Online supplementary material to: Optimal classification scores based on multivariate marker transformations

Pablo Martínez-Camblor¹^{*}, Sonia Pérez-Fernández². Susana Díaz-Coto² ¹ Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, NH, USA ² Department of Statistics, Oviedo University, Asturies, Spain

As supplementary material of this paper we provide the R code used for computing plots and models reported herein. Main provided function, optimalT, incorporates a general kfold cross-validation procedure for controlling the potential overfitting. R packages nsROC (developed by Pérez-Fernández et al. [2]) and ks (developed by Duong [1]) are required. The used dataset is freely available at http://archive.ics.uci.edu/ml/datasets/QSAR+ fish+toxicity#. Results of additional simulations are provided in Tables S1, S2 and S3.

R code: description of function optimalT

```
optimalT <- function(X, D, H.method = c("Hbcv","Hscv","Hpi","Hns","Hlscv",
                      "Hbcv.diag","Hscv.diag","Hpi.diag","Hlscv.diag"), K = 1,
                     add.densityContour = TRUE, removeNA = FALSE, X1.lim =
                      NULL, X2.lim = NULL, levels.method = c("fpr","pretty"),
                     figures = c("A","B","C"), new.window = TRUE, seed = 623)
```

Input parameters:

- # X: marker data (n x 2 matrix)
- # D: response (vector of length n)

H.method: method for computing the bandwidth among those proposed by

^{*}Pablo Martínez-Camblor. 7 Lebanon Street, Suite 309, Hinman Box 7261, Hanover, NH 03755, USA. E-mail: Pablo.Martinez.Camblor@Dartmouth.edu

Duong (2007) ("Hbcv" by default, which is a biased cross validation estimate)
K: number of folds considered for cross-validation. If K = 1 (default),
optimal transformation is estimated

add.densityContour: TRUE if density contours of the bivariate density estimates for both populations should be shown over the optimal transformation contour plot

removeNA: TRUE if the region displayed should be adjusted removing NA-values in the optimal transformation (f+g estimate is zero) # X1.lim, X2.lim: limits for the region displayed (vectors of length 2) # levels.method: "fpr" if the optimal transformation contour levels displayed correspond to the sequence 0:0.1:1 of false-positive rates for the transformation; "pretty" if the default by filled.contour should be considered

figures: vector containing "A", "B" and/or "C" indicating which plots should be displayed:

"A": contour plot for the bivariate kernel density estimate for positive (red) and negative (blue) populations

"B": contour plot for the optimal score estimate

"C": ROC curve estimate

new.window: TRUE if new windows should be opened for each figure displayed # seed: seed used for grouping in K-fold CV

Output parameters:

X: marker data

D: response

tX: optimal transformation estimate (score) for X

auc: Area Under the ROC Curve for the score

x.grid, y.grid: grid used for each component of the bivariate marker

z.grid: matrix containing the values of the score over the grid x.grid * y.grid

tX.CV: if K>1, optimal transformation estimate (score) for X resulting

from the $k\mbox{-fold}$ cross validation performed

2

 $\ensuremath{\texttt{\#}}$ auc.CV: Area Under the ROC Curve for the score tX.CV

Simulation study: additional tables

Table S1: Means for the integrate absolute error (Integ. absolute error) between the real ROC curve, $\mathcal{R}_T(\cdot)$, and its estimation, $\hat{\mathcal{R}}_{\hat{T}_N}(\cdot)$ ($\int_0^1 |\hat{\mathcal{R}}_{\hat{T}_N}(t) - \mathcal{R}_T(t)|dt$) and for the AUC from 2,000 Monte Carlo simulations for the six considered models **without using any cross-validation** procedure. Considered bandwidths were smooth cross-validation (SCV), plug-in (PI), normal scale (NS) and biased cross-validation (BCV). RL stands for model based on standard binary logistic regression.

