
J
H
E
P
0
8
(
2
0
2
0
)
0
4
0

Published for SISSA by Springer

Received: June 11, 2020

Accepted: July 7, 2020

Published: August 10, 2020

Nothing really matters
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1 Introduction

The possible decay of metastable spacetimes through gravitational instantons has a rich

history and far-reaching applications. Writ large, the possible instanton decay channels can

be grouped as Coleman-de Luccia tunnelling of a scalar field [1], the nucleation of charged

membranes via the Brown-Teitelboim mechanism [2], and the decay of spacetime itself

through Witten’s bubble of nothing [3]. These processes are of vital import to questions

regarding eternal inflation, the ability to populate different corners of the string landscape,

the implications for AdS/CFT in metastable spacetimes, as well as new cosmological model

building possibilities involving braneworld scenarios.

Within the context of string theory in particular, supersymmetry has been argued to

be a sufficient condition for non-perturbative stability thanks to the construction outlined

in [4]. However, more realistic and phenomenologically appealing string theory construc-

tions must account for a dynamical supersymmetry breaking mechanism. Historically,

the first steps in this direction were achieved in a field theory context in [5] by means of

the introduction of antiperiodic boundary conditions for fermions. Subsequently, in [6], a

spontaneous supersymmetry breaking mechanism was given a fundamental description us-

ing anti-branes. Finally, in [7], the aforementioned construction was coupled to gravity in

order to obtain a de Sitter vacuum with broken supersymmetry. In parallel, [8] also made

use of anti-branes as supersymmetry breaking sources to formulate a non-supersymmetric

example of the AdS/CFT correspondence.

Despite these seminal developments in the understanding of non-supersymmetric con-

structions, their reliability as solutions in a complete theory of quantum gravity has recently

been questioned. The set of prerequisites for a low energy effective description to have a

consistent completion in quantum gravity is often referred to as the “swampland conjec-

tures.” The original idea behind this philosophy was presented in [9], where the role of
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gravity as the weakest force is investigated. In more recent years a revival of this approach

has resulted in a number of (conjectured) consistency conditions that effective theories

should satisfy. We address the reader to, e.g. [10, 11] for a nice review of the topic.

In particular, it was argued in [12, 13] that all non-supersymmetric, perturbatively

stable AdS vacua should suffer from non-perturbative instabilities associated with sponta-

neous nucleation of non-extremal charged membranes. The authors of [12] further speculate

on the consequences of these instabilities for the putative dual field theory of such an AdS

vacuum. Despite a tiny probability of a single nucleation event, since the volume of AdS

space is infinite, its boundary would decay immediately. This suggests that the idea of

a non-supersymmetric holographic correspondence might be problematic. However, the

study of non-supersymmetric holography within a controlled effective description remains

an active topic of reasearch. Early attempts in this direction are discussed e.g. in [14, 15].

By adopting the approach of the swampland conjectures, the existence of metastable

de Sitter vacua within a consistent theory of quantum gravity has been called into question.

Specifically, in [16], it was conjectured that the slope of effective moduli potentials arising

from string compactifications can never be small whenever the sign of the corresponding

vacuum energy is positive. Additionally, in [17, 18], no-go theorems were proposed in

which controlled dS background geometries are ruled out whenever one restricts to time-

independent energy-momentum tensors as sources. If these conjectures are correct, they

may be reconciled with current observations by realizing dark energy in the form of a

quintessence supported by time-dependent scalar fields (see e.g. [19, 20]), or by effectively

describing it as a braneworld cosmology which is intrinsically evolving in time.

It is worth mentioning that, in the case of non-supersymmetric AdS vacua and holog-

raphy, as well as in the case of de Sitter vacua, the issue of their consistency is far from

settled. Therefore, it is important to attempt to construct counterexamples which can serve

as tests for conjectured UV consistency requirements. To this end, constructions like those

of [21] and [22, 23] may be important to the above discussion. As a caveat, note that these

examples all happen to rely on the existence of a strongly curved region in internal space

close to the location of the sources, where the supergravity description may not be reliable.

The main focus of this paper is the study of de Sitter slicings of higher dimensional

spacetimes, with or without a cosmological constant, as classical gravitational solutions.

From a purely technical viewpoint, constructing this type of backgrounds is a complicated

task due to the necessity of solving second order coupled differential equations without the

help of supersymmetry. The toolkit used here consists of the Hamilton-Jacobi formulation,

which allows us to recast the original problem into a set of first order conditions even

when supersymmetry is broken. The technical details required for the construction are

extensively spelled out in appendices A and B. From a physical perspective, these solutions

will provide a description of the semiclassical decay of vacua in arbitrary dimensions via

the nucleation of bubbles of nothing. Additionally, these bubble geometries may serve

as effective realizations of time-dependent cosmologies through a non-compact foliation of

higher dimensional spacetime featuring lower dimensional de Sitter slices.

