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Abstract. Neighbourhoods of precise probabilities are instrumental to per-
form robustness analysis, as they rely on very few parameters. Many such
models, sometimes referred to as distortion models, have been proposed in the
literature, such as the pari mutuel model, the linear vacuous mixtures or the
constant odds ratio model. This paper is the �rst part of a two paper series
where we study the sets of probabilities induced by such models, regarding
them as neighbourhoods de�ned over speci�c metrics or premetrics. We also
compare them in terms of a number of properties: precision, number of ex-
treme points, n-monotonicity, behaviour under conditioning, etc. This �rst
part tackles this study on some of the most popular distortion models in the
literature, while the second part studies less known neighbourhood models and
summarises our �ndings.
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1. Introduction

The most popular way to model uncertainty about some quantity or about the
outcome of an experiment is by means of probability measures. However, their
estimation is not always accurate nor reliable, as they may be obtained from data
whose quality and quantity vary (one may think of di�erent levels of noise, of im-
balanced data sets, . . . ), or from experts whose judgements we trust only partially.
As some inferences and decisions drawn from such probabilities may be sensitive
to small changes of the estimated probabilities, being able to perform robustness
analysis is essential in critical applications. One way to perform such an analysis
is to explore in a principled way neighbourhoods around the precise estimates, by
de�ning what is usually referred to as a distortion model. These have been applied
for example in the analysis of graphical models [9, 14], in reinforcement learning [12]
or in regression problems [30]. This paper is the �rst of a two-paper study that
o�ers a uni�ed view of such models and performs a systematic study of some of
their properties.

There are two basic procedures to determine a distortion model:

• The �rst one is to take the set of probabilities that are close to the original
precise one under some criteria. We may for instance consider convex com-
binations with a set of probability measures where the weights represent
the amount of con�icting data; assume that there is some bounded error
when reporting the values of the probability distribution; or simply work
with those measures at a given distance from the original model. In all
those cases, we end up with a set of probability measures, usually called
neighbourhood model [13, 16, 25, 26, 29]. Under some conditions, this set is
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equivalent to the functional that we obtain by taking lower envelopes. This
latter functional is a non-additive measure that is a coherent lower proba-
bility in the sense of Walley [32], and that is usually easier to handle than
the dominating set of probabilities. This method also connects distortion
models with the theory of imprecise probabilities.

• The second procedure consists in directly transforming the initial proba-
bility measure by means of a function on its set of values [3, 4, 5, 27, 33],
that satis�es some properties such as being increasing and/or convex. This
procedure also produces a lower probability, but the interpretation of the
resulting function may be more involved.

By means of these two procedures, a number of distortion models have been pro-
posed in the literature [2, 7, 15, 32], such as linear vacuous mixtures, the pari mutuel
model, etc. However, the problem of choosing an appropriate distortion model for a
given situation is still somewhat unresolved. Our goal in this study is to contribute
to the solution by analysing and comparing a number of distortion models from the
literature. We shall �rst of all show that those distortion models obtained from the
second procedure can be represented by means of the �rst procedure, thus unifying
the two approaches. Then, we will compare a few models by means of: (a) the
amount of imprecision they introduce in the original model for a �xed distortion
factor; (b) the features of the distorting function that characterises the neighbour-
hood model; (c) the properties of the coherent lower probabilities they determine;
(d) the complexity of their associated sets of probabilities, in terms of their number
of extreme points; and (e) their behaviour under conditioning. Throughout, we
focus on neighbourhood models that induce polytopes in the space of probability
distributions, meaning for instance that distortion models induced by the Euclidean
norm or the Kullback-Leibler divergence [12] are out of the scope of the present
study. In particular, the Kullback-Leibler divergence is one the usual information
measures in probability theory and satis�es some reasonable properties (see for in-
stance [8]). It has already been used to create a neighbourhood around a �xed
probability or a �xed credal set in [23], where the author refers to this model as
the discounting probability or discounting credal set.

This �rst paper will focus on models that are the most well-known in the lit-
erature: the pari mutuel, the linear vacuous mixture and the constant odds ratio
models. We will see how they �t within our uni�ed view, and establish new proper-
ties for them. The accompanying paper [22] will focus on models that have not been
studied extensively, and that could bene�t from a full systematic study: these are
the models induced by the total variation, the Kolmogorov and the L1 distances.
This second paper will also wrap up the complete study in a synthetic comparison
of the di�erent models studied in both papers.

This �rst part of our study is organised as follows: in Section 2, we introduce
some notions from imprecise probability theory that are necessary to follow the rest
of the paper. This includes both their basic models as well as reminders about how
to update them under the light of new information. Section 3 introduces distortion
models with a uni�ed view, seeing them as neighbourhoods induced by a maximal
distance from an initial probability distribution.

We then (re-)explore some well-known models from the literature under this
light, and also establish new results for them. The pari mutuel, linear vacuous
and constant odds ratio are respectively explored in Sections 4, 5 and 6. Some
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preliminary conclusions are given in Section 7, but for a �nal synthesis and com-
parative study, we refer the reader to the second paper of this study [22], where we
shall study models that have received less attention and provide the aforementioned
synthesis. To ease the reading, proofs have been relegated to an Appendix.

A preliminary version of our study was presented in ISIPTA Conference in
2019 [20]. These two papers extend this preliminary version with additional com-
ments, proofs, a study of the distortion model associated with the L1 distance and
a deeper comparison between the models.

2. Preliminary concepts

This section introduces the main models within the theory of imprecise proba-
bilities that we shall consider in this paper, as well as the operation of conditioning.

2.1. Imprecise probability models. Let X = {x1, . . . , xn} be a �nite possibility
space with cardinality n. We shall assume throughout that n ≥ 2; otherwise the
results are trivial. We shall use A ⊆ X to denote that A is a subset of X and
A ⊂ X to denote that A is a proper subset of X . We denote by P(X ) the set of
all the probability measures de�ned on the power set of X , P(X ), and by P∗(X )
the set of probabilities P satisfying P (A) > 0 for every non-empty A ⊆ X . A
set of probability measures de�ned on P(X ) is called a credal set on X [17]. All
neighbourhood models explored in this paper will be representable in terms of credal
sets.

By taking its lower envelope over events, a credal set M determines a lower
probability P :

P (A) = inf{P (A) | P ∈M} ∀A ⊆ X .
This lower probability satis�es the property of coherence [32], meaning that the
lower probability of any event is attained by a probability measure that dominates
P . In addition to this interpretation, it can also be given a behavioural interpre-
tation: P (A) is then regarded as the supremum acceptable buying price for the
gamble that gives reward 1 if A happens and 0 otherwise, and coherence means
that our supremum acceptable buying prices cannot be combined in order to make
us subject to a sure loss and that they are as tight as possible; see [18, 32] for more
details.

