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1. Introduction

With the ambition to continue my engineering studies with a doctoral thesis combining
image processing and deep learning in the medical field, I decided to do my end-of-study in-
ternship in the Medical Information Processing Laboratory (LaTIM) in Brest, France. The
laboratory develops a multidisciplinary research in which information and health sciences
mutually enrich each other in order to participate in the optimization of therapeutic actions.
I joined the Imagine team, whose objective is to develop and provide therapists with inte-
grative decision support models.

Cerebral palsy is today the main cause of motor disability in children in France, affecting
2 births in 1000 [17]. It is estimated that 90% of deformities due to CP appear in the areas
of the ankle and foot preventing the normal growth of the affected limbs. Medico-surgical
intervention remains the best solution to stabilize the deformities. However, due to the lack
of knowledge of joint and muscular bio-mechanics, it is difficult to implement effective ther-
apies. For several years, research laboratories have tried to use medical imaging techniques
and in particular dynamic MRI in order to study the musculoskeletal system in motion.
However, they have to deal with its shortcomings (low resolution, artefacts, etc.) [32].

In this context, my contribution was to combine the spatial information of so-called static
imaging techniques with the temporal information of dynamic sequences in order to respond
to the problem: How to automate by deep learning the analysis of static and
dynamic MRI images of the ankle? To do this, I started by discovering the scientific
context and preparing the MRI data. Subsequently, from the processed data, I used deep
learning to address three issues of increasing difficulty: automatic bone segmentation on
static MRI, dynamic data HR reconstruction and automatic bone segmentation on dynamic
LR MRI. If we manage to implement the automatic segmentation and reconstruction, it will
be possible to perform a more precise study of the moving ankle which may contribute to
a better understanding of the joint bio-mechanics and therefore to the implementation of
therapies more adapted to children suffering cerebral palsy.
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2. Glossary

Abbreviations
CP: Cerebral Palsy
MRI: Magnetic Resonance Imaging
NMR: Nuclear Magnetic Resonance
FFE: Fast-Field Echo
HR: High Resolution
LR: Low Resolution
INSERM: French national health and medical research body
BeAChild: Breizh center for research and technological innovation for the development
and rehabilitation of children
GIS: Scientific Interest Group
ACTION: Therapeutic ACTion guided by multimodality Imaging in ONcology
IMAGINE: Multimodal information integration for decision making and interventional
therapies optimisation
MD,PhD: Medical Doctor, Doctor of Philosophy
HDR: Habilitation to conduct researches
ICT: Information and Communication Technologies
NMSS: Neuro-Musculoskeletal System
LaTIM: Medical Image Processing Laboratory
CPU: Central Processing Unit
GPU: Graphics Processing Unit
CNN: Convolutional Neural Network
Nifti: Neuroimaging Informatics Technology Initiative
SSD: Sum of Squared Differences
SIFT: Scale-Invariant Feature Transform
ReLU: Rectified Linear Unit
FCN: Fully Convolutional Network
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Technical terms

binarizing: Transforming a gray-scale image into an image whose pixel values are 1 or 0.

segmentation: Image processing operation which purpose is to gather pixels according to
predefined criteria in order to form regions.

deep learning: A set of machine learning methods attempting to model with a high level
of data abstraction through articulated architectures of different nonlinear transfor-
mations.

normalization: Process of changing the range of pixel intensity values of an image in
order to bring this latter into a range more familiar to the senses.

dilation: Morphological operation aiming to extend the shapes contained in the input
image using a structuring element.

registration: Technique which consists of the spatial matching of images in order to be
able to compare or combine their respective information. This matching is done by
looking for a geometric transformation allowing to go from one image to another.

convolutional neural networks: Class of deep neural networks, most commonly ap-
plied to the analysis of visual imagery. The pattern of connectivity between neurons
looks like the organization of the animal visual cortex. CNNs use relatively little
pre-processing compared to other image classification algorithms.

Nifti: Commonly used file format for storing brain imaging data obtained by MRI.

correlation: 2D or 3D optical method which measures the displacements between two
images.

semantic segmentation: Semantic segmentation is a deep learning algorithm that asso-
ciates a label or a category to each pixel of an image.

standardisation: Process of transforming one feature into another that will meet the
normal distribution.

recurrent neural networks: Artificial neural network with recurrent connections made
up of interconnected neurons interacting non-linearly. They are suitable for input data
of varying size.
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Medical terms
cerebral palsy: Cerebral palsy is linked to damage to the brain that occurs during preg-

nancy, childbirth, or in the first months of life. It affects a brain that is still maturing
and causes a non-progressive motor disorder (paralysis, movement coordination disor-
ders).

oncology: Branch of medicine devoted to the study, diagnosis and treatment of cancer.

multi-modal imagery: Use of several imaging technologies (nuclear imaging (PET,
SPECT) as well as CT MRI imaging) to obtain additional anatomical, functional
and molecular data.

CT scan: Examination also called a scanner giving cross-sectional images of an organ.

interventional radiology: All medical procedures performed under radiological control,
allowing access to a lesion located inside the body to perform a diagnostic (sample for
example) or therapeutic (treat, repair, close ...).

joint: Set of soft and hard parts by which two or more neighboring bones unite.

navicular assembly: Bones of the foot also called tarsal scaphoid.

inversion: Combined movement of the ankle coupling plantar flexion, supination and
adduction.

eversion: Combined ankle movement coupling dorsiflexion, pronation and abduction.

brain damage: Injury to the brain which generally results in a more or less extensive
destruction of nervous tissue leading to a deficit in perception, cognition, sensitivity
or motor skills depending on the role played by the affected region. This lesion can be
of various nature (ischemic, hemorrhagic, etc.).

muscle spasticity: Exaggerated tension of a muscle in the absence of voluntary contrac-
tion.

spin: Angular momentum of a particle. It is a quantum property that takes only whole or
half-whole values.

precession: A spinning motion similar to that of a spinning top of atoms that tip over and
remain in balance in rotation. The rate of precession is proportional to the strength
of the magnetic field.
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3. Description of LaTIM and integration into
the Imagine team

3.1. Description of the laboratory
The medical information processing laboratory was born in 1996 from the creation of a
scientific interest group [3]. It is recognized by the INSERM as a research unit in 2004.
Since 2010, LaTIM has been known as a joint UMR 1101 research unit led by members of
the University of Bretagne Occidentale, IMT Atlantique, INSERM and Brest CHRU (CHU).

Led by the MD,PhD Eric Stindel, the LaTIM develops a multidisciplinary research aimed
at improving the medical service. At its creation, the laboratory’s first major research activ-
ity was the development of computer-assisted surgery, mainly for orthopedic applications.
Over time, the laboratory has seen its structure and its research activities evolve around
themes strongly linked to the field of medical information processing and to associated areas
of clinical activity. Thus, since January 2017, the scope of research carried out within the
laboratory has been divided into two teams (Fig.3.1):

• team ACTION: therapeutic action guided by multi-modal imaging in oncology.

• team IMAGINE: integration of multi-modal information for decision support sys-
tems and optimization of interventional radiologies.

The environment is ideal for the integration into the world of research with the presence
of 30 HDR and about 140 doctors, researchers and administrative staff.
The LaTIM has multiple office spaces and dedicated scientific platforms with a central lo-
cation of 1000 m² at the Brest Biology and Health Research Institute. It also has 350 m² of
offices in the premises of the hospital of Brest (CHRU Brest) and IMT-Atlantique located
in Plouzané where I completed my internship.

I joined the Imagine team, whose organization and objectives are detailed in the following
section.
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Figure 3.1: Laboratory organization chart from [3]

3.2. The Imagine team and the GIS BeAChild
The IMAGINE team aims to develop and provide therapists with integrative decision support
models. The apparition of ICT in the field of health has had a lasting impact on the practice
of interventional medicine and surgery. The proliferation of sensors, their communicating and
on-board nature leads practitioners to optimize the therapeutic action in real time. Beyond
the decision alone, the therapist’s ability to implement it with precision is the second key
to effective treatment. The development of new therapeutic models is therefore a major
challenge for the team. To this end, the IMAGINE team is organized into three themes led
by a clinician and a methodologist in order to maintain the balance between information
and medical sciences (Fig.3.1):

• Modeling: study of the control/form/function relationship within the neuro-musculoskeletal
system (NMSS) to support therapeutic decision making and therapy evaluation.

• Therapeutic Gesture: research for surgical management in orthopedics.

• Analysis, Protection and Reusing of Multimedia Medical Information: de-
velopment of deep learning tools in ophthalmology, screening for ocular pathologies.
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At the same time, the team continuously ensures the security of information during the
clinical follow-up of the patient.

I evolved within the research axis Modeling led by Professor François Rousseau who
was my internship supervisor and the MD,PhD Sylvain Brochard. The starting point of
this axis is the acquisition of multi-modal spatial and temporal data with the correspond-
ing processing methods. Its objective is to develop new 3D + t modeling techniques in a
patient-specific approach in order to support therapeutic decision-making.

In parallel with Imagine, the scientific interest group (GIS) BeaChild [1] was created less
than a year ago. It gathers some twenty engineers and health workers from the team around
research focused on pediatric rehabilitation. The multidisciplinarity of this group allowed me
to deepen my skills in image processing and deep learning while getting involved in the world
of health. Through discussions with the group’s medical professionals (physiotherapists,
occupational therapists), I have acquired medical knowledge which will be precious for me
to start my doctoral thesis in November. During my experience within the Imagine team,
I developed and improved essential research skills: being critical, communicating about my
work, being imaginative and never stopping being curious.
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4. Scientific and medical context

4.1. The ankle joint
The ankle joint is a complex anatomical structure that connects the foot to the lower leg [5].
It is made up of four main bones (Fig.4.1): tibia, fibula (fibula), talus and calcaneus.

Figure 4.1: Illustration of the ankle bones from [6]

The calcaneus, talus and tibia form several joints:

• the talocrural joint: this is the central ankle joint that connects the tibia to the
talus. It governs the flexion/extension movements of the ankle also called plantar/
dorsiflexion.

• the subtalar joint: this joint connecting the talus to the calcaneus directs the prona-
tion/supination movements.

• the mid-tarsal joint: in this articular uniting the calcaneus with the navicular as-
sembly, the ankle performs adduction and abduction movements.

This joint complex, made up of several movements, carries out combined movements
which are called: inversion /eversion (Fig.4.2).
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Figure 4.2: Illustration of foot movements from [5]

Ligaments are attached to both sides of the ankle to hold the ankle and foot together.
On the outside of the ankle, one can distinguish the anterior talofibular ligament, the fibu-
localcaneal ligament and the posterior talofibular ligament. Inside, the deltoid ligament is
thicker and stronger.

Finally, these are the tendons that connect the muscles of the leg to the bones of the foot
contributing to the stability of the ankle. We find:

• Achilles tendon: tendon connecting the calf muscles to the calcaneus. It plays a
major role in walking, running and jumping.

• fibular tendons: tendons allowing the foot to turn outwards.

• the anterior tibial and posterior tibial tendons: tendons to lift the foot and turn
the foot inward.

The ankle joint is a fragile complex. According to [17], 90% of deformities due to cerebral
palsy appear in the ankle and foot regions. These deformities can have serious repercussions
on the growth of the limbs. But what is this pathology?
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4.2. Cerebral palsy and its impact on the ankle joint
Cerebral palsy is the leading cause of motor disability in children. It results from irreversible
damage to the developing brain of the fetus or infant. These lesions cause a set of non-
progressive movement or posture disorders that last a lifetime [17]. According to [21], in
France:

• 17 million people have a CP. It represents about 125000 people.

• 1 in 500 babies is affected.

Although half of CP infants are born at term, it is in the population of premature infants
that the risk of brain damage is the most important. Causes of CP are various:

• antenatal factors: stroke, brain malformation, infection of the fetus (cytomegalovirus,
toxoplasmosis, etc).

• neonatal or perinatal factors: prematurity, neonatal stroke, infection, trauma,
neonatal distress during difficult childbirths, etc.

• post-natal factors: infection, trauma, severe convulsions, metabolic disease, sudden
infant death syndrome after resuscitation, etc. Post-natal causes represent only 10%
of the known causes of CP.

The extent of symptoms varies from one individual to another depending on the location
of the lesions (Fig.4.3), of their extent and the time of their appearance. Brain MRI is
essential for etiologic diagnosis and often helps to define the causative lesion.

Figure 4.3: Representation of the different types of motor deficiency
depending on the area of the brain affected from [17]
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Forms of cerebral palsy are also classified according to the affected limbs [22]:

• quadriplegia: the 4 limbs affected.

• diplegia: the 4 limbs affected with predominance in the lower ones.

• hemiplegia: damage to one side of the body predominantly in the upper limb.

• double hemiplegia: the 4 limbs affected with predominance in the upper ones.

• triplegia: 3 limbs affected (often 2 upper limbs and one lower limb).

• monoplegia: only one limb affected.

The ankle and foot regions are most affected by deformities from CP. Although the brain
injury is stable and not progressive, the bone deformities progress. Indeed, a lesion occurring
on an immature brain is stable over time. However, it produces muscle spasticity (exagger-
ated muscle tension). As the child grows, spastic muscles fail to stretch to accommodate
bone growth. To compensate, these muscles retract and exert abnormal forces on the skele-
ton which is deformed (Fig.4.4). Thus, individuals with spastic paralysis affecting the lower
limbs tend to develop deformity of the feet and ankles in equine and valgus causing an abnor-
mal gait (Fig.4.5). The equine incidence represents approximately 75 % of the deformities
of the ankle due to CP [25].

Figure 4.4: Chronology in cerebral palsy

Equinus is present when the dorsiflexion of the foot at the ankle is 90 degrees or less with
the subtalar joint held in a neutral position and the knee extended [34].
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Figure 4.5: Illustration of the typical foot and ankle deformities of
an individual spastic CP from [34]

The consequences of cerebral palsy on the regions of the foot and ankle are serious since
it is estimated that one in three CP person can’t walk [21]. Since brain plasticity is more
important in the first years of life, it is essential to take care of the CP child as early as
possible. Physiotherapy plays a key role in this care through various rehabilitation methods
(intensive, participatory, etc.). Nevertheless, medico-surgical intervention remains the best
solution to stabilize the lower limb. Unfortunately, due to the lack of knowledge of joint and
muscular bio-mechanics, the therapies used do not have the expected effectiveness. This is
the issue of current scientific research.
For several years, research laboratories have been trying to put in place methods to study
the musculoskeletal system in motion, in particular by exploiting the techniques of medical
magnetic resonance imaging (MRI).

Page 22/79 | Ankle’s MRI images analysis by deep learning



Coupeau Patty - Master MAIIND

4.3. MRI: a technology for understanding the musculoskeletal system
of the foot in motion

Imaging methods have long played a crucial role in helping surgeons and clinicians diagnose
various disorders [32].

In vivo imaging of moving articulated structures can be performed using various dynamic
imaging techniques such as CT scan, ultrasound or MRI. However, ultrasound is limited to
evaluating the soft tissue around the joint while CT scan only quantifies bone kinematics and
exposes patients to ionizing radiation. MRI has the advantage of being a non-ionizing tech-
nique for studying the musculoskeletal system providing anatomical details of surrounding
bones and soft tissues in static and dynamic contexts.

Magnetic Resonance Imaging (MRI) is a recent medical imaging technique (1973) al-
lowing to visualize with great precision in 2D or 3D organs and soft tissues thanks to the
properties of the magnetic field [16]. MRI is based on a physical phenomenon called Nu-
clear Magnetic Resonance (NMR) based on the possession by the nuclei of atoms of a kind
of internal magnet called spin (Fig.4.6). The orientation of the latter can be changed by
applying a magnetic field to it. This phenomenon concerns all atoms with an odd number
of protons and neutrons.

Figure 4.6: MRI working principle from [16]

To create an image, the ankle (pink) is subjected to a strong constant magnetic field
(green arrow in image a) created by a large magnet: this is the tunnel in which the individual
inserts his foot. Non-zero spin atoms begin to turn in such a way that their spin aligns with
the magnetic field (light blue arrows). By adding the arrows, we get the magnetization of
the ankle (big blue arrow). In order to collect a signal and obtain an image, it is necessary
to switch this magnetization in the black plane. For this, the ankle is subjected for a short
time to another magnetic field in addition to the initial green magnetic field. In image b
(seen from below of image a) we can see the magnetization tilted in the black plane which
begins to rotate around the axis of the magnetic field : it is the precession responsible of the
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signal measured by the MRI.

When the oscillating field is stopped, the atoms will gradually regain their initial position
and their nucleus releases the energy acquired during the excitation. The frequencies are
then processed as electrical signals and provide the image.

Conventional static MRI techniques are used for an accurate diagnosis of ankle and foot
disorders given the complexity of their anatomy and the high-resolution image provided
(Fig.4.7). On the latter, one notices the an-isotropic character of the resolution. However,
these techniques do not allow dynamic representation of the musculoskeletal system.

Figure 4.7: Visualization of the 3 sections of a static MRI of the
ankle with resolution 0.28x0.28x0.8mm using the ITKSnap tool

Therefore, dynamic MRI is favored for study in motion. This is based on sequences
which acquire three-dimensional anatomical data throughout a cycle of movement carried
out inside the magnet. There are different dynamic MRI sequences [32]:

a) Fast-PC MRI
These sequences provide in vivo measurements of the joint velocity field. However, these
data require long acquisition times with a high number of repeated cycles: during each
cycle, only one row of data in Fourier space is collected. A major clinical limitation of this
type of sequences is that subjects with musculoskeletal disorders cannot perform a large
number of repeated cycles of movement.

b) Ultrafast-MRI
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This sequence is divided into two groups:

• Ultrafast 3-T MRI: Unlike the Fast-PC MRI technique, this imaging technique
captures the joint trajectory during a single range of motion cycle by exploiting space-
time redundancy. Additionally, it has the potential to be used in passive (relaxed) or
active (voluntary) muscle conditions.

• Real-Time T1 Fast Field Echo: Another reliable technique to assess joint move-
ment with good contrast between ankle structures (Fig.4.8). This imaging modality
allows in vivo quantification of joint kinematics where the scanning time to acquire a
single dorso-plantar flexion cycle is reduced to only 18s (15 frames, spatial resolution
of 0.56 × 0.56 × 8 mm). The work described in this report is based on this kind of
MRI sequence.

Figure 4.8: T1-FFE MRI image of the ankle joint during dorso-
plantar flexion movement. The sequence is composed of 15 3D vol-
umes corresponding to 15 frames

Dynamic MRI techniques allow to explore and study the musculoskeletal system in mo-
tion in the 3 dimensions of space. However, unlike high-resolution static MRI, dynamic
MRI exhibit low resolution as well as many movement-related artifacts. All these drawbacks
are as many problems on which current research is looking in order to allow a more precise
analysis of the joint bio-mechanic and consequently the implementation of therapies more
adapted to the child with CP.
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4.4. State of the art - Interest of the internship
Since 2005, many research projects have emerged in partnership with the Cerebral Palsy
Foundation [17]. These projects cover various themes including:

• brain damage and pain study

• rehabilitation and analysis of posture

• development of new technologies for physiotherapy

• cognition and perception

From a medical point of view, studies such as [38] allowed to correct equine deformity
in patients with cerebral palsy. Between 1981 and 1990, 612 anterior Achilles tendon trans-
positions were performed. Among the patients, one hundred were selected randomly and
followed during 30 months to ensure the absence of equine recurrence.

Medical information processing has also experienced considerable progress over the past
twenty years. Several clinical applications have exploited the performance of Ultrafast-
MRI: prenatal diagnosis of abnormalities [23], assessment of abusive head trauma [26] or the
determination of the kinematics of the ankle joint in motion [15].

In 2015, LaTIM obtained funding to evaluate in vivo joint and muscle mechanics of the
ankle in CP children with equine deformity [13]. This project, led by the MD,PhD Sylvain
Brochard, aims to understand the mechanisms involved in the equine of the child with CP
through dynamic imaging techniques. For this, CP children with unilateral fixed equine
are compared to control children of the same age in order to characterize the underlying
deformities and abnormal movements of the ankle bones.
In the same way, thesis works were carried out in order to develop new tools to improve the
diagnosis of MRI [32]. The processing of volumetric data makes it possible to analytically
follow the bones and the movements of the skeleton without having to identify anatomical
landmarks. The measurement accuracy relies on the combination of spatial information from
conventional static MRI with temporal information from dynamic four-dimensional MRI.

This internship is part of the continuity of this work and aims to improve the monitoring
of the bones of interest in the ankle (calcaneus, talus and tibia) while reducing human
intervention. From MRI data acquired as part of the LaTIM project [13], I faced three
challenges:

1. automatic segmentation of bones of interest in static HR data using deep learning.

2. automatic HR reconstruction of dynamic data using deep learning.

3. automatic segmentation of bones of interest in dynamic LR data using deep learning.

Beforehand, it was necessary to implement an MRI data processing pipeline.
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5. Processing of MRI data

The internship was based on MRI data obtained in the context of the research project carried
out by LaTIM. This latter seeks to dynamically evaluate in vivo the articular and muscular
mechanics of the ankle in CP children with equine deformity [13]. Thirteen children with
cerebral palsy aged 7 to 14 years and presenting a unilateral fixed equine are compared to ten
unaffected children of the same age. Data is acquired by MRI while children perform active
and passive movements of the ankle joint. In this section, the protocol for acquiring MRI
data as well as cleaning and processing this data for deep learning will be described (Fig.5.1).

This protocol consists of the following:

1. Data cleaning and correction: eliminating subjects for which all the necessary
data are not available in the correct format (Nifti), checking the orientation of the
images, binarizing the segmentations and decomposing dynamic 4D sequences into 3D
volumes.

2. Foot segmentation on static and dynamic data: segmentation which will be
necessary to give normalized data in the foot area as an input of deep learning.

3. Dilation and blurring of segmentations of the calcaneus, talus and tibia: op-
eration necessary to take into account the contours of the bones during the subsequent
bone-to-bone registration.

4. Rigid registration of static data (MRI and segmentations of the three bones
of interest) on dynamic volumes: last step in the creation of dynamic HR sequences
and their segmentation.
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Figure 5.1: MRI processing pipeline including data cleaning, blur-
ring of bone masks, foot segmentation on static and dynamic data
as well as rigid registration of static MRI and their segmentation on
dynamic volumes
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5.1. MRI data acquisition
The acquisition of MRI data took place in the premises of the hospital Morvan in Brest. The
study involved ten control children and thirteen children with a unilateral fixed equine aged
7 to 14 years. Although this is a pathology to be followed from an early age, the age limit
has been set at 7 years to ensure that the child remains focused during the entire protocol
for about 1 hour 30 minutes.
The child was installed in a device such as the one shown Fig.5.2 and placed his ankle in the
ankle rest. Once installed correctly, three MRI acquisitions were performed:

• static MRI: the child was watching a cartoon so that he relaxed his joint.

• active dynamic MRI sequences: the child had to voluntarily perform a plantar-
dorsiflexion movement to the rhythm of a metronome.

• passive dynamic MRI sequences: a technician cyclically moved the ankle fixation
using guide wires in a plantar-dorsiflexion motion to the rhythm of a metronome.

Figure 5.2: Device used for ankle fixation during MRI data acqui-
sition

In the case of children with CP, an MRI scan was acquired of the ankle affected by an
equine. For the control children, it was decided to study the ankle on the non-dominant side
that is to say the left ankle if the child is right-handed and vice versa.

Once the MRI data has been acquired, it is necessary to sort them out in order to keep
only the usable ones. In addition, it is necessary to think about a treatment of the data
in order to use them as inputs of the neural networks intended to solve the three problems
mentioned previously.
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5.2. MRI data processing
Previously, a manual segmentation with the tool ITKSnap (see appendix) of the three ankle
bones of interest (calcaneus, talus and tibia) on static MRI was performed.

The aim of this data processing is to create all the images that will be necessary to solve
the three deep learning challenges:

• For the automatic segmentation of the ankle bones on static HR images:
Static MRI and the three associated segmentations.

• For automatic HR reconstruction of dynamic volumes: original LR dynamic
volume and HR dynamic volume obtained by registering the static MRI on the dynamic
volume.

• For the automatic segmentation of the ankle bones on dynamic LR images:
original LR dynamic volume and the three associated segmentations obtained by ap-
plying the transformation estimated by registration to the manual segmentations of
the static MRI.

5.2.1. Data cleaning and correction
A subject is considered as exploitable for the study if the following data is available in the
Nifti format :

• one static T1 3D MRI with a resolution of 0.28x0.28x0.8mm on which the 3 bones of
interest are visible

• segmentations of the calcaneus, talus and tibia on static MRI

• at least one dynamic active and/or passive T1-FFE MRI sequence of 15 frames with
a resolution of 0.56x0.56x8mm

First of all, it is necessary to ensure that all the data of the same subject are defined in
the same spatial reference. Appendix explains in more detail the Nibabel coordinate system
[9]. Indeed, given that we will combine the static and dynamic intra-patient information, it
is essential that the images and segmentations are comparable.
Otherwise, it is sufficient to copy the header of the static MRI (containing the common spa-
tial reference of the latter) to the segmentations and dynamic sequences and to transfer the
affine transformation of the latter in the correct coordinate system. All these manipulations
are carried out using the library Nibabel (see appendix). Although the MRI are defined
in the same spatial reference, it will be necessary to carry out a registration of these since
the origin of the space, defined by the ankle’s center of the patient, is different from one
sequence to another because the child slightly moves his ankle between each acquisition.
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Moreover, for each subject, it is known whether the observed joint is the right or left
ankle. Therefore, we must ensure that all of these images (MRI and segmentations) are not
flipped. This implies knowing how to recognize a left foot from a right one (Fig.5.3). When
this is the case, one has to ”reverse” the image along the good axis with a python script
using the library Nibabel (see appendix).

Figure 5.3: Differences between a left foot (to the left) and a right
foot (to the right) on a static 3D T1 MRI

In addition, the segmentations must be correctly binarized.

Finally, the registration can only be done from 3D or 2D images. Consequently, the
dynamic 4D sequences (3D + t) should be broken down into 15 3D volumes corresponding
to the 15 frames. The fslsplit tool of the library fsl (see appendix) is ideal to perform this
type of operation.

At the end of this data cleaning and correction, the number of subjects usable for the
study was reduced to 7 control children and 7 children with equine. It is therefore
possible to start processing the MRI data of these 14 subjects.
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5.2.2. Foot segmentation on static and dynamic data
Segmentation of the foot is an important step in preparing data for deep learning. Indeed,
depending on the subjects and the nature of the MRI, the intensities of the voxels in the
image may present different orders of magnitude. This difference can lead to poorer perfor-
mance during deep learning [7].

Therefore, when implementing neural networks for segmentation, we will normalize all
the data by setting the normalization parameters (mean, standard deviation) to the region
of the foot. In the case of the reconstruction problem, normalization will be in the region of
the bone of interest. This will be explained in the next chapter on deep learning.

For this, it is necessary to extract a foot mask on the static MRI (for automatic segmen-
tation on static data) and on each of the 15 frames of the dynamic sequences (for automatic
segmentation on dynamic data). The adapted strategy was the following:

1. Representing the histogram of the static MRI (or dynamic volumes) of the 14 subjects
(Fig.5.4)

2. Visually defining a threshold beyond which voxels are part of the foot: 250

3. Binarizing static MRI (or dynamic volumes) with this threshold

Figure 5.4: Histogram of the static 3D T1 MRI of a subject

An example of the masks obtained is proposed on Fig.5.5.
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Figure 5.5: Foot mask obtained for static MRI (left) and dynamic
volume (right)

5.2.3. Dilation and blurring of bone segmentations
The dilation and blurring of the masks of the 3 ankle bones is essential to achieve a correct
bone-to-bone registration. Indeed, during the registration, we will assign a higher weight to
the voxels belonging to the bone of interest. Furthermore, dilation is performed in order to
take into account the edges of the bones in the measurement of similarity during registration.

Let X an image. For a structuring element B, the dilation of X by B is the result obtained
by replacing each pixel p of X by its window Bp :

DilB(X) = ∪{Bp|p ∈ X}

The effect of dilation is to enlarge the image of a radius depending on the dimensions of
the structuring element. In our case, we used a 3D structural element with the shape of a
ball (Fig.5.6) so that the convex corners of the mask are rounded.

Dilation with radii ranging from 1 to 5 were performed. During registration, the most
appropriate expansion radius will be determined for each bone depending on the accuracy
of the registration.

However, we do not want the weight assigned to each voxel during registration to be
binary (1 if the voxel belongs to the studied bone, 0 otherwise). For this, a Gaussian filter
of standard deviation σ = 2 is applied to the dilated mask in such a way that the weight of
the voxels in the center of the bone is maximum and gradually decreases as they move away.
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Figure 5.6: Structuring element used for the dilation of the masks
of the ankle bones (here with a radius of 5)

An example of masks obtained after these operations for the 3 bones of interest is pro-
posed on Fig.5.7.

Figure 5.7: Dilated and blurred masks of the calcaneus (left), talus
(center) and tibia (right) with a radius of dilation of 5

Once the blurred masks of the three ankle bones have been obtained, it is possible to
move on to the registration step which is essential for obtaining HR dynamic sequences.
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5.2.4. Creation of HR dynamic sequences by rigid registration
Before reading this section, you can learn about registration in the appendix or through [12].
To perform the registration operations, the FSL Flirt linear registration tool (see appendix)
offering a good compromise between speed and robustness was used. [8].

First of all, it is important to adapt the registration parameters to our problem:

• the similarity criterion: The correlation coefficient, default parameter, was used
because it is perfectly suited to an intra-patient registration between different types of
MRI acquisition (static and dynamic).

• the considered spatial transformations: A rigid registration (6 DoF) was consid-
ered due to the rigid nature of the bones (bones do not deform, they can only undergo
translation and/or rotation). Moreover, the rigid registration is well suited for the
intra-subject registration.

The objective is to obtain HR dynamic volumes by registering the static HR MRI of a
subject on each of the dynamic LR volumes of this subject (Fig.5.8).

Figure 5.8: Static HR MRI (left) and initial LR dynamic volume
(right) of a control subject

Firstly, it is advisable to perform a rigid registration of the entire static MRI on each of
the volumes in order to obtain a first dynamic HR volume not yet very precise (Fig.5.9).

At this stage, it is important to measure the quality of the registration. To this way,
correlation between the registered image and the initial dynamic volume was calculated.
However, it is difficult to estimate from which correlation value the registration is correct.
How to estimate a validity threshold for the registration?

For one of the equine subjects, a bones segmentation on one dynamic sequence was
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Figure 5.9: Dynamic HR volume obtained by registering the static
MRI on a dynamic LR volume

available. Consequently, by applying the transformation estimated by registration to the
three segmentations of the static MRI, it is possible to compare the masks of each bone and
thus to assess the quality of the registration. For each ankle bone, the similarity between
its segmentations (manual and obtained by registration) was measured by calculating the
DICE coefficient.

Let X be the initial segmentation of the tibia on a dynamic sequence and Y the segmen-
tation of the tibia registered on a dynamic volume. We denote by |Z| the number of voxels
of a volume Z. DICE is then calculated as:

dice(X,Y ) = 2|X∩Y |
|X|+|Y |

DICE offers a result between 0 and 1, 1 indicating perfect similarity. In our case, given
that this first registration is not precise, we can estimate that the registration is acceptable if
the DICE between masks is greater than 0.85. Thus, by representing the value of the DICE
as a function of the correlation between the LR dynamic volume and the registered image,
it is possible to estimate a registration validity threshold at 0.64 (Fig.5.10).

When the registration is considered invalid, the dynamic volume is abandoned. Other-
wise, a bone-by-bone registration of the volume is carried out in order to obtain three HR
volumes registered with great precision in the regions of the calcaneus, the talus and the
tibia. For that, it is possible with fsl to assign more weight for the registration to voxels
belonging to a certain region.
This is when the blurry masks created previously come into play. Thus, for the calcaneus for
example, a new rigid registration of the static MRI on the dynamic LR volume is launched
starting from the estimated transformation of the first registration (in order to accelerate
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Figure 5.10: Evolution of the correlation between dynamic LR vol-
ume and HR registration as a function of the DICE measured between
the segmentations of each of the three bones

the process and improve the final result) and attributing more weight to the voxels of the
static MRI belonging to the blurred mask of the calcaneus. The greater the distance of the
voxels from the center of the bone, the less importance they will have for registration. The
voxels external to the blurred mask will not have an impact in the registration process.
In order to choose the most suitable dilation radius for each bone, a visual comparison of
the registration results with the five dilation radii for all volumes of a dynamic sequence of
a control subject was performed. The following decision was taken:

• calcaneus: radius of 1 (this bone is bigger than the other two)

• talus and tibia: radius of 2

On Fig.5.11 the result of the bone-to-bone registration for the static MRI and the dy-
namic volume represented on Fig.5.8.

Finally, to obtain a segmentation of the dynamic LR volume, it is necessary to apply the
transformation calculated during the bone-to-bone registration to the initial segmentation
of the static MRI Fig.5.12 (we apply the transformation estimated during the registration
of the calcaneus to the calcaneus segmentation, the same for the two other bones).

The quality of the bone-to-bone registration is judged visually using the ITKSnap tool
(see appendix) and stored in a spreadsheet for each volume of each dynamic sequence for
each subject. Incorrect bone-to-bone registrations (that is where the registered segmentation
of the bone is not visually overlaid with the bone on the dynamic volume) will be excluded
from the deep learning data.
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Figure 5.11: Results of rigid registration from left to right of the
calcaneus, talus and tibia

Figure 5.12: Registration on dynamic LR volume from left to right
of the segmentations of the calcaneus, talus and tibia

In total, for deep learning:

• 18 LR dynamic sequences of 15 frames of control subjects were registered (or 3x18x15=810
registrations bone-by-bone).

• 14 LR dynamic sequences of 15 frames of subjects with equine were registered (or
3x15x15=675 registrations bone-by-bone).

Now that the MRI data is corrected and prepared, it is possible to begin deep learning
in order to attempt to meet the three challenges defined previously.
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6. Learning MRI data with neural networks

The objective of this part is to use deep learning techniques to facilitate and improve the
diagnosis of MRI data by automating the following three operations:

1. Segmentation of the three ankle bones on static high-resolution MRI.

2. Reconstruction of high-resolution dynamic volumes.

3. Segmentation of the three ankle bones on dynamic low-resolution MRI.

The neural networks were implemented using the framework PyTorch (see appendix).
This latter, unlike TensorFlow, works with dynamic graphs that is to say it creates a new
graph at each forward loop.

Figure 6.1: Nvidia Titan X graphics card used to perform deep
learning calculations, image taken from [4]

In order to accelerate the computing times, they are carried out on the Nvidia Titan X
GPU (Pascal 2016) of Fig.6.1 having:

• 3,584 CUDA cores clocked at 1.5 GHz for parallel operations

• 12 Go GDDR5X graphics memory
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The programming of the GPU was carried out using CUDA 9.1 technology (see appendix)
compatible with the nvidia 390.138 driver installed.

In order to have more training data, the strategy consists in extracting 2D patches of
MRI data in gray levels and therefore in training neural networks in 2D. So, for each of the
three problems, the input will be a 2D patch and the output will also be a 2D patch. Deep
learning based on the extraction of 2D patches has already proved its worth, particularly for
image denoising [24]. However, the issues we are talking about are a different challenge.

Regarding the partitioning of MRI data, we proceeded as such:

• MRI data of 6 control subjects for training neural network.

• The last control subject for validation in order to fix the hyperparameters of the
network (architecture, number of layers, loss function, learning rate).

• Performance evaluation of neural networks with MRI data from the 7 equine sub-
jects.

It was decided to test three different architectures described in the next section.
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6.1. The neural network architectures tested
Three architectures were chosen because of their recognized efficiency in segmentation and
reconstruction problems applied to the medical field [11].

6.1.1. Fully Convolutional Network (FCN)
In a FCN, each layer is a three-dimensional array of size h x l x d, where h and l are spatial
dimensions and d is the channel dimension. Its basic components (convolutional layers and
ReLU-type activation function) operate on local input regions and depend only on relative
spatial coordinates (annexe).
The architecture tested is therefore a succession of CONV, BatchNormalization and ReLU
activation function layers as illustrated on Fig.6.2.

Figure 6.2: Example of FCN architecture for image reconstruction,
illustration from [20]

This is a proven architecture for the segmentation of medical images [29] as well as for
the reconstruction of medical MRI [18].

6.1.2. U-Net network
The U-Net architecture developed by Olaf Ronneberger et al [33] is based on a fully convo-
lutional network model (FCN). It is an architecture widely used in biomedical imaging for
semantic segmentation. It has the advantage of offering good results from a small data set.

The U-Net model uses various layers of neurons described in the appendix:

• CONV and MaxPool layers which downsample the input data in order to obtain
a lower resolution output volume and thus allow the model to learn what is present in
the image.

• Transposed convolutional layers [35] which upsample the data in order to obtain
an HR output volume from a LR input and thus allow the model to learn where each
information is present in the image.
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The network is divided into two paths. The first is the contraction path (also called
encoder) which role is to capture the context or what the image contains. It combines
CONV and MaxPool layers. The second path is the symmetric extension path (also called
decoder) which uses transposed convolutional layers (Upsample) to locate information.
Fig.6.3 shows an example of U-Net architecture adapted to the segmentation problem. To
combine global and local contexts, the output of the transposed convolutional layers and the
output of the encoder at the same level are concatenated at each step of the decoder. Because
of this concatenation operation, it is necessary that the dimension of the input image be a
power of two in order to avoid any rounding during the contraction which could provoke
incorrect results in the dimension of the data and therefore prevent the concatenation.

Figure 6.3: Example of U-Net architecture used for segmentation
problem, illustration from [36]

6.1.3. Residual network (Resnet)
ResNet residual networks appeared in 2015 with the objective of providing a solution to the
difficulty of optimizing very deep networks [28] by stacking residual blocks made up of 2
convolutional layers 3x3 (Fig.6.4).

Periodically, the number of filters is doubled and spatial subsampling is performed using
a stride of 2 for convolution.
This type of architecture is highly appreciated in reconstruction and segmentation problems
since it allows, unlike FCN, to take into account the difference between the input and the
output of the layer. Due to this difference, the output evolutions are more progressive and
more sensitive to details and textures.
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Figure 6.4: Residual blocks of ResNet networks, illustration taken
from [11]

Two ResNet configurations will be tested. The first composed of classic residual blocks
and the second using residual blocks combined with Bottlenecks (1x1 CONV layer) allowing
a reduction in depth and therefore a reduction in the total number of parameters.

This is a proven architecture for the segmentation of medical images [19] as well as for
the reconstruction of medical MRI [31].

It is now time to compare the performance of these different architectures for the seg-
mentation and reconstruction of the MRI data.
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6.2. Issue 1: Segmentation of the ankle bones on static HR MRI
The aim of this first problem is to automate the segmentation of the calcaneus, talus and
tibia on static HR MRI. Thus, from a 2D patch of the HR image, we want to obtain the
same 2D patch with the segmentation of the different bones.

6.2.1. Network data extraction
The 2D patches were obtained from the following data:

• Static HR MRI of each of the 14 subjects (control and with CP)

• The three segmentations (calcaneus, talus and tibia) associated with static MRI

However, the intensities of the MRI of the different subjects can present different orders
of magnitude preventing any comparison between them. Therefore, the first step is to center
and normalize the data to force the intensities of all the input images into one region.
From the histogram (Fig.5.4) of static MRI, we observed that the intensities of the image
corresponding to the region of the foot present a Gaussian distribution. Thus, from the foot
mask previously extracted on the static MRI, it is possible to standardize the voxels of the
image based on the distribution in the region of the foot (so as to obtain a distribution of
zero mean and unit standard deviation for all subjects) according to the expression:

z = x−µ[x∈M ]
σ[x∈M ]

M: foot mask
x: image voxel value
µ[x ∈ M ]: average of the intensities of the voxels belonging to the foot
σ[x ∈ M ]: standard deviation of the intensities of the voxels belonging to the foot

Fig.6.5 represents the extraction of the 2D input (X) and the expected output patches
(Y) for the neural network.

The size of the 2D patches to be extracted has been fixed at 128x128 in order to be large
enough to contain several structures (bones, muscles, ...). Furthermore, only the patches for
which at least 75% of the pixels belong to the foot were kept so as not to work from images
of the background of the MRI.
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Figure 6.5: 2D patch extraction for the problem of automatic seg-
mentation of static MRI

In total have been extracted for deep learning:

• 44924 patches of the static MRI of the 7 control subjects and the patches of
the associated segmentations which will be used for the training of the neural network
and the validation of the associated hyperparameters.

• 43398 patches of the static MRI of the 7 equine subjects and the patches of
the associated segmentations which will be used to evaluate the performance of the
neural network.
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6.2.2. Neural network training
It was decided to implement a neural network for each bone. These three neural networks
will have exactly the same configuration.

Each network was trained with the 2D patches of 6 control subjects. The last control
subject was used for the validation of the network parameters. The Binary Cross En-
tropy (BCE) loss function was used because it has the advantage, unlike other functions
implemented in PyTorch (CrossEntropyLoss, BCEWithLogitsLoss), of not integrating the
sigmoid activation function. In fact, it is more natural to have probability data between 0
and 1 at the output of the network in order to then apply the loss function to these data.

The number of epochs and the size of the batches used for learning have been set to
values that make it possible to obtain a convergence of the results while ensuring a relatively
short training time (about 1 hour):

• number of epochs: 5

• size of batches: 8

Three other factors were compared in order to define the most suitable network for the
HR segmentation problem:

1. The architecture

2. The network depth (defined according to the number of parameters)

3. The learning rate

In order to compare the quality of the results, the DICE (see section 5.2.4) between
the expected segmentation and the segmentation obtained at the output of the network was
calculated. We hope to obtain on the validation data an average DICE approaching 0.9.
Moreover, the complexity of the network, represented by its number of parameters, is a
good point of comparison. Indeed, we want to optimize the results of the segmentation while
minimizing the complexity of the model.

a) Architecture
The three architectures defined in the previous point (FCN, U-Net and ResNet) were com-
pared with:

• learning rate = 0.0005

• a standard depth for each architecture so as to reach a channel dimension equal to 128
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Figure 6.6: Training of the 4 architectures for the segmentation of
the calcaneus (on the abscissa the number of batches)

Regarding ResNet, versions with and without bottleneck layers have been distinguished.

The evolution of the loss function during the training of the segmentation of the calcaneus
for the 4 architectures is represented on Fig.6.6.

In the table 6.1 the comparison of the four architectures for the segmentation of the three
bones is summarized.

Network Number of
parameters

DICE av-
erage validation
calcaneus

DICE average
validation talus

DICE average
validation tibia

FCN 390 609 0.29 0.32 0.35
U-Net 1 179 569 0.8 0.81 0.92
ResNet with
basic blocks

8 161 729 0.81 0.82 0.81

ResNet with
bottlenecks

8 535 489 0.62 0.6 0.64

Table 6.1: Comparison of the different neural network architectures
for the segmentation of HR MRI on validation data (lr = 0.0005)

From these results, we can say that the FCN model implemented (succession of CONV,
BatchNormalization and ReLU layers) is too simple to solve the segmentation problem. Also,
the use of bottleneck layers in the ResNet worsens its performance.
U-Net and ResNet architecture are the ones giving the best results. We can note the good
performance of U-Net for the segmentation of the tibia. Although ResNet is a more complex
architecture, it is interesting to continue the comparison with these two models given the
results observed.
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b) Network depth
For the two retained architectures (U-Net and Resnet with basic blocks), the performance of
the network as a function of its depth were compared by fixing the learning rate at 0.0005.

The evolution of the DICE as a function of the number of parameters for the two archi-
tectures on the training and validation data is represented in Fig.6.7. This representation
was obtained from the results of the segmentation of the calcaneus.

Figure 6.7: Evolution of the average DICE according to the number
of parameters for the segmentation of the calcaneus by the U-Net and
ResNet networks on the training (points) and validation (cross) data

From Fig.6.7, it is possible to define the number of parameters of each architecture
maximizing the performance of the network while minimizing the complexity:

• U-Net: 1 179 569 parameters

• ResNet: 8 161 729 parameters

We can clearly see that ResNet needs more parameters to achieve equivalent results to U-
Net. However, both architectures offer good performance. That’s why it is worth continuing
to study both architectures with the test data. The two preserved models are represented
on Fig.6.8.

All that remains is to define the value of the learning rate optimizing the DICE on the
validation data.
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Figure 6.8: Model of U-Net and ResNet neural networks chosen for
the segmentation problem of static HR MRI

c) Learning rate

The evolution of the DICE according to the learning rate on the training and validation
data for the segmentation of the calcaneus with the two architectures is represented on
Fig.6.9.

Figure 6.9: Evolution of the average DICE according to the learning
rate for the U-Net and ResNet networks on the training (in blue) and
validation data (in orange)
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From this representation, the learning rate was set at 0.0005 for U-Net and 0.0001 for
ResNet.

The average DICE obtained on the training and validation data is summarized in the
table 6.2.

Data Calcaneus Talus Tibia
U-Net Train/Valida-
tion

0.89/0.8 0.92/0.81 0.92/0.92

ResNet Train/Vali-
dation

0.94/0.83 0.94/0.82 0.94/0.82

Table 6.2: Average DICE obtained with U-Net and ResNet models
on training and validation data for the segmentation of the 3 ankle
bones

The results on the validation data for the three bones are all greater than 0.8. In order
to verify that the two networks allow good learning and that these results do not depend on
the control subject chosen for the validation, a cross validation was carried out.

Figure 6.10: Evolution of the average DICE obtained on the valida-
tion data according to the partitioning of control subjects for U-Net
and ResNet networks

On Fig.6.10, we can see the average DICE obtained for the validation data as a function
of the control subject used. It can be seen that the results obtained for the three bones
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remain satisfactory (around 0.8) whatever the partitioning used. We can note an exception
for subject T03 with which validation fails. By observing the initial static MRI of this
subject, I realized that his plantar flexion movement was much less marked than for the
other subjects, thus inducing a different inclination of the ankle bones. We can therefore
make the following statements:

• Both networks are able to correctly segment the ankle bones.

• It seems that the learning is too dependent on the orientation of the bones.

Now, we will compare the ability of the two networks to generalize over more 2D patches
to segment the 3 ankle bones. For this, we will use the 43398 2D patches extracted from
static MRI of subjects with an equine.
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6.2.3. Performance comparison of U-Net and ResNet networks
Network performance was evaluated from 2D patches extracted from data from subjects with
an equine. We also use the DICE to measure the quality of the segmentations obtained.

Examples of segmentation on test data with the two networks are shown on Fig.6.11.

Figure 6.11: Examples of segmentations on 2D 128x128 patches
extracted from equine subjects obtained with the U-Net (middle)
and the ResNet (bottom) networks. The top image is the ground
truth (manual segmentation).

We can observe on these images, that the two networks manage to correctly segment the
different bones of the ankle on the 2D patches of dimension 128x128. However, it seems that
U-Net draws the contours of the bone more accurately.

In order to have a more global visualization of the performance of the two neural networks
on the test data, the 6.3 table lists the average DICE obtained for the segmentation of the
3 bones on the 43398 2D patches.
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Network Calcaneus Talus Tibia
U-Net 0.74 0.78 0.87
ResNet 0.8 0.81 0.8

Table 6.3: Average DICE obtained with the U-Net and ResNet
models on the test data for the segmentation of the 3 ankle bones on
2D 128x128 patches

The average DICE obtained on the test data evolves around 0.8 for the three bones and
for the two networks. This means that both models are able to generalize on other 2D
patches of the same size as the patches used for training. One would tend to think that the
U-Net model is more efficient for the segmentation of the tibia while the ResNet would be
better for the calcaneus.

However, we would like the deep learning model to be efficient enough to segment entire
2D sections.
Consequently, for each of the 7 equine subjects, a 2D patch was extracted from each slice of
the static MRI (dimension 576x576) and from the three associated segmentations. The 2D
MRI patches were given as input to the two neural networks. In order to limit the impact of
limit slices (on which the bones are not always visible) in the calculation of the mean DICE
of the MRI sequence, the DICE was measured on the 3D volume by grouping all the 2D
slices. The average DICE obtained for the 7 equine subjects as well as the minimum and
maximum values are summarized in the table 6.4.

Network Calcaneus Talus Tibia
U-Net average
(min/max)

0.42 (0.26/0.53) 0.7 (0.52/0.79) 0.5 (0.27/0.63)

ResNet average
(min/max)

0.41 (0.21/0.53) 0.42 (0.13/0.58) 0.6 (0.34/0.74)

Table 6.4: DICE obtained for the segmentation of 3D HR static
MRI sequences of equine subjects with U-Net and ResNet models

Fig.6.12 allows to compare the segmentation of the three bones with the two neural
networks on the same MRI slice.

It clearly appears from these results that neither of the two neural networks is efficient
enough to generalize to 2D images reaching the size of an entire MRI slice (576x576). How-
ever, it seems by visualizing the Fig.6.12 and the overall network performance on table 6.4,
that the U-Net network has more capacity to generalize especially for the talus (average
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Figure 6.12: Segmentation of the 3 ankle bones on a static HR MRI
slice obtained with the U-Net (top) and ResNet (bottom) networks

DICE of 0.7). However, the average DICE obtained for the calcaneus and the tibia is insuf-
ficient (0.42 for the calcaneus and 0.5 for the tibia).
At the end of this first study, my preferred choice for further work is the U-Net for different
reasons:

1. Much less complex network and therefore faster to train

2. An acceptable generalization capacity on 2D slices for the talus

3. A more precise outline of the bones

In order to improve the results of the U-Net network, it would be interesting to try the
following possibilities:

• Using data augmentation (zoom, translate, rotate, etc.) to reduce the importance of
size and orientation during the training.

• Training the same neural network by gradually increasing the size of the patches until
reaching a dimension of 576x576 while reducing the learning rate.

• Cutting the input image into overlapping 128x128 patches and applying the U-Net
network on all the patches in order to reconstruct the segmentation of the entire 2D
slice by grouping the results.

Thanks to deep learning, we set up an efficient automatic segmentation of the ankle bones
on 2D patches of size 128x128 from static HR MRI. However, generalizing the segmentation
to larger 2D images (the size of an MRI slice) is not good and remains a challenge to be
pursued in future work.
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6.3. Issue 2: HR reconstruction of dynamic volumes
The objective of this second problem is to automate the HR reconstruction of the ankle bone
regions from dynamic LR MRI. Thus, from a 2D patch of the LR volume representing one
of the bones of interest, we want to obtain the same 2D patch in high-resolution.

6.3.1. Network data extraction
The 2D patches were obtained from the following data:

• The volumes of dynamic LR MRI sequences of each of the 14 subjects

• HR volumes obtained by bone-to-bone registration of static MRI on dynamic volumes

The size of the 2D patches to be extracted has been fixed at 32x32 so as not to contain
several different bones. The goal is to extract as many patches as possible from the three
ankle bones of interest. In order to maximize the correlation between the HR patch and
the LR patch, we will use the image registered with respect to the calcaneus to extract the
patches from it, in the same way for the other bones.

Standardization of the data was, this time, carried out bone by bone given the small size
of the patches extracted.

In addition, many tests have been carried out in order to define the proportion of pixels
that must belong to each bone to consider the patch as correct. This threshold has to be large
enough for the bone to occupy at least half of the image while still allowing a considerable
amount of patches to be extracted from each bone. Depending on the size of the bone, this
threshold varies:

• at least 70% of the pixels for the calcaneus

• at least 50% of the pixels for the talus

• at least 60% of the pixels for the tibia

Finally, with the objective of improving network performance, the correlation between
the LR patch and the HR patch was calculated and stored with the input data of the neural
network. The idea will be to include this measurement as a parameter of the network
loss function in order to give more importance to the patches having a strong correlation
between them. During the extraction of the patches, a minimum correlation threshold has
been established so as to use for the training only patches that are well registered while
ensuring the extraction of a high number of images. This threshold was set at 0.6 from the
histogram Fig.6.13 representing the number of patches extracted from the dynamic sequences
LR as a function of the correlation between the latter and the corresponding patch of the
HR image.

Page 55/79 | Ankle’s MRI images analysis by deep learning



Coupeau Patty - Master MAIIND

Figure 6.13: Histogram of the number of LR dynamic sequence
patches extracted as a function of the correlation of the latter with
the corresponding patch of the registered HR dynamic sequence

Fig.6.14 represents the extraction of the 2D patches of the LR input (X), of the expected
HR output (Y) and of the correlation between the two corresponding patches (W) for the
neural network.

Figure 6.14: 2D patch extraction for the HR automatic reconstruc-
tion problem of dynamic volumes
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In total have been extracted for deep learning:

1. 91402 32x32 patches of dynamic volumes of control subjects and associated
registrations which will be used for training the neural network. They are divided as
such:

• 37704 patches of the calcaneus
• 15497 patches of the talus
• 38201 patches of the tibia

2. 111865 32x32 patches of dynamic volumes of subjects with CP and associated
registrations which will be used for evaluating the performance of the neural network.
They are divided as such:

• 46043 patches of the calcaneus
• 23633 patches of the talus
• 42189 patches of the tibia
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6.3.2. Neural network training
For this problem, only a residual network with basic blocks was tested because according to
[11] and [31], it generally offers very good results for the reconstruction of medical images.
The network was trained with 2D patches from 6 control subjects. The last control subject
was used for network validation.

The number of epochs and the size of batches used for the training were set at values
allowing to obtain a convergence of the results while ensuring a relatively short training time
(approximately 45 minutes):

• number of epochs: 5

• size of batches: 16

The size of the batches has been increased compared to the segmentation problem because
more training data is available for reconstruction. Moreover, since the patches are smaller,
it is possible to double the size of the batches.

As for the segmentation problem, the Adam optimization algorithm was used because
according to [28] it allows rapid convergence of the gradient while avoiding convergence
towards local minima.

To compare the quality of the results, correlation between the expected reconstruction
and the output of the network was calculated. In addition, a difference map has been
represented in order to know the type of information lost during learning.

In order to give more importance during training to pairs of patches (HR and LR) having
a strong correlation between them, I personalized the network loss function L. The idea was
that this impact should not be linear. A function g has been defined in such a way that for a
correlation x>0.7, g(x) is close to 1 and otherwise close to 0. With the Solumaths tool, the
following sigmoidal function represented on Fig.6.15 has been defined: g(x) = 1

1+e−10∗(x−0.5)

Figure 6.15: Sigmoidal function used to define the influence of
patches in deep learning according to their correlation (representation
made on Solumaths, the red point represents x = 0.7)
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Thus, the loss function is of the form:

L =
∑N

i=1 g(corr) ∗ d(f(xi), yi) with
f(xi): 2D patch obtained from the ResNet
yi: HR 2D patch expected

I started by studying the impact of the depth of the network on its performance by setting
the learning rate to 0.001. The evolution of the correlation as a function of the number of
parameters on the training and validation data is represented on Fig.6.16.

Figure 6.16: Evolution of the performance of ResNet for reconstruc-
tion according to the number of parameters for training (in blue) and
validation data (in red)

We immediately see that the network does not learn correctly since the validation results
are constantly decreasing. This poor learning can come from the fact that the initial feature
extraction is carried out on very small regions which do not allow the LR images to be
properly characterized.
However, we can retain from this study that it is not necessary to use a ResNet with more
than 3 million parameters to obtain acceptable results.

The last test was to compare the use of two different image distance measurements for
the loss function:

• L1 distance defined as d(I1, I2) =
∑p

i=1 |I
p
1 − Ip2 |

• Euclidean distance L2 defined as d(I1, I2) =
√∑p

i=1(I
p
1 − Ip2 )

2

Table 6.5 summarizes the results on training and validation data with the two measure-
ments.
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Distance measure Training Validation
L1 0.83 0.71
L2 0.84 0.71

Table 6.5: Average correlation obtained on training and validation
data using L1 and L2 distance measurements for the loss function

Both distance measurements give similar results. However, due to their behavior depicted
on Fig.6.17, the L1 was chosen because it smooths less the extreme values (ends of the
parabola).

Figure 6.17: Graphic representation of the distance measure-
ments L1 (in purple) and L2 (in orange) (representation made on
Solumaths)

The current results on the validation data are similar to those of Fig.6.18.

Figure 6.18: Reconstruction results obtained with the ResNet net-
work on the validation data. From top to bottom, the input LR
image, the expected HR output and the network output.
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Results are far from being satisfactory since the image obtained (last line) is smooth and
without texture. By drawing the difference map between the ground truth and the learning
output (Fig.6.19), it is possible to view the information lost during learning. Overall, a lot
of information is lost including a good part of the contours as well as the texture of tissues
and bones.

Figure 6.19: Difference map obtained for reconstruction results on
validation data with the ResNet network

Since the current results on validation data are not good, the performance of the network
on test data extracted from equine subjects has not been studied.

The reconstruction of dynamic HR sequences by deep learning is not successful at all.
Different potential solutions should be tested to improve results:

1. Measuring the quality of the reconstruction with a PSNR (Peak Signal to Noise Ratio)
more suited to assess the quality than the correlation.

2. Learning the function g from the loss function weighting the influence of the patches
in the learning as a function of the correlation (avoiding the trivial case: g(corr) = 0
∀corr).

3. Reviewing the first layers of ResNet in order to enlarge the feature extraction space
(adding convolutional layers or increasing the size of the filters used).

4. Testing other architectures such as U-Net or FCN.
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6.4. Issue 3: Segmentation of the ankle bones on dynamic LR vol-
umes

The objective of this last problem is to automate the segmentation of the calcaneus, talus
and tibia on dynamic LR MRI. Thus, from a 2D patch of the dynamic LR volume, we want
to obtain the same 2D patch with the segmentation of the different bones present on it.

6.4.1. Network data extraction
The 2D patches were obtained from the following data:

• the volumes of dynamic MRI sequences of each of the 14 subjects

• the three initial segmentations of the static MRI registered on the dynamic volume by
application of the transformation estimated during registration

The technique for normalizing the data for training was the same as for the HR seg-
mentation problem. From the foot masks previously extracted on the dynamic volumes,
the voxels of the image were standardized so as to obtain a zero mean and unit standard
deviation distribution for all the volumes of all the subjects.

Figure 6.20: 2D patch extraction for the automatic segmentation
problem of dynamic MRI

Fig.6.20 represents the extraction of the 2D input (X) and expected output (Y) patches
for the neural network.
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The size of the 2D patches to be extracted has been fixed at 128x128 so as to be large
enough to contain several structures (bones, muscles, ...). Furthermore, only the patches for
which at least 75% of the pixels belong to the foot were kept so as not to work from images
of the background of the MRI. The difficulty here is based on the fact that for a 3D volume,
we do not necessarily have the 3 segmentations. Indeed, it is possible that the registration
with respect to one or more bones has failed. This decreases the amount of data for training.

In total, were extracted for learning:

1. Patches extracted from control subject data for training:

• 44802 patches of calcaneus
• 32617 patches of talus
• 37624 patches of tibia

2. Patches extracted from data from equine subjects to assess network performance:

• 29195 patches of calcaneus
• 28791 patches of talus
• 29224 patches of tibia

6.4.2. Prospects
Due to lack of time, deep learning for the ankle bones segmentation problem on dynamic
MRI was not initiated. This problem is similar to the first one dealing with the segmentation
of static MRI.
From the results obtained with the segmentation of static MRI, we can attempt to use a
U-Net architecture similar to the one implemented and to train it with the patches extracted
from dynamic LR MRI and associated segmentations.
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7. Conclusion

At the end of the internship, an automatic segmentation of the three main ankle bones on 2D
static MRI patches was set up through two neural network architectures (U-Net and ResNet).
These two models were compared on more than 40000 2D test patches using measurement
tools recognized in the literature. The objective is now to generalize these performances to
whole 2D slices of MRI.
In addition, all of the MRI data acquired at the CHU of Brest are now corrected, transported
to a common spatial reference and registered in order to feed other neural networks intended
for the automatic segmentation of the ankle bones on dynamic MRI or for the reconstruction
of dynamic HR sequences. Although the work carried out is only a tiny step forward in the
world of research, it marks the beginning of the development of new MRI image analysis tools
for the study of the ankle in motion. In order to develop effective MRI analysis techniques,
steps remain to be taken:

1. Generalizing the segmentation of the ankle bones on static MRI to full 2D slices by
exploiting various approaches (data augmentation, U-Net training with larger patches,
segmentation of 2D slices by dividing them into overlapping patches).

2. Improving reconstruction results by exploring new architectures and using more stan-
dardized quality metrics such as PSNR.

3. Starting the implementation of an automatic segmentation of the ankle bones on dy-
namic MRI from the extracted patches.

4. Implementing a unique network for the segmentation of the 3 bones on static or dy-
namic MRI.

In the long term, the robustness of these tools will contribute to an acceleration of analysis
times and especially to a better understanding of the joint biomechanics essential for the
implementation of therapies adapted to the deformities linked to cerebral palsy.

The experience lived within the LaTIM was very enriching in many aspects which will be
essential to me in the success of my doctoral thesis undertaken since the month of November.
The latter focuses on the use of deep learning and structural knowledge for the analysis of
porcine cerebral MRI, once again intended for a better understanding of cerebral palsy. Thus,
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thanks to these three months of internship, I made a first discovery of deep learning applied to
medical imaging by handling many tools such as PyTorch or FSL. Then, the ability acquired
over the past few years to read scientific papers, to follow specific deep learning courses, to
discuss with other doctoral students and to document myself on image processing applied to
the field of health will be important to effectively start this thesis. Finally, evolving within
a dynamic, generous team that shares its knowledge on cerebral palsy with pleasure allowed
me to leave with a first medical background. I am more motivated than ever to continue the
research on this pathology which affects many children every year.
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A. Appendix

A.1. Gantt chart

Figure A.1: Gantt chart realized with Office Timeline
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A.2. Nibabel coordinate system
A Nibabel image is the association of 3 elements:

• 1 N-D array of the image data (intensity)

• a 4x4 matrix of the image coordinates in an affine reference coordinate system

• an header with the image metadata

The coordinates of the image do not give any information about the position in the world,
that is, in the MRI. This means that it is impossible to compare the data of two subjects
because they were not acquired under the same conditions. Two images are comparable only
if they are defined in a common reference system.
The common spatial reference is defined by an origin and three axes generally referenced in
relation to the position of the patient:

• Origin = part of the patient being examined

• Left-right axis

• Anterior-posterior axis

• Inferior-superior axis

To compare two images, it is therefore essential to ensure that their system of reference is
the same: ex. RAS scanner (right, anterior, posterior), LPI scanner (left, posterior, inferior).
Moreover, the origin of this system of reference is only common for an MRI series of a patient
if the latter does not move. That’s why, even if the system of reference is the same between
two images of different sequences, it is often necessary to make a registration between them
so that they overlap.

The 4x4 affine transformation matrix of the image is such that:
Let (x,y,z) be the coordinates in the common spatial system of reference and (i,j,k) the

coordinates of the voxels of the image.


x
y
z
1

 =


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

0 0 0 1

 ∗
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1
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A.3. Some notions on registration
Registration is the matching of images assumed to represent the same object [27]. It is a
fundamental tool in the analysis of medical images:

• reconstruction of a 3D volume from 2D sections

• analysis of temporal evolution (of brain development for example)

• subjects comparison

• overlay on an atlas

• fusion of modalities (MRI, CT, etc)

The aim of the registration is to estimate the spatial transformation T to go from one
image to another. For this, we seek to optimize a similarity criterion between the two images
[12]. Registration is based on three important choices:

1. the similarity criterion: which measures the ”resemblance” between the two images.
Several choices are possible, it is advisable to choose the most suitable for each problem:

• measuring the conservation of intensities: SSD (to minimize). This solution
is suitable for intra-patient mono-modal registration.

• measuring affine dependence: correlation coefficient (to maximize). This
solution is suitable for inter and intra-patient mono-modal registration.

• measuring statistical dependence: mutual information (to maximize). This
solution is suitable for multi-modal registration.

2. the spatial transformations considered: it is advisable to impose constraints on
T which can be according to the number of degrees of freedom:

• homography - 16 DoF (in 3D): suitable for multi-modal registration and to 3D
/ 2D registration.

• affine - 12 DoF (in 3D): suitable for intra-subject multi-modal registration when
the spatial resolution of the two images is different.

• rigid (rotation+translation) - 6 DoF (in 3D): suitable for intra-subject registra-
tion.

3. alignment techniques (optimization): There are several methods of estimating
the transformation matrix T from two images:

• direct alignment methods: exhaustive search, FFT registration, Lucas-Kanade
[14].

• features methods: search for common features in the two images SIFT [30]
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• hybrid methods: block-matching [10]
• non-linear transformations: adapted to multi-modal, inter-patient or intra-

patient registration over time (anatomical changes, tumor, etc): ANTS [37]

Let I and J be two images and F a family of spatial transformation. The registration
problem is written as:

arg minT∈F Simil(T (I), J)

Registration process is illustrated on Fig.A.2.

Figure A.2: The basic components of the registration are two input
images, a transform, a metric, an interpolator and an optimizer [2]
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A.4. Convolutional neural networks
Convolutional neural networks (CNN) are very similar to ordinary neural networks [28]. They
are made up of neurons with evolutionary weights and biases. CNN architectures consider
that the inputs are images, which allows encoding certain properties in the architecture and
reducing the amount of parameters in the network. Thus, unlike an ordinary neural network,
the layers of a CNN have neurons arranged in 3 dimensions: width, height (image dimension
for example) and depth (number of channels for example) (Fig.A.3). Each layer transforms
the 3D input volume into a 3D output volume for activating neurons. Moreover, the neurons
of one layer are not necessarily connected to all the neurons of the next layer.

Figure A.3: Illustration of the organization of the layers of a CNN
from [28]

Activation functions
This is a stimulation threshold which, once reached at the output of a neuron, results in
a response from the latter. Most often, this is a non-linear function. There are several
represented on Fig.A.4:

• sigmoid: 1
1+e−x

It has the drawback of saturating and not being centered at 0.

• tanh: It is centered at 0 but saturates.

• Rectified Linear Unit: max(0, x)
The ReLU function has the advantage of increasing the gradient descent rate and
better reproduces the behavior of neurons. But, if the learning rate is too high, it can
cause the death of the ReLU and the inability for the neuron to activate.
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Figure A.4: Representation of the main activation functions from
[28]: from left to right sigmoid, tanh and ReLU

Convolutional neural networks are made up of 4 main layers:

1. Full-connected layers: FC
Neurons of a full-connected layer have connections with all activations of the previous
layer. These are the layers used in ordinary neural networks. They require a large
number of parameters (weight and bias). These layers group the pixels of the image
into a line vector (Fig.A.5).

Figure A.5: Principle of the full-connected layer, illustration taken
from [28]

2. Convolutional layers: CONV
Unlike the FC layer, the convolutional layer preserves the spatial structure of the image.
It consists in dragging one or more filter(s) of the same thickness as the input image
by locally calculating the scalar product (Fig.A.6) in order to produce an activation
volume whose thickness is equal to the number of filters used. It requires a large
number of parameters and has the following hyperparameters:

• stride: how many pixels the filter moves on each iteration
• the size of the filter
• zero-padding
• number of filters
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Figure A.6: Principle of the convolutional layer, illustration from
[28]

3. Pooling layers: POOL
The POOL layer makes the representation smaller and therefore easier to handle
(Fig.A.7). In general, Max Pooling is used. It consists in keeping the maximum
value of the filtered pixels during downsampling. The POOL layer has no parameters
but has the following hyperparameters:

• size of the filter
• stride: how many pixels the filter moves on each iteration

Figure A.7: Principle of the pooling layer, illustration taken from
[28]

4. Batch Normalization layers
This is an additional layer placed after the FC or CONV layers and before the activation
function in order to normalize the data so as to have a ”zero-mean”. This layer improves
the gradient flow and the generalization of the model.
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A.5. Technologies and tools used

Free and open source distribution of the Python and
R programming languages for the development of ap-
plications dedicated to data science and machine learn-
ing. Package management is made easy with the conda
package management system. Anaconda

Integrated development environment used for program-
ming in Python. PyCharm

Analysis tool library for FMRI, MRI and DTI brain
imaging data. FSL

Software application for navigation and segmentation
of structures in 3D medical images. ITKSnap

Python package for read/write access to some common
medical and neuroimaging file formats such as ANA-
LYZE, NIFTI or MINC. Nibabel
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Technology that uses a graphics processor to perform
calculations general instead of the processor. Nvidia
Cuda

Torch-based open-source machine learning Python soft-
ware library developed by Facebook. Performs in an op-
timized way tensor calculations necessary in particular
for deep learning on processor (CPU) or if possible on
graphics processor (GPU) supporting CUDA. PyTorch

Online, collaborative and real-time LaTeX editor.
Overleaf

Git repository management tool. GitHub
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Analyse d’images IRM de la cheville par apprentissage profond
La paralysie cérébrale est la première cause de handicap moteur de l’enfant en France.

90% des déformations dues à la PC apparaissent dans la région de la cheville. La com-
préhension de la biomécanique articulaire est un enjeu médical afin de mettre en oeuvre des
thérapies adaptées à la pathologie. Les laboratoires de recherche tentent d’exploiter l’IRM
dynamique afin d’étudier l’appareil musculo-squelettique en mouvement. L’expérience vécue
durant trois mois au Laboratoire de traitement de l’information médicale à Brest a participé
à l’amélioration de l’analyse des IRMs de la cheville par apprentissage profond. Les travaux
sont allés du traitement des données IRM à l’entraînement de divers réseaux de neurones
destinés à la segmentation des os de la cheville ou encore à la reconstruction de séquences
dynamiques.

Mots clés: LaTIM, IRM dynamique, apprentissage profond, segmentation, paralysie
cérébrale

Analysis of MRI images of the ankle by deep learning
Cerebral palsy is the first cause of children’s motor disability in France. 90% of deformi-

ties due to CP appear in the ankle region. Understanding joint biomechanics is a medical
issue in order to implement therapies adapted to the pathology. Research laboratories are
trying to explore dynamic MRI to study the musculoskeletal system in motion. The experi-
ence lived during three months at the Laboratory of medical information processing in Brest
helped to improve the analysis of MRIs of the ankle with deep learning. Work went from
processing MRI data to training multiple neural networks for ankle bones’ segmentation or
even the reconstruction of dynamic sequences.

Keywords: LaTIM, dynamic MRI, deep learning, segmentation, cerebral palsy

Análisis de imágenes por resonancia magnética del tobillo
mediante aprendizaje profundo

La parálisis cerebral es la principal causa de discapacidad motora de los niños en Fran-
cia. El 90% de las deformidades por PC aparecen en la región del tobillo. Entender la
biomecánica articular es un tema médico para poder implementar terapias adaptadas a la
patología. Los laboratorios de investigación tratan de utilizar la IRM dinámica para estudiar
el sistema musculoesquelético en movimiento. La experiencia vivida durante tres meses en
el Laboratorio de procesamiento de información médica de Brest ayudó a mejorar el análisis
de las IRM del tobillo mediante aprendizaje profundo. El trabajo se ha extendido del proce-
samiento de datos de IRM al entrenamiento de varias redes neuronales para la segmentación
de los huesos del tobillo o incluso la reconstrucción de secuencias dinámicas.

Palabras clave: LaTIM, IRM dinámica, aprendizaje profundo, segmentación, parálisis
cerebral
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