In particular, we present a family of instantons, generalizing the bubble of nothing,

which lead to the decay of (D+ 1)-dimensional vacuum solutions of general relativity with
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(non-)zero values for the cosmological constant. As we will review in detail in section 2,

the bubble of nothing decay results in a compact dimension of the false vacuum shrinking

to zero size on the surface of a bubble which subsequently expands. Therefore the interior

spacetime degenerates, and as the bubble expands it destroys the original vacuum. Bubbles

of nothing present a relatively easy way of generating time dependent solutions and have

a rich phenomenology that can be extended to string vacua as explored in detail in [24].

It remains an open problem to understand the interpretation of the decay of asymptot-

ically AdS space in holography (see e.g. [25, 26].) It is unknown how to interpret the decay

in the dual field theory, or even if the decay invalidates the holographic correspondence

in unstable spacetimes [12]. Early work exploring bubbles of nothing in de Sitter slicing

of AdS including their relation to holography and black holes appear in [15, 27, 28]. Sig-

nificant progress was made in the interpretation of bubble of nothing decays of AdS [29],

and it remains a topic of future work to extend this understanding to other stringy decays

such as [30–32]. The solutions we present here have the virtue of being extremely simple,

and therefore may provide a useful playground for understanding such decay processes.

Furthermore the existence of this new family of decays will be instructive in the ongoing

work to extend these solutions to fully stringy decays [33, 34].

Even though our main focus is the decay of AdS, one can also consider the case of pos-

itive cosmological constant. If there exist metastable de Sitter vacua with slow decay rates,

these inflating vacua will produce new regions of de Sitter space faster than they can decay,

realizing eternal inflation. In an eternally inflating spacetime any probability to tunnel be-

tween different vacua will be realized eventually and the landscape of all connected vacua

can be probabilistically explored. This ability to populate different corners of a landscape is

a crucial component of the anthropic solution of the cosmological constant problem [35]. In

this context it is important to understand the relative rates of transition between different

vacua. As their name suggests, bubbles of nothing represent a dead end in the exploration

of a landscape and therefore have important consequences for the dynamics of eternal infla-

tion. Furthermore, it has been suggested that decays via a bubble of nothing could represent

the dominant channel in certain flux vacua [36]. An understanding of possible decay chan-

nels and rates is both crucial in order to accept the anthropic solution of the cosmological

constant problem, and will be of use in any attempt to place a measure on eternal inflation.

Finally, in the context of braneworld scenarios, these new decay channels present the

possibility of new constructions of a de Sitter phase for low energy observers confined to the

bubble wall [37–40]. Particularly due to their simplicity, the instanton geometries presented

here represent useful toy-models to extend the study of “braneworld” observers living on

“nothing” [41]. This philosophy is in line with a novel interpretation of stringy dS vacua

constructed by using infinite throats [42].

2 Instability of the Kaluza-Klein vacuum

In lieu of a full dynamical treatment of the possible ground states of a gravitational system

of a theory of quantum gravity, we use the semi-classical approximation to assess possible

quantum instabilities of the vacuum. In this context one looks at the decay of a spacetime
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background as a quantum tunnelling process described by a gravitational instanton. More

intuitively, the instanton provides the “classical picture” of a quantum process by which a

bubble spontaneously appears and expands in spacetime. This process is characterized by a

finite probability for nucleation and furthermore describes the subsequent time-dependent

dynamics which describe the conversion of the initial “false vacuum” into a new state inside

the bubble.

In this section we review the original results of Witten’s bubble of nothing, [3], where

the five-dimensional Kaluza-Klein (KK) vacuum, R1,3 × S1, is shown to have a non-

perturbative instability.1 Although this spacetime is a vacuum solution to Einstein’s

equations with zero energy, it has different asymptotic topology from the five-dimensional

Minkowski vacuum, R1,4. Therefore, a comparison of energies at infinity is meaningless

between these two spacetimes, and the positive energy theorem [43–45], which ensures the

full stability of R1,4 does not apply to R1,3 × S1.

It follows that instead of comparing asymptotically distinct spacetimes, one should

simply search for gravitational instantons describing the decay of the KK vacuum. Such

an instanton should be a real, smooth solutions of the Euclidean equations of motions

approaching the false vacuum at asymptotic infinity. In order for such a solution to con-

tribute to the semiclassical path integral it should additionally have a finite Euclidean

action SE |inst. Then, the quantum tunnelling process is possible with the decay rate per

volume of spacetime given by [46]

Γ/V ∝ e−∆SE ,

∆SE = SE |inst − SE |false

(2.1)

where ∆SE is often called the “bounce”.