If instead of lower envelopes we take upper envelopes we obtain a coherent upper
probability, that we shall denote P . Both of them are related by conjugacy: P (A) =
1− P (Ac) for every A ⊆ X , and for this reason it su�ces to focus on one of them;
here we shall concentrate on lower probabilities.

Di�erent credal setsM1,M2 may determine the same coherent lower probability
P by taking lower envelopes; the largest of them is given by

{P ∈ P(X ) | P (A) ≥ P (A) ∀A ⊆ X}.
This set is usually referred to as the credal set associated with P , and it is denoted
by M(P ). It is convex and closed in the weak-* topology, that coincides with
the Euclidean one in the �nite-dimensional case we are considering in this paper;
as a consequence, we obtain P (A) = min{P (A) : P ∈ M(P )} for every A ⊆ X .
Since M(P ) is closed and convex, it is characterised by its extreme points, i.e.,
by those probability measures P ∈ M(P ) such that if there exist α ∈ (0, 1) and
P1, P2 ∈ M(P ) for which P (A) = αP1(A) + (1 − α)P2(A) for every A ⊆ X , then
P1 = P2 = P .
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Some coherent lower probabilities satisfy additional mathematical properties
that make them more suitable for practical purposes. One such property is k-
monotonicity. Given a natural number k ≥ 2, a coherent lower probability is
k-monotone [6] if

P
(
∪pi=1 Ai

)
≥

p∑
i=1

P (Ai)−
∑
i 6=j

P (Ai ∩Aj) + · · ·+ (−1)pP
(
∩pi=1 Ai

)
=

∑
∅6=I⊆{1,...,p}

(−1)|I|+1P
(
∩i∈I Ai

)
(1)

for every 1 ≤ p ≤ k and every A1, . . . , Ap ⊆ X .
We shall focus here on two extreme cases: if k = 2 we say that P is a 2-monotone

lower probability; and if P is k-monotone for every natural number k, we say that it
is completely monotone, also called belief function [28] in the framework of Evidence
Theory. One interesting property of 2-monotone lower probabilities is that the set
ext(M(P )) of extreme points ofM(P ) is determined by the set Sn of permutations
of the possibility space: for any such permutation σ ∈ Sn, de�ne the probability
measure Pσ by means of

Pσ({xσ(1)}) = P ({xσ(1)}) and

Pσ({xσ(k)}) = P ({xσ(1), . . . , xσ(k)})− P ({xσ(1), . . . , xσ(k−1)}) ∀k = 2, . . . , n. (2)

Then ext(M(P )) = {Pσ | σ ∈ Sn}.
A particular instance of 2-monotone lower probabilities that we will use later on

are probability intervals [10], that are uniquely determined by their restriction to
singletons: P is a probability interval when it satis�es

M(P ) = {P ∈ P(X ) | P ({x}) ∈ [P ({x}), P ({x})] ∀x ∈ X}.

Probability intervals are quite easy to handle, and the expression of their associated
lower and upper probabilities can be easily given in terms of the lower and upper
probabilities of the singletons (see for instance [10, Prop.4]).

On the other hand, a particular instance of completely monotone lower proba-
bility is the vacuous lower probability,

P v(A) =

{
0, if A 6= X .
1, if A = X .

(3)

The name vacuous comes from the fact thatM(P v) = P(X ).
Since every probability measure P on P(X ) is equivalent to its expectation op-

erator, that for simplicity we denote also with the symbol P , we can use credal sets
to obtain lower and upper expectation operators. Consider a function1 f : X → R.
Then given a credal setM, we get

P (f) := inf{P (f) | P ∈M} and P (f) := sup{P (f) | P ∈M}.

These two functionals are coherent lower and upper previsions in the theory of
Walley, and are related by P (f) = −P (−f) for any function f on X . As in the

1Walley's theory deals only with bounded random variables on X , also called gambles; since
in this paper we work with �nite spaces, the restriction of boundedness is trivially satis�ed.
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case of lower probabilities, we will denote byM(P ) the credal set associated with
P , de�ned by:

M(P ) = {P ∈ P(X ) | P (f) ≥ P (f) ∀f : X → R}. (4)

We see then that a credal set M can be used to determine both a coherent lower
probability P and a coherent lower prevision P ′. However, the sets

M(P ) = {P ∈ P(X ) | P (A) ≥ P (A) ∀A ⊆ X} and
M(P ′) = {P ∈ P(X ) | P (f) ≥ P ′(f) ∀f : X → R}

do not coincide in general, the second being smaller, or more informative: M(P ′) ⊆
M(P ). A su�cient condition for their equality is that

P ′(f ∧ g) + P ′(f ∨ g) ≥ P ′(f) + P ′(g) (5)

for every pair of gambles f, g : X → R, where ∧ denotes the pointwise minimum and
∨ the pointwise maximum. When a coherent lower prevision P ′ satis�es Equation
(5), it is called 2-monotone lower prevision [31]. In that case, its restriction to events
P : P(X )→ [0, 1] given by P (A) := P ′(IA) for every A ⊆ X , is a 2-monotone lower
probability. Moreover, both P and P ′ induce the same credal set: M(P ) =M(P ′).
Indeed, if P is a 2-monotone lower probability, it has a unique extension to gambles
P ′ satisfying the 2-monotonicity property in Equation (5): it corresponds to the
Choquet integral with respect to P [31].

Since, as we have mentioned, probability intervals are particular instances of 2-
monotone lower probabilities, we deduce that they also have a unique extension to
gambles that satis�es Equation (5). Its expression was determined in [10, Sec. 4].

Figure 1 summarises the relationships between the di�erent imprecise probability
models we have introduced; an arrow between two nodes means that the parent is
a particular case of the child.

Credal sets

Coherent lower previsions

Coherent lower probabilities

2-monotone lower probabilities 2-monotone lower previsions

Probability measures

Probability intervals Belief functions

Figure 1. Relationships between di�erent models.
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2.2. Conditioning imprecise probability models. Once we get a credal setM
or its lower prevision P over X , we may wish to condition it upon the arrival of an
observation B, obtaining thus an updated model PB . With precise probabilities
and provided that P (B) > 0, there is essentially one conditioning rule: de�ning the
updated model as PB(A) = P (A∩B)/P (B), that also uniquely de�nes the associated
expectation operator PB .

Unfortunately, the extension of this conditioning operator is not unique in general
when considering sets of probabilities [19, 32]. However, when the lower probability
P (B) of the conditioning event is strictly positive (as will be the case here, see
Equation (12) below), there is only one updating procedure that is consistent with
Walley's behavioural notion of coherence: the regular extension, that consists in
applying Bayes' rule to all the probability measures that dominate P , and then
take the lower envelope of the updated models. That is, the updated model PB is
de�ned for any function f on X as

PB(f) = inf{PB(f) | P ∈M(P )}. (6)

This coincides with the Generalised Bayes Rule in [32] under the assumption of
positive lower probabilities.

