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Abstract

Unfortunately, adverse environments in early life are frequently found in most 

human populations. Early life stress leads to diverse cognitive impairments, 

some of them related to learning and memory and executive functions such as 

working memory (WM). We employ an animal model of early stress using 

repeated maternal separation (MS) for four hours a day on 21 consecutive days, 

pre-weaning. In adulthood, we tested their spatial WM using the Morris water 

maze. MS subjects showed a marked delay in the acquisition of the task. In 

addition, we explored brain energy oxidative metabolism and found an increase 

in cytochrome c oxidase (CCO) activity in the cingulate cortex, anterior 

thalamus, and supramammillary areas, indicating an intense effort to 

successfully solve the WM task. However, decreased CCO activity was found in 

the medial-medial mammillary nucleus in MS animals, which would partially 

explain the delayed acquisition of the WM task. Further studies are needed to 

explore the long-term alterations produced by early stress.

Key Words: Early life stress; Maternal separation; Working Memory; Cytochrome c 

oxidase; Brain energy metabolism; Mammillary bodies

Lay summary: A stressful environment caused by separation of baby rats from the 

mother for several hours a day in the first stages of postnatal life can be devastating to 

brain cells, making them look for alternative sources of energy, among other changes. 

These alterations in brain functional networks would lead to cognitive impairments such 

as delayed acquisition of new learning and strategies.
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Introduction 

Adverse experiences in early life are frequent in human populations. In fact, 63.9% of 

children experience at least one adverse event in their infant years (Philip et al., 2013). 

Children exposed to early stress obtain worse scores in different cognitive domains, 

mainly related to executive functioning, cognitive flexibility, inhibitory control, or 

sustained attention (Bos, 2009; Feifel et al., 2017), as well as their use of Theory of 

Mind Abilities (Simon et al., 2019). Early deprivation in humans could lead to circuit 

miswiring in the immature brain (Bos, 2009), suggesting a relationship between an 

adverse environment and aberrant neurodevelopment.

The first socioeconomic and emotional environment is relevant in cognitive 

development. In fact, childhood poverty seems to be inversely related to adult working 

memory (WM) in a dose dependent manner (Evans and Schamberg, 2009). In addition, 

this variable also influences the self-regulatory capacity, and so these children have 

greater difficulty ignoring distractors (Evans and Fuller-Rowell, 2013). Therefore, early 

life stress is associated with persistent WM impairment in humans (Fuge et al., 2014) 

because WM is one of the most sensitive neurocognitive systems to early stress (Evans 

and Fuller-Rowell, 2013). In fact, alterations in WM after early stress are a good marker 

of major depression in this population (Fuge et al., 2014).

Whereas reference memory is long-term stable memory, WM involves the manipulation 

and retrieval of information to carry out prospective actions (Barha et al., 2007). Hence, 

WM is a temporary storage mechanism that makes it possible to hold active information 

and manipulate it (Evans and Schamberg, 2009). According to the multi-component 

model of WM, it has different components involving control, manipulation, and 

protection from being distracted by irrelevant information (Baddeley and Hitch, 1974). 

Among these characteristics, the hippocampus (HC) is particularly relevant for the 
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maintenance of memory (Fuge et al., 2014), and it is known that early stress produces 

long-term prefrontal cortex (PFC) and HC alterations (Mizoguchi et al., 2000). Spatial 

WM is PFC-HC dependent (Zhang and Cai, 2008), which means that WM alterations 

would probably be found in adulthood in early stressed subjects. 

In humans and other animals such as rodents, maternal care is important for 

neurodevelopment. In fact, subjects raised by attentive mothers (dams that show high 

rates of licking and grooming) have shown better outcomes on different cognitive tasks, 

such as spatial memory and WM (Barha et al., 2007). Hence, dam-litter relationship 

disturbances can act as a model for early life stress. One of the most widely used early 

stress animal models is maternal separation (MS) (Banqueri et al., 2017a; Plotsky and 

Meaney, 1993).