The key idea of [3] is to use a double-analytic continuation of non-extremal black holes

in five dimensions to construct instantons in the KK vacuum. In particular, beginning with

the five-dimensional Schwarzschild black hole,

ds2 = −

(
1−

(
R

ρ

)2
)
dt2 +

dρ2(
1−

(
R
ρ

)2
) + ρ2ds2

S3 , (2.2)

one can find a non-singular Euclidean solution by Wick-rotating the time coordinate t→ iφ,

ds2
E =

(
1−

(
R

ρ

)2
)
dφ2 +

dρ2(
1−

(
R
ρ

)2
) + ρ2ds2

S3 , (2.3)

However, this solution is well-defined and smooth only for a radial coordinate ρ ∈ (R,+∞)

and when the coordinate φ is periodic with φ ∼ φ+ 2πR. Clearly, in the asymptotic limit,

ρ → +∞, the solution (2.3) approaches the Euclidean KK vacuum written in spherical

coordinates, i.e.

ds2
EKK = dφ2 + dρ2 + ρ2ds2

S3 , (2.4)

1This is done purely for pedagogical purposes since the main results of this paper are direct generaliza-

tions of [3]. Readers already familiar with [3] are invited to skip to the next section.
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where the KK radius, `KK, is identified with the period of the φ coordinate of the Euclidean

black hole, R = `KK.

The last requirement for this Euclidean solution to describe a bubble nucleation is that

it can be continued back to a real metric with Lorentzian signature along a time-symmetric

plane identified with τ = 0. Looking at the asymptotic form of the Euclidean metric (2.4),

it is clear that the analytic continuation has to be performed inside the S3 if we want to keep

intact the asymptotic structure of the KK vacuum. Moreover, parametrizing the S3 in the

usual way, ds2
S3 = dθ2 +sin2 θ ds2

S2 , the equator of the S3 provides a symmetric τ = 0 plane

via the analytic continuation θ → iτ + π
2 . In this way ds2

S3 → ds2
dS3

= −dτ2 + cosh2 τ ds2
S2

and the instanton metric (2.3) becomes

ds2
5 =

(
1−

(
R

ρ

)2
)
dφ2 +

dρ2

1−
(
R
ρ

)2 + ρ2ds2
dS3

. (2.5)

This background retains the restriction on the radial coordinate ρ ∈ (R,+∞), and is

non-singular and geodesically complete.

In the asymptotic limit, ρ→ +∞, we recover the KK vacuum, however in the interior,

the presence of the Schwarzschild warp factors and the range of ρ ∈ (R,+∞) indicate

that the (ρ, τ)-plane parametrizes the exterior region of a hyperbola of radius R. This

hyperbola is exactly a de Sitter manifold dS3 which describes a bubble expanding under

constant proper acceleration. At the surface ρ = R the KK direction, φ pinches off to zero

size, so that the interior of the bubble is dubbed “nothing.”

Therefore, the solution (2.5) constitutes an instanton describing a non-perturbative

instability of the KK vacuum which leads to a bubble of nothing expanding on a de Sit-

ter hyperbola and eventually “eating” the entire KK vacuum. The fact that this decay

will happen with probability equal to one in an infinite volume of space can be seen by

computing a finite difference in Euclidean actions

∆SE =
πR2

4G
(4)
N

. (2.6)

Since this analysis has been performed in the semi-classical approximation, we can only

trust the interpretation of the decay for values of R that are large with respect to the

Planck length, `Pl.

3 Bubbles of nothing and vacuum decay

In this section we extend the analysis of [3] to a larger class of instabilities in constant

curvature vacuum solutions in (D + 1)-dimensional General Relativity [47]. These vacua

differ from the “standard” KK vacua, such as the R1,3×S1 vacuum of [3], in their asymptotic

topology. In addition to the presence of a cosmological constant Λ, the main difference is an

asymptotic region described not by one “celestial sphere” but rather a product of spheres

in the corresponding Euclidean vacua. The zero-curvature case will describe a Ricci flat,
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zero-energy, vacuum solution and it will directly extend the 5d case studied in [3].2 In the

case of non-zero curvature we will find asymptotically locally AdS(dS) bubble geometries

which asymptote to metastable vacua of the form

ds2
D+1 =

(
1− kρ2

)
dφ2 +

(
D − 2

d− 1

)
dρ2

(1− kρ2)
+ ρ2

(
L2

dSd
ds2

dSd
+ L2

SD−d−1ds
2
SD−d−1

)
,

k =
2(D − 2)

D(D − 1)(d− 1)
Λ , (3.1)

where φ is the compact direction describing the KK circle with period3 2π`KK, and

ds2
dSd

(ds2
SD−d−1) is the line element for a d-dimensional de Sitter ((D− d− 1)-dimensional

sphere) with unit radius. The cosmological constant, Λ, measures the constant curvature

of the spacetime and is related to the Ricci scalar, R, for a given curvature radius, `, via

|Λ| = D(D − 1)

2`2
, R =

2(D + 1)

D − 1
Λ . (3.2)

These solutions represent non-singular and geodesically complete vacuum solutions (Rµν =
2

D−1Λgµν) when the following algebraic conditions

LdSd = 1, LSD−d−1 = LdSd

√
D − d− 2

d− 1
. (3.3)

are satisfied. Note that we need d ≥ 2 and D 6= d + 2 for the full (D + 1)-dimensional

solution to exist.