In general, updating through regular extension preserves many of the properties
of the initial models, such as n-monotonicity. We will see that this is also the case
for the distortion models considered in this �rst part of our study.

3. Distortion models: general setting

The neighbourhood models we shall consider in this study originate by distorting
a probability measure P0 by means of some function d, with a �xed distorting factor
δ > 0. Part of the comparison between them shall be made in terms of the properties
satis�ed by the distorting function.

Given the set P(X ), a function d : P(X )×P(X )→ [0,∞) will be called distorting
function. We consider the following desirable properties that a distorting function
may satisfy:

Ax.1: Positive de�niteness: d(P1, P2) = 0 if and only if P1 = P2.
Ax.1a: d(P1, P2) = 0 implies that P1 = P2, for every P1, P2 ∈ P(X ).
Ax.1b: Well-de�ned: d(P, P ) = 0 for every P ∈ P(X ).
Ax.2: Triangle inequality: d(P1, P3) ≤ d(P1, P2) + d(P2, P3) for every P1, P2, P3 ∈

P(X ).
Ax.3: Symmetry: d(P1, P2) = d(P2, P1) for every P1, P2 ∈ P(X ).
Ax.4: Convexity: d(P1, αP2 + (1 − α)P3) ≤ max{d(P1, P2), d(P1, P3)} for every

α ∈ [0, 1] and every P1, P2, P3 ∈ P(X ).
Ax.5: Continuity: for every P, P1, P2 ∈ P and every ε > 0, ∃ δ > 0 such that

‖P1 − P2‖ < δ implies that |d(P1, P ) − d(P2, P )| < ε, where ‖ · ‖ denotes
the supremum norm.

Since the possibility space X is �nite, the topology associated with the supremum
norm ‖ · ‖ is equivalent to that generated by the Euclidean distance. Thus, Ax.5
can be equivalently stated as

(Pn)n → P ⇒ d(Pn, P )→ 0,

where we are identifying probability measures with elements of the n-th dimensional
Euclidean space, and convergence of probability measures is understood pointwise.
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The function d is a distance when it satis�es Ax.1�Ax.3, and it is a premetric when
it satis�es axiom Ax.1b. Also, note that Ax.1 holds if and only if both Ax.1a and
Ax.1b are satis�ed.

Given a distorting function d : P(X ) × P(X ) → [0,∞), a probability measure
P0 ∈ P(X ) and a parameter δ > 0, we can consider the credal set

Bδd(P0) := {P ∈ P(X) | d(P, P0) ≤ δ} (7)

of those probability measures that di�er at most in δ from P0, i.e., the closed ball
centred in P0 and with distortion parameter δ with respect to the distorting function
d. We call it the distortion model on P0 associated with the distorting function d
and the factor δ > 0. It can be used to determine the coherent lower prevision

P (f) = inf{P (f) | P ∈ Bδd(P0)} = inf{P (f) | d(P, P0) ≤ δ} ∀f : X → R, (8)

whose associated credal setM(P ) is given by Equation (4).
Our �rst result gives su�cient conditions for Bδd(P0) to coincide with the credal

setM(P ) associated with the coherent lower prevision P .

Proposition 1. Consider a distorting function d : P(X ) × P(X ) → [0,∞), a
probability measure P0 ∈ P(X ) and a parameter δ > 0, and let P be the lower
envelope of Bδd(P0), given by Equation (8). If d satis�es Ax.4 and Ax.5, then
M(P ) = Bδd(P0), whereM(P ) is the credal set induced by P using Equation (4).

In the remainder of this study, we shall investigate in detail the properties of a
number of distortion models. Before we tackle this problem, we would like to study
in some detail the second procedure for generating distortion models we mentioned
in the introduction: sometimes in the literature [5] the term distortion model is
referred to a non-additive measure of the type P = h(P0), where h : [0, 1]→ [0, 1] is
a suitable distorting function that is increasing and satis�es h(0) = 0, h(1) = 1. In
this sense, if h is convex, then P = h(P0) is 2-monotone [6, 11], and in [3, Thm. 7]
it is shown that the condition h(t) ≤ t for every t ∈ [0, 1] guarantees that P is a
lower probability. Some other results in this direction can be found in [3, 4], in
connection with the theory of aggregation operators; see also [33] and [5, Prop. 2].
Next we prove that such models can be incorporated into our formalism:

Proposition 2. Let P0 be a probability measure on P(X ). Consider an increasing
function h : [0, 1] → [0, 1] such that h(0) = 0, h(1) = 1 and h(t) ≤ t for every
t ∈ [0, 1], and let P = h(P0) be the transformed model. Then there exist a premetric
d and some parameter δ > 0 such that M(P ) = Bδd(P0), where B

δ
d(P0) is given by

Equation (7) andM(P ) is determined by Equation (4).

The idea in the proof is to de�ne, for the given h, the function d∗h : [0, 1]×[0, 1]→
[0, 1] by

d∗h(x, y) =


0 if x = y

0.5 if x 6= y, x ≥ h(y)
1 if x 6= y, x < h(y),

(9)

and then let d(P,Q) = maxA⊆X d
∗
h(P (A), Q(A)).

It can be checked that this function d is not necessarily a distance, because it
may not satisfy axiom Ax.3 (symmetry). Furthermore, in addition to Ax.1b, such d
also satis�es Ax.1a (hence also Ax.1), Ax.2 and Ax.4. The proof of this proposition
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also shows that the implication

d(P,Q) = max
A⊆X

d∗h(P (A), Q(A))⇒ P = minBδd(P0) is 2-monotone

does not hold in general. To see that, it su�ces to consider a function h and a
probability P0 such that P = h(P0) is not 2-monotone and apply to them the
distorting function d above.

As we said before, some earlier works in the literature have characterised those
distortion models that are 2-monotone or a coherent lower probability [5, 33]. Our
next result characterises those distortion models whose associated lower probabili-
ties are probability intervals.

Proposition 3. Let d be a distorting function satisfying Ax.4 and Ax.5. Then,
the lower envelope P of Bδd(P0), given by Equation (8), is a probability interval for
every P0 ∈ P(X ) and every δ > 0 if and only if d satis�es:

d(P,Q) = max
i=1,...,n

di(P ({xi}), Q) ∀P,Q ∈ P(X ), (10)

where for every i = 1, . . . , n

di(P ({xi}), Q) = inf{d(P ′, Q) | P ′ ∈ P(X ), P ′({xi}) = P ({xi})}.