In this study, our aim was to explore early stress effects on adult performance on a PFC-

dependent task, and the possible differences in the main brain-related functional 

networks. Specifically, we wanted to analyze whether a 21-day MS model would alter 

WM, and how metabolic brain activity would be affected, to our knowledge for the first 

time. In order to achieve this goal, we performed a WM test and then explored brain 

energy oxidative metabolism and the possible functional networks, using cytochrome c 

oxidase (CCO) histochemistry (Gonzalez-Lima and Cada, 1994).

Methods

Animals

Ten adult Wistar rats (Rattus norvegicus) (seven females (dams) and three males) were 

purchased from the vivarium at Oviedo University. The subjects used for this 

experiment were their litters (247-398.7g at the end of the experiment). All the animals 

received ad libitum food and tap water and were maintained at a constant room 
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temperature (22 +/-2 ºC), with a relative humidity of 65-75% and a 12h artificial light-

dark cycle (08:00-20:00/20:00-08:00). The procedures and manipulation of the animals 

used in this study were carried out according to the Directive (2010/63/EU), Royal 

Decree 53/2013 of the Ministry of the Presidency related to the protection of animals 

used for experimentation and other scientific purposes, and they were approved by the 

Principality of Asturias committee for animal studies. 

Maternal separation

The maternal separation procedure was carried out according to a previously published 

standardized protocol (Banqueri et al., 2017b; González-Pardo et al., 2019). Briefly, 

litters were randomly assigned to the MS or AFR condition. Litters with more than 10 

animals were culled to 10, with approximately the same number of males and females in 

each. For MS, litters were separated from the dams for 4 hours per day, starting at 10:00 

hours and ending at 14:00 hours. The MS group was separated from PND 1 to PND 21 

(Figure 1A). Each separation consisted of removing the dams from the home cage and 

placing them in an adjacent cage (to keep them from witnessing the procedure) while 

the pups were kept together in a new cage. Litters remained together during the 

separation time in an incubator (30 ºC, 55-65% relative humidity). After the separation 

period, the dam and the litter were returned to the home cage (placing the litter in the 

home cage first). Control litters were reared under standard animal facility rearing 

(AFR) conditions, disturbed only by animal facility husbandry practices once a week 

until weaning. On PND 21, all the animals were weaned and segregated by sex, and 

only males were selected for the study. Therefore, two groups of male animals were 

included in the experiment, the control group (AFR, n = 12) and experimental group 

(MS, n = 12).

Morris Water Maze 
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On PND 100 (Figure 1A), the animals’ behavior was tested in the Morris Water Maze 

(MWM) (Morris, 1984), as previously described (Méndez-López et al., 2009c). The 

apparatus consisted of a black cylindrical fiberglass tank measuring 150 cm in diameter 

by 75 cm in height, placed 35 cm above the floor. The water level was 30 cm, with a 

temperature of 22±2 °C. The escape platform used was a black cylinder measuring 10 

cm in diameter and 28 cm in height placed 2 cm below the surface of the water, and it 

was not visible to the animals. The MWM was located in the center of a 16 m2 lit room 

(two lamps of 4000 lx oriented towards the walls), surrounded by black panels (30 cm 

from the maze) on which the spatial cues were placed (horizontal line, vertical line, and 

a square rotated 45°, all yellow or black and yellow). The pool was divided into four 

imaginary quadrants (A, B, C and D) to locate the start positions and platforms. The 

animal’s behavior was recorded, and its path was analyzed using a computerized video-

tracking system (Ethovision Pro, Noldus Information Technologies, Wageningen, The 

Netherlands).

Working memory task

In the learning protocol (Méndez-López et al., 2009a), the first day was devoted to the 

animals’ habituation to the task. The animals received a three-trial habituation session 

with different starting and platform positions in a small square water tank (47×75×38 

cm) one day prior to the initial test. The spatial memory task consisted of a paired 

sample task. Each daily session (6 days of training) was composed of two trials (sample 

and retention). The sample consisted of releasing the animal from one of the four 

starting points in the pool and letting it swim until it reached the hidden platform 

(maximum trial length, 60 s; time on platform, 15 s). To begin each trial, we placed the 

rats in the water, facing the maze wall in one of four quadrants, and the daily order of 

entry into these quadrants was pseudo-randomized (Figure 1B for examples). During 
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the inter-trial interval, we placed the animals in a black bucket for 30 s. After this time, 

we proceeded with the retention trial, which was identical to sample one every day. 