We point out that the case D = d+1 is peculiar. This correspond in fact to the case in

which the foliation with SD−d−1 is not present. In this case the vacuum (3.1) reproduce a

AdS topology when Λ is negative. When the additional SD−d−1 is present the geometry is

only locally AdSD+1. Moreover, as we will see, the 5d case studied in [3] can be recovered

when the second sphere is absent.

Continuing to a Euclidean metric, in analogy to section 2, we notice that the same

asymptotic behavior can be achieved in the ρ→∞ limit of a Euclidean black hole whose

horizon is the product of two spheres,

ds2
E,D+1 = f(ρ)dφ2 +

(
D − 2

d− 1

)
dρ2

f(ρ)
+ ρ2

(
ds2
Sd +

(
D − d− 2

d− 1

)
ds2
SD−d−1

)
,

f(ρ) = 1− kρ2 −
(
R

ρ

)D−2

.

(3.4)

In the Lorentzian black hole solution, there is a coordinate singularity at ρ = ρ0, where

f(ρ0) = 0. In order to ensure a smooth solution at ρ = ρ0 we examine the ρ → ρ0 limit

2Note that this is not possible for D ≤ 4 with Λ = 0 due to no-hair theorems, however these do not

apply for Λ 6= 0 or in higher dimensions as can be seen by a zoology of solutions e.g. collected in [48].
3Note that while this S1 is not technically compact in the case with non-zero curvature, we will still

refer to it as a KK circle.
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where the metric (3.4) takes the form

ds2
E,D+1 ≈

(
4(D − 2)

(d− 1)f ′(ρ0)

)(
dζ2 +

(d− 1)f ′(ρ0)2

4(D − 2)
ζ2 dφ2

)
+ ρ2

0

(
ds2
Sd +

(
D − d− 2

d− 1

)
ds2
SD−d−1

)
,

(3.5)

where ζ = (ρ − ρ0)1/2. It follows that there will be no conical defect in the (ζ, φ) plane if

we impose the condition

`2KK =
4(D − 2)

f ′(ρ0)2(d− 1)
. (3.6)

For the case Λ ≤ 0 this leaves the Euclidean solution (3.4) well-defined and non-singular

for ρ ∈ (ρ0,+∞). In the case of Λ > 0, due to a zero in the function f ′(ρ) and the use of

the static patch of de Sitter, the Euclidean geometry does not have an asymptotic region.

Henceforth, we will specialize to the case Λ ≤ 0.

In direct analogy to the construction of bubble of nothing in [3], we see that continuing

Sd to dSd will produce an instanton geometry describing an expanding bubble whose surface

is dSd × SD−d−1

ds2
D+1 = f(ρ)dφ2 +

(
D − 2

d− 1

)
dρ2

f(ρ)
+ ρ2

(
ds2

dSd
+

(
D − d− 2

d− 1

)
ds2
SD−d−1

)
. (3.7)

In appendix B the direct derivation of these solutions is furnished by providing a first-order

formulation of these dSd backgrounds through the Hamilton-Jacobi formulation sketched

in appendix A. The asymptotic geometry of these solutions reproduces the vacuum (3.1)

and the geometry is defined for values ρ ∈ (ρ0,+∞). Thus we have a generalization of the

bubble of nothing describing the decay of the vacuum solutions (3.1).

Notice that in the zero-curvature case the relation (3.6) simplifies to

`2KK =
4R2

(d− 1)(D − 2)
, (3.8)

where ρ0 = R. The case of [3] is thus recovered by imposing

D = 4 , d = 3 =⇒ R = `KK . (3.9)

3.1 Euclidean action

In order to establish that the bubble geometry (3.7) describes a non-perturbative instability

of the vacuum (3.1) we need to show that the change in Euclidean action is finite. It is well

known that the variational problem for gravity is not completely fixed by the requirement

of vanishing variations of the gravitational field at the boundary. In particular, in order

to reproduce Einstein equations one has to include into the action the Gibbons-Hawking-

York (GHY) term that takes in account those boundary contributions that are not fixed

by the requirement of vanishing variations at the boundary. In our considerations, both

the bubble of nothing in the instanton geometry and the conformal boundary at spatial

infinity constitute boundaries where the GHY term must be evaluated.
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The Euclidean action is given by

SE = SE, bulk + SE,GHY ,

SE, bulk =
1

2κ2
D+1

∫
dD+1xE

√
gD+1 (R− 2Λ) ,

SE,GHY =
1

κ2
D+1

∫
dDyE

√
hD θD ,

(3.10)

where in the GHY boundary term, the coordinates {y} parametrize any D-dimensional

boundary of the background described by the “bulk action” Sbulk, hD is the induced metric

and θD is the trace of the extrinsic curvature of the boundary.