This result leads us to study those comparison measures between probability
measures that are de�ned in terms of other comparison measures on real numbers.
We have established the following:

Proposition 4. Let d∗ : [0, 1]×[0, 1]→ [0,∞), and let us de�ne d : P(X )×P(X )→
[0,∞) by

d(P,Q) = max
i=1,...,n

d∗(P ({xi}), Q({xi})). (11)

(a) If d∗ satis�es Ax.j (j=1,1a,1b,2,3,4,5) then so does d.
(b) If d∗ satis�es Ax.4 and Ax.5 and d is de�ned by Equation (11), then for

any probability measure P0 ∈ P(X ) and any δ > 0, the lower envelope on
events of the set Bδd(P0) given by Equation (7) is a probability interval.

These results nicely characterise general distortion models, as they allow to con-
nect generic properties of the used distance with corresponding features of the
induced credal sets. They will also prove useful later on in this paper.

In the following sections, we shall study some of the most important distortion
models from the literature, revisit them from our unifying perspective introduced
in this section, and provide new results about them. We shall assume throughout
that the probability measure P0 belongs to the interior P∗(X ) of P(X ), or in other
words, that P0({x}) > 0 for every x ∈ X , and also that the distortion factor δ > 0
is small enough so that also

Q({x}) > 0 ∀x ∈ X , ∀Q ∈ Bδd(P0). (12)

Hence, we will consider that the distorting function d is de�ned from P∗(X )×P∗(X ).
Since in all cases d will satisfy Ax.4 and Ax.5, Proposition 1 implies that Bδd(P0)
is closed and that P (B) > 0 for every B ⊆ X .
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4. Pari mutuel model

Our analysis begins with the pari mutuel model (PMM, for short).

De�nition 1. Given a probability measure P0 and a distortion parameter δ > 0,
the associated pari mutuel model is given by the conjugate coherent lower and upper
probabilities:

PPMM (A) = max{0, (1 + δ)P0(A)− δ} and PPMM (A) = min{1, (1 + δ)P0(A)}
for every A ⊆ X .

In what follows, we investigate the properties of the PMM, we show that it can
be expressed as a distortion model and we study its behaviour under conditioning.

4.1. Properties of the PMM. The pari mutuel model has its origins as a betting
scheme in horse racing; if we interpret the distortion factor δ as a taxation from the
house, then PPMM , PPMM can be given a behavioural interpretation as betting
rates for and against the event A, as discussed in some depth in [32, Sec. 2.9.3].
Assume that P0(A) denotes the fair price �xed by a house for event A. This means
that if a gambler bets on A at the fair price P0(A), her expected gain would be:

E(IA − P0(A)) = (1− P0(A))P0(A)− P0(A)(1− P0(A)) = 0.

In a similar manner, the expected gain of the house would be E(P0 − IA) = 0.
In order to ensure a positive gain, the house can increase the fair price for A:

(1+δ)P0(A) for some positive δ. In this way, the expected gain for a gambler would
be:

E(IA − (1 + δ)P0(A)) =

(1− (1 + δ)P0(A))P0(A) + (−(1 + δ)P0(A))(1− P0(A)) = −δP0(A),

whereas the expected gain of the house would be:

E((1 + δ)P0(A)− IA) = δP0(A).

This gives rise to the upper probability P (A) = (1 + δ)P0(A), that is corrected as
P (A) = min{1, (1 + δ)P0(A)} in order to guarantee coherence. This means that,
for the pari mutuel model, the distortion parameter δ represents the selling price
in�ation rate for A.

Walley [32, Sec. 2.9.3] deduces this upper probability using a di�erent reasoning
related to racetracks. If P0(A) is the proportion of stakes betting for A, and τ
(with 0 < τ < 1) denotes the proportion of stakes deduced by the house, a unit
bet on A will return 1−τ

P0(A) if A occurs. Then, the selling price for A should be
P0(A)
1−τ = (1+ δ)P0(A), where δ =

τ
1−τ . We refer to [24] and [32, Sec. 2.9.3] for more

details on the behavioural interpretation of this model.
The lower probability PPMM determines a credal set by:

M(PPMM ) = {P ∈ P(X ) | P (A) ≥ max{0, (1 + δ)P0(A)− δ} ∀A ⊆ X}. (13)

We refer to [21, 24, 32] for a study of the PMM from the point of view of imprecise
probabilities. In particular, it was established in [21, Thm. 1] that the PMM
is a particular case of probability interval, meaning that it is determined by its
restriction to singletons:

M(PPMM ) = {P ∈ P(X ) | (1+δ)P0({x})−δ ≤ P ({x}) ≤ (1+δ)P0({x}), ∀x ∈ X}.
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As every probability interval, the coherent lower probability PPMM is 2-monotone,
and as a consequence, its extension to gambles, preserving 2-monotonicity, is unique
and it is given by the Choquet integral: if f denotes a gamble and for any τ ∈ (0, 1)
xτ and x1−τ denote the τ -quantile and 1− τ -quantile of f , given by:

xτ = sup{x ∈ X | P0(f ≤ x) ≤ τ}, x1−τ = sup{x ∈ X | P0(f ≤ x) ≤ 1− τ},
the lower and upper prevision of f for the PMM induced by P0 and δ are [32,
Sec. 3.2.5]:

PPMM (f) = x 1
1+δ
− (1 + δ)P0

(
(x 1

1+δ
− f)+

)
,

PPMM (f) = x δ
1+δ

+ (1 + δ)P0

(
(f − x δ

1+δ
)+
)
,

where for any g : X → R we denote g+ = max{g, 0}.
It was also shown that the maximal number of extreme points of BδdPMM (P0) is

the same as for probability intervals [21, Prop. 1].
We are assuming that P0 ∈ P(X ) and P ({x}) > 0 for every x ∈ X , hence

P (A) > 0 for every A 6= ∅. This means that:

PPMM (A) > 0⇔ P0(A)

1− P0(A)
> δ ∀A 6= ∅,X

which in particular implies that

δ < min
A 6=∅,X

P0(A)

1− P0(A)
. (14)

Let us show that PPMM , PPMM can be obtained as envelopes of the credal set
determined by some distorting function, in the manner we introduced in Section 3.

Theorem 5. Consider the pari mutuel model associated with a probability measure
P0 and a distortion factor δ > 0. Then M(PPMM ) = BδdPMM (P0), where the
former credal set is given by Equation (13), dPMM : P∗(X ) × P∗(X ) → [0,∞) is
given by

dPMM (P,Q) = max
A⊂X

Q(A)− P (A)
1−Q(A)

(15)

and BδdPMM (P0) is given by Equation (7).