Latencies were our main dependent variable. The learning criterion was a lower escape 

latency on retention trials compared to sample trials.

Cytochrome oxidase histochemistry 

Ninety minutes after the behavioral task in the MWM ended, the animals were 

decapitated. Brains were removed, frozen rapidly in N-methyl butane (Sigma-Aldrich, 

Madrid, Spain), and stored at -40 ºC until processing with quantitative CCO 

histochemistry, as described by González-Lima and Cada (Gonzalez-Lima and Cada, 

1994). Coronal sections (30 μm) of the brain were cut at -22 ºC in a cryostat (Leica 

CM1900, Germany) and mounted on non-gelatinized slides. To quantify enzymatic 

activity and control staining variability across different baths, sets of tissue homogenate 

standards from the Wistar rats' brains (12 brains were used to create tissue homogenate, 

and they were treated in the same way as experimental brains) (Poremba, Jones, & 

Gonzalez-Lima, 1998) were cut at different thicknesses (10, 30, 50 and 70 μm). These 

tissues were included with each bath of slides to generate a single regression equation 

between CCO activity and the optical density of the sections for the subsequent 

comparison of all the tissues in the present experiment. The sections and standards were 

incubated for 5 minutes in 0.1 phosphate buffer with 10% (w/v) sucrose and 0.5 (v/v) 

glutaraldehyde, pH 7.6. Next, baths of 0.1M phosphate buffer with 10% (w/v) sucrose 

were given for 5 minutes each. Subsequently, 0.05M Tris buffer, pH7.6, with 275 mg/l 

cobalt chloride, 10% w/v sucrose, and 0.5 (v/v) dimethyl-sulfoxide was applied for 10 

min. Then, sections and standards were incubated in a solution of 0.0075% cytochrome 

c (w/v), 0.002% catalase (w/v), 5% sucrose (w/v), 0.25% dimethylsulfoxide (v/v), and 

0.05% diaminobenzidine tetrahydrochloride (w/v) (Sigma-Aldrich, Madrid, Spain) in 
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800ml of 0.1M phosphate buffer at 37ºC for 1h, in agitation to provide a homogenous 

oxygen distribution. The reaction was stopped by fixing the tissue in buffered formalin 

for 30 minutes at room temperature with 10% (w/v) sucrose and 4% (v/v) formalin. 

Finally, the slides were dehydrated, cleared with xylene, and cover-slipped with 

Entellan (Merck, Germany).

CCO optical density quantification 

The CCO histochemical staining intensity was quantified by means of densitometric 

analysis, using a computer-assisted image analysis workstation (MCID, Interfocus 

Imaging Ltd., Linton, England) composed of a high precision illuminator, a digital 

camera, and a computer with specific image analysis software. The mean optical density 

(OD) of each region was measured on bilateral structures using three consecutive 

sections in each subject. In each section, four non-overlapping readings were taken, 

using a square-shaped sampling window adjusted for each region size (See Figure 3C). 

A total of twelve measurements were taken per region by an investigator who was blind 

to the groups. These measurements were averaged to obtain one mean per region for 

each animal. OD values were then converted to CCO activity units, determined by the 

enzymatic activity of the standards measured spectrophotometrically (Gonzalez-Lima & 

Cada, 1994). The regions of interest were anatomically defined according to Paxinos 

and Watson's atlas (Paxinos & Watson, 2005). The regions of interest and the distance 

in mm of the regions counted from bregma were: +3.20mm for the infralimbic (IL), 

prelimbic (PL), and cingulate (CG) cortices; -1.20 mm for the CA1, CA3, and dentate 

gyrus (DG) subfields of the dorsal HC; -2.04 for anterodorsal, anteroventral, and 

anteromedial (AD, AV, AM) thalamic nucleus; and -4.56 mm for the supramammillary 

(SuM),  medial medial mammillary (MMM), and medial lateral mammillary (MML).