We begin by computing SE,bulk for the metric (3.4) obtaining the following expression

SE,bulk =
1

2κ2
D+1

∫
dφ dρ dΩd dΩD−d−1

√
D − 2

d− 1

(
D − d− 2

d− 1

)(D−d−1)/2

ρD−1 4Λ

D − 1

=
π`KK

κ2
D+1

volSdvolSD−d−1

√
D − 2

d− 1

(
D − d− 2

d− 1

)(D−d−1)/2 4Λ

D − 1

∫
dρρD−1 , (3.11)

where dΩn is the measures on an n-spheres Sn. Note that this expression is valid for both

the Euclidean false vacuum (3.1), and also the instanton geometry (3.4), however the limits

of integration will differ. Particularly, computing the bulk contribution to the bounce (2.1),

we find

∆SE,bulk = C

(∫ ∞
ρ0

dρρD−1 −
∫ ∞

0
dρρD−1

)
= −C ρD0

D
, (3.12)

where C is the prefector to the integral in (3.11).

Now we compute the contribution from boundary terms. Both the bubble of nothing

and the asymptotic boundaries are surfaces of constant ρ. Therefore all contributions of

the GHY term to the action can be computed via induced metrics hµν = gµν − n̂µn̂ν and

the trace of the extrinsic curvature on surfaces normal to n̂µ = ρ̂. This gives a general

boundary term

SE,GHY =
1

κ2
D+1

∫
dφdΩd dΩD−d−1

(
D − d− 2

d− 1

)(D−d−1)/2√
f(ρ)ρD−1

×
√
d− 1

D − 2

−2(D − 1) +D
(
R
ρ

)D−2
+ 2Dkρ2

2ρ
√
f(ρ)

 ,

(3.13)

where the quantity on the second line is θD. Computing the boundary contributions to the

bounce, we note that at the asymptotic boundary, in the ρ→∞ limit, all dependence on

R vanishes and asymptotic contributions to the bounce (which are divergent in the case

of non-zero curvature) will cancel between the false vacuum and the instanton solution.

Furthermore, the contribution at the surface of the bubble of nothing should be taken with

a reversed sign to take into account the fact that the outward facing normal is −ρ̂. This
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gives a bounce contribution

∆SE,GHY = −SE,GHY|ρ0

= −π`KK

κ2
D+1

volSdvolSD−d−1

√
d− 1

D − 2

(
D − d− 2

d− 1

)(D−d−1)/2

× ρD−2
0

(
−2(D − 1) +D

(
R

ρ0

)D−2

+ 2Dkρ2
0

)
.

(3.14)

At this point we consider the cases of zero and non-zero curvature separately.

Zero curvature case: Λ = 0. In this case (3.12) vanishes, since it is proportional to Λ,

and ρ0 = R. Then the bounce is given by

∆S
(Λ=0)
E =

π`KK

κ2
D+1

volSdvolSD−d−1

√
d− 1

D − 2

(
D − d− 2

d− 1

)(D−d−1)/2

(D − 2)RD−2 . (3.15)

If we consider the case D = 4 and d = 3, the (D − d − 1)-sphere disappears, volSd = 2π2

and we reduce to the five-dimensional result (2.6) of [3] using the standard relation between

the Planck masses under dimensional reduction

1

κ2
D

=
1

8πGD
=

2π`KK

κ2
D+1

. (3.16)

It is instructive to consider the various length scales which contribute to this decay

rate. Ignoring D- and π-dependent factors and using κ2
D+1 ∝ `D−1

Pl , where `Pl is the

(D + 1)-dimensional Planck length, we can write

∆S
(Λ=0)
E ∝ `KK

`Pl

(
R

`Pl

)D−2

∝
(
R

`Pl

)D−1

, (3.17)

where in the second relation we have used ρ0 = R and (3.8). Thus, we have a manifestly

positive bounce that will be large whenever the semiclassical approximation is valid, giving

rise to an exponentially suppressed decay rate.

Non-zero curvature case: Λ < 0. In this case we have contributions both from the

bulk and boundary in the bounce; combining (3.12) and (3.14) we find the following

∆S
(Λ 6=0)
E =

π`KK

κ2
D+1

volSdvolSD−d−1

√
d− 1

D − 2

(
D − d− 2

d− 1

)(D−d−1)/2

×
[
2(D − 1)ρD−2

0 − 2(D + 1)kρD0 −DRD−2
]

=
π`KK

κ2
D+1

volSdvolSD−d−1

√
d− 1

D − 2

(
D − d− 2

d− 1

)(D−d−1)/2

×
[
(D − 2)RD−2 − 4kρD0

]
,

(3.18)

where in passing to the second equality we have rewritten the term in square brackets using

the fact that f(ρ0) = 0. We see that the first term reproduces the zero-curvature case and

the second term gives a contribution proportional to Λ.
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Looking at the scales involved we find

∆S
(Λ 6=0)
E ∝ `KK

`Pl

((
R

`Pl

)D−2

+
4

D − 2

(
ρ0

`Pl

)D−2 (ρ0

`

)2
)
. (3.19)

Hence, for the case Λ < 0, the decay rate is always exponentially suppressed when the

semiclassical approximation is valid.