Note that, from Equation (12), BδdPMM (P0) ⊆ P∗(X ), whence Q(A) < 1 for every

A ⊂ X and every Q ∈ BδdPMM (P0). Thus, Equation (15) is well-de�ned.
From this theorem we deduce that the pari mutuel model can be embedded into

our framework of neighbourhood models. Also, this result motivates the study
of the properties of the function dPMM . These are summarised in the following
proposition:

Proposition 6. Let dPMM be the function de�ned in Equation (15).

(a) dPMM satis�es Ax.1 (hence also Ax.1a and Ax.1b), Ax.4 and Ax.5.
(b) dPMM does not satisfy in general axioms Ax.2 nor Ax.3.

(c) For every P,Q ∈ P∗(X ), dPMM (P,Q) = maxx∈X
P ({x})−Q({x})

Q({x}) .

The fact that the pari mutuel model induces a probability interval can also be
established showing that the distorting function dPMM in Equation (15) satis�es
Equation (10), using its equivalent expression in Proposition 6, or also using Propo-
sition 4. For this aim, just consider item (c) in Proposition 6 and note that dPMM
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can be expressed as dPMM (P,Q) = maxx∈X d
∗
PMM (P ({x}), Q({x})), where d∗PMM

is given, for every a, b ∈ (0, 1), by:

d∗PMM (a, b) =

{
a−b
b , if a ≥ b,

0 if a < b.

In the case of the pari mutuel model, if the distortion factor δ satis�es Equa-
tion (14), then this maximum distortion is attained within the ball BδdPMM (P0):

Proposition 7. Consider the pari mutuel model associated with a probability mea-
sure P0 and a distortion factor δ > 0 satisfying Equation (14). Then:

max
P∈BδdPMM (P0)

d(P, P0) = δ.

This does not hold for all values of δ, because given a probability measure P0, the
set {dPMM (P0, Q) : Q ∈ P(X )} is bounded above. It is not di�cult to see that if we

take δ = maxA⊂X
P0(A)

1−P0(A) , we obtain that BδdPMM (P0) = P(X ), or, in other words,

that PPMM is the vacuous lower probability giben by Equation (3). Therefore,
larger values of δ will not give any additional information. Due to monotonicity of
P0 and Equation (12), it holds that

max
A⊂X

P0(A)

1− P0(A)
= max
xi∈X

P0(X \ {xi})
P0({xi})

.

4.2. Conditioning the PMM. Next, we study the behaviour of the PMM under
conditioning. We show that conditioning through regular extension using Equa-
tion (6) again yields a pari mutuel model.

Proposition 8. Consider the model BδdPMM (P0) and its induced lower probability
PPMM . Then, for every event B the conditional model PB induces the credal set

BδBdPMM (P0|B) such that

P0|B(A) = P0(A|B) and δB =
δ

(1 + δ)P0(B)− δ
=

δ

PPMM (B)
(16)

with P0(A|B) the conditional precise probability derived from P0.

We see that the imprecision of the pari mutuel model, related to the distortion
factor, increases when conditioning.

5. Linear vacuous model

Another popular neighbourhood model are linear-vacuous mixtures, also called
ε-contamination models in the literature [15, 32] (for a related model starting from
the distortion of belief functions, we refer to [23, 28]).

De�nition 2. Given a probability measure P0 and a distortion parameter δ ∈ (0, 1),
the associated linear vacuous mixture is given by the conjugate coherent lower and
upper probabilities:

PLV (A) =

{
(1− δ)P0(A) if A 6= X .
1 if A = X .

PLV (A) =

{
(1− δ)P0(A) + δ if A 6= ∅.
0 if A = ∅.
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5.1. Properties of the LV model. The behavioural interpretation of linear vac-
uous mixtures is the following: if t is the price that the gambler pays for a bet
on the occurrence of event A, her bene�t is IA − t. To guarantee a positive gain,
the house can impose a tax δ that is proportional to the reward. Then, gambler's
bene�t becomes IA − t − δIA = (1 − δ)IA − t. If P0(A) denotes the probability
of occurrence of A, the expected bene�t becomes (1 − δ)P0(A) − t. Then the fair
price is reduced to (1 − δ)P0(A), that corresponds to the lower probability of the
linear vacuous model. Hence, the distortion parameter δ can be understood as the
de�ation rate on the buying price on A. We refer to [32, Sec.2.9.2] for more details
about the behavioural interpretation of this model.

The associated credal set is:

M(PLV ) = {P ∈ P(X ) | (1− δ)P0(A) ≤ P (A), ∀A ⊆ X}. (17)

The lower probability PLV associated with a linear vacuous model is a belief func-
tion, because it is a convex combination of two completely monotone lower proba-
bilities: the probability measure P0 and the vacuous lower probability P v given by
Equation (3). In addition, it is also a probability interval: if

P ({xi}) ≥ PLV ({xi}) = (1− δ)P0({xi}), ∀xi ∈ X

then by additivity we conclude that P (A) ≥ (1− δ)P0(A) = PLV (A). As a conse-
quence,M(PLV ) can be expressed as

M(PLV ) = {P ∈ P(X ) | (1− δ)P0({x}) ≤ P ({x}) ≤ (1− δ)P0({x}) + δ ∀x ∈ X}.

M(PLV ) being a convex mixture between the precise distribution P0 and the set
P(X ), it has |X | extreme points corresponding for each element x ∈ X to the
distribution

Px({x}) = (1− δ)P0({x}) + δ, Px({y}) = (1− δ)P0({y}) ∀y 6= x.

Since the linear vacuous model is completely monotone, it is also 2-monotone, hence
its extension to gambles, preserving complete monotonicity, is unique and is given
by the Choquet integral [32, Sec. 3.2.4]:

PLV (f) = (1− δ)P0(f) + δmin(f),

PLV (f) = (1− δ)P0(f) + δmax(f) ∀f : X → R.

Next we establish that linear-vacuous mixtures can be obtained by means of
some appropriate distorting function.

Theorem 9. Consider the linear vacuous mixture associated with a probability
measure P0 and a distortion factor δ > 0. Then M(PLV ) = BδdLV (P0), where the
former credal set is given by Equation (17), dLV : P∗(X )×P∗(X )→ [0,∞) is given
by:

dLV (P,Q) = max
A6=∅

Q(A)− P (A)
Q(A)

(18)

and BδdLV (P0) is given by Equation (7).

As for the PMM, from this theorem we deduce that linear vacuous mixtures can
be seen as a neighbourhood model. Also, note that the expression in Equation (18)
is well-de�ned because, since Q ∈ P∗(X ), Q(A) = 0 if and only if A = ∅.
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Remark 1. If we compare Equations (15) and (18), we observe that the expressions
of the distorting functions for the pari mutuel and the linear vacuous, dPMM and
dLV , are quite similar:

dPMM (P,Q) = max
A⊂X

Q(A)− P (A)
1−Q(A)

, dLV (P,Q) = max
A6=∅

Q(A)− P (A)
Q(A)

.