Statistical Analysis
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The data recorded were analyzed using the SigmaStat software version 3.2 (Systat, 

Richmond, USA). In all cases, significance was accepted when p<0.050. Mauchly's test 

was used to test the sphericity assumption in repeated-measures analysis. Because the 

data met the sphericity assumption, uncorrected F tests were presented.

Behavioral data

We analyzed escape latencies for each day (sample and retention) separately for each 

group, using a paired T-test. If the data did not meet the normality assumption, we used 

Wilcoxon’s Signed Rank test. In addition, we performed two further t-test analyses with 

total means for sample and retention in each group.

CCO activity

Group differences in CCO activity measured in each brain region were evaluated by 

one-way ANOVAs. A Kruskal–Wallis one-way analysis of variance of Ranks (H) was 

performed when equal variance failed. When statistical significance was found, Tukey's 

test was applied as a post-hoc test when ANOVA was used, and Dunn’s method when 

Kruskal–Wallis was used. 

Correlations

We performed the analysis of interregional correlations by calculating Pearson product-

moment correlations. In order to avoid errors due to an excessive number of significant 

correlations in small sample sizes, we used a ‘jackknife’ procedure (McIntosh and 

Gonzalez-Lima, 1994), based on the calculation of all the possible pairwise correlations 

resulting from removing one subject each time, and taking into consideration only those 

correlations that remained significant (p < 0.05) across all possible combinations.

Results 
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Working memory task

We measured escape latencies during WM training in the MWM. We compared sample 

trial escape latency times with retention trial escape latencies between groups on each 

day of training. The animal facility reared (AFR) group (n=12) showed lower retention 

escape latencies than sample latencies. They learned the task on day 4, which means 

that they reached the learning criterion (lower escape latency on retention trials 

compared to sample trials). (D4 t (11): 3,042, p = 0.011), and this learning was 

maintained until day 6 (D6 t (11): 2.648, p = 0.023). They did not reach the learning 

criterion on the first three days (D1 t (11): 2.024, p = 0.068; D2 Z: -1.752, p = 0.078; D3 t 

(11): 1.434, p = 0.179) (Figure 2A). 

The MS group did not show learning on any training day (D1 t (5): 1.813, p = 0.097; D2 

t (11): 0.219, p = 0.831; D3 t (11): 0.967, p = 0.454; D4 t (11): -1.017, p = 0.331; D5 t (11):  

1.505, p = 0.161), except the last one (D6 t (11): 2.646, p = 0.023) (Figure 2B). 

CCO activity

We measured CCO activity as a regional marker of brain energy metabolism. We used 

CCO histochemistry and optic densitometric analysis over 12 brain areas. First, we 

checked differences between groups using a one-way ANOVA, and then we explored 

possible functional networks using Pearson correlations between areas. Regarding 

energy metabolism, we found increased metabolic activity in the MS groups in the CG 

(H (1) = 5.143, p= 0.023), AD (H (1) = 4.710, p= 0.03), AM (F (1, 21) = 9.347, p= 0.006), 

and SuM (F (1, 21) = 5.207, p= 0.034). However, brain metabolism of MMM in MS 

subjects decreased (H (1) = 13.183, p< 0.001). No differences between groups were 

found in the rest of the probed areas: IL (H (1) = 1.286, p= 0.257), PL (H (1) = 1.587, p= 

0.208), AV (F (1, 21) = 3.544, p= 0.074), CA1 (F (1, 22) = 3.578, p= 0.072), CA3 (F (1, 22) = 
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0.121, p= 0.731), DG (F (1, 22) = 1.675, p= 0.210), and MML (H (1) = 0.397, p= 0.529). 

See figure 3.B and table 1&2 for Pearson correlation results.