3.2 Properties of the decay

First, consider the zero-curvature case by recalling some energy considerations of [3]. Since

any decay process has to preserve energy, it follows that the 5d spacetime (2.5) must have

zero energy and this means that a positive energy theorem for the R1,3 × S1 vacuum does

not exist: there exists a solution with zero energy asymptotically approaching R1,3 × S1,

and this is exactly what allows the vacuum to decay. This fact can be seen by looking at the

surface integral defining the energy. In particular, taking the zero-time surface at τ = 0,

the asymptotics of (2.5) gives contributions to the geometry of R1,3 × S1 of the order ρ−2

and it can be shown that, for a four-dimensional observer, only terms of the order ρ−1 give

positive contributions to the energy of the vacuum. This argument can be extended to our

(D + 1)-dimensional backgrounds (3.7). For a (D > 4)-dimensional observer, the relevant

contributions to the energy of the false vacuum (3.1) have to be of the order ρ−(D−3).

Therefore, energy is conserved during the decay since corrections coming from the bubble

geometry (3.7) are of the order ρ−(D−2).

The above discussion is related to the intrinsic KK structure of the vacuum (3.1). The

radius of the compact dimension `KK, which provides an infrared cut-off for the (D + 1)-

dimensional theory, defines a UV cut-off for an effective lower-dimensional theory. In par-

ticular, the physics experienced by a D-dimensional observer will be governed by gravity

and a running scalar.4 In the asymptotic regime of the bubble geometry, the D-dimensional

background is given by a Minkowski spacetime without the portion corresponding to the

interior of the hyperbola with radius R. Moving into the “bulk” and approaching the

boundary, this observer experiences a singular geometry. This singular behavior is consis-

tently resolved by taking the point of view of a (D + 1)-dimensional observer who sees a

KK geometry asymptotically and a smooth geometry in the “bulk”. The corrections to the

energy of the (D+1)-vacuum (3.1) coming from (3.7) will then give positive contribution to

the “incomplete” effective D-dimensional theory, and meanwhile, they will leave the energy

of the vacuum of the higher-dimensional theory intact. Interestingly, this D-dimensional

description with a running scalar field can also used as an example in which to study the

Swampland distance conjecture [49, 50].

If we include in this discussion the bubble geometries with constant curvature, we point

out that the key property characterizing these decays is the change of topology [3]. At the

time of nucleation, τ = 0, the vacuum (3.1) is foliated throughout the ρ direction by surfaces

of topology S1×Sd−1×SD−d−1. Meanwhile, in the instanton geometry (3.7), although the

asymptotic geometry is the same, by examining the behavior near the bubble (3.5) we see

4See appendix B for the detailed analysis.
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that the topology is given by R2 × Sd−1 × SD−d−1. The change of topology is intimately

related to the fact that the instability has been obtained by a double analytical continuation

of a non-extremal black hole and it has very interesting consequences when one introduces

spinors. Particularly, the loss of the S1 factor between the topology of the vacuum and

the bubble geometry represents to decay from a space that is not simply connected, to one

that is. While a simply connected space has a unique choice of spin structure, the vacuum

has non-trivial fundamental group and therefore spinors are defined up to a phase α

ψ(x, φ) =
∑
n

ψn(x) e
i

`KK
(n− α

2π )φ
. (3.20)

The existence of covariantly constant spinors imposes α = 0 while generally, the unique

spin structures on spheres requires that α = π (anti-periodic boundary conditions) [3, 5]

in the instanton geometry. This consideration implies that the instanton geometry does

not contribute to the path integral of theories described by covariantly constant spinors.

Therefore, with suitable boundary conditions on fermions, we can “cure” the quantum

instability of the vacuum (3.1) and, moreover the “stable” boundary conditions correspond

exactly to the requirement of the existence of covariantly constant spinors.

As already mentioned, the bubble geometries (3.7) describe (locally) AdS spacetimes

in their asymptotics when Λ < 0. The situation including a SD−d−1 foliation is particularly

interesing since some contributions to the geometry associated with this further foliation

are present at the boundary. This implies that, even though the asymptotic geometry is

locally AdSD+1, globally it is not. This fact strongly suggests the possibility to extend

these backgrounds to theories in which some p-form gauge fields are allowed to wrap the

spheres realizing the foliations. In this sense one could provide a suggestive interpretation

of these non-perturbative decays of AdSD+1 vacua into bubbles of nothing by starting

from non-extremal p-branes and double-analitically continuing them, in analogy to what

is usually done with non-extremal black holes. Such an analysis, if performed in 10d or

11d supergravities, could provide strong insights regarding the nature of the instabilities

of string vacua in relation to de Sitter geometries describing the dynamics of their decays.
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A Hamilton-Jacobi formulation

In this appendix we summarize the Hamilton-Jabobi formulation of classical dynamical

systems. This formulation of classical mechanics turns out to be very useful to construct

solutions in (super-)gravity since it provides a ‘first-order formulation” for (non)-extremal
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gravity backgrounds (see for example [51–59]). In particular the main idea consists in

formulating the variational principle of a system by rewriting the action as a sum of squares.

The vanishing conditions of each of these squares constitutes a set of first-order differential

equations whose solutions are automatically solutions of the equations of motion. More

concretely, let’s consider a system described by the following action

S(q, λ) =

∫
dλL(q, q̇) ,

L(q, q̇) =
1

2
Gij q̇iq̇j − V (q) ,

(A.1)

where λ is the “time” parameter and (qi, q̇i) are the dynamical variables of the system, i.e.

the coordinates of the configuration spaces. By Legendre transform one can easly deduce

also the Hamiltonian

H(p, q) =
1

2
Gijpipj + V (q) ,

pi =
∂L

∂q̇i
= Gij q̇i .

(A.2)

The entire method is based on the introduction of a function of the coordinates F (q) called

“superpotential” or “Hamilton-Jacobi principal function” encoding all the informations

needed to describe the dynamics of the system. In particular F (q) is defined by the following

conditions

H(∂qF, q) +
∂S

∂λ
=

1

2
Gij∂iF∂jF + V − E = 0 ,

pi = ∂iF ,
(A.3)

where S(q) = F (q) − λE with E constant. The first equation is called “Hamilton-Jacobi

equation” and can be used to rewrite the action as a sum of squares. In particular if we

use it to express V (q) in (A.1) in terms of F (q) and we complete the squares, we get

S =

∫
dλ

[
1

2
Gij

(
q̇i − Gik∂kF

)(
q̇j − Gjl∂lF

)
+

d

dλ
(F − Eλ)

]
. (A.4)

Up to a total derivative, it is immediate to see that the solutions of the system of first-order

equations,

q̇i − Gij∂jF , (A.5)

extremize the action and then are solutions also the equations of motion. We point out that

when this method is applied in field theory, the dynamical variables describing a particular

configuration of fields have to be considered as the q coordinates of a classical system.

Once one is able to find an “effective lagrangian5” reproducing the equations of motion,

the resolution of the Hamilton-Jacobi equations will produce automatically the first-order

equations. The crucial point is that the parametrization used to solve the Hamilton-Jacobi

equations will determine the explicitly form of the first-order equations. This is coerent with

the supersymmetric case in which the SUSY variations of fermions are explicit dependent

on the parametrization of the background.

5This is not always an immediate procedure. In many cases, especially when gauge fields are included, the

1d effective lagrangian cannot be obtained just by plugging the ansatz for the fields inside the total action.
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B First-order formulation for dS foliations

In this section we would like to present the explicit derivation6 of the geometries (3.4) via

the Hamilton-Jacobi formulation introduced in appendix A As mentioned in section 3.2,

one can study the decay of the (D+1)-dimensional vacua (3.1) by considering the dynamics

of a scalar field coupled to a D-dimensional singular background. In particular, a good

lower-dimensional description of the bubble geometries (3.7) can be obtained by setting to

zero the KK vector and just by considering a scalar field Φ in D dimensions. We will start

by connecting a class of D-dimensional backgrounds of the type,

ds2
D = dr2 + e2U(r)

(
L2

dSd
ds2

dSd
+ L2

SD−d−1ds
2
SD−d−1

)
,

Φ = Φ(r) ,
(B.1)

to the (D + 1)-dimensional KK vacuum by reducing on a circle via the KK ansatz,

ds2
D+1 = e2αDΦds2

D + e2βDΦdφ2 ,

αD =
κD√

2(D − 1)(D − 2)
and β = −(D − 2)αD ,

(B.2)

where the coordinate φ is periodic with φ ∼ φ+2π `KK . The corresponding D-dimensional

action has the form

SD =
1

2κ2
D

∫
dDx
√
−gD

(
RD −

κ2
D

2
(∂Φ)2 − 2V (Φ)

)
, (B.3)

where κ2
D+1 = 2π `KK κ

2
D and

V (Φ) = −D(D − 1)

2 `2
e2αDΦ . (B.4)

Here, and in the following we specialize to the case Λ < 0, however the Λ = 0 case can

always be recovered by taking l→∞.

Let’s find an explicit solution for the D-dimensional backgrounds (B.1) following the

procedure outlined in appendix A. As we mentioned in section 3, the consistency of the

equations of motion of (B.3) requires that we need to impose the following constraint on

the radii of dSd and of SD−d−1,

LSD−d−1 = LdSd

√
D − d− 2

d− 1
. (B.5)

One can show that the equations of motion of (B.3) can be reproduced by the following

effective Lagrangian

Leff = e(D−1)U

(
(D − 1)(D − 2)(U ′)2 −

κ2
D

2
(Φ′)2 +

(d− 1)(D − 1)

L2
dSd

e−2U − 2V (Φ)

)
.

(B.6)

6We point out that the perspective presented in this appendix may be of interest as a toy model for the

research of non-extremal solutions in dimensional supergravity.
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Introducing the conjugate momenta πU = ∂U ′Leff and πΦ = ∂Φ′Leff , one immediately

obtains the effective Hamiltonian of the system,

Heff = e−(D−1)U

(
π2
U

4(D − 1)(D − 2)
−

π2
Φ

2κ2
D

)
− (d− 1)(D − 1)

L2
dSd

e(D−3)U + 2V (Φ)e(D−1)U .

(B.7)

Comparing Heff with the equations of motion, we see that the Hamiltonian constraint

has the form Heff = 0. By introducing a prepotential F = F (U,Φ) such that πU =

∂UF and πΦ = ∂ΦF , we obtain the Hamilton-Jacobi equation by specifying the general

expression (A.3)

(∂UF )2

4(D − 1)(D − 2)
− (∂ΦF )2

2κ2
D

− (d− 1)(D − 1)

L2
dSd

e2(D−2)U − D(D − 1)

`2
e2(D−1)U+2αDΦ = 0 .

(B.8)

A solution of (B.8) can be obtained by taking inspiration from [59] where the Hamilton-

Jacobi equation is solved for general non-extremal AdS black holes in the Einstein-Maxwell

theory. In particular one can verify that

F (U,Φ) = c e(D−2)U
(
e−αD(D−2)Φ + ν eαD(D−2)Φ

)
+

(D − 1)2

c l2
eD(U+αDΦ) , (B.9)

where c is a real integration constant and

ν =
(d− 1)(D − 1)2

c2L2
dSd

(D − 2)
. (B.10)

We point out that a generic choice of c gives rise to one-parameter family of solutions from

the D-dimensional point of view. However only a particular value of this constant will

reproduce the (D + 1)-dimensional smooth bubble geometry written in (3.7).

The first-order equations can be easly obtained by comparing the definition of the

conjugate momenta, πU = ∂U ′Leff and πΦ = ∂Φ′Leff , with the expression πU = ∂UF and

πΦ = ∂ΦF . In this way one obtains

U ′ =
e−(D−1)U

2(D − 1)(D − 2)
∂UF (U,Φ) ,

Φ′ = −e
−(D−1)U

κ2
D

∂ΦF (U,Φ) .

(B.11)

Finally one can show that (B.11) imply the all the equations of motion. The equa-

tions (B.11) can be intregrated out by introducing the new dynamical variable

ρ = eU+αDΦ . (B.12)

In this way, by taking the ratio of the two equations (B.11), we get

dΦ

dρ
= − 1

2αDρ
+ e2(D−2)αDΦ

(
ν

2αDρ
+

D(D − 1)2

2c2 `2 αD(D − 2)
ρ

)
, (B.13)
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that it is solved by

eΦ =

(
ν +

(D − 1)2

c2 `2
ρ2 +

C0

ρD−2

)− 1
2(D−2)αD

, (B.14)

where C0 is a positive integration constant. From (B.12) we can work out the expression

for U ,

eU = ρ

(
ν +

(D − 1)2

c2 `2
ρ2 +

C0

ρD−2

)− 1
2(D−2)

, (B.15)

and, finally, by using (B.2) to uplift to D+1 dimensions, we obtain the following background

ds2
D+1 =

(
ν +

(D − 1)2

c2 `2
ρ2 +

C0

ρD−2

)
dφ2 +

(
(D − 1)2

c2

)
dρ2

ν + (D−1)2

c2 `2
ρ2 + C0

ρD−2

+ ρ2L2
dSd

ds2
dSd×SD−d−1 ,

(B.16)

where ds2
dSd×SD−d−1 = ds2

dSd
+
(
D−d−2
d−1

)
ds2
SD−d−1 . If we require that the metric (B.16) has

to reproduce the (D + 1)-dimensional Minkowski vacuum when C0 = 0 and ` → +∞, we

obtain that

ν = 1⇐⇒ c = (D − 1)

√
d− 1

D − 2
L−1

dSd
. (B.17)

From this condition we can finally recast the metric into the following form

ds2
D+1 =

(
1 +

(
D − 2

d− 1

)
ρ2

l2
−
(
R

ρ

)D−2
)
dφ2 +

(
D − 2

d− 1

)
dρ2

1 +
(
D−2
d−1

)
ρ2

l2
−
(
R
ρ

)D−2

+ ρ2ds2
dSd×SD−d−1 , (B.18)

where we absorbed the dependence on C0 and LdSd by introducing the positive parameter

R. It is manifest that the solution (B.18) reproduces (3.7) in for Λ < 0. Therefore the

vacuum decay via a bubble of nothing can be captured using a tunneling scalar field in one

less dimension.
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