The only di�erence lies in the denominator, where dPMM considers 1 − Q(A) (or
Q(Ac)) while dLV considers Q(A). Indeed, if we consider the equivalent expression
of dPMM (P,Q) as:

dPMM (P,Q) = max
A6=∅

P (A)−Q(A)

Q(A)
,

then dPMM and dLV only di�er in the sign of the numerator. This sort of dual
behaviour has already been observed in the literature; for instance, it was proven in
[21, Lem. 1] that the upper probability of the pari mutuel is additive for those events
A,B such that PPMM (A ∪ B) < 1, while this very same property holds for the
lower probability of the linear vacuous whenever PLV (A∪B) < 1. Other comments
in this direction were made by Walley in [32, Sec. 4.6.5]. He explains that there is
a geometrical relationship between the credal sets BδdPMM (P0) and B

δ
dLV

(P0), with
the former being a re�ection of the latter through P0. Also, he mentions that the
elicitation of a PMM is determined by inequalities of the type P (A) ≤ (1+δ)P0(A),
while that of a LV is based on inequalities of the type P (A) ≥ (1− δ)P0(A). �

Our next result summarises the properties of dLV .

Proposition 10. Let dLV be the function de�ned in Equation (18).

(a) dLV satis�es Ax.1 (hence also Ax.1a and Ax.1b), Ax.2, Ax.4 and Ax.5.
(b) dLV does not satisfy Ax.3 in general.

(c) dLV (P,Q) = max
x∈X

Q({x})− P ({x})
Q({x})

for every P,Q ∈ P∗(X ).

The fact that linear vacuous mixtures induce a probability interval can also
be established showing that the distorting function dLV in Equation (18) satis-
�es Equation (10), using its equivalent expression in Proposition 10, or also using
Proposition 4. For this aim, just consider item (c) in Proposition 10 and note that
dLV can be expressed as dLV (P,Q) = maxx∈X d

∗
LV (P ({x}), Q({x})), where d∗LV is

given, for every a, b ∈ (0, 1), by:

d∗LV (a, b) =

{
b−a
a , if b ≥ a,

0 if b < a.

We conclude this section by establishing that for every δ ∈ (0, 1) there is always
a probability in the credal setM(PLV ) such that dLV (P, P0) = δ.

Proposition 11. Consider the linear-vacuous mixture associated with a probability
measure P0 and a distortion factor δ ∈ (0, 1). Then

max
P∈BδdLV (P0)

dLV (P, P0) = δ.
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5.2. Conditioning the LV model. In the case of the LV model, Walley [32, Sec.
6.6.2] showed that the conditional model PB induced by BδdLV (P0) is again a linear

vacuous model BδBdLV (P0|B) such that

P0|B(A) = P0(A|B) and δB =
δ

(1− δ)P0(B) + δ
=

δ

PLV (B)
. (19)

Again, we can see that the imprecision of the model increases when conditioning;
yet this increase is smaller than the one observed for the PMM (see Equation (16)).

6. Constant odds ratio

Next we consider the constant odds ratio model. It was given a behavioural
interpretation by Peter Walley in [32, Sec. 2.9.4], and studied in [1, 2, 25, 29].

6.1. Properties of the COR model. We start explaining the behavioural inter-
pretation of this model. Assume that any pro�t made by the gambler is subject to
a �xed taxation rate δ. This means that if a gambler pays a price t for a bet for
the gamble f , her net gain is:

(1− δ)(f − t)+ − (f − t)−,

where for any g : X → R, g+ = max{g, 0} and g− = max{−g, 0}. If P0 is the fair
price for the gambles, then the expected net gain would be 0, which means that:

(1− δ)P0

(
(f − t)+

)
− P0

(
(f − t)−

)
= 0,

or equivalently, that

(1− δ)P0

(
(f − t)+

)
= P0

(
(f − t)−

)
.

As a consequence, if P (f) denotes the supremum acceptable buying price for the
gamble f , then it must hold that:

(1− δ)P0

(
(f − P (f))+

)
= P0

(
(f − P (f))−

)
. (20)

This equation cannot be explicitly solved for arbitrary gambles f ; however, in the
particular case when f is the indicator of an event A, Equation (20) becomes:

(1− δ)P0

(
(IA − P (IA))+

)
= P0

(
(IA − P (IA))−

)
. (21)

It is easy to see that:

P0

(
(IA − P (IA))+

)
= (1− P (A))P0(A), P0

(
(IA − P (IA))−

)
= (1− P0(A))P (A).

Hence, Equation (21) simpli�es to:

(1− δ)(1− P (A))P0(A) = (1− P0(A))P (A),

whence we obtain the lower probability

P (A) =
(1− δ)P0(A)

1− δP0(A)
∀A ⊆ X . (22)

In the proof of some of the forthcoming results we will use the common short
notation G(f) = f − P (f) for any gamble. This notation simpli�es Equation (20):

1− δP0

(
G(f)+

)
= P0

(
G(f)−

)
.
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6.1.1. Constant odds ratio on gambles.

De�nition 3. Given a probability measure P0 and a distortion parameter δ ∈ (0, 1),
the associated constant odds ratio model is the coherent lower prevision that is the
unique solution to the equation:

(1− δ)P0

(
(f − PCOR(f))+

)
= P0

(
(f − PCOR(f))−

)
. (23)

Its conjugate coherent upper prevision PCOR(f) is the unique solution of the equa-
tion:

P0

(
(f − PCOR(f))+

)
= (1− δ)P0

(
(f − PCOR(f))−

)
,

which is equivalent to:

δP0

(
(f − PCOR(f))+

)
+ (1− δ)P0

(
f − PCOR(f)

)
= 0.

The reason why in this case we are �rst considering the coherent lower prevision
instead of the coherent lower probability that is its restriction to events is that,
unlike the previous two examples, the constant odds ratio model is not 2-monotone
in general, as we will show in the forthcoming Example 1, while its restriction to
events is. As a consequence, the credal sets determined by these two models do not
coincide in general.

We will therefore make a separate study of the constant odds ratio model PCOR
and its restriction to events, that will be denoted by Q

COR
. We will start with

PCOR in this section, and will study Q
COR

in Section 6.1.2. The following propo-
sition summarises some �rst properties of this model:

Proposition 12. [32] Let PCOR be the constant odds ratio determined by a prob-
ability measure P0 and a distortion factor δ ∈ (0, 1).