Discussion 

MS leads to WM delayed acquisition in males when stress is present in early stages of 

neurodevelopment (from PND 1 to 21). Previous literature indicates that acute stress 

facilitates WM (Barha et al., 2007); however, when stress becomes chronic, as in early 

life stress, studies have shown that it leads to long-term WM impairments when early 

restraint stress plus adult stress are present (two-hit approach) (Jin et al., 2013) or adult 

chronic stress (Mizoguchi et al., 2000). It has been consistently reported that early 

perturbations can lead to long-term behavioral alterations (Bouet et al., 2011; Zhang and 

Cai, 2008) that can be noticed as early as the adolescent period in WM (Viola et al., 

2019). Here we propose that male rats submitted to a long period of MS (4h per day 

during the entire pre-weaning phase) will display delayed acquisition of a WM task, 

which means that the WM skill, and probably its related functional networks, develop 

differently in these subjects.

Some authors have claimed that MS affects WM in adulthood in stress-susceptible mice 

strains (Feifel et al., 2017). However, although some genotypes (polymorphisms of 

corticotropin releasing factor receptor 1) are more sensitive to early stress than others, 

severe early stress produces WM disturbances independently of the previous genotype 

(Fuge et al., 2014). Nonetheless, other authors found WM deficits in mice submitted to 

post-weaning isolation procedures, but not after MS (Bouet et al., 2011). The rationale 

behind this apparent controversy lies, in our opinion, in the MS model used. These 

authors used maternal deprivation (24h PND 9) and not prolonged MS (for 21 days), 

which represents sustained and repeated episodes of early stress. In our view, this 

repeated model could emulate the human scenario better. 

Page 12 of 29

URL: http://mc.manuscriptcentral.com/gstr  Email: ISTS-peerreview@journals.tandf.co.uk

Stress

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

12

Other memory types, such as reference memory, are not impaired after chronic stress 

exposure, as studies have shown (Banqueri et al., 2017b; Mizoguchi et al., 2000). This 

could mean that WM impairments after MS might be specific. The model of MS that we 

use could be specifically affecting PFC-related skills such as cognitive flexibility 

(Banqueri et al., 2018) and, as we propose here, WM. However, MS would not lead to a 

general memory impairment, with navigational and spatial memory skills remaining 

intact.

CCO has repeatedly been used as a neural marker of learning and memory neural 

substrate changes related to different behavioral performance. This marker shows the 

differences between regional oxidative metabolism, and these changes denote increases 

and decreases in the activity and function of brain areas (Fidalgo et al., 2014; Méndez-

López et al., 2009c; Poremba et al., 1998; Rojas et al., 2012; Sampedro-Piquero et al., 

2013). We observed several brain areas that could have been functionally impaired in 

these subjects. 

First, CG that belong to the mPFC, which has been repeatedly related to WM (Hanson 

et al., 2012; Yuen et al., 2009), may be altered. In this prefrontal cortex, MS subjects 

displayed greater metabolic activity, probably indicating, finally, the acquisition of the 

task. After the acquisition of a given task, the energy needed to complete it decreases 

(Conejo et al., 2010; Méndez-López et al., 2009a). The AFR animals, which learned the 

task 3 days earlier, showed brain activity levels that were already normalized. MS 

subjects only showed success on a spatial WM memory task on day 6 of training 

(Figure 2B), whereas AFR rats showed learning from day 3. Therefore, MS can lead to 

WM deficits in adulthood, perhaps mediated by alterations in the PFC. Remarkably, the 

opposite scenario to parental neglect, animal models of early stimulation such as 

neonatal tactile stimulation, produce long-term PFC potentiation along with improved 
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spatial WM (Zhang and Cai, 2008). One explanation for WM impairment related to CG 

could be a decrease in interneurons in this brain region. Particular functions of this 

population of cells in the PFC have been related to proper cognitive function (do Prado 

et al., 2016). Indeed, accumulative stress has been shown to produce impairments in 

spatial WM, along with smaller PFC volumes, in humans (Hanson et al., 2012). Both 

cellular and chemical disturbances have been proposed to explain these PFC changes 

after early life stress. One neurochemical mechanism related to cognitive impairments is 

PFC dopaminergic dysfunction because the mesocortical dopamine path is vulnerable to 

stress. Chronic stress produces an increase in D1 receptor density in this area, and 

antidepressants with dopamine-related actions improve WM in depressed subjects 

(Mizoguchi et al., 2000).  