					AUC			Integ. absolute error					
\boldsymbol{n}	m	${\cal A}$	SCV	PI	NS	BCV	RL	SCV	PI	NS	BCV	RL	
Model 0													
400	400	0.50	0.637	0.647	0.648	0.637	0.526	0.138	0.148	0.149	0.139	0.030	
	600	0.50	0.628	0.637	0.638	0.628	0.523	0.129	0.138	0.139	0.129	0.026	
Model I													
400	400	0.70	0.729	0.733	0.733	0.729	0.526	0.031	0.034	0.034	0.031	0.174	
	600	0.70	0.725	0.729	0.729	0.724	0.522	0.027	0.030	0.030	0.026	0.178	
400	400	0.80	0.818	0.820	0.820	0.815	0.526	0.020	0.022	0.022	0.019	0.276	
	600	0.80	0.816	0.818	0.818	0.812	0.522	0.018	0.019	0.019	0.016	0.280	
\mathbf{N}	fodel	II											
400	400	0.75	0.768	0.771	0.771	0.768	0.526	0.025	0.027	0.027	0.025	0.223	
	600	0.75	0.764	0.766	0.766	0.763	0.523	0.022	0.023	0.023	0.022	0.227	
400	400	0.80	0.814	0.816	0.816	0.805	0.526	0.022	0.023	0.023	0.018	0.272	
	600	0.80	0.811	0.812	0.812	0.800	0.522	0.019	0.020	0.020	0.017	0.277	
\mathbf{M}	[odel	III											
400	400	0.70	0.727	0.731	0.731	0.726	0.691	0.033	0.036	0.036	0.032	0.022	
	600	0.70	0.725	0.729	0.729	0.724	0.693	0.031	0.034	0.034	0.030	0.020	
400	400	0.80	0.815	0.818	0.818	0.815	0.797	0.023	0.024	0.024	0.022	0.019	
	600	0.80	0.816	0.818	0.818	0.815	0.798	0.022	0.023	0.023	0.021	0.017	
\mathbf{M}	[odel	IV											
400	400	0.75	0.776	0.780	0.780	0.775	0.722	0.031	0.034	0.034	0.030	0.034	
	600	0.75	0.773	0.776	0.777	0.772	0.724	0.028	0.030	0.030	0.027	0.031	
400	400	0.85	0.865	0.867	0.867	0.864	0.843	0.022	0.024	0.024	0.022	0.018	
	600	0.85	0.865	0.867	0.867	0.864	0.845	0.021	0.023	0.023	0.021	0.017	
\mathbf{N}	ſodel	V											
400	400	0.75	0.770	0.775	0.761	0.752	0.641	0.025	0.030	0.020	0.017	0.108	
	600	0.75	0.766	0.771	0.756	0.748	0.640	0.022	0.026	0.017	0.016	0.109	
400	400	0.85	0.866	0.869	0.861	0.856	0.815	0.023	0.025	0.019	0.017	0.036	
	600	0.85	0.865	0.868	0.859	0.855	0.815	0.021	0.023	0.018	0.016	0.035	
\mathbf{M}	[odel	VI											
400	400	0.80	0.816	0.819	0.816	0.812	0.789	0.022	0.023	0.022	0.020	0.020	
	600	0.80	0.815	0.818	0.815	0.812	0.791	0.020	0.022	0.020	0.019	0.019	
400	400	0.85	0.861	0.863	0.861	0.858	0.843	0.018	0.020	0.018	0.017	0.016	
	600	0.85	0.861	0.863	0.861	0.858	0.845	0.017	0.018	0.017	0.016	0.015	

Table S2: Means for the integrate absolute error (Integ. absolute error) between the real ROC curve, $\mathcal{R}_T(\cdot)$, and its estimation, $\hat{\mathcal{R}}_{\hat{T}_N}(\cdot)$ ($\int_0^1 |\hat{\mathcal{R}}_{\hat{T}_N}(t) - \mathcal{R}_T(t)|dt$) and for the AUC from 2,000 Monte Carlo simulations for the six considered models **by using 2-fold cross-validation** procedure. **Small sample sizes**, *n* and *m* for positive and negative groups respectively, were considered. \mathcal{A} is the real AUC. Considered bandwidths were smooth cross-validation (SCV), plug-in (PI), normal scale (NS) and biased cross-validation (BCV). RL stands for model based on standard binary logistic regression.