(a) The credal set associated with PCOR is

M(PCOR) =

{
P ∈ P(X )

∣∣∣P (A)
P (B)

≥ (1− δ)P0(A)

P0(B)
∀A,B 6= ∅

}
. (24)

(b) The extreme points of this credal set are {PA | ∅ 6= A ⊂ X}, where PA is
given by:

PA(B) =
(1− δ)P0(A ∩B) + P0(A

c ∩B)

1− δP0(A)
, ∀B ⊆ X . (25)

Proposition 12 allows us to establish the following result:

Proposition 13. M(PCOR) has 2n − 2 di�erent extreme points.

Let us now show that PCOR can be expressed as a distortion model by means
of a suitable function.

Theorem 14. Consider the constant odds ratio model (on gambles) associated
with a probability measure P0 and a distortion factor δ ∈ (0, 1). ThenM(PCOR) =
BδdCOR(P0), where the former is given by Equation (24), dCOR : P∗(X )× P∗(X )→
[0,∞) is given by:

dCOR(P,Q) = max
A,B 6=∅

{
1− P (A) ·Q(B)

P (B) ·Q(A)

}
(26)

and BδdCOR(P0) is given by Equation (7).
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Note that the expression in Equation (26) is well-de�ned, because the assumption
P,Q ∈ P∗(X ) implies that P (B) · P (A) = 0 if and only if either A = ∅ or B = ∅,
and these two cases have been excluded in the expression of the maximum.

The following result summarises the properties of dCOR:

Proposition 15. Let dCOR be the function de�ned in Equation (26). It satis�es
Ax.1 (hence also Ax.1a and Ax.1b), Ax.2, Ax.3, Ax.4 and Ax.5. As a consequence,
it is a distance.

Finally, we prove that we can always �nd a probability in BδdCOR(P0) that attains
the distance δ.

Proposition 16. Consider the constant odds ratio model (on gambles) associated
with a probability measure P0 and a distortion factor δ ∈ (0, 1). Then:

max
P∈BδdCOR (P0)

dCOR(P, P0) = δ.

6.1.2. Constant odds ratio on events. We turn now to the restriction to events of
the constant odds ratio model, Q

COR
. Let us show by the means of an example that

PCOR and Q
COR

do not coincide in general. First notice that, from Equation (22),
the restriction over events is given by:

Q
COR

(A) =
(1− δ)P0(A)

1− δP0(A)
, QCOR(A) =

P0(A)

1− δP0(Ac)

for every A ⊆ X .
It is easy to see that Q

COR
is a convex transformation of the probability measure

P0. Thus, it is a 2-monotone lower probability (in fact, in Proposition 17 below we
shall show that it is completely monotone). However, PCOR is not a 2-monotone
lower prevision:

Example 1. To see that PCOR is not a 2-monotone lower prevision, it su�ces to
show that the credal setsM(PCOR) andM(Q

COR
) do not coincide.

Consider a three element space X , the probability measure P0 = (0.5, 0.3, 0.2)
and the distortion factor δ = 0.1. Then Q

COR
is given by:

A P0 Q
COR

{x1} 0.5 0.4737
{x2} 0.3 0.2784
{x3} 0.2 0.1837
{x1, x2} 0.8 0.7826
{x1, x3} 0.7 0.6774
{x2, x3} 0.5 0.4737

Since the coherent lower probability Q
COR

is 2-monotone, using the procedure des-

cribed in Equation (2), the extreme points of M(Q
COR

) are associated with the

permutations of {1, 2, 3}. This produces the following extreme points:

σ Pσ
(1, 2, 3) (0.4737, 0.3089, 0.2174)
(1, 3, 2) (0.4737, 0.3226, 0.2037)
(2, 1, 3) (0.5042, 0.2784, 0.2174)
(2, 3, 1) (0.5263, 0.2784, 0.1953)
(3, 1, 2) (0.4937, 0.3226, 0.1837)
(3, 2, 1) (0.5263, 0.2900, 0.1837)
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However, for σ = (1, 2, 3), the extreme point Pσ does not belong to M(PCOR): if
we take A = {x1} and B = {x3}, we obtain

Pσ(A)P0(B) = 0.09474 < 0.09783 = (1− δ)P0(A)Pσ(B),

whence applying Equation (24) we deduce that Pσ /∈ M(PCOR). Thus, M(PCOR)
is a proper subset of M(Q

COR
) or, in other words, that PCOR and Q

COR
do not

coincide. �

The main properties of the lower probability Q
COR

are given in the following
proposition:

Proposition 17. Let Q
COR

be the restriction of the constant odds ratio to events

determined by a probability measure P0 and a distortion factor δ ∈ (0, 1).

(a) Q
COR

is completely monotone.

(b) The credal set determined by Q
COR

is given by

M(Q
COR

) =

{
P ∈ P(X )

∣∣∣ P (A)
P (Ac)

≥ (1− δ) P0(A)

P0(Ac)
∀A ⊂ X

}
. (27)

(c) The maximum number of extreme points ofM(Q
COR

) is n!.

On the other hand, unlike the lower probability induced by the pari mutuel
model or the linear vacuous, Q

COR
is not a probability interval, meaning that it is

not determined by its restriction to singletons:

Example 2. Consider X = {x1, x2, x3, x4}, let P0 be the uniform probability dis-
tribution and consider δ = 0.1. Then Q

COR
, QCOR are given by:

|A| P0 Q
COR

QCOR
1 1/4 9/39 10/37
2 1/2 9/19 10/19
3 3/4 27/37 30/39
4 1 1 1

Since the probability measure P = (0.235, 0.235, 0.265, 0.265) satis�es that P ({xi}) ∈
[Q

COR
({xi}), QCOR({xi})] for every i = 1, . . . , 4 but P ({x1, x2}) = 0.47 < 9

19 =

Q
COR

({x1, x2}), we deduce that Q
COR

is not a probability interval. �

From Proposition 17 we can prove that the credal setM(Q
COR

) can be expressed
as the credal set induced by a distortion model.

Theorem 18. Consider the constant odds ratio restricted to events associated with
a probability measure P0 and a distortion factor δ ∈ (0, 1). Then M(Q

COR
) =

Bδd′COR
(P0), whereM(Q

COR
) is given by Equation (27), d′COR : P∗(X )× P∗(X )→

[0,∞) is given by

d′COR(P,Q) = max
∅6=A 6=X

{
1− P (A)

P (Ac)

Q(Ac)

Q(A)

}
(28)

and Bδd′COR
(P0) is given by Equation (7).

Again, note that the expression in Equation (28) is well-de�ned, because since
P,Q ∈ P∗(X ), the product P (Ac)Q(A) can only be 0 for A = ∅ or A = X , and
these two possibilities are excluded.