In addition to CG, the anterior thalamus areas, AD and AM, showed an increase in 

oxidative metabolism. The WM task in the MWM has a strong spatial navigation 

aspect, and the anterior thalamus, as a key node in Papez’s circuit, is a key region for all 

spatial navigation tasks (Aggleton et al., 2010; Jankowski et al., 2013). Using 

scopolamine, which impairs acetylcholinergic neurotransmission, known for having a 

pivotal role in learning and memory, decreased activity in the anterior thalamus was 

found. This decreased metabolism correlated with WM impairment (Méndez-López et 

al., 2011), showing that correct functioning of the anterior thalamus is necessary for 

WM task acquisition.

Interestingly, no changes in HC were found. It is known that the PFC influences adult 

HC neurogenesis; in fact, PFC activity after a WM task can decrease HC proliferation 

rates (Schaefers, 2015). Hence, we also measured CCO units in the HC, which is also 

frequently associated with spatial WM. An intact PFC is essential for WM, and the HC 

represents another crucial node in the WM function network (Evans and Schamberg, 
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2009). However, we observed no changes in this area, and we could hypothesize that 

altered HC functioning could be helping the delayed acquisition. Early stress challenges 

and hippocampal impairment have been consistently found in both humans and rodent 

models (Blankenship et al., 2019; Nouri et al., 2020).

Finally, we also explored MB. These hypothalamic nuclei are consistently related to 

spatial memory tasks (Méndez et al., 2008; Vann, 2010; Vann and Aggleton, 2004). 

Using an analysis of early gene activity as an approach, some groups have found a 

relationship between SuM and WM (Santín et al., 2003). In SuM, we found the same 

pattern of increased activity in the MS group. However, in MMM, we saw the opposite 

pattern; MS showed less activity than AFR. MMM lesions have been shown to lead to 

WM impairments (Méndez-López et al., 2009b) because this area is essential to spatial 

WM in rodents, which could explain why this region is still very active even though 

AFR animals learned the task on earlier trials. In general, MS subjects that just learned 

the task showed an increase in all the areas needed to solve it, except the MMM. This 

delayed MMM recruitment could be one of the keys to the late acquisition of the task in 

MS animals.

MB, often neglected in WM studies, have been found to play a key role in spatial 

memory tasks that do not involve intense stressful components. They also provide the 

essential head direction information and help with the allocentric navigation (Kinnavane 

et al., 2018) needed for WM tested in the MWM. Hence, we propose that the 

differential energy expenditure found in MMM and SuM in MS subjects may be 

preventing task acquisition. This would make MB alterations a pivotal area in cognitive 

delays due to early life stress.

When we focus on CCO unit correlations between areas, which allow us to infer joint 

functional brain metabolic activity, AFR did not show any particular pattern of shared 
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activation between areas. We think this could be a sign of a well-acquired task that is 

not currently requiring too many brain resources. However, the MS functional network 

is still complex (Figure 3B), requiring the collaboration of the PFC, thalamus and MB, 

the areas usually required to successfully perform spatial WM tasks (Méndez-lópez et 

al., 2010; Méndez-López et al., 2009b), except for the HC, which is another explanation 

for their acquisition delay.

Early life stress compromises typical neurodevelopment. Nevertheless, this miswiring 

does not seem to be homogeneous, with the PFC-related cognitive skills being more 

damaged, such as cognitive flexibility (Banqueri et al., 2018) or WM. One possible 

limitation of our research could be the lack of a basal control group that we could use to 

measure the CCO activity prior to learning experience, to detect more precisely which 

CCO changes are due to the learning experience and which are related to the stress 

itself. We aimed to explore the neural substrates of stressed subjects while performing a 

WM task, and we found an overall hypermetabolism in classical related areas. Further 

studies are needed to more thoroughly explore metabolic and cellular changes after 

early stress in this network.
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Figure captions

Fig. 1:  A) Experimental timeline. PND: Postnatal day, MS: maternal separation, MWM: Morris Water Maze, S: 

Sacrifice. B) Representation of the different training days in a working memory task. C) Square shaped sampling 

frames of CCO histochemistry in the regions of interest. Each sampling frame was adjusted to the neuroanatomical 

shape of the given region of interest. Infralimbic (IL), prelimbic (PL), and cingulate (CG) cortices, CA1: Cornu 

Ammonis 1; CA3: Cornu Ammonis 3; dentate gyrus (DG, anterodorsal, anteroventral and anteromedial (AD, AV, AM) 

thalamic nucleus, supramammillary (SuM), medial medial mammillary nucleus (MMM), medial lateral mammillary 

nucleus (MML).

