optimize Resource Manager Configurations. This is to
optimize job processing time allocations and make sure deadlines are not missed. As mentioned in
the previous paragraph, DSP focus on the foundation layer of the NoSQL databases rather than the
application or interface layers. DSP argues that the structure in which NoSQL databases are designed
has a significant impact on its performance, especially with the presence of voluminous and highly
diversified datasets (i.e., big data).

Rule-based approaches also exist [63], namely OLAP [64], Spatial and Astronomical Data [65,66],
column-stores [67], and data migration to NoSQL [68,69]. However, they are workload agnostic and
no single schema was produced. Next, the proposed model and its components are presented.

4. The DSP Model and Components

This section presents the proposed DSP model and the description of the proposed method. The
section consists of the DSP model architecture and its associated components, such as the cardinalities
notations, modeling classifications, and modeling guidelines; it also contains the DSP model algorithm
(Algorithm 1) and the procedure that DSP follows to generate NoSQL schemas. At first, the DSP
architecture is presented.

Symmetry 2020, 12, 1799 5 of 33

4.1. DSP Architecture

The architecture of the proposed DSP model is presented in Figure 1. There are seven phases or
layers in the architecture, which are labeled with numbers from 1 to 7. Every layer consists of a process
that relies on the outcome of its predecessor (previous layer).

Symmetry 2020, 12, x FOR PEER REVIEW 5 of 33

(4) cardinality layer; (5) classification layer; (6) guidelines ranking layer; and (7) output layer. At the
beginning (Layer 1), modelers are expected to supply values to the parameters and execute the
command. These parameters are the choice of CRUD operations, list of parent entities, availability
(which is a constant parameter), and expected number of records. It is important to note that the
constant parameter (availability) is originally from the CAP theorem, which means more work is
required on DSP before it can handle the remaining members of CAP theorem (i.e., Consistency and
Partition-tolerance).

Figure 1. The Dynamic Schema Proposition (DSP) model.

After the first layer command, the DSP model takes over the operational responsibility from
Layer 2 to Layer 7. The engine of the model runs from Layer 4 to Layer 7. Within this engine, the
semantic mappings of the logical model to the schema take place, including the calculations and
selection of the appropriate entities, cardinalities, classifications, and guidelines. These are partly
achieved through the use of modeling guidelines, relationship classifications, and new generation
cardinalities, all of which are presented in the following sections.

4.2. Cardinality Notations

In modeling the NoSQL databases, the following new cardinalities are proposed, highlighted
with the gray color background (Table 1).

Table 1. SQL and Not so SQL (NoSQL) cardinalities.

 Cardinalities Notations Examples
1 One-to-One 1:1 Person ←→ Id card
2 One-to-Few 1:F Author ←→ Addresses
3 One-to-Many 1:M Post ←→ Comments
4 One-to-Squillions 1:S System ←→ Logs
5 Many-to-Many M:M Customers←→ Products
6 Few-to-Few F:F Employees ←→ tasks
7 Squillions-to-Squillions S:S Transactions ←→ Logs

Please note that (in Table 1) the original cardinalities are also included in the list without any
highlighting. This is to indicate the progression in the area with respect to cardinality notations and
their evolvement base. The table outlines the proposed cardinalities for NoSQL databases. These

Figure 1. The Dynamic Schema Proposition (DSP) model.

As noted earlier, the following architecture (presented in Figure 1) is made up of seven
interconnected layers: (1) command layer; (2) iteration layer; (3) parameter-values composition
layer; (4) cardinality layer; (5) classification layer; (6) guidelines ranking layer; and (7) output layer. At
the beginning (Layer 1), modelers are expected to supply values to the parameters and execute the
command. These parameters are the choice of CRUD operations, list of parent entities, availability
(which is a constant parameter), and expected number of records. It is important to note that the
constant parameter (availability) is originally from the CAP theorem, which means more work is
required on DSP before it can handle the remaining members of CAP theorem (i.e., Consistency and
Partition-tolerance).

After the first layer command, the DSP model takes over the operational responsibility from Layer
2 to Layer 7. The engine of the model runs from Layer 4 to Layer 7. Within this engine, the semantic
mappings of the logical model to the schema take place, including the calculations and selection of the
appropriate entities, cardinalities, classifications, and guidelines. These are partly achieved through
the use of modeling guidelines, relationship classifications, and new generation cardinalities, all of
which are presented in the following sections.

4.2. Cardinality Notations

In modeling the NoSQL databases, the following new cardinalities are proposed, highlighted with
the gray color background (Table 1).

Symmetry 2020, 12, 1799 6 of 33

Table 1. SQL and Not so SQL (NoSQL) cardinalities.

Cardinalities Notations Examples

1 One-to-One 1:1 Person←→ Id card
2 One-to-Few 1:F Author←→ Addresses
3 One-to-Many 1:M Post←→ Comments
4 One-to-Squillions 1:S System←→ Logs
5 Many-to-Many M:M Customers←→ Products
6 Few-to-Few F:F Employees←→ tasks
7 Squillions-to-Squillions S:S Transactions←→ Logs

Please note that (in Table 1) the original cardinalities are also included in the list without any
highlighting. This is to indicate the progression in the area with respect to cardinality notations and
their evolvement base. The table outlines the proposed cardinalities for NoSQL databases. These
cardinalities are selected based on the classifications that are presented in the following section. It
should be noted that the new cardinalities do not propose the elimination of the original cardinalities,
rather complementing them in the big data world where data is highly voluminous. They contain
an almost similar structure with the existing cardinalities; however, a new concept is provided in the
new cardinalities, such as differentiating “few-records” from “billions-of-records” on the many side
of a relationship as opposed to conventional cardinalities where both are considered “many”. This
provides a more in-depth breakdown on data modeling possibilities for better performance.

4.3. Relationship Classifications

Data access patterns and the nature of applications’ data are considered the major indicators of
whether or not entities should be modeled together or should be modeled separately or bucketed.
These classifications (as presented in Table 2) possess unique qualities suitable for different situations.

Table 2. Relationship classification.

S/N Styles Notations

1 Embedding EMB
2 Referencing REF
3 Bucketing BUK

The three relationship classifications are explained as follows using their applicable models.

4.3.1. Embedding

Embedding refers to inserting a child document into a parent document. There are two types of
embedding, namely, one-way and two-way; both are computed using Equation (1).

EMB = P1 ←

n∑
i=1

{Cd1 . . .Cdn} (1)

where P1 represents a parent document and Cdi represents a child document.

4.3.2. Referencing

Unlike embedding, referencing connects child entities to a parent entity using their unique
identities. This class of relationship can be modeled as shown in Equation (2).

REF =
{
Pd1id . . .Pdnid

}
↔

{
Cd1id . . .Cdnid

}
(2)

where P represents a parent document and Cd represents a child document. Both ids are interchanged.

Symmetry 2020, 12, 1799 7 of 33

4.3.3. Bucketing

Bucketing refers to the splitting of records of entities into manageable portions. It is situated
between the flexibility of referencing and the rigidity of embedding and is modeled using Equation (3)
as follows:

BUK = Pd1id → {Cd1 . . . Cdn} (3)

where P denotes a parent document and Cd represents a child document.

4.3.4. Embedding and Referencing

It is important to note that, although the modeling classifications are distinctly implemented,
there is a high possibility of combining Embedding and Referencing, as modeled in Equation (4).

REF + EMB = {Pd1id ←

n∑
i=1

{Cd1 . . .Cdn}} ↔ {Cd1id . . .Cdnid } (4)

where P represents a parent document and Cd represents a child document. Both ids are interchanged in
the case of referencing while child documents are directly attached to parents in the case of embedding.
This type of classification may be required when document volatility is high, or a document relationship
is more than one, among others.

4.4. Schema Proposition Guidelines

The model proposed in this paper adopts the guidelines as proposed by [70]. These guidelines (in
Table 3) are helpful in prioritizing relationships.

Table 3. Prioritizing guidelines for read/write performance [70].

Read Operations Write Operations

Code Total Scores Priority Level Code Total Scores Priority Level

G6 12 1 G1 17 1
G1 16 2 G6 25 2

G17 30 3 G4 28 3
G15 34 4 G5 35 4
G2 52 5 G7 50 5
G7 54 6 G18 70 6

G11 67 7 G10 79 7
G9 69 8 G11 91 8
G3 76 9 G14 93 9

G19 92 10 G12 95 10
G5 97 11 G8 99 11
G4 106 12 G15 101 12

G22 123 13 G3 103 13
G8 I26 14 G9 118 14

G12 129 I5 G13 125 15
G10 141 16 G16 136 16
G13 I57 17 G2 138 17
G14 161 18 G21 152 18
G18 168 19 G19 169 19
G23 186 20 G23 173 20
G16 I87 21 G22 190 21
G20 199 22 G20 196 22
G21 202 23 G17 201 23

While ranking the guidelines in Table 3, equal ranks are allowed to be given to more than one
guideline. However, for each participant involved in the ranking process, a constraint of a total number

Symmetry 2020, 12, 1799 8 of 33

of 276 (= 1 + 2 + 3 + 4 + . . . + 23) are expected. This is calculated using Equation (5). The assigned
ranks were organized by guideline, leading to the results as presented in Table 3.

Total Scores : Ts =
n∑

i=1

{G1 . . .G23} (5)

Referring to Table 3, the guidelines are ranked based on their availability requirement. As such,
the total score values are considered to be the weight of each guideline.

Now, because the requirements are linearly separable, True (T) and False (F) are attached to
each guideline and the OR Boolean is used to determine the combination, which will collectively be
summed up as the input of our activation function. The activation function in DSP is a function that
calculates the possibility of including or excluding a guideline from the list of applicable guidelines.
The verdict ranges from 0 to 1, where 1 is fully accepted (True) or 0 fully rejected (False). The average
value for consideration is 0.5. Any guideline that falls below the average is given low priority except
when another guideline that depends on it is considered. In such cases, the weight of the two or
more guidelines are put together and divided by their numbers to get the average. This is done using
Equation (6).

Av =
(Gs1 + Gs2 + · · ·Gsn)∑

Gn
(6)

where Av is the average value of each of the inter-dependent applicable guidelines and Gs1 · · ·Gsn

stands for guideline scores from 1 until n, and Gn is the number of participating guidelines. When the
Av value is 0.5 or higher, all the inter-dependent applicable guidelines are considered, otherwise the
least scoring guideline is removed using Equation (7) and the remaining guidelines are recomputed
again using Equation (6).

min
G=1

(Gs1,Gs2, . . .Gsn) (7)

where min() is the function that extracts the guideline with the least value, and a limit of G = 1 is set,
such that at least one guideline is returned if the guidelines do not collectively add up to 0.5. The
following algorithm explains the DSP logic.

4.5. DSP Algorithm

The brain of the DSP model follows the following algorithm (Algorithm 1) in order to perform its
operations and produce the desired schema. In the following algorithm, the process of generating the
NoSQL schema is demonstrated.

The algorithm starts by accepting inputs such as entities and expected number of records. It
then proceeds to the declaration of variables that are capable of holding the required values for
schema design. The anticipated schema is thereafter produced as the output of the algorithm. It
is important to note that the numbers of Line 10 and 11 are the approximate thresholds values for
deciding which of the modeling classifications is suitable for modeling records that are ≈�9! × 3 or
≈�11! × 2. Such thresholds are also used for bucketing, which refers to the splitting of records of
entities into manageable portions. These thresholds are experimentally established through the use of
new cardinality notations as presented in Table 1 and the modeling classifications as shown in Table 2.
The DSP model follows the following procedure to execute its processes.

Symmetry 2020, 12, 1799 9 of 33

Algorithm 1 DSP Algorithm

Input: E = entities.
ENR = Estimated number of records.

EMB = Embedding, REF = Referencing, BUK = Bucketing.
CRUD Operations Cr (C, R, U, D).

Output: NoSQL Schema.
Definitions: ≈ approximation,�much less than.

1. begin
2. variables (E(E + ENR), CRUD, i = 1)
3. if E.|S| != ∅: then
4. A← Availability
5. Cr← get preferred CRUD
6. while i < E.|S| do
7. ENR← get ENR(E)
8. for each item in E do
9. if (Cr , C||U) then
10. if ENR[i] ≈ � 0 and ENR[i] ≈ � 9! × 3 then
11. execute EMB;
12. else if ENR[i]: =∞ || ENR[i] ≈ � 11! × 2 then
13. execute REF;
14. end;
15. end;
16. if (Cr , R) then
17. execute BUK;
18. for (j = 0; j <= ROUND (ENR/5! × 2); j++)
19. Tpg[j] = ROUND (ENR/5! × 2);
20. end;
21. foreach (range(Tpg) as pg)
22. Next = pg->Tpg;
23. end;
24. end;
25. end;
26. i+ = 1;
27. end;
28. else
29. return null;
30. end;

4.6. DSP Model Procedure

In this section, the procedure that DSP follows to suggest a NoSQL schema is depicted and
explained. There are three subsections in the procedure, as shown in Figure 2; each is explained in its
separate section.

Initially, the main DSP procedure flow is presented, through which all other subsections are
referenced during the schema production processes. Each process in the DSP main procedure (Figure 2a)
makes a call to a separate figure to perform a unique responsibility and return back a desired result.
This is indicated, for example, in Figure 3, which directly refers to the corresponding branch of the
main process.

Symmetry 2020, 12, 1799 10 of 33

Symmetry 2020, 12, x FOR PEER REVIEW 9 of 33

23. end;
24. end;
25. end;
26. i+ = 1;
27. end;
28. else
29. return null;
30. end;

The algorithm starts by accepting inputs such as entities and expected number of records. It then
proceeds to the declaration of variables that are capable of holding the required values for schema
design. The anticipated schema is thereafter produced as the output of the algorithm. It is important
to note that the numbers of Line 10 and 11 are the approximate thresholds values for deciding which
of the modeling classifications is suitable for modeling records that are ≈ ≪ 9! × 3 or ≈ ≫ 11! × 2. Such
thresholds are also used for bucketing, which refers to the splitting of records of entities into manageable
portions. These thresholds are experimentally established through the use of new cardinality
notations as presented in Table 1 and the modeling classifications as shown in Table 2. The DSP model
follows the following procedure to execute its processes.