We next study the properties of the function d′COR.
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Proposition 19. Let d′COR be the function de�ned in Equation (28). It satis�es
Ax.1 (hence also Ax.1a and Ax.1b), Ax.2, Ax.3, Ax.4 and Ax.5. As a consequence,
it is a distance.

Finally, we show that for the constant odds ratio restricted to events, we can
always �nd a probability in Bδd′COR

(P0) at distance δ.

Proposition 20. Consider the constant odds ratio model restricted to event asso-
ciated with a probability measure P0 and a distortion factor δ ∈ (0, 1). Then:

sup
P∈Bδ

d′
COR

(P0)

d′COR(P, P0) = δ.

The proofs of Propositions 19 and 20 have been omitted in the Appendix be-
cause they are analogous to those of Propositions 15 and 16, d′COR being the same
maximum as dCOR but over a smaller domain.

6.2. Conditioning the COR model. In this part, we will concentrate on the
odds-ratio model de�ned on gambles, and not restricted to events. The reason
is that processing should primarily be done on the model itself, and not on an
approximation of it.

In the case of the odds ratio model, Walley [32, Sec. 6.6.3] proved that the con-

ditional model PB induced by BδdCOR(P0) is again a odds ratio model BδBdCOR(P0|B)
such that

P0|B(A) = P0(A|B) and δB = δ. (29)

In contrast with the previous models, we can notice that the amount of imprecision
in the updated model is the same as in the original one.

7. Conclusions

In this paper, we o�er a uni�ed view of a number of imprecise probability models,
where a probability measure P0 is distorted by means of a suitable function, and
also taking into account some distorting factor representing to which extent the
estimation of P0 is reliable. This produces a number of credal sets, that can be
equivalently represented in terms of the coherent lower probability that is obtained
by taking lower envelopes. As we have seen, this framework includes in particular
the models where the probability measure is directly transformed by means of some
monotone function.

Following the presentation of our general model, here we have revisited some
well-known distortion models under the light of this uni�ed view. These are the
pari mutuel, the linear vacuous and the constant odds ratio models. In the process,
we have also established a number of additional results for those models, e.g.,
characterising their extreme points or the results of di�erent operations such as
conditioning.

One crucial assumption throughout is that all the probability measures take
strictly positive values in the singletons. This property is assumed for the sake of
technical simplicity. While most of the results in this paper also hold without this
assumption, this is not always the case: for instance, the decomposition of dPMM

and dLV in terms of singletons (see Prop. 6(c) and Prop. 10(c)) no longer holds,
and the maximum distortion is not always attained within the ball BδdPMM (P0)
(i.e., Proposition 7 does not necessarily hold). Moreover, in the general case the
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expressions of dPMM , dLV , dCOR and d′COR should be suitably modi�ed to avoid
zeros in their denominator, and their continuity is no longer trivial.

In addition from being a simplifying assumption from the technical point of
view, we think that it is also reasonable from the practical point of view: on the
one hand, if we start with a probability P0 including zero probabilities, we could
always consider its restriction to X ′ = {x ∈ X | P0({x}) > 0}. On the other hand,
it seems reasonable to consider a `small' distortion parameter, so that the positivity
of probabilities is preserved. If this parameter is related to the reliability of the
information source or the quality of the data, taking a `large' distortion parameter
would mean that the source is not very reliable or that the data quality is low. For
all these reasons, we have preferred to consider this simplifying assumption in this
already long and involved paper. Some additional comments will be given in [22,
App. B].

In the next part of this study, we will pursue our exploration of distortion models
induced by less explored distances, namely the total variation distance, the Kol-
mogorov distance and the L1 distance. We will �nish by providing an overview of
the di�erent models, comparing their features.
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Appendix A. Proofs

Proof of Proposition 1. First of all, Ax.4 trivially implies that Bδd(P0) is a convex
set. Similarly, Ax.5 implies that it is closed: if d(Pn, P0) ≤ δ for every n and
(Pn)n → P , then

d(P, P0) = d(lim
n
Pn, P0) = lim

n
(Pn, P0) ≤ δ.

Thus, Bδd(P0) is a closed and convex set. Now, since in our �nitary setting the
weak−∗ topology on P(X ) coincides with the one associated to the Euclidean dis-
tance between the mass functions and any closed set is compact, we can use the
one-to-one correspondence between coherent lower previsions and closed convex sets
of probability measures [32, Thm. 3.6.1] to deduce that Bδd(P0) coincides with the
credal set generated by P . �

Proof of Proposition 2. Let us de�ne the function d∗h by Equation (9), and let
d(P,Q) = maxA⊆X d

∗(P (A), Q(A)).
By de�nition,

P ∈M(P )⇔ P (A) ≥ P (A) = h(P0(A)) ∀A ⊆ X .

Let us see that this is also equivalent to d∗h(P (A), P0(A)) ≤ 0.5 for every A ⊆ X . On
the one hand, if P (A) ≥ h(P0(A)) for every A ⊆ X , then d∗h(P (A), P0(A)) cannot
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be 1, hence d∗h(P (A), P0(A)) ≤ 0.5. On the other hand, if d∗h(P (A), P0(A)) ≤ 0.5
for every A ⊆ X , then either P (A) = P0(A), hence property h(t) ≤ t implies that:

P (A) ≥ h(P (A)) = h(P0(A)) = P (A);

or P (A) 6= P0(A) and P (A) ≥ h(P0(A)), which immediately implies P (A) ≥ P (A).
We conclude that P ∈ M(P ) if and only if d∗h(P (A), P0(A)) ≤ 0.5 for every

A ⊆ X , or equivalently that d(P, P0) ≤ 0.5, whenceM(P ) = B0.5
d (P0).

Finally, d is a premetric because d∗h is. �

Proof of Proposition 3. From Proposition 1, since d satis�es Ax.4 and Ax.5,M(P ) =
Bδd(P0) for every P0 ∈ P(X ) and every δ > 0. Moreover, if we �x P0 and δ, and

de�ne the credal setMi := {P ∈ P(X ) : P ({xi}) ∈ [P ({xi}), P ({xi})]}, it immedi-
ately follows thatM(P ) ⊆ ∩ni=1Mi, and that

P is a probability interval ⇔M(P ) = ∩ni=1Mi.

Now, if we de�ne the function fi,P0
: [0, 1] → [0,∞) by fi,P0

(t) = min{d(P, P0) :
P ({xi}) = t}, from the continuity of d it holds that {P ({xi}) | d(P, P0) ≤ δ} =
f−1i,P0

([0, δ]). In addition,

Mi = {P ∈ P(X ) | P ({xi}) ∈ [P ({xi}), P ({xi})]}

= {P ∈ P(X ) | P ({xi}) ∈ {R({xi}) : R ∈ Bδd(P0)}}
= {P ∈ P(X ) | P ({xi}) ∈ f