Fig. 2: Behavioral results. Escape latencies in MWM over days A) AFR group. This group acquired the task on day 4 

of training. B) MS group escape latencies. This group learned the task only on the last day. *p<0.05. AFR: Animal 

facility rearing. MS maternal separation. 

Fig. 3: CCO results. A) CCO units in the areas of interest. B) Functional network diagram of statistically significant 

Pearson correlations between areas in MS group.  *p<0.05. AFR: Animal facility rearing. MS maternal separation. 

Infralimbic (IL), prelimbic (PL), and cingulate (CG) cortices, CA1: Cornu Ammonis 1; CA3: Cornu Ammonis 3; dentate 

gyrus (DG, anterodorsal, anteroventral and anteromedial (AD, AV, AM) thalamic nucleus, supramammillary (SuM), 

medial medial mammillary nucleus (MMM), medial lateral mammillary nucleus (MML).
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A) Experimental timeline. PND: Postnatal day, MS: maternal separation, MWM: Morris Water Maze, S: 
Sacrifice. B) Representation of the different training days in a working memory task. C) Square shaped 
sampling frames of CCO histochemistry in the regions of interest. Each sampling frame adjusted to the 

neuroanatomical shape of the given region of interest. Infralimbic (IL), prelimbic (PL), and cingulate (CG) 
cortices, CA1: Cornu Ammonis 1; CA3: Cornu Ammonis 3; dentate gyrus (DG, anterodorsal, anteroventral 

and anteromedial (AD, AV, AM) thalamic nucleus, supramammillary (SuM), medial medial mammillary 
nucleus (MMM), medial lateral mammillary nucleus (MML). 
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Fig. 2: Behavioral results. Escape latencies in MWM over days A) AFR group. This group acquired the task on 
day 4 of training. B) MS group escape latencies. This group learned the task only on the last day. *p<0.05. 

AFR: Animal facility rearing. MS maternal separation. 
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Fig. 3: CCO results. A) CCO units in the areas of interest. B) Functional network diagram of statistically 
significant Pearson correlations between areas in MS group.  *p<0.05. AFR: Animal facility rearing. MS 

maternal separation. Infralimbic (IL), prelimbic (PL), and cingulate (CG) cortices, CA1: Cornu Ammonis 1; 
CA3: Cornu Ammonis 3; dentate gyrus (DG, anterodorsal, anteroventral and anteromedial (AD, AV, AM) 

thalamic nucleus, supramammillary (SuM), medial medial mammillary nucleus (MMM), medial lateral 
mammillary nucleus (MML). 
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Table 1: Shows the Pearson correlations between brain areas in the AFR group for all the structures studied. 
Significant correlations in bold. Each table cell shows the calculated Pearson’s correlation r value and the P 

level for the calculated correlation coefficient. Infralimbic cortex= IL, Prelimbic cortex=PL, Cingulate cortex= 
CG, Dentate Gyrus= DG, Anterodorsal Thalamus= AD, Anteroventral thalamus= AV, Anteromedial 

Thalamus= AM, Supramammilar=SuM, Medial Medial Mammillary= MMM, Medial lateral Mammillary= MML 
p<0.050 
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Table 2: Shows the Pearson correlations between brain areas in the AFR group for all the structures studied. 
No significant correlations were found. Each table cell shows the calculated Pearson’s correlation r value and 
the P level for the calculated correlation coefficient. Infralimbic cortex= IL, Prelimbic cortex=PL, Cingulate 
cortex= CG, Dentate Gyrus= DG, Anterodorsal Thalamus= AD, Anteroventral thalamus= AV, Anteromedial 
Thalamus= AM, Supramammilar=SuM, Medial Medial Mammillary= MMM, Medial lateral Mammillary= MML 
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