4.6. DSP Model Procedure

In this section, the procedure that DSP follows to suggest a NoSQL schema is depicted and
explained. There are three subsections in the procedure, as shown in Figure 2; each is explained in its
separate section.

Initially, the main DSP procedure flow is presented, through which all other subsections are
referenced during the schema production processes. Each process in the DSP main procedure (Figure
2a) makes a call to a separate figure to perform a unique responsibility and return back a desired
result. This is indicated, for example, in Figure 3, which directly refers to the corresponding branch
of the main process.

(a) (b)

Figure 2. (a) Schema generation process using the DSP model; (b) requirements selection. Figure 2. (a) Schema generation process using the DSP model; (b) requirements selection.

Symmetry 2020, 12, x FOR PEER REVIEW 10 of 33

Figure 2a provides the overview of the main activities that DSP follows to produce a desired
schema. After starting the process, the purpose of the first operation is to supply the required values
to the available parameters. These values are the primary expected entities as well as their expected
number of records. The second set of values that are expected at this stage are the CRUD operations,
i.e., Create, Read, Update, and Delete (CRUD). The next step is the computation and the preparation
of all the DSP-dependent components. Finally, all of the prepared components are calculated and
mapped, and they continue to generate the desired schema. Each of the aforementioned activities is
further depicted and explained in the following subsections.

4.6.1. Requirements Selection

The first step of the schema generation process is to retrieve all the necessary schema
construction requirements. These requirements (values) are either selectable values or
supplementary values (project peculiar requirements), as indicated in the first activity of Figure 2b.

After providing either the list or number of entities, each entity in the list is expected to have its
estimated number of records that will be considered when establishing a relation between entities,
whether it will be referencing or embedding, as highlighted in Section 4.3. This is, however, not meant
to be static as depicted and explained in Section 4.2.

The thresholds of the ENR values are described and used in the DSP algorithm (Section 4.5). The
CRUD operations and system requirements (Availability) are also selected based on the ENR values
provided. All these values are mapped and saved for later retrieval during schema generation.

4.6.2. Requirements Computation

After all requirements are selected as inputs, the guidelines, as presented in Section 4.4, are
aligned with the selected requirements, after which initial weights and biases are assigned for
guideline inclusivity computations (please see Figure 3).

The result of this process (as shown in Figure 3) would be an integer value (usually a large
number) that is suppressed to a value between 0 and 1 inclusive. A guideline is dropped if it scores
less than 0.5; however, if another guideline scores > 0.5 and is dependent on the guideline that has
been dropped, a further computation is considered for possible inclusion. If there is no guideline that
depends on the dropped guideline, an alternative, more capable guideline is retrieved and evaluated
using the same procedure.

Figure 3. Requirements computation process. Figure 3. Requirements computation process.

Figure 2a provides the overview of the main activities that DSP follows to produce a desired
schema. After starting the process, the purpose of the first operation is to supply the required values
to the available parameters. These values are the primary expected entities as well as their expected
number of records. The second set of values that are expected at this stage are the CRUD operations,

Symmetry 2020, 12, 1799 11 of 33

i.e., Create, Read, Update, and Delete (CRUD). The next step is the computation and the preparation
of all the DSP-dependent components. Finally, all of the prepared components are calculated and
mapped, and they continue to generate the desired schema. Each of the aforementioned activities is
further depicted and explained in the following subsections.

4.6.1. Requirements Selection

The first step of the schema generation process is to retrieve all the necessary schema construction
requirements. These requirements (values) are either selectable values or supplementary values (project
peculiar requirements), as indicated in the first activity of Figure 2b.

After providing either the list or number of entities, each entity in the list is expected to have its
estimated number of records that will be considered when establishing a relation between entities,
whether it will be referencing or embedding, as highlighted in Section 4.3. This is, however, not meant
to be static as depicted and explained in Section 4.2.

The thresholds of the ENR values are described and used in the DSP algorithm (Section 4.5). The
CRUD operations and system requirements (Availability) are also selected based on the ENR values
provided. All these values are mapped and saved for later retrieval during schema generation.

4.6.2. Requirements Computation

After all requirements are selected as inputs, the guidelines, as presented in Section 4.4, are aligned
with the selected requirements, after which initial weights and biases are assigned for guideline
inclusivity computations (please see Figure 3).

The result of this process (as shown in Figure 3) would be an integer value (usually a large number)
that is suppressed to a value between 0 and 1 inclusive. A guideline is dropped if it scores less than 0.5;
however, if another guideline scores > 0.5 and is dependent on the guideline that has been dropped,
a further computation is considered for possible inclusion. If there is no guideline that depends on
the dropped guideline, an alternative, more capable guideline is retrieved and evaluated using the
same procedure.

4.6.3. Calculate Availability

Availability (i.e., read/write performance) is the major target area for improvement in this research.
As such, Figure 4 describes the process of performing availability-related computations. In each step of
this process (as shown in Figure 4), the three classifications are given equal integration opportunities.
However, a suitable classification is only implemented based on the computations performed in
Figures 3 and 4.

For the availability computations, the expected number of records (ENR) plays a very significant
role alongside Create, Read (C, R) of the CRUD operations. Small, mid, and large parameters contain
different data sizes, as experimentally defined, while preliminary assessing the new cardinality
notations and their associated modeling classifications.

Small, medium, and large parameters contain different data sizes, as experimentally defined, while
a preliminary assessment of the new cardinality notations and their associated modeling classifications
is carried out. Next, the method that was used to apply and evaluate DSP is explained.

Symmetry 2020, 12, 1799 12 of 33

Symmetry 2020, 12, x FOR PEER REVIEW 11 of 33

4.6.3. Calculate Availability

Availability (i.e., read/write performance) is the major target area for improvement in this
research. As such, Figure 4 describes the process of performing availability-related computations. In
each step of this process (as shown in Figure 4), the three classifications are given equal integration
opportunities. However, a suitable classification is only implemented based on the computations
performed in Figures 3 and 4.

Figure 4. Availability computations.

For the availability computations, the expected number of records (ENR) plays a very significant
role alongside Create, Read (C, R) of the CRUD operations. Small, mid, and large parameters contain
different data sizes, as experimentally defined, while preliminary assessing the new cardinality
notations and their associated modeling classifications.

Small, medium, and large parameters contain different data sizes, as experimentally defined,
while a preliminary assessment of the new cardinality notations and their associated modeling
classifications is carried out. Next, the method that was used to apply and evaluate DSP is explained.

5. Method: Pilot Application and Evaluation Description

This section presents the approaches taken to produce, implement, and experiment with the
proposed Dynamic Schema Proposition (DSP) model as well as its associated components. Other
subsections include the experimental and analytical procedures.

5.1. Datasets

In this study, four different datasets are used, of which three are produced by industry experts.
All the datasets have the same format, as depicted in Figure 5.

Figure 4. Availability computations.

5. Method: Pilot Application and Evaluation Description

This section presents the approaches taken to produce, implement, and experiment with the
proposed Dynamic Schema Proposition (DSP) model as well as its associated components. Other
subsections include the experimental and analytical procedures.

5.1. Datasets

In this study, four different datasets are used, of which three are produced by industry experts.
All the datasets have the same format, as depicted in Figure 5.Symmetry 2020, 12, x FOR PEER REVIEW 12 of 33

Figure 5. Sample dataset (schema).

Figure 5 shows a sample dataset that was generated using the DSP model as well as the industry
experts within our network. These experts have an average of nine years system development
experience in various areas of databases, which includes data migration from relational to NoSQL
databases, data modeling, system designs, etc.

Since one of the ways to test a system is through its product [3,71], we generated schemas using
the same requirements as used by all the participating experts. This is to enable us to test and compare
the performances of all the schemas without discrimination or bias.

It is important to note that the DSP model does not discriminate between data structures or
formats, rather, it studies the data structure and develop schemas that can improve data availability
when performing CRUD operations. This is achieved using the new cardinalities as proposed in
Section 4.2, classifications offered in Section 4.3, and also the modeling guidelines that are presented
in Section 4.4.

In general, the datasets are nothing but the daily routine records that are generated from small,
medium, or large systems, and include common information such as name, id, title, age, gender,
paragraph, or bunch of texts, etc. The following section explains how we fused these datasets
together.

5.2. Prototype Building Using the Datasets

The datasets, as explained in the previous section, are integrated into a prototype system. The
following architecture (Figure 6) describes the system. It was used to execute the read/write query
experiments [72]. The components of the system include the NoSQL repositories containing all the
participating datasets, the graphical user interface (GUI), and the data processing unit.

Figure 6. Prototype system architecture.

Figure 5. Sample dataset (schema).

Figure 5 shows a sample dataset that was generated using the DSP model as well as the industry
experts within our network. These experts have an average of nine years system development
experience in various areas of databases, which includes data migration from relational to NoSQL
databases, data modeling, system designs, etc.

Symmetry 2020, 12, 1799 13 of 33

Since one of the ways to test a system is through its product [3,71], we generated schemas using
the same requirements as used by all the participating experts. This is to enable us to test and compare
the performances of all the schemas without discrimination or bias.

It is important to note that the DSP model does not discriminate between data structures or
formats, rather, it studies the data structure and develop schemas that can improve data availability
when performing CRUD operations. This is achieved using the new cardinalities as proposed in
Section 4.2, classifications offered in Section 4.3, and also the modeling guidelines that are presented in
Section 4.4.

In general, the datasets are nothing but the daily routine records that are generated from small,
medium, or large systems, and include common information such as name, id, title, age, gender,
paragraph, or bunch of texts, etc. The following section explains how we fused these datasets together.

5.2. Prototype Building Using the Datasets

The datasets, as explained in the previous section, are integrated into a prototype system. The
following architecture (Figure 6) describes the system. It was used to execute the read/write query
experiments [72]. The components of the system include the NoSQL repositories containing all the
participating datasets, the graphical user interface (GUI), and the data processing unit.

Symmetry 2020, 12, x FOR PEER REVIEW 12 of 33

Figure 5. Sample dataset (schema).

Figure 5 shows a sample dataset that was generated using the DSP model as well as the industry
experts within our network. These experts have an average of nine years system development
experience in various areas of databases, which includes data migration from relational to NoSQL
databases, data modeling, system designs, etc.

Since one of the ways to test a system is through its product [3,71], we generated schemas using
the same requirements as used by all the participating experts. This is to enable us to test and compare
the performances of all the schemas without discrimination or bias.

It is important to note that the DSP model does not discriminate between data structures or
formats, rather, it studies the data structure and develop schemas that can improve data availability
when performing CRUD operations. This is achieved using the new cardinalities as proposed in
Section 4.2, classifications offered in Section 4.3, and also the modeling guidelines that are presented
in Section 4.4.

In general, the datasets are nothing but the daily routine records that are generated from small,
medium, or large systems, and include common information such as name, id, title, age, gender,
paragraph, or bunch of texts, etc. The following section explains how we fused these datasets
together.

5.2. Prototype Building Using the Datasets

The datasets, as explained in the previous section, are integrated into a prototype system. The
following architecture (Figure 6) describes the system. It was used to execute the read/write query
experiments [72]. The components of the system include the NoSQL repositories containing all the
participating datasets, the graphical user interface (GUI), and the data processing unit.

Figure 6. Prototype system architecture. Figure 6. Prototype system architecture.

The four datasets that are stored in the NoSQL repositories have two optional access points, as
shown in Figure 6. The first one is accessed through the MapReduce framework, while the second is
accessed through JDBC drivers. Both the two access points can be used to assess the read/write query
performance (availability).

In this research, both data access points are adopted. However, since the scope of this research
is not a comparison between the access points, both the access points are used, and their results are
merged and categorized based on the query models as presented in Table 4. Although each access
point has a separate cost analysis model, our target is to improve the schema design regardless of
which access point is used. Therefore, analyzing both at the same time justifiably shows, generally,
which schema is better than the other.

Symmetry 2020, 12, 1799 14 of 33

Table 4. Query models for selectivity, drill-down, and roll-up queries.

Query Models Model
Application Type

1 QUERYt data WHERE time = Tx WITH Int(T) = Φ Read, Update Single selectivity
2 SaveFew (INTO collection of each node) WITH Int(T) = Φ Create Single selectivity

3 QUERYt data WHERE time >= Tx AND time >= Ty AND Ty-Tx < ∆
WITH Int(T) = Φ. Read, Update Drill-down query

4 SaveMany (INTO collection of each node) WITH Int(T) = Φ Create Drill-down query

5 QUERY data WHERE time >= Tx AND time <= Ty AND Ty-Tx > ∆
WITH ComNo > ∆ OR ComL > ∆ IF ComD in (Tx, Ty) WITH Int(T) = Φ Read, Update Roll-up query

6 BulkSave (INTO collection of each node) WITH Int(T) = Φ Create Roll-up query

5.3. Experimental Setup

Before the actual DSP model was developed, this research work began with a preliminary analysis
experiment. The aim of this preliminary experiment was to identify which of the relational database
cardinalities can be used for the non-relational databases and which of them require more in-depth
breakdown. A single machine with the following configurations was used to conduct the experiment:
running on the Ubuntu OS 12.0.4 (LINUX), CPU of 8 cores, 32 GB RAM, Ethernet card with 1 GB
bandwidth, and 1 terabyte HDD. Datasets with sizes of 1 GB, 500 MB, 300 MB, 100 MB, and 10 MB were
loaded into a mini prototype system. Synthetically generated queries were run to assess all cardinalities
in relation to different levels of data sizes as mentioned earlier. These preliminary experiments yielded
the need to further break down the existing cardinalities and provide modeling guidelines that resulted
in the DSP.

Subsequently, two main experimental environments were setup to evaluate the DSP model:
(1) using the Hadoop-2.7.2-stable platform where a cluster with five nodes was prepared, four of which
are DataNodes (slaves), to house the four datasets in MongoDB (version 4.2.0), while the remaining
one acts as master (NameNode). All these nodes have the following configurations: running on the
Ubuntu OS 12.0.4 (LINUX), CPU of 8 cores, 32 GB RAM, Ethernet card with 1 GB bandwidth, and 1
terabyte HDD; and (2) using a webpage that connects to MongoDB (version 4.2.0) through MongoDB
ODBC Driver for Mac V18 (version: 18.0.6894). The system configuration for the second experimental
environment is the same as the first.

5.4. The Test Queries

The queries used in the experiment utilized two different combinations of CRUD operations
(queries). The two combinations are (1) Create and Read; and (2) Create and Update. These have
adopted the following models:

Create : r← r ∪ E (8)

where r represents a relation and relational algebra expression represented as E.

Read : r := σ θ1∧θn (r) (9)

where r is the relation, and σ is the select command. θ is the query-control from limit 1 to limit n that
are joined by Λ.

Update : r :=
∏

F1, F2 . . . Fn (r) (10)

Each Fn is either the nth attribute of r, if the nth attribute is not updated, or, to be updated, the Fn

attribute involving only constants.

Delete : r := r − E (11)

where r represents a relation or the entity, while the relational algebra expression is represented as E.

Symmetry 2020, 12, 1799 15 of 33

Equations (8)–(11) are used to construct the query models as presented in Table 4. The queries are
further classified into three types: selectivity, drill-down, and roll-up. This means each classification
will contain several queries to test the schema capabilities. Table 4 presents the corresponding models
for the three types of queries.

In the models shown in Table 4, we use ∆ to denote the limit of numbers, like number of comments
or likes in a particular post, and Φ to denote the interval of query executions between nodes. Some
models are applicable to Create while others are applicable to Read and Update queries. Accordingly,
the aim of the single selectivity is to retrieve data that falls within one indexed data collection. While
in drill-down query, a subset of data of one indexed collection is queried. Finally, the rollup query
involves querying multiple indexed collections.

5.5. The Experimental Procedure

The experiment involved the implementation of all four participating datasets (schemas), as
explained in Section 5.1, as well as the running of the queries that adopted the models, as presented in
Table 4. The sizes of the dataset were on average the same (±1 MB) and came in multiple files within
the collections. A function db.collection.totalSize () was used to make sure the content of each dataset
was within ±1 MB. The queries were run to test the performance of all the participating schemas.

The selectivity percentages of insert queries were different from the select and update query
operations. With the insert query operation, all the records that are available are inserted into the
NoSQL databases across the participating nodes, while some percentage of them is selected (as for
select query operation) and updated (for update query operation) on different conditions of query
complexities. Table 5 shows the summary of the distribution of the records across the three categories
of queries.

Table 5. Data sizes with target records for each category of query.

Data Corresponding Records
Number of Target Records

Insert Select Update

50 GB 145,000,000 145,000,000 (100%) 25,000,000 (20%) 7,250,000 (5%)
100 GB 290,000,000 290,000,000 (100%) 116,000,000 (40%) 29,000,000 (10%)
300 GB 870,000,000 870,000,000 (100%) 435,000,000 (50%) 174,000,000 (20%)
500 GB 1,450,000,000 1,450,000,000 (100%) 870,000,000 (60%) 435,000,000 (30%)

1 TB 2,900,000,000 2,900,000,000 (100%) 2,030,000,000 (70%) 1,160,000,000 (40%)

For each of the records above, a query is run to insert, retrieve, or update part of the records. Each
query has a starting and end time and other resources to consider when comparing with another. As
such, the following section explains the cost analysis models that are adopted to calculate the returning
values as well as the starting and end time of each query.

5.6. Cost Analysis Models

This section presents the models that are adopted to calculate the execution runtime (ERT) of each
of the read/write operations performed on all the participating schemas. The testing of availability is
performed using two different approaches, namely MapReduce and JDBC deriver. The architecture
(Figure 6) describes a complete system that was followed during the read/write query experiments [72].

The two availability evaluation approaches are related as represented in Figure 6. Both the
approaches start by sending a query through graphical user interface. By using the MapReduce
approach, the data processing framework processes the query and then passes it to any of the
selected/active datasets. In the second approach (through JDBC drivers), the query is processed using
the wrapper and then passed to NoSQL through the JDBC driver. Each of these two approaches is
further explained using their applicable cost analysis models as follows.

Symmetry 2020, 12, 1799 16 of 33

5.6.1. MapReduce Cost Model Analysis

The cost analysis model proposed by Wang and Wang [73], as shown in Equation (12), was
adapted to calculate the ERT of each read/write operation performed, thus testing availability (i.e.,
A of the CAP theorem). In the equation, the RT for the input data N can be calculated by summing
up all TMaps and TReduceMarge processes that are commonly executed by the Hadoop and other NoSQL
databases during the query processing life time.

RT =
N∑

i=1

(
TMaps + TReduceMerge

)
(12)

TMaps is the time taken for all map processes to complete and TReduceMerge is the time taken by the
reduce phase to complete merging the results.

It can be observed that, for the reduce phase, the time considered is only that of the merging of
the key-value emitted by the map phase, even though the reduce phase comprises other sub-processes,
such as copy, sort, and merge. This is due to the fact that the reduce phase does the copying and
sorting in parallel with the map phase and only begins the merging when all maps are completed [73].
Equation (13) shows the formula used to calculate TMap of Equation (12).

TMaps =
(
TMap + TMapDelay

)
×

NMaps

DParallel
×DParallel × TMapDelay (13)

From the equation, TMap is the time taken by a single map process to be completed. TMapDelay
denotes the time between the completion of one map job and the assigning of another job. NMaps is the
total number of maps processed and DParallel denotes the parallel degree of maps. This calculation can
be further described, as shown in Figure 7.Symmetry 2020, 12, x FOR PEER REVIEW 16 of 33

Figure 7. Overview of the MapReduce execution process.

The cost analysis model as presented in Equations (12) and (13) are used to calculate the
availability for the first approach (MapReduce approach as shown in Figure 6). This analysis pass
through a process as depicted in Figure 7, where the first layer is defined as the input that receives
the data to be analyzed, process layer, and finally produced results in the output layer.

The following section describes the cost analysis models for the second approach (JDBC driver).

5.6.2. Hypercube Topology and Gaian Topology Cost Model Analysis

The second ETR calculation was done through the wrapper and JDBC driver. Unlike the first
approach, where only the MapReduce framework is involved, this approach includes many other
factors, such as the JDBC driver, APIs, wrapper, network, etc. [74]. As such, two related cost analysis
models (Hypercube topology and Gaian topology) are used in this approach.

Let:

N be the number of nodes in the network, and
LTx be proportion of fragments of the Logical document collection named X, and
PLN be the average path length in a network with N nodes, and
SLL be the size of a logical document lookup message and response (per network step), and
SQ be the size of a query message and standard (no data) response, and
SQR be the size of data results per logical document fragment.

Using the above-defined variables, the cost models work as follows:

(a) Hypercube topology with Content Addressable Network (CAN): Cost(𝑃ଵ, Pଶ) = ൬PLN ∗ SLL + N ∗ LTx ∗ PLN ∗ SQ ൰ + (PLN ∗ N ∗ LTx ∗ SQR) (14)

where 𝑃ଵ is the query type and 𝑃ଶ is the cost model, like hypercube CAN in this case. Further
computations can be explained as

the cost of logical document lookup in a CAN is PLN * SLL, and
the cost of sending the query to the specific locations with that logical document is N * LTx *

PLN * SQ, and
the cost of retrieving results is PLN * SQR * N * LTx.

(b) Gaian topology cost analysis model: Cost(𝑃ଵ, Pଶ) = (2 ∗ N ∗ SQ) + (PLN ∗ SQR ∗ N ∗ LTx) (15)

where 𝑃ଵ is the query type and 𝑃ଶ is the cost model, like Gaian in this case. Further computations
can be explained as

the cost of sending the query to all nodes is 2 * N * SQ, and
the cost of retrieving results is PLN * N * LTx * SQR.

Figure 7. Overview of the MapReduce execution process.

The cost analysis model as presented in Equations (12) and (13) are used to calculate the availability
for the first approach (MapReduce approach as shown in Figure 6). This analysis pass through a
process as depicted in Figure 7, where the first layer is defined as the input that receives the data to be
analyzed, process layer, and finally produced results in the output layer.

The following section describes the cost analysis models for the second approach (JDBC driver).

5.6.2. Hypercube Topology and Gaian Topology Cost Model Analysis

The second ETR calculation was done through the wrapper and JDBC driver. Unlike the first
approach, where only the MapReduce framework is involved, this approach includes many other
factors, such as the JDBC driver, APIs, wrapper, network, etc. [74]. As such, two related cost analysis
models (Hypercube topology and Gaian topology) are used in this approach.

Let:

N be the number of nodes in the network, and

Symmetry 2020, 12, 1799 17 of 33

LTx be proportion of fragments of the Logical document collection named X, and
PLN be the average path length in a network with N nodes, and
SLL be the size of a logical document lookup message and response (per network step), and
SQ be the size of a query message and standard (no data) response, and
SQR be the size of data results per logical document fragment.

Using the above-defined variables, the cost models work as follows:

(a) Hypercube topology with Content Addressable Network (CAN):

Cost(P1, P2) =

(
PLN ∗ SLL + N ∗
LTx ∗ PLN ∗ SQ

)
+ (PLN ∗N ∗ LTx ∗ SQR) (14)

where P1 is the query type and P2 is the cost model, like hypercube CAN in this case. Further
computations can be explained as

the cost of logical document lookup in a CAN is PLN * SLL, and
the cost of sending the query to the specific locations with that logical document is N * LTx * PLN
* SQ, and
the cost of retrieving results is PLN * SQR * N * LTx.

(b) Gaian topology cost analysis model:

Cost(P1, P2) = (2∗N ∗ SQ) + (PLN ∗ SQR ∗N ∗ LTx) (15)

where P1 is the query type and P2 is the cost model, like Gaian in this case. Further computations
can be explained as

the cost of sending the query to all nodes is 2 * N * SQ, and
the cost of retrieving results is PLN * N * LTx * SQR.

In the following section, results from the aforementioned experiment and analysis are presented
and discussed.

6. Results and Discussion

The main target of the DSP model is to improve the read/write performance of the NoSQL
databases. Hence, a low execution runtime on Create, Read and Update query operations is the major
determinant for meeting the target or otherwise. Therefore, in order to evaluate the impact of the
DSP model, a query execution runtime of its schema was compared against the schemas produced by
industry experts who hold a minimum of nine years working experience. The DSP model itself is then
compared against formal schema generation methods on parameters such as reusability, extendibility,
understandability, creation time, requirement integration, etc. All the query processing approaches
were created using the query models presented in Table 4 and were run using the three query types,
namely single selectivity, drill-down, and rollup. The datasets (schemas) used here are also presented
in Section 5.1. At the outset, the preliminary results that guided the development of the DSP model are
put forward.

6.1. Preliminary Analysis Results on DSP Foundations

In an attempt to determine a suitable structure and compatible components that can serve as
the foundation upon which the proposed DSP will be built, a preliminary analysis of the existing
cardinality notations was carried out. This has led us to propose new cardinality notations and
modeling classifications that are suitable for a big data setting (please see Sections 4.2 and 4.3). The

Symmetry 2020, 12, 1799 18 of 33

main aim here is to clearly demonstrate whether or not there is need for a more in-depth breakdown of
the existing cardinalities.

At first, the one-to-many relationship is further classified into one-to-few (1:F), one-to-many (1:M),
and one-to-squillion (1:S). These cardinalities were tested and assessed. Each query was run three
times on each dataset size for a particular cardinality, after which the average of the three trials was
taken while reporting the discrepancies in the graph (error bars). The following sections describe the
performance of each cardinality in different data size conditions

As can be observed from Figure 8a, each of the cardinalities (1:F, 1:M, and 1:S) exhibits a unique
behavior across data sizes. At the earliest stage, 1:F performs better than 1:M, and 1:S with an average
interval of around 700 ms at the 300 MB data point and below; the strength of 1:M ranges from the
400 MB to 800 MB data sizes. However, as data size reach around 900 MB and above, 1:S consistently
proves to be the most suitable cardinality for a very large dataset. These differences arose as a result
of applying the new modeling classifications as proposed in Table 2 on each of the cardinalities.
In addition to the read operations, performance analysis was also conducted on the write operation,
the results of which are presented in Figure 8b.Symmetry 2020, 12, x FOR PEER REVIEW 18 of 33

(a) (b)

(c) (d)

Figure 8. Preliminary experimental results on execution runtime for (a) read operations on 1:F, 1:M,
and 1:S cardinality notations; (b) write operations on 1:F, 1:M, and 1:S cardinality notations; (c) read
operations on F:F, M:N, and S:S cardinality notations; (d) write operations on F:F, M:N, and S:S
cardinality notations.

Unlike in the read operations, write operations take more time across the three tested
cardinalities. However, in write operations, a similar pattern of performance between the
cardinalities is observed as in the read operations. According to Figure 8b, a 400 MB data size and
below is best modeled as 1:F, while a data size above 800 MB is best modeled as 1:S. Moreover, the
strength of 1:M lies in-between 1:F and 1:S. This shows that performances of the write operations
strongly agree with those of the read operations.

Secondly, performance analysis was conducted to assess the many-to-many (M:N) cardinality.
At first the surrogate associates, such as F:F and S:S, are created to compliment the M:N relationship
modeling for more in depth analysis. Their performances are assessed during the read and write
operations as conducted in the previous experiment (Figure 8a,b). The results of the read operations
on M:N cardinality and its competing associates are presented in Figure 8c.

It is implied from Figure 8c that the F:F cardinality performs significantly better at around the
450 MB data size and below as compared with M:N and S:S. This cardinality, however, performs very
poorly as data size increases by 200 MB, with an average increment of 500 ms. On the other hand, as
the data size reaches 500 MB, M:N cardinality takes over as being the most suitable model, but at
around 900 MB its performance begins to drastically decrease as compared to S:S, which performs
very poorly at the beginning of the graph (between 1 MB to 1000 MB), but then as the data size

Figure 8. Preliminary experimental results on execution runtime for (a) read operations on 1:F, 1:M,
and 1:S cardinality notations; (b) write operations on 1:F, 1:M, and 1:S cardinality notations; (c) read
operations on F:F, M:N, and S:S cardinality notations; (d) write operations on F:F, M:N, and S:S
cardinality notations.

Symmetry 2020, 12, 1799 19 of 33

Unlike in the read operations, write operations take more time across the three tested cardinalities.
However, in write operations, a similar pattern of performance between the cardinalities is observed
as in the read operations. According to Figure 8b, a 400 MB data size and below is best modeled as 1:F,
while a data size above 800 MB is best modeled as 1:S. Moreover, the strength of 1:M lies in-between
1:F and 1:S. This shows that performances of the write operations strongly agree with those of the
read operations.

Secondly, performance analysis was conducted to assess the many-to-many (M:N) cardinality.
At first the surrogate associates, such as F:F and S:S, are created to compliment the M:N relationship
modeling for more in depth analysis. Their performances are assessed during the read and write
operations as conducted in the previous experiment (Figure 8a,b). The results of the read operations
on M:N cardinality and its competing associates are presented in Figure 8c.

It is implied from Figure 8c that the F:F cardinality performs significantly better at around the
450 MB data size and below as compared with M:N and S:S. This cardinality, however, performs very
poorly as data size increases by 200 MB, with an average increment of 500 ms. On the other hand,
as the data size reaches 500 MB, M:N cardinality takes over as being the most suitable model, but at
around 900 MB its performance begins to drastically decrease as compared to S:S, which performs very
poorly at the beginning of the graph (between 1 MB to 1000 MB), but then as the data size becomes
very large, it turns out to be more suitable than its counterparts. It can be clearly seen that S:S has a
very stable performance, with a considerably lower increment in time despite the massive increase in
the data sizes, especially at 700 MB and above.

Furthermore, the performance of F:F, M:N, and S:S on the write operations were assessed equally.
This is to support the decision of adopting a more in-depth breakdown of M:N cardinality in the big
data setting. The results of the write operations F:F, M:N, and S:S are presented in Figure 8d and
discussed as follows.

It is observed that the findings presented in Figure 8d strongly support the results of the read
operations, as shown in Figure 8c. This indicates that the F:F cardinality still performs better at around
the 460 MB data size and below as compared with M:N and S:S. This cardinality, however, performs
weakly as the data size increases by 200 MB, with an average increment of 500–600 ms. Alternatively,
as the data size reaches about 500 MB, the M:N cardinality becomes the most suitable adoptable model
for the task, but at around 900 MB its performance begins to drastically decline as compared to S:S,
which performs very poorly at the beginning of the graph (between 1 MB to 1000 MB); but, as the data
size reaches levels over 1000 MB, it turns out to be more suitable than its counterparts. Again, it can be
clearly seen that S:S has a very stable performance during the write operations, with a considerably
lower increment in time, despite the massive increase in the data sizes, especially at 500 MB and above.

The aforementioned preliminary experiments were analyzed using the ANOVA statistical tool.
The F values obtained are 0.2811 and 0.3707 for the read and write operations, respectively, on 1:F,
1:M, and 1:S; the F values for the read and write operations of F:F, M:N, and S:S are 8.1457 and 5.7503.
Having F values bigger than the critical value of 3.682 clearly show that there is a need for more in
depth cardinality notations that are suitable for big data storage settings. All cardinalities are presented
in Section 4.2.

6.2. Schema Performance: Evaluation of DSP Schema against Formal Methods Schemas

In order to evaluate the performance of the DSP-based schema, three different experts were
engaged in the production of similar schemas using the same case study. These experts have a minimum
of nine years database design and modeling experience. The schemas they produced, alongside the
DSP-based schema, were then implemented in different nodes with the same system specifications for
performances testing (Section 5.2).

At first, the read/write performance of the DSP based schema was compared to other schemas
produced by experts of the NoSQL databases. The testing was performed using queries that were
generated through the query models presented in Table 4. The generated queries were classified as

Symmetry 2020, 12, 1799 20 of 33

Create operation queries and Update operation queries. Experiments on each of these classifications
were performed separately. The results are analyzed and reported in the following sections.

6.2.1. Scenario 1: Create Operation

In this section, the queries (as presented in Table 4) are executed under different conditions of data
sizes and query complexities, such as single-selectivity, drill-down, and rollup. The Create operation
results are presented as follows.

The first query in Table 4 is single selectivity. This type of query focuses on records insertion of one
large file in a single collection. The documents that are enclosed therein do not have many branches
that will complicate the writing process. As such, parallelism in records creation is permitted at this
level because there are minimal entity dependencies in the collection. As a result, the difference in the
write performance is insignificant, as shown in Figure 9, unlike in the subsequent queries (Figures 10
and 11) where much more complex queries are implemented. These results (in Figure 9) are further
described as presented in Table 6 below. This is to clearly show the gaps in numbers that exist between
the participating schemas, including the schema generated by the DSP model.Symmetry 2020, 12, x FOR PEER REVIEW 20 of 33

20GB 50GB 200GB 500GB 700GB 1TB
0

100

200

300

400

500

600

700

800

C
re

at
io

n
Ti

m
e

(S
EC

)

Data Size (GB/TB)

 SPM Schema
 Expert-1 Schema
 Expert-2 Schema
 Expert-3 Schema

Figure 9. Execution runtime for the Create operation on single-selectivity for the DSP, Expert1, Expert2,
and Expert3 schemas.

20GB 50GB 200GB 500GB 700GB 1TB

1200

1400

1600

1800

2000

2200

2400

Cr
ea

tio
n

Ti
m

e
(S

EC
)

Data Size (GB/TB)

 SPM Schema
 Expert-1 Schema
 Expert-2 Schema
 Expert-3 Schema

Figure 10. Execution runtime for the Create operation on drill-down for the DSP, Expert1, Expert2, and
Expert3 schemas.

20GB 50GB 200GB 500GB 700GB 1TB
2700

3000

3300

3600

3900

4200

4500

4800

5100

5400

C
re

at
io

n
Ti

m
e

(S
EC

)

Data Size (GB/TB)

 SPM Schema
 Expert-1 Schema
 Expert-2 Schema
 Expert-3 Schema

Figure 11. Execution runtime for the Create operation on rollup for the DSP, Expert1, Expert2, and
Expert3 schemas.

Table 6. Execution runtime for the Create operation on single-selectivity for the DSP, Expert1, Expert2,
and Expert3 schemas.

Data Size DSP Schema Expert1 Expert2 Expert3
10 MB 17 498 263 352
20 MB 29 529 307 368
30 MB 41 553 328 406

Figure 9. Execution runtime for the Create operation on single-selectivity for the DSP, Expert1, Expert2,
and Expert3 schemas.

Symmetry 2020, 12, x FOR PEER REVIEW 20 of 33

20GB 50GB 200GB 500GB 700GB 1TB
0

100

200

300

400

500

600

700

800

C
re

at
io

n
Ti

m
e

(S
EC

)

Data Size (GB/TB)

 SPM Schema
 Expert-1 Schema
 Expert-2 Schema
 Expert-3 Schema

Figure 9. Execution runtime for the Create operation on single-selectivity for the DSP, Expert1, Expert2,
and Expert3 schemas.

20GB 50GB 200GB 500GB 700GB 1TB

1200

1400

1600

1800

2000

2200

2400

Cr
ea

tio
n

Ti
m

e
(S

EC
)

Data Size (GB/TB)

 SPM Schema
 Expert-1 Schema
 Expert-2 Schema
 Expert-3 Schema

Figure 10. Execution runtime for the Create operation on drill-down for the DSP, Expert1, Expert2, and
Expert3 schemas.

20GB 50GB 200GB 500GB 700GB 1TB
2700

3000

3300

3600

3900

4200

4500

4800

5100

5400

C
re

at
io

n
Ti

m
e

(S
EC

)

Data Size (GB/TB)

 SPM Schema
 Expert-1 Schema
 Expert-2 Schema
 Expert-3 Schema

Figure 11. Execution runtime for the Create operation on rollup for the DSP, Expert1, Expert2, and
Expert3 schemas.

Table 6. Execution runtime for the Create operation on single-selectivity for the DSP, Expert1, Expert2,
and Expert3 schemas.

Data Size DSP Schema Expert1 Expert2 Expert3
10 MB 17 498 263 352
20 MB 29 529 307 368
30 MB 41 553 328 406

Figure 10. Execution runtime for the Create operation on drill-down for the DSP, Expert1, Expert2, and
Expert3 schemas.

Symmetry 2020, 12, 1799 21 of 33

Symmetry 2020, 12, x FOR PEER REVIEW 20 of 33

20GB 50GB 200GB 500GB 700GB 1TB
0

100

200

300

400

500

600

700

800

C
re

at
io

n
Ti

m
e

(S
EC

)

Data Size (GB/TB)

 SPM Schema
 Expert-1 Schema
 Expert-2 Schema
 Expert-3 Schema

Figure 9. Execution runtime for the Create operation on single-selectivity for the DSP, Expert1, Expert2,
and Expert3 schemas.

20GB 50GB 200GB 500GB 700GB 1TB

1200

1400

1600

1800

2000

2200

2400

Cr
ea

tio
n

Ti
m

e
(S

EC
)

Data Size (GB/TB)

 SPM Schema
 Expert-1 Schema
 Expert-2 Schema
 Expert-3 Schema

Figure 10. Execution runtime for the Create operation on drill-down for the DSP, Expert1, Expert2, and
Expert3 schemas.

20GB 50GB 200GB 500GB 700GB 1TB
2700

3000

3300

3600

3900

4200

4500

4800

5100

5400

C
re

at
io

n
Ti

m
e

(S
EC

)

Data Size (GB/TB)

 SPM Schema
 Expert-1 Schema
 Expert-2 Schema
 Expert-3 Schema

Figure 11. Execution runtime for the Create operation on rollup for the DSP, Expert1, Expert2, and
Expert3 schemas.

Table 6. Execution runtime for the Create operation on single-selectivity for the DSP, Expert1, Expert2,
and Expert3 schemas.

Data Size DSP Schema Expert1 Expert2 Expert3
10 MB 17 498 263 352
20 MB 29 529 307 368
30 MB 41 553 328 406

Figure 11. Execution runtime for the Create operation on rollup for the DSP, Expert1, Expert2, and
Expert3 schemas.

Table 6. Execution runtime for the Create operation on single-selectivity for the DSP, Expert1, Expert2,
and Expert3 schemas.

Data Size DSP Schema Expert1 Expert2 Expert3

10 MB 17 498 263 352
20 MB 29 529 307 368
30 MB 41 553 328 406
40 MB 48 599 342 462
50 MB 69 717 408 588
60 MB 81 767 476 626

These results (as presented in Table 6) are expected because the size of the file under consideration is
in megabytes and contains less dependencies, thereby having minimal impact on the new cardinalities.
In the subsequent experiment, however, a significant gap is noticed between the participating
cardinalities. In this experiment a more complex query (drill-down) is executed.

The drill-down query has proven different results. Unlike the competing schemas, the results of
the DSP-based schema show steady incremental increases in execution runtimes across all data sizes
(see Figure 10). Others, such as Expert1 and Expert2 schemas, perform below average right from the
beginning (20 GB) and fluctuate as the data size increases. The Expert3 schema is left behind under
these conditions with around 1700 s at Position 1 (20 GB) and it then rises steeply from Position 2
(50 GB) onward, with an average increment of 55 s. Table 7 shows the row data of this experiment.

Table 7. Execution runtime for the Create operation on drill-down for the DSP, Expert1, Expert2, and
Expert3 schemas.

Data Size DSP Schema Expert1 Expert2 Expert3

20 GB 1079 1637 1592 1711
50 GB 1103 1656 1646 1774

200 GB 1123 1671 1674 1878
500 GB 1134 1758 1665 1912
700 GB 1141 1853 1741 2081

1 TB 1157 1973 1879 2145

Referring to Table 7, it can be observed that the DSP schema performs better as compared to the
Expert1, Expert2, and Expert3 schemas, regardless of the data size increment across data points. This
consistent increment can be seen continuously in the category of rollup query complexity, as depicted
in Figure 11 below.

Symmetry 2020, 12, 1799 22 of 33

As noted in the previous results (drill-down), more distinctive output is observed as query
complexity increases (rollup). In Figure 11, a clearer gap is noticed between the DSP schema and
Expert1 and Expert2, with an average interval of around 720 s. Moreover, unlike the interval between
the Expert1 and Expert2 schemas, which is around 300 s, the Expert3 schema performed very poorly
with a kick-off time of around 4630 s and continues to increase with an average increment of 200 s
as the data size increases. The gap between the Expert3 schema and DSP schema is around 1600 s,
making the Expert3 schema the lowest performing schema in the list of the four competing schemas.

Although a dramatic gap is observed between the schemas produced by Expert2 and Expert3 in
Table 8, the intervals across the earlier experiments have been consistent on average, which further
supports the evidence that the Expert3 schema is consistently slower across the data points and the
DSP schema is steadily faster.

Table 8. Execution runtime for the Create operation on rollup for the DSP, Expert1, Expert2, and
Expert3 schemas.

Data Size DSP Schema Expert1 Expert2 Expert3

20 GB 2973 3724 4118 4597
50 GB 3026 3870 4162 4687

200 GB 3032 3862 4193 4786
500 GB 3062 4042 4197 4797
700 GB 3181 4011 4263 5039

1 TB 3188 4225 4508 5137

In the following section, the data that is loaded into the nodes in the earlier experiments will now
be queried out. This is to perform the Read operation analysis as an opposite of the Create operation.
All experiments will be analyzed at the end of this section.

6.2.2. Scenario 2: Read Operation

Unlike in the previous section where the Create queries are loaded with data and executed, this
section presents the results of the Read operations. This is to say the Read operation focuses on
retrieving data that have already settled in all the databases. As conducted in Scenario 1, the Read
queries are also executed under different data-size conditions and different query complexities.

As can be observed from Figure 12, the Read performance of Expert1 and Expert3 schemas are
generally slower than the Expert2 and DSP-based schemas across all data points (20 GB–1 TB).

Symmetry 2020, 12, x FOR PEER REVIEW 22 of 33

In the following section, the data that is loaded into the nodes in the earlier experiments will
now be queried out. This is to perform the Read operation analysis as an opposite of the Create
operation. All experiments will be analyzed at the end of this section.

6.2.2. Scenario 2: Read Operation

Unlike in the previous section where the Create queries are loaded with data and executed, this
section presents the results of the Read operations. This is to say the Read operation focuses on
retrieving data that have already settled in all the databases. As conducted in Scenario 1, the Read
queries are also executed under different data-size conditions and different query complexities.

As can be observed from Figure 12, the Read performance of Expert1 and Expert3 schemas are
generally slower than the Expert2 and DSP-based schemas across all data points (20 GB–1 TB).

20GB 50GB 200GB 500GB 700GB 1TB
0

100

200

300

400

500

600

700

R
ea

d
Ti

m
e

(S
EC

)

Data Size (GB/TB)

 SPM Schema
 Expert-1 Schema
 Expert-2 Schema
 Expert-3 Schema

Figure 12. Execution runtime for the Read operation on single-selectivity for the DSP, Expert1, Expert2,
and Expert3 schemas.

However, as the data size reached around 700 GB, the performances of all schemas began to
deteriorate, except for the DSP-based schema that maintained a steady increment despite the increase
in the data size, as shown in Table 9.

Table 9. Execution runtime for the Read operation on single-selectivity for the DSP, Expert1, Expert2,
and Expert3 schemas (Query 1).

Data Size DSP Schema Expert1 Expert2 Expert3
20 GB 41 387 59 412
50 GB 53 378 72 428

200 GB 62 412 91 456
500 GB 71 425 103 482
700 GB 90 451 129 503

1 TB 95 491 174 571

Moreover, according to the analysis of variance, the F value obtained for this test is 147.01, which
is far greater than the critical value of 3.1. This indicates a massive difference between the DSP-based
and Expert2 schemas on the one hand and other competing schemas (Expert1 and Expert3) on the
other hand on the single-selectivity query of the Read operation. While, in the drill-down query, the
difference is even more significant, as shown in Figure 13.

Figure 12. Execution runtime for the Read operation on single-selectivity for the DSP, Expert1, Expert2,
and Expert3 schemas.

Symmetry 2020, 12, 1799 23 of 33

However, as the data size reached around 700 GB, the performances of all schemas began to
deteriorate, except for the DSP-based schema that maintained a steady increment despite the increase
in the data size, as shown in Table 9.

Table 9. Execution runtime for the Read operation on single-selectivity for the DSP, Expert1, Expert2,
and Expert3 schemas (Query 1).

Data Size DSP Schema Expert1 Expert2 Expert3

20 GB 41 387 59 412
50 GB 53 378 72 428

200 GB 62 412 91 456
500 GB 71 425 103 482
700 GB 90 451 129 503

1 TB 95 491 174 571

Moreover, according to the analysis of variance, the F value obtained for this test is 147.01, which
is far greater than the critical value of 3.1. This indicates a massive difference between the DSP-based
and Expert2 schemas on the one hand and other competing schemas (Expert1 and Expert3) on the
other hand on the single-selectivity query of the Read operation. While, in the drill-down query,
the difference is even more significant, as shown in Figure 13.Symmetry 2020, 12, x FOR PEER REVIEW 23 of 33

20GB 50GB 200GB 500GB 700GB 1TB

500

1000

1500

2000

2500

3000

3500

Re
ad

 T
im

e
(S

EC
)

Data Size (GB/TB)

 SPM Schema
 Expert-1 Schema
 Expert-2 Schema
 Expert-3 Schema

Figure 13. Execution runtime for the Read operation on drill-down for the DSP, Expert1, Expert2, and
Expert3 schemas (Query 2).

The difference between the DSP-based schema against other participating schemas begins to be
more significant as query complexity increases. The performance of the DSP schema started at around
335 s on the 20 GB data point and continued with a minimal (10 s) increment across all data points.
However, this is not the case for the Expert1 and Expert2 datasets, whose starting point is around 2500
s and 1400 s, respectively, and continued with a similar increment as in the DSP-based schema.
Furthermore, the worst performance recorded for this test is on the Expert3 schema, which is slower
than all the schemas across data points with an average increment of ×4 at the early stage and ×6 at
later stages (500 GB and above). Table 10 shows the row data in seconds.

In Figure 13, six different trails are performed, as presented in Table 10. However, in this case,
the average row data are presented for a more detailed comparisons between the DSP-based, Expert1,
Expert2, and Expert3 schemas.

Table 10. Execution runtime for the Read operation on drill-down for the DSP, Expert1, Expert2, and
Expert3 schemas (Query 2).

Data Size DSP Schema Expert1 Expert2 Expert3
20 GB 446 2492 1367 2466
50 GB 449 2501 1389 2575

200 GB 478 2517 1396 2691
500 GB 486 2530 1514 2677
700 GB 514 2556 1542 2876

1 TB 519 2587 1614 3174

Analysis of variance was performed to assess the significance level of the differences as
discussed earlier on drilldown query complexity; the F value obtained for this test is 346.68, which is
significantly greater than the critical value of 3.09. This has shown that the difference between the
DSP-based schema and other competing schemas is significant on drill-down query complexity of
the Read operation.

For the Read operation, the drill-down query model is divided into two. Query number two, as
presented earlier, and query number three (Figure 14). Query number three makes more trips to the
database in search of related and dependent data than query number two. In this type of query, the
gap between the schemas produced by Expert1, Expert2, and Expert3 are the same on average (around
1000 s), having the Expert2 schema leading the group with initial results of 2520 s. These results
continue to increase with an average of 20 s across all data points as shown in Figure 14. As for the
DSP-based schema, the increment between the starting and the end point was very low (around 11s).

Figure 13. Execution runtime for the Read operation on drill-down for the DSP, Expert1, Expert2, and
Expert3 schemas (Query 2).

The difference between the DSP-based schema against other participating schemas begins to be
more significant as query complexity increases. The performance of the DSP schema started at around
335 s on the 20 GB data point and continued with a minimal (10 s) increment across all data points.
However, this is not the case for the Expert1 and Expert2 datasets, whose starting point is around
2500 s and 1400 s, respectively, and continued with a similar increment as in the DSP-based schema.
Furthermore, the worst performance recorded for this test is on the Expert3 schema, which is slower
than all the schemas across data points with an average increment of ×4 at the early stage and ×6 at
later stages (500 GB and above). Table 10 shows the row data in seconds.

Symmetry 2020, 12, 1799 24 of 33

Table 10. Execution runtime for the Read operation on drill-down for the DSP, Expert1, Expert2, and
Expert3 schemas (Query 2).

Data Size DSP Schema Expert1 Expert2 Expert3

20 GB 446 2492 1367 2466
50 GB 449 2501 1389 2575

200 GB 478 2517 1396 2691
500 GB 486 2530 1514 2677
700 GB 514 2556 1542 2876

1 TB 519 2587 1614 3174

In Figure 13, six different trails are performed, as presented in Table 10. However, in this case,
the average row data are presented for a more detailed comparisons between the DSP-based, Expert1,
Expert2, and Expert3 schemas.

Analysis of variance was performed to assess the significance level of the differences as discussed
earlier on drilldown query complexity; the F value obtained for this test is 346.68, which is significantly
greater than the critical value of 3.09. This has shown that the difference between the DSP-based schema
and other competing schemas is significant on drill-down query complexity of the Read operation.

For the Read operation, the drill-down query model is divided into two. Query number two,
as presented earlier, and query number three (Figure 14). Query number three makes more trips to
the database in search of related and dependent data than query number two. In this type of query,
the gap between the schemas produced by Expert1, Expert2, and Expert3 are the same on average
(around 1000 s), having the Expert2 schema leading the group with initial results of 2520 s. These
results continue to increase with an average of 20 s across all data points as shown in Figure 14. As for
the DSP-based schema, the increment between the starting and the end point was very low (around
11 s). This adds to its dramatic performance improvement as compared with its counterparts. Table 11
presents the row results of this type of experiment (Read operations) for query number three under
drill-down query complexity.

Symmetry 2020, 12, x FOR PEER REVIEW 24 of 33

This adds to its dramatic performance improvement as compared with its counterparts. Table 11
presents the row results of this type of experiment (Read operations) for query number three under
drill-down query complexity.

20GB 50GB 200GB 500GB 700GB 1TB

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

R
ea

d
Ti

m
e

(S
EC

)

Data Size (GB/TB)

 SPM Schema
 Expert-1 Schema
 Expert-2 Schema
 Expert-3 Schema

Figure 14. Execution runtime for the Read operation on drill-down for the DSP, Expert1, Expert2, and
Expert3 schemas (Query 3).

Table 11. Execution runtime for the Read operation on drill-down for the DSP, Expert1, Expert2, and
Expert3 schemas (Query 3).

Data Size DSP Schema Expert1 Expert2 Expert3
20 GB 1027 4095 2634 3120
50 GB 1037 4116 2673 3141

200 GB 1068 4314 2803 3349
500 GB 1064 4542 2948 3767
700 GB 1190 4764 3148 3889

1 TB 1225 4937 3441 4262

In addition, an analysis was performed to ascertain the differences between the participating
schemas in this type of query using the ANOVA statistical tool. The F value obtained for this test is
112.39. This value is bigger than the critical value of 3.09, which again emphasized the significance of
the new cardinality notations and styles that are embedded in the DSP-based schema.

In the final experiment under this category, a much more complex query (rollup) was tested
against all the participating schemas on Read operations. Again, generally, the performance of the
DSP-based schema is significantly faster than all its counterparts as depicted in Figure 15. It started
at around 2250 s and worked its way up with minimal increments in seconds, despite the large
increment in the data sizes. This is not the case with the Expert1, Expert2, and Expert3 schemas; they
all started and ended poorly as compared with the DSP-based schema in this category. The average
interval between the DSP-based schema and its counterparts is around 3200 s across all data points,
which is much bigger than the simpler queries presented earlier. Table 12 shows the exact values of
each test for this type of query.

Figure 14. Execution runtime for the Read operation on drill-down for the DSP, Expert1, Expert2, and
Expert3 schemas (Query 3).

In addition, an analysis was performed to ascertain the differences between the participating
schemas in this type of query using the ANOVA statistical tool. The F value obtained for this test is
112.39. This value is bigger than the critical value of 3.09, which again emphasized the significance of
the new cardinality notations and styles that are embedded in the DSP-based schema.

Symmetry 2020, 12, 1799 25 of 33

Table 11. Execution runtime for the Read operation on drill-down for the DSP, Expert1, Expert2, and
Expert3 schemas (Query 3).

Data Size DSP Schema Expert1 Expert2 Expert3

20 GB 1027 4095 2634 3120
50 GB 1037 4116 2673 3141

200 GB 1068 4314 2803 3349
500 GB 1064 4542 2948 3767
700 GB 1190 4764 3148 3889

1 TB 1225 4937 3441 4262

In the final experiment under this category, a much more complex query (rollup) was tested
against all the participating schemas on Read operations. Again, generally, the performance of the
DSP-based schema is significantly faster than all its counterparts as depicted in Figure 15. It started at
around 2250 s and worked its way up with minimal increments in seconds, despite the large increment
in the data sizes. This is not the case with the Expert1, Expert2, and Expert3 schemas; they all started
and ended poorly as compared with the DSP-based schema in this category. The average interval
between the DSP-based schema and its counterparts is around 3200 s across all data points, which is
much bigger than the simpler queries presented earlier. Table 12 shows the exact values of each test for
this type of query.Symmetry 2020, 12, x FOR PEER REVIEW 25 of 33

20GB 50GB 200GB 500GB 700GB 1TB
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500
9000
9500

Re
ad

 T
im

e
(S

EC
)

Data Size (GB/TB)

 SPM Schema
 Expert-1 Schema
 Expert-2 Schema
 Expert-3 Schema

Figure 15. Execution runtime for the Read operation on rollup for the DSP, Expert1, Expert2, and
Expert3 schemas (Query 4).

Table 12. Execution runtime for the Read operation on the rollup for the DSP, Expert1, Expert2, and
Expert3 schemas (Query 4).

Data Size DSP Schema Expert1 Expert2 Expert3
20 GB 2355 5666 5028 5922
50 GB 2567 5977 5446 6622

200 GB 2778 5991 5957 7298
500 GB 2785 6004 6171 7838
700 GB 2903 6330 6412 8288

1 TB 2975 6760 7270 9231

Furthermore, the analysis of variance test was performed on the results presented in Table 12.
The test produced the F value of 45.11, which was compared against the critical value of 3.1. This
indicates that the DSP-based schema performs significantly better than its counterparts on rollup
query of the Read operation.

6.3. Schema Generation: Evaluation of DSP Model Process against Formal Methods

In this section, the performance of the proposed model (DSP) itself is tested on imperative
variables such as time taken to generate the schema and production complexities. These variables are
examined by comparing the DSP model and experts’ production. As such, the time taken to produce
schema by the DSP model is analyzed against Expert1, Expert2, and Expert3 as follows.

It can be observed from Figure 16 that there is a big gap between the DSP model and formal
methods in the time taken to produce schemas. While the DSP Model took only around 1120 s to
complete its schema production assignment, formal methods take as long as 59,400 s, 92,520 s, and
69,480 s for Expert1, Expert2, and Expert3, respectively. This significant margin (in terms of speed) is
as a result of the automation of the entire process of schema generation by the DSP model. The
proposed model accepts a few requirements as parameters from the modeler and automatically
generates the desired schema (please see schema production process in Section 4.6). The manual
implementation of all the processes explained in Section 4.6 would be not only difficult and
cumbersome, but naturally erroneous due to human involvement, depending on the modeler’s level
of expertise.

Figure 15. Execution runtime for the Read operation on rollup for the DSP, Expert1, Expert2, and
Expert3 schemas (Query 4).

Table 12. Execution runtime for the Read operation on the rollup for the DSP, Expert1, Expert2, and
Expert3 schemas (Query 4).

Data Size DSP Schema Expert1 Expert2 Expert3

20 GB 2355 5666 5028 5922
50 GB 2567 5977 5446 6622

200 GB 2778 5991 5957 7298
500 GB 2785 6004 6171 7838
700 GB 2903 6330 6412 8288

1 TB 2975 6760 7270 9231

Furthermore, the analysis of variance test was performed on the results presented in Table 12. The
test produced the F value of 45.11, which was compared against the critical value of 3.1. This indicates

Symmetry 2020, 12, 1799 26 of 33

that the DSP-based schema performs significantly better than its counterparts on rollup query of the
Read operation.

6.3. Schema Generation: Evaluation of DSP Model Process against Formal Methods

In this section, the performance of the proposed model (DSP) itself is tested on imperative variables
such as time taken to generate the schema and production complexities. These variables are examined
by comparing the DSP model and experts’ production. As such, the time taken to produce schema by
the DSP model is analyzed against Expert1, Expert2, and Expert3 as follows.

It can be observed from Figure 16 that there is a big gap between the DSP model and formal
methods in the time taken to produce schemas. While the DSP Model took only around 1120 s to
complete its schema production assignment, formal methods take as long as 59,400 s, 92,520 s, and
69,480 s for Expert1, Expert2, and Expert3, respectively. This significant margin (in terms of speed) is as
a result of the automation of the entire process of schema generation by the DSP model. The proposed
model accepts a few requirements as parameters from the modeler and automatically generates the
desired schema (please see schema production process in Section 4.6). The manual implementation of
all the processes explained in Section 4.6 would be not only difficult and cumbersome, but naturally
erroneous due to human involvement, depending on the modeler’s level of expertise.Symmetry 2020, 12, x FOR PEER REVIEW 26 of 33

SPM Model Expert-1 Expert-2 Expert-3
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

C
re

at
io

n
Ti

m
e

(S
EC

)

Schema Production

Figure 16. Schema production time of the DSP model against formal methods.

The data generated from the schema production experiment was subjected to analysis using an
analysis of variance (ANOVA). In this analysis, the F value obtained is 3,025,280,364.5 for schema
production. This indicates that the F value is greater than CV of 3.09 in all the trials. This supports
the notion of DSP functioning better in terms of schema production time.

In addition to schema production time, the DSP model is further evaluated on schema-
complexity against formal methods. This complexity is classified into different categories, such as
number of redo’s per document and per collection (as shown in Figure 17), full requirements
integration, understandability, reusability, and extendibility (as presented in Figure 18).

SPM Model Expert-1 Expert-2 Expert-3
0

100

200

300

400

500

600

N
o

of
 R

ed
o

pe
r d

oc
um

en
t (

C
ou

nt
)

Schema Complexity (a)
SPM Model Expert-1 Expert-2 Expert-3

0

2

4

6

8

10

12

14

16

18

N
o

of
 R

ed
o

pe
r C

ol
le

ct
io

n
(C

ou
nt

)

Schema Complexity (b)
Figure 17. Schema complexity comparisons between the DSP model against formal methods: (a)
number-of-redo’s per document; (b) number-of-redo’s per collection.

SPM Model Expert-1 Expert-2 Expert-3
0

1

2

3

4

5

Fu
ll

R
eq

ui
re

m
en

ts
 In

te
gr

at
io

n
(S

ca
le

 0
 -

5)

Schema Complexity (c)
SPM Model Expert-1 Expert-2 Expert-3

0

1

2

3

4

5

U
nd

er
st

an
da

bi
lit

y
(S

ca
le

 0
 -

5)

Schema Complexity (d)

Figure 16. Schema production time of the DSP model against formal methods.

The data generated from the schema production experiment was subjected to analysis using an
analysis of variance (ANOVA). In this analysis, the F value obtained is 3,025,280,364.5 for schema
production. This indicates that the F value is greater than CV of 3.09 in all the trials. This supports the
notion of DSP functioning better in terms of schema production time.

In addition to schema production time, the DSP model is further evaluated on schema-complexity
against formal methods. This complexity is classified into different categories, such as number
of redo’s per document and per collection (as shown in Figure 17), full requirements integration,
understandability, reusability, and extendibility (as presented in Figure 18).

The schema complexity comparison was conducted in a different context. At first, the DSP model
was evaluated against formal methods on the number of redo’s per document and per collection. This
experiment was conducted during the schema production where a digit 1 is recorded if any document
or collection is revisited after the first design. It was observed that around 420, 300, and 610 documents
were revisited by Expert1, Expert2, and Expert3, respectively. Moreover, around 7, 12, and 17 collections
were revisited by Expert1, Expert2, and Expert3, respectively, as shown in Figure 17a,b. However, none
of the documents or collections was revisited by the DSP model.

Symmetry 2020, 12, 1799 27 of 33

Symmetry 2020, 12, x FOR PEER REVIEW 26 of 33

SPM Model Expert-1 Expert-2 Expert-3
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

C
re

at
io

n
Ti

m
e

(S
EC

)

Schema Production

Figure 16. Schema production time of the DSP model against formal methods.

The data generated from the schema production experiment was subjected to analysis using an
analysis of variance (ANOVA). In this analysis, the F value obtained is 3,025,280,364.5 for schema
production. This indicates that the F value is greater than CV of 3.09 in all the trials. This supports
the notion of DSP functioning better in terms of schema production time.

In addition to schema production time, the DSP model is further evaluated on schema-
complexity against formal methods. This complexity is classified into different categories, such as
number of redo’s per document and per collection (as shown in Figure 17), full requirements
integration, understandability, reusability, and extendibility (as presented in Figure 18).

SPM Model Expert-1 Expert-2 Expert-3
0

100

200

300

400

500

600

N
o

of
 R

ed
o

pe
r d

oc
um

en
t (

C
ou

nt
)

Schema Complexity (a)
SPM Model Expert-1 Expert-2 Expert-3

0

2

4

6

8

10

12

14

16

18

N
o

of
 R

ed
o

pe
r C

ol
le

ct
io

n
(C

ou
nt

)

Schema Complexity (b)
Figure 17. Schema complexity comparisons between the DSP model against formal methods: (a)
number-of-redo’s per document; (b) number-of-redo’s per collection.

SPM Model Expert-1 Expert-2 Expert-3
0

1

2

3

4

5

Fu
ll

R
eq

ui
re

m
en

ts
 In

te
gr

at
io

n
(S

ca
le

 0
 -

5)

Schema Complexity (c)
SPM Model Expert-1 Expert-2 Expert-3

0

1

2

3

4

5

U
nd

er
st

an
da

bi
lit

y
(S

ca
le

 0
 -

5)

Schema Complexity (d)

Figure 17. Schema complexity comparisons between the DSP model against formal methods:
(a) number-of-redo’s per document; (b) number-of-redo’s per collection.Symmetry 2020, 12, x FOR PEER REVIEW 27 of 33

SPM Model Expert-1 Expert-2 Expert-3
0

1

2

3

4

5

F
u

ll
 R

eq
u

ir
em

en
ts

 I
n

te
g

ra
ti

o
n

 (
S

ca
le

 0
 -

 5
)

Schema Complexity (a)

SPM Model Expert-1 Expert-2 Expert-3
0

1

2

3

4

5

U
n

d
er

st
an

d
ab

il
it

y
(S

ca
le

 0
 -

 5
)

Schema Complexity (b)

SPM Model Expert-1 Expert-2 Expert-3
0

1

2

3

4

5

R
eu

sa
b

ili
ty

 (
S

ca
le

 0
 -

 5
)

Schema Complexity (c)

SPM Model Expert-1 Expert-2 Expert-3
0

1

2

3

4

5

E
xt

en
d

ab
il

ty
 (

S
ca

le
 0

 -
 5

)

Schema Complexity (d)

Figure 18. Schema complexity comparisons between the DSP model against formal methods: (a) full

requirements integration; (b) understandability; (c) reusability; (d) extendibility.

The schema complexity comparison was conducted in a different context. At first, the DSP model

was evaluated against formal methods on the number of redo’s per document and per collection.

This experiment was conducted during the schema production where a digit 1 is recorded if any

document or collection is revisited after the first design. It was observed that around 420, 300, and

610 documents were revisited by Expert1, Expert2, and Expert3, respectively. Moreover, around 7, 12,

and 17 collections were revisited by Expert1, Expert2, and Expert3, respectively, as shown in Figure

17a,b. However, none of the documents or collections was revisited by the DSP model.

Like any other system, database design and modeling require the system and user requirements

to be collected and translated. In Figure 18a, the requirement integration results are presented. A

scale of 0–5 was used as the ranking measurement (0 = no integration and 5 = full integration). Expert3

has the least (1 out of 5) coverage of the target requirements while the DSP model has the most

coverage (4 out of 5).

Understandability is one of the most important factors that determines the level of complexity.

This is because it is only when a schema is understood that other activities such as possible extension

or integration can take place. In Figure 18b, the understandability results of DSP model and formal

methods are presented. A scale of 0–5 was used as a ranking measurement (0 = not‐understandable

and 5 = Highly‐Understandable). Expert1 and Expert3 have the least understandable schemas with a

scale of 1 each, while Expert2 schema scored up to 3 out of 5. However, the schema produced by DSP

model has the highest level of understanding (4 out of 5), as indicated in Figure 18b.

The reusability of the schema indicates the possibility of duplicating the produced schema in a

similar organizational setting. Using a similar scaling system as in the previous paragraph, the DSP

model schema has proven to be the most reusable schema, having scored 5 out 5 (as shown in Figure

18c). This is because the changing requirements in the produced schema result in the need to adjust

only a few parameters, while rigorous scrutiny of all documents within a collection is required for

other competing schemas.

Figure 18. Schema complexity comparisons between the DSP model against formal methods: (a) full
requirements integration; (b) understandability; (c) reusability; (d) extendibility.

Like any other system, database design and modeling require the system and user requirements
to be collected and translated. In Figure 18a, the requirement integration results are presented. A scale
of 0–5 was used as the ranking measurement (0 = no integration and 5 = full integration). Expert3 has
the least (1 out of 5) coverage of the target requirements while the DSP model has the most coverage (4
out of 5).

Understandability is one of the most important factors that determines the level of complexity.
This is because it is only when a schema is understood that other activities such as possible extension
or integration can take place. In Figure 18b, the understandability results of DSP model and formal
methods are presented. A scale of 0–5 was used as a ranking measurement (0 = not-understandable
and 5 = Highly-Understandable). Expert1 and Expert3 have the least understandable schemas with a
scale of 1 each, while Expert2 schema scored up to 3 out of 5. However, the schema produced by DSP
model has the highest level of understanding (4 out of 5), as indicated in Figure 18b.

The reusability of the schema indicates the possibility of duplicating the produced schema in
a similar organizational setting. Using a similar scaling system as in the previous paragraph, the

Symmetry 2020, 12, 1799 28 of 33

DSP model schema has proven to be the most reusable schema, having scored 5 out 5 (as shown in
Figure 18c). This is because the changing requirements in the produced schema result in the need to
adjust only a few parameters, while rigorous scrutiny of all documents within a collection is required
for other competing schemas.

Extendibility means that a schema can be easily extended to incorporate additional requirements
without having to redesign the entire schema or adjust any of its sections. Using the same scaling
system, all the competing schemas score 1 out 5, which means they are virtually not extendable, or that
extensions require manual alterations of the existing schema. While the DSP-based schema was able to
score 4 out 5 (please see Figure 18d). This high score obtained by the DSP schema emerges as a result
of automation in the requirements selection process. In DSP, extending schemas due to the additional
requirements only means increasing the list of parameters and rerun.

The data generated from the six complexity experiments are subjected to analysis using the
chi-square statistical (Ch2) tool. A p-value approach was used to determine whether or not the difference
is significant enough to make conclusions. Not significant was defined as p-value ≤ α value (0.05). The
p-values obtained for No-of-redo’s per document, No-of-redo’s per collection, requirements-integration,
understandability, reusability, and extendibility are 0.014, 0.032, 0.132778358, 0.065789053, 0.283886131,
and 0.020344999 for the schema complexity testing. This has indicated, based on Ch2, that the schema
produced by the DSP model is more reusable, extendible, and understandable than its counterparts. It
is also more capable of incorporating a greater coverage of requirements as well as eliminating the
number of redo’s per document/collection. Therefore, the perception of the DSP model being better
than its counterpart is retained, since the average p-value (0.045640402) for both scenarios is less than
the significance level (α = 0.05).

6.4. Discussion

In this section, the findings of this research in relation to the proposed DSP model and its
competitors are discussed. Prior to the development of the DSP model, a preliminary experiment was
conducted to assess the existing cardinality notations in a big data setting. It was observed that the
existing cardinalities used in the traditional databases do not fit the NoSQL databases and therefore
necessitate a more in-depth breakdown of the cardinalities as well as introducing new modeling
classifications for better read/write performance. The results obtained from this experiment are used to
guide the construction of the proposed DSP model.

The DSP model was evaluated alongside three other competing schemas. The comparison was
between DSP and schemas produced by three different experts. This comparison was based on
read/write query performance of the NoSQL databases. Moreover, other imperative variables like
schema reusability, extendibility, understandability, etc., were also considered in the evaluation process.
The results of the experiment indicate the following.

The new cardinality notations and modeling classifications proposed in our earlier study and
utilized in this study have made a significant contribution to the read/write performance of the NoSQL
databases. This is proven by the results obtained and presented in Sections 6.1 and 6.2 when the
DSP-based schema is compared with the schemas developed by industry experts for the purpose of this
experiment. In this comparison, the DSP-based schema surpasses its counterparts with approximately
a 75% increment in the read/write query speed.

In addition, supporting the NoSQL modelers with modeling guidelines has been proven to be
more important than assisting traditional database modelers. This is because of the high-flexibility of
the NoSQL database and lack of standards and engines to enforce schemas, and as a result, the quality
of the modeled schema stays in the hands of novice modelers. Results from the experiments presented
in the previous sections have shown that when modelers are guided using the 23 empirically developed
guidelines, the quality of database design improves significantly in terms of read/write performance.

On the other hand, the schema production process was also assessed between the DSP model
and formal methods. The results of this experiment show that the DSP model takes only around

Symmetry 2020, 12, 1799 29 of 33

1120 s to produce the desired schema, while it takes days to produce the same schema using formal
methods. In addition to schema production time, an experiment was also conducted to assess the
schema complexities in terms of reusability, extendibility, understandability, etc. It is observed that the
DSP-based schema is more reusable, extendible, and understandable. It is also able to incorporate,
on average, all the user and system requirements. Furthermore, the DSP model does not repeat or
revisit any document or collection after its completion, while other competing experts had to revisit
the modeled documents around 600 times on average for the given case study. Collections are usually
revisited to correct erroneous implementations, improve design performance, and improve synergy
between the collaborative collections. These and many other possibilities are experimentally calculated,
classified, and integrated into the DSP model, which eliminates re-visitations of documents after the
schema production.

To further improve the accuracy in the schema production, several algorithms and mathematical
models are produced. This is to make sure that the replication of the schemas produced by the Dynamic
Schema Proposition model is as accurate as possible, making it compatible and applicable in almost
all the big data settings. Formulas, such as relationship classifications (presented in Section 4.3), are
invented to always calculate the compatibility of each cardinality with relationship classifications, such
that a unique response is applied in the appropriate location.

In general, the proposed DSP-based schema not only proves to be better in terms of read/write
performance on the schemas produced by experts, but also show remarkable improvements on other
schema generation aspects. It has proven its capabilities in quick schema production without having
to redo/revisit collections after completing the development of schemas. It has also been shown to be
more extendible, reusable, and understandable in addition to being better at integrating the user and
system requirements. These findings have clearly shown that the proposed model is ideal for schema
generations in the big data storage setting.

7. Conclusions

Because the way a database schema is designed has a high impact on its performance, a Dynamic
Schema Proposition (DSP) model for NoSQL databases is proposed in this study. This research was
motivated by the fact that erroneous design and implementation problems have become rampant in the
area of NoSQL database design. This is because of the flexibility offered by the NoSQL databases. The
lack of design-aiding tools in NoSQL, as they are in relational databases, has forced designers to rely
on rule of thumb to model NoSQL databases that require a high level of competence. Therefore, the
proposed model aims at easing the database design process and improving its read/write performance.
The model covers both physical and logical stages of database designs. An experimental approach was
adopted to achieve this goal.

The results have shown that the proposed DSP model is significantly better than its counterparts
in terms of read/write performance when compared with the schemas produced by industry experts.
This is confirmed using analysis of variance (ANOVA), where an average F value of 74.10 and 162.80
was derived for the create and read operations, respectively, which are greater than the critical value
of 3.09. DSP has also shown remarkable improvements on schema generation aspects such as quick
schema production, without having to redo/revisit collections after completion. The DSP model has
again revealed itself to be more extendible, reusable, and understandable in addition to being better in
covering the user and system requirements integration than its counterparts. This is also confirmed
using Chi2 analysis where an average p-value of 0.045640402 was generated for the schema complexity
testing, which is less than the alpha value (≤α). In the future, we hope to make DSP more general
and compatible to all the available data models of the NoSQL databases. We also intend to cover
the remaining CAP theorem variables, namely, consistency and partition-tolerance, in addition to
availability that is covered in this research.

Author Contributions: Conceptualization, A.A.I. and S.B.; methodology, A.A.I., S.B., R.A., M.T.G.-A. and L.F.C.;
software, A.A.I., A.K.A. and A.A.W.; validation, M.T.G.-A., A.A.I. and S.B.; formal analysis, R.A., A.A.I. and

Symmetry 2020, 12, 1799 30 of 33

A.O.B.; investigation, A.A.I., L.F.C. and S.B.; resources, A.A.W. and M.T.G.-A.; data curation, A.A.I., S.B., R.A. and
L.F.C.; writing—original draft preparation, A.A.I. and R.A.; writing—review and editing, A.O.B., A.K.A., A.A.I.
and L.F.C.; visualization, M.T.G.-A., L.F.C. and S.B.; supervision, S.B., R.A. and M.T.G.-A.; project administration,
S.B.; funding acquisition, S.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This paper/research was fully supported by Ministry of Higher Education Malaysia, under
the Fundamental Research Grant Scheme (FRGS) with Ref. No. FRGS/1/2018/ICT04/UTP/02/4 and Yayasan
Universiti Teknologi PETRONAS (YUTP) Research Grant Scheme (YUTP-FRG/015LC0297).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mior, M.J.; Salem, K.; Aboulnaga, A.; Liu, R. NoSE: Schema design for NoSQL applications. IEEE Trans.
Knowl. Data Eng. 2017, 29, 2275–2289. [CrossRef]

2. Pirzadeh, P.; Carey, M.; Westmann, T. A performance study of big data analytics platforms. In Proceedings of
the 2017 IEEE International Conference on Big Data (Big Data 2017), Boston, MA, USA, 11–14 December
2017; pp. 2911–2920. [CrossRef]

3. Mior, M.J.; Salem, K.; Aboulnaga, A.; Liu, R. NoSE: Schema design for NoSQL applications. In Proceedings
of the 2016 IEEE 32nd International Conference on Data Engineering (ICDE), Helsinki, Finland, 16–20 May
2016; Volume 4347, pp. 181–192. [CrossRef]

4. Zhang, H.; Chen, G.; Ooi, B.C.; Tan, K.L.; Zhang, M. In-Memory Big Data Management and Processing: A
Survey. IEEE Trans. Knowl. Data Eng. 2015, 27, 1920–1948. [CrossRef]

5. Everest, G.C. Stages of Data Modeling Conceptual vs. Logical vs. Physical Stages of Data Modeling, in
Carlson School of Management University of Minnesota, Presentation to DAMA, Minnesota. 2016. Available
online: http://www.dama-mn.org/resources/Documents/DAMA-MN2016CvLvPstages.pdf (accessed on 12
December 2019).

6. Gonzalez-Aparicio, M.T.; Younas, M.; Tuya, J.; Casado, R. A new model for testing CRUD operations in a
NoSQL database. In Proceedings of the 2016 IEEE 30th International Conference on Advanced Information
Networking and Applications (AINA), Crans-Montana, Switzerland, 23–25 March 2016; Volume 6, pp. 79–86.
Available online: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7474073 (accessed on 4
March 2020). [CrossRef]

7. IBM. Why NoSQL? Your Database Options in the New Non-Relational World. Couchbase. 2014.
Available online: https://cloudant.com/wp-content/uploads/Why_NoSQL_IBM_Cloudant.pdf (accessed
on 1 May 2020).

8. Ramez Elmasri, A.; Navathe Shamkant, B. Fundamentals of Database Systems, 6th ed.; Addison-Wesley
Publishing Company: Boston, MA, USA, 2010; Volume 6. Available online: https://dl.acm.org/citation.cfm?
id=1855347 (accessed on 12 December 2019). [CrossRef]

9. Mongo, D.B. How a Database Can Make Your Organization Faster, Better, Leaner. MongoDB White Pap.
2016. Available online: http://info.mongodb.com/rs/mongodb/images/MongoDB_Better_Faster_Leaner.pdf
(accessed on 1 January 2020).

10. Jovanovic, V.; Benson, S. Aggregate data modeling style. In Proceedings of the Association for Information
Systems, Savannah, GA, USA, 8–9 March 2013; pp. 70–75. Available online: http://aisel.aisnet.org/sais2013/15
(accessed on 12 December 2019).

11. William, Z. 6 Rules of Thumb for MongoDB Schema Design. MongoDB. 2014. Available online: https:
//www.mongodb.com/blog/post/6-rules-of-thumb-for-mongodb-schema-design-part-1 (accessed on 23
January 2019).

12. Wu, X.; Zhu, X.; Wu, G.Q.; Ding, W. Data mining with big data. IEEE Trans. Knowl. Data Eng. 2014, 26,
97–107. [CrossRef]

13. Varga, V.; Jánosi, K.T.; Kálmán, B. Conceptual Design of Document NoSQL Database with Formal Concept
Analysis. Acta Polytech. Hung. 2016, 13, 229–248.

14. Imam, A.A.; Basri, S.; Ahmad, R.; Abdulaziz, N.; González-aparicio, M.T. New cardinality notations and
styles for modeling NoSQL document-stores databases. In Proceedings of the IEEE Region 10th Conference
(TENCON), Penang, MA, USA, 5–8 November 2017; p. 6.

http://dx.doi.org/10.1109/TKDE.2017.2722412
http://dx.doi.org/10.1109/BigData.2017.8258260
http://dx.doi.org/10.1109/ICDE.2016.7498239
http://dx.doi.org/10.1109/TKDE.2015.2427795
http://www.dama-mn.org/resources/Documents/DAMA-MN2016CvLvPstages.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7474073
http://dx.doi.org/10.1109/AINA.2016.1
https://cloudant.com/wp-content/uploads/Why_NoSQL_IBM_Cloudant.pdf
https://dl.acm.org/citation.cfm?id=1855347
https://dl.acm.org/citation.cfm?id=1855347
http://dx.doi.org/10.1007/978-1-4842-0877-9_10
http://info.mongodb.com/rs/mongodb/images/MongoDB_Better_Faster_Leaner.pdf
http://aisel.aisnet.org/sais2013/15
https://www.mongodb.com/blog/post/6-rules-of-thumb-for-mongodb-schema-design-part-1
https://www.mongodb.com/blog/post/6-rules-of-thumb-for-mongodb-schema-design-part-1
http://dx.doi.org/10.1109/TKDE.2013.109

Symmetry 2020, 12, 1799 31 of 33

15. Naheman, W. Review of NoSQL databases and performance testing on HBase. In Proceedings of the 2013
IEEE International Conference on Mechatronics, Vicenza, Italy, 27 February–1 March 2013; pp. 2304–2309.

16. Truica, C.O.; Radulescu, F.; Boicea, A.; Bucur, I. Performance evaluation for CRUD operations in
asynchronously replicated document oriented database. In Proceedings of the 2015 20th International
Conference on Control Systems and Computer Science, Bucharest, Romania, 27–29 May 2015; pp. 191–196.
[CrossRef]

17. Craw Cuor, R.; Makogon, D. Modeling Data in Document Databases. United States: Developer Experience &
Document DB. 2016. Available online: https://www.youtube.com/watch?v=-o_VGpJP-Q0 (accessed on 12
May 2020).

18. Patel, J. Cassandra Data Modeling Best Practices, Part 1, Ebaytechblog. 2012. Available online: http:
//ebaytechblog.com/?p=1308 (accessed on 2 August 2017).

19. Korla, N. Cassandra Data Modeling—Practical Considerations@Netflix, Netflix. 2013. Available online:
http://www.slideshare.net/nkorla1share/cass-summit-3 (accessed on 2 August 2017).

20. Ron, A.; Shulman-Peleg, A.; Puzanov, A. Analysis and Mitigation of NoSQL Injections. IEEE Secur. Priv.
2016, 14, 30–39. [CrossRef]

21. Obijaju, M. NoSQL NoSecurity—Security Issues with NoSQL Database. Perficient: Data and Analytics Blog.
2015. Available online: http://blogs.perficient.com/dataanalytics/2015/06/22/nosql-nosecuity-security-issues-
with-nosql-database/ (accessed on 21 September 2016).

22. Mior, M.J. Automated Schema Design for NoSQL Databases. 2014. Available online: http://dl.acm.org/

citation.cfm?id=2602622.2602624 (accessed on 12 May 2019).
23. González-Aparicio, M.T.; Younas, M.; Tuya, J.; Casado, R. Testing of transactional services in NoSQL

key-value databases. Futur. Gener. Comput. Syst. 2018, 80, 384–399. [CrossRef]
24. Imam, A.A.; Basri, S.; Ahmad, R.; Watada, J.; González-Aparicio, M.T. Automatic schema suggestion model

for NoSQL document-stores databases. J. Big Data 2018, 5, 1–17. [CrossRef]
25. Imam, A.A.; Basri, S.; Ahmad, R.; González-Aparicio, M.T. Schema proposition model for NoSQL applications.

In Proceedings of the 3rd International Conference of Reliable Information and Communication Technology
(IRICT 2018), Kuala Lumpur, Malaysia, 23–24 July 2018; Volume 843, pp. 40–46. [CrossRef]

26. Atzeni, P. Data Modelling in the NoSQL World: A contradiction? In Proceedings of the International
Conference on Computer Systems and Technologies, London, UK, 21–22 October 2020; pp. 23–24. [CrossRef]

27. April, R. NoSQL Technologies: Embrace NoSQL as a Relational Guy—Column Family Store. DB Council.
2016. Available online: https://dbcouncil.net/category/nosql-technologies/ (accessed on 21 April 2017).

28. Jatana, N.; Puri, S.; Ahuja, M. A Survey and Comparison of Relational and Non-Relational Database. Int. J.
2012, 1, 1–5.

29. Bhogal, J.; Choksi, I. Handling big data using NoSQL. In Proceedings of the IEEE 29th International
Conference on Advanced Information Networking and Applications Workshops, WAINA 2015, Washington,
DC, USA, 24–27 March 2015; pp. 393–398. [CrossRef]

30. Tauro, C.J.M.; Aravindh, S.; Shreeharsha, A.B. Comparative Study of the New Generation, Agile, Scalable,
High Performance NOSQL Databases. Int. J. Comput. Appl. 2012, 48, 1–4. [CrossRef]

31. Finkelstein, S.J.; Schkolnick, M.; Tiberio, P. Physical database design for relational databases. ACM Trans.
Database Syst. 1988, 13, 91–128. [CrossRef]

32. Agrawal, S.; Chaudhuri, S.; Narasayya, V. Automated selection of materialized views and indexes for SQL
databases. In Proceedings of the 29th International Conference on Very Large Data Bases (VLDB 2003),
Berlin, Germany, 12–13 September 2003; pp. 496–505.

33. Zilio, D.C.; Rao, J.; Lightstone, S.; Lohman, G.; Storm, A.; Garcia-Arellano, C.; Fadden, S. DB2 design
advisorIntegrated automatic physical database design. In Proceedings of the 2004 VLDB Conference, Toronto,
ON, Canada, 31 August–3 September 2004; pp. 1087–1097. [CrossRef]

34. Dageville, B.; Das, D.; Karl, D.; Yagoub, K.; Mohamed, Z.; Mohamed, Z. Automatic sql tuning in oracle
10 g. In Proceedings of the 2004 VLDB Conference, Toronto, ON, Canada, 31 August–3 September 2004;
Volume 30, pp. 1098–1109.

35. Bruno, N.; Chaudhuri, S. Automatic physical database tuning: A relaxation-based approach. In Proceedings
of the 2005 ACM SIGMOD International Conference on Management of Data, Baltimore, MD, USA, 14–16
June 2005; pp. 227–238.

http://dx.doi.org/10.1109/CSCS.2015.32
https://www.youtube.com/watch?v=-o_VGpJP-Q0
http://ebaytechblog.com/?p=1308
http://ebaytechblog.com/?p=1308
http://www.slideshare.net/nkorla1share/cass-summit-3
http://dx.doi.org/10.1109/MSP.2016.36
http://blogs.perficient.com/dataanalytics/2015/06/22/nosql-nosecuity-security-issues-with-nosql-database/
http://blogs.perficient.com/dataanalytics/2015/06/22/nosql-nosecuity-security-issues-with-nosql-database/
http://dl.acm.org/citation.cfm?id=2602622.2602624
http://dl.acm.org/citation.cfm?id=2602622.2602624
http://dx.doi.org/10.1016/j.future.2017.07.004
http://dx.doi.org/10.1186/s40537-018-0156-1
http://dx.doi.org/10.1007/978-3-319-99007-1
http://dx.doi.org/10.1145/2983468.2983469
https://dbcouncil.net/category/nosql-technologies/
http://dx.doi.org/10.1109/WAINA.2015.19
http://dx.doi.org/10.5120/7461-0336
http://dx.doi.org/10.1145/42201.42205
http://dx.doi.org/10.1016/b978-012088469-8/50095-4

Symmetry 2020, 12, 1799 32 of 33

36. Papadomanolakis, S.; Ailamaki, A. An integer linear programming approach to database design. In
Proceedings of the 2007 IEEE 23rd International Conference on Data Engineering Workshop, Istanbul, Turkey,
17–20 April 2007; pp. 442–449. [CrossRef]

37. Kimura, H.; Huo, G.; Rasin, A.; Madden, S.; Zdonik, S.B. CORADD: Correlation aware database designer for
materialized views and indexes. Proc. VLDB Endow. 2010, 3, 1103–1113. [CrossRef]

38. Dash, D.; Polyzotis, N.; Ailamaki, A. CoPhy: A scalable, portable, and interactive index advisor for large
workloads. Proc. VLDB Endow. 2011, 4. [CrossRef]

39. Papadomanolakis, S.; Ailamaki, A. AutoPart: Automating schema design for large scientific databases using
data partitioning. In Proceedings of the International Conference on Statistical and Scientific Database
Management (SSDBM), Santorini Island, Greece, 23 June 2004; Volume 16, pp. 383–392. [CrossRef]

40. Lamb, A.; Fuller, M.; Varadarajan, R.; Tran, N.; Vandier, O.B.; Doshi, L.; Bear, C. The vertica analytic database:
Cstore 7 years later. Proc. VLDB Endow. 2012, 5, 1790–1801. [CrossRef]

41. Rasin, A.; Zdonik, S. An automatic physical design tool for clustered column-stores. In Proceedings of the
16th International Conference on Extending Database Technology, Genoa, Italy, 18 March 2013; pp. 203–214.
[CrossRef]

42. Rao, J.; Zhang, C.; Megiddo, N.; Lohman, G. Automating physical database design in a parallel database.
In Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data, Madison, WI,
USA, 3–6 June 2002; pp. 558–569. [CrossRef]

43. Agrawal, S.; Chaudhuri, S.; Das, A.; Narasayya, V. Automating layout of relational databases. In Proceedings
of the 19th International Conference on Data Engineering, Bangalore, India, 5–8 March 2003; pp. 607–618.
[CrossRef]

44. Ozmen, O.; Salem, K.; Schindler, J.; Daniel, S. Workload-aware storage layout for database systems.
In Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, Indianapolis,
IN, USA, 6 June 2010; pp. 939–950. [CrossRef]

45. Varadarajan, R.; Bharathan, V.; Cary, A.; Dave, J.; Bodagala, S. DB designer: A customizable physical design
tool for Vertica Analytic Database. In Proceedings of the 2014 IEEE 30th International Conference on Data
Engineering, Chicago, IL, USA, 31 March–4 April 2014; pp. 1084–1095. [CrossRef]

46. Bertino, E.; Kim, W. Indexing Techniques for Queries on Nested Objects. IEEE Trans. Knowl. Data Eng. 1989,
1, 196–214. [CrossRef]

47. Lawley, M.J.; Topor, R.W. A Query language for EER schemas. In Proceedings of the Australasian Database
Conference, Sydney, Australia, 24–27 May 1994; pp. 292–304.

48. Vajk, T.; Deák, L.; Fekete, K.; Mezei, G. Automatic NOSQL schema development: A case study. In Proceedings
of the IASTED International Conference on Parallel and Distributed Computing and Networks, PDCN 2013,
Innsbruck, Austria, 11–13 February 2013; pp. 656–663. [CrossRef]

49. Chen, P.; Shan, P. The entity-relationship model—Toward a unified view of data. ACM Trans. Database Syst.
1976, 1, 9–36. Available online: http://dl.acm.org/citation.cfm?id=320434.320440 (accessed on 12 May 2020).
[CrossRef]

50. Everest, G.C. Basic data structure models explained with a common example. In Proceedings of the Fifth
Texas Conference on Computing Systems, Austin, TX, USA, 18–19 October 1976; pp. 18–19.

51. Dembczy, K. Evolution of Database Systems; Intelligent Decision Support Systems Laboratory (IDSS) Poznan,
University of Technology: Poznan, Poland, 2015.

52. Rumbaugh, J.; Jacobson, I.; Booch, G. The Unified Modeling Language Reference Manual; Pearson Higher
Education: New York, NY, USA, 2004.

53. Tsatalos, O.G.; Solomon, M.H.; Ioannidis, Y.E. The GMAP: A versatile tool for physical data independence.
VLDB J. 1996, 5, 101–118. [CrossRef]

54. Stonebraker, M.; Abadi, D.J.; Batkin, A.; Chen, X.; Cherniack, M.; Ferreira, M.; Lau, E.; Lin, A.; Madden, S.;
O’Neil, E.; et al. C-Store: A Column-Oriented DBMS. In Proceedings of the 31st International Conference on
Very Large Data Bases, Trondheim, Norway, 24 August 2005; Volume 5, pp. 553–564.

55. Kleppe, A.; Warmer, J.; Bast, W. MDA explained: The model driven architecture: Practice and promise.
In Computer & Technology Books; Addison-Wesley Professional: Boston, MA, USA, 2003.

56. Object Management Group. Decision Model and Notation. Version 1.0. 2015. Available online: http:
//www.omg.org/spec/DMN/1.0/PDF/ (accessed on 17 September 2020).

http://dx.doi.org/10.1109/ICDEW.2007.4401027
http://dx.doi.org/10.14778/1920841.1920979
http://dx.doi.org/10.14778/1978665.1978668
http://dx.doi.org/10.1109/ssdm.2004.1311234
http://dx.doi.org/10.14778/2367502.2367518
http://dx.doi.org/10.1145/2452376.2452402
http://dx.doi.org/10.1145/564756.564757
http://dx.doi.org/10.1109/icde.2003.1260825
http://dx.doi.org/10.1145/1807167.1807268
http://dx.doi.org/10.1109/ICDE.2014.6816725
http://dx.doi.org/10.1109/69.87960
http://dx.doi.org/10.2316/P.2013.795-044
http://dl.acm.org/citation.cfm?id=320434.320440
http://dx.doi.org/10.1145/320434.320440
http://dx.doi.org/10.1007/s007780050018
http://www.omg.org/spec/DMN/1.0/PDF/
http://www.omg.org/spec/DMN/1.0/PDF/

Symmetry 2020, 12, 1799 33 of 33

57. Object Management Group. Decision Model and Notation. Version 1:1. 2016. Available online: http:
//www.omg.org/spec/DMN/1.1/PDF/ (accessed on 17 September 2020).

58. Kharmoum, N.; Ziti, S.; Rhazali, Y.; Omary, F. An automatic transformation method from the E3value model
to IFML model: An MDA approach. J. Comput. Sci. 2019, 15, 800–813. [CrossRef]

59. Dörndorfer, J.; Florian, H.; Christian, S. The SenSoMod-Modeler—A model-driven architecture approach for
mobile context-aware business applications. In Proceedings of the International Conference on Advanced
Information Systems Engineering, Grenoble, France, 8–12 June 2020; pp. 75–86.

60. Allison, M.; Robinson, M.; Rusin, G. An autonomic model-driven architecture to support runtime adaptation
in swarm behavior. In Proceedings of the Future of Information and Communication Conference, San
Francisco, CA, USA, 14–15 March 2019; pp. 422–437.

61. Atzeni, P.; Francesca, B.; Luca, R. Uniform access to NoSQL systems. Inf. Syst. 2014, 43, 117–133. [CrossRef]
62. Tan, Z.; Shivnath, B. Tempo: Robust and self-tuning resource management in multi-tenant parallel databases.

Proc. VLDB Endow. 2015. [CrossRef]
63. Li, C. Transforming relational database into HBase: A case study. In Proceedings of the 2010 IEEE International

Conference on Software Engineering and Service Sciences, ICSESS 2010, Beijing, China, 16–18 July 2010;
pp. 683–687. [CrossRef]

64. Max, C.; El Malki, M.; Kopliku, A.; Teste, O.; Tournier, R. Benchmark for OLAP on NoSQL technologies
comparing NoSQL multidimensional data warehousing solutions. In Proceedings of the 2015 IEEE 9th
International Conference on Research Challenges in Information Science (RCIS), Athens, Greece, 13–15 May
2015; pp. 480–485.

65. Zhang, D.; Wang, Y.; Liu, Z.; Dai, S. Improving NoSQL Storage Schema Based on Z-Curve for Spatial Vector
Data. IEEE Access 2019, 7, 78817–78829. [CrossRef]

66. Buchschacher, N.; Fabien, A.; Julien, B. No-SQL Databases: An Efficient Way to Store and Query
Heterogeneous Astronomical Data in DACE. ASPC 2019, 523, 405.

67. Mozaffari, M.; Nazemi, E.; Eftekhari-Moghadam, A.M. Feedback control loop design for workload change
detection in self-tuning NoSQL wide column stores. Expert Syst. Appl. 2020, 142, 112973. [CrossRef]

68. Störl, U.; Tekleab, A.; Klettke, M.; Scherzinger, S. In for a Surprise when Migrating NoSQL Data. In Proceedings
of the 2018 IEEE 34th International Conference on Data Engineering (ICDE), Paris, France, 16–20 April
2018; p. 1662.

69. Ramzan, S.; Imran, S.B.; Bushra, R.; Waheed, A. Intelligent Data Engineering for Migration to NoSQL Based
Secure Environments. IEEE Access 2019, 7, 69042–69057. [CrossRef]

70. Imam, A.A.; Basri, S.; Ahmad, R.; María, T.G.-A.; Watada, J.; Ahmad, M. Data Modeling Guidelines for
NoSQL Document-Store Databases. Int. J. Adv. Comput. Sci. Appl. 2018, 9. [CrossRef]

71. Hunter, S.; Simpson, J.T. Machines, Systems, Computer-Implemented Methods, and Computer Program
Products to Test and Certify Oil and Gas Equipment. U.S. Patent 10,196,878, February 2019. Available
online: https://patentimages.storage.googleapis.com/a9/61/da/18454297348f9b/US10196878.pdf (accessed on
21 May 2020).

72. Bondiombouy, C.; Valduriez, P. Query processing in multistore systems: An overview. Int. J. Cloud Comput.
2016, 5, 309. [CrossRef]

73. An, M.; Wang, Y.; Wang, W. Using index in the MapReduce framework. In Proceedings of the 2010 12th
International Asia-Pacific Web Conference, Washington, DC, USA, 6 April 2010; Volume 52, pp. 52–58.
[CrossRef]

74. Stone, P.D.; Dantressangle, P.; Bent, G.; Mowshowitz, A.; Toce, A.; Szymanski, B.K. Coarse grained query cost
models for DDFDs. In Proceedings of the 4th Annual Conference of the International Technology Alliance,
London, UK, 15–16 September 2010; Volume 1, pp. 1–3.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.omg.org/spec/DMN/1.1/PDF/
http://www.omg.org/spec/DMN/1.1/PDF/
http://dx.doi.org/10.3844/jcssp.2019.800.813
http://dx.doi.org/10.1016/j.is.2013.05.002
http://dx.doi.org/10.14778/2977797.2977799
http://dx.doi.org/10.1109/ICSESS.2010.5552465
http://dx.doi.org/10.1109/ACCESS.2019.2922693
http://dx.doi.org/10.1016/j.eswa.2019.112973
http://dx.doi.org/10.1109/ACCESS.2019.2916912
http://dx.doi.org/10.14569/IJACSA.2018.091066
https://patentimages.storage.googleapis.com/a9/61/da/18454297348f9b/US10196878.pdf
http://dx.doi.org/10.1504/IJCC.2016.080903
http://dx.doi.org/10.1109/APWeb.2010.12
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Overview of the NoSQL Databases
	Related Work
	The DSP Model and Components
	DSP Architecture
	Cardinality Notations
	Relationship Classifications
	Embedding
	Referencing
	Bucketing
	Embedding and Referencing

	Schema Proposition Guidelines
	DSP Algorithm
	DSP Model Procedure
	Requirements Selection
	Requirements Computation
	Calculate Availability

	Method: Pilot Application and Evaluation Description
	Datasets
	Prototype Building Using the Datasets
	Experimental Setup
	The Test Queries
	The Experimental Procedure
	Cost Analysis Models
	MapReduce Cost Model Analysis
	Hypercube Topology and Gaian Topology Cost Model Analysis

	Results and Discussion
	Preliminary Analysis Results on DSP Foundations
	Schema Performance: Evaluation of DSP Schema against Formal Methods Schemas
	Scenario 1: Create Operation
	Scenario 2: Read Operation

	Schema Generation: Evaluation of DSP Model Process against Formal Methods
	Discussion

	Conclusions
	References