				AUC						Integ. absolute error					
n	m	${\cal A}$	SCV	PI	NS	BCV	\mathbf{RL}	-	SCV	PI	NS	BCV	\mathbf{RL}		
N	Iodel	0						-							
100	100	0.50	0.496	0.497	0.497	0.497	0.484		0.051	0.052	0.053	0.052	0.050		
	200	0.50	0.496	0.495	0.495	0.495	0.478		0.046	0.046	0.046	0.046	0.046		
Model I															
100	100	0.70	0.656	0.651	0.654	0.632	0.481		0.061	0.064	0.063	0.077	0.216		
	200	0.70	0.662	0.658	0.660	0.642	0.484		0.053	0.055	0.054	0.067	0.216		
100	100	0.80	0.774	0.771	0.773	0.739	0.478		0.044	0.046	0.045	0.067	0.320		
	200	0.80	0.777	0.774	0.776	0.747	0.481		0.037	0.039	0.038	0.059	0.319		
\mathbf{N}	Iodel	II													
100	100	0.75	0.713	0.709	0.713	0.716	0.482		0.053	0.056	0.054	0.052	0.264		
	200	0.75	0.727	0.722	0.724	0.728	0.483		0.043	0.046	0.044	0.042	0.265		
100	100	0.80	0.772	0.768	0.771	0.732	0.480		0.043	0.046	0.044	0.072	0.315		
	200	0.80	0.777	0.774	0.776	0.736	0.486		0.040	0.042	0.040	0.067	0.311		
\mathbf{M}	odel	III													
100	100	0.70	0.650	0.645	0.647	0.651	0.664		0.064	0.068	0.067	0.064	0.053		
	200	0.70	0.656	0.652	0.654	0.658	0.672		0.057	0.060	0.058	0.056	0.043		
100	100	0.80	0.767	0.762	0.765	0.769	0.779		0.051	0.054	0.052	0.049	0.042		
	200	0.80	0.772	0.768	0.770	0.774	0.785		0.043	0.046	0.044	0.042	0.034		
Model IV															
100	100	0.75	0.712	0.707	0.709	0.715	0.703		0.055	0.058	0.056	0.053	0.057		
	200	0.75	0.721	0.716	0.718	0.722	0.707		0.046	0.049	0.048	0.046	0.051		
100	100	0.85	0.824	0.821	0.822	0.827	0.831		0.043	0.045	0.045	0.042	0.038		
	200	0.85	0.830	0.827	0.828	0.832	0.834		0.037	0.039	0.038	0.036	0.033		
\mathbf{N}	Iodel	\mathbf{V}													
100	100	0.75	0.677	0.674	0.674	0.671	0.601		0.076	0.079	0.079	0.081	0.145		
	200	0.75	0.678	0.677	0.676	0.672	0.610		0.076	0.076	0.077	0.080	0.138		
100	100	0.85	0.807	0.804	0.806	0.809	0.799		0.052	0.054	0.052	0.050	0.055		
	200	0.85	0.808	0.805	0.808	0.809	0.802		0.049	0.052	0.049	0.047	0.051		
Μ	odel	VI													
100	100	0.80	0.762	0.759	0.761	0.766	0.770		0.051	0.054	0.051	0.048	0.044		
	200	0.80	0.772	0.769	0.771	0.775	0.779		0.042	0.045	0.043	0.041	0.036		
100	100	0.85	0.817	0.814	0.816	0.821	0.828		0.044	0.046	0.044	0.041	0.037		
	200	0.85	0.827	0.825	0.827	0.830	0.835		0.036	0.038	0.036	0.034	0.030		

Table S3: Means for the integrate absolute error (Integ. absolute error) between the real ROC curve, $\mathcal{R}_T(\cdot)$, and its estimation, $\hat{\mathcal{R}}_{\hat{T}_N}(\cdot)$ ($\int_0^1 |\hat{\mathcal{R}}_{\hat{T}_N}(t) - \mathcal{R}_T(t)|dt$) and for the AUC from 2,000 Monte Carlo simulations for the six considered models without using any cross-validation procedure. Small sample sizes, *n* and *m* for positive and negative groups respectively, were considered. \mathcal{A} is the real AUC. Considered bandwidths were smooth cross-validation (SCV), plug-in (PI), normal scale (NS) and biased cross-validation (BCV). RL stands for model based on standard binary logistic regression.

			AUC						Integ. absolute error					
\boldsymbol{n}	m	${\cal A}$	SCV	PI	NS	BCV	RL	-	SCV	PI	NS	BCV	\mathbf{RL}	
N	/Iodel	0						-						
100	100	0.50	0.696	0.720	0.719	0.704	0.551		0.201	0.225	0.224	0.209	0.060	
	200	0.50	0.678	0.699	0.699	0.685	0.540		0.180	0.202	0.201	0.187	0.048	
Model I														
100	100	0.70	0.763	0.777	0.775	0.767	0.550		0.068	0.081	0.079	0.072	0.147	
	200	0.70	0.750	0.762	0.761	0.752	0.541		0.054	0.064	0.063	0.055	0.159	
100	100	0.80	0.836	0.845	0.843	0.835	0.550		0.043	0.049	0.048	0.042	0.248	
	200	0.80	0.829	0.836	0.835	0.825	0.540		0.035	0.039	0.039	0.032	0.260	
\mathbf{N}	ſodel	II												
100	100	0.75	0.795	0.806	0.804	0.796	0.551		0.055	0.063	0.062	0.056	0.196	
	200	0.75	0.784	0.792	0.791	0.785	0.543		0.045	0.050	0.049	0.045	0.205	
100	100	0.80	0.831	0.839	0.838	0.817	0.550		0.042	0.048	0.047	0.034	0.245	
	200	0.80	0.825	0.831	0.830	0.806	0.542		0.037	0.040	0.040	0.030	0.255	
\mathbf{M}	[odel	III												
100	100	0.70	0.759	0.774	0.772	0.761	0.695		0.068	0.081	0.079	0.070	0.040	
	200	0.70	0.749	0.761	0.760	0.750	0.693		0.057	0.067	0.066	0.057	0.034	
100	100	0.80	0.833	0.841	0.840	0.833	0.799		0.046	0.052	0.050	0.046	0.036	
	200	0.80	0.828	0.835	0.834	0.828	0.798		0.038	0.042	0.042	0.038	0.030	
Model IV														
100	100	0.75	0.801	0.813	0.812	0.803	0.725		0.060	0.070	0.069	0.061	0.045	
	200	0.75	0.793	0.802	0.801	0.793	0.724		0.050	0.057	0.057	0.051	0.042	
100	100	0.85	0.879	0.885	0.885	0.879	0.845		0.041	0.046	0.045	0.042	0.033	
	200	0.85	0.875	0.880	0.879	0.875	0.844		0.036	0.039	0.039	0.036	0.030	
\mathbf{N}	ſodel	V												
100	100	0.75	0.794	0.808	0.792	0.779	0.647		0.055	0.066	0.052	0.043	0.099	
	200	0.75	0.784	0.796	0.779	0.767	0.642		0.043	0.052	0.039	0.032	0.106	
100	100	0.85	0.882	0.890	0.881	0.873	0.817		0.044	0.050	0.042	0.038	0.043	
	200	0.85	0.876	0.883	0.874	0.867	0.813		0.038	0.042	0.035	0.031	0.043	
\mathbf{M}	[odel	VI												
100	100	0.80	0.831	0.841	0.836	0.828	0.788		0.041	0.047	0.043	0.039	0.035	
	200	0.80	0.825	0.833	0.829	0.823	0.791		0.036	0.040	0.038	0.034	0.031	
100	100	0.85	0.871	0.879	0.875	0.869	0.843		0.034	0.038	0.035	0.032	0.030	
	200	0.85	0.868	0.874	0.871	0.866	0.845		0.031	0.033	0.032	0.030	0.027	

Acknowledgment

This work is supported by the Grants MTM2015-63971-P and MTM2014-55966-P from the Spanish Ministerio of Economía y Competitividad; FC-GRUPIN-IDI/2018/000132 and Severo Ochoa Grant BP16118 (this one for S. Pérez-Fernández) from the Asturias Goverment (Gobierno del Principado de Asturias).

References

- [1] Duong, T. (2019). ks: Kernel Smoothing. R package version 1.11.5.
- [2] Pérez-Fernández, S., P. Martínez-Camblor, P. Filzmoser, and N. Corral (2018). nsROC:
 An R package for Non-Standard ROC Curve Analysis. *The R Journal* 10(2), 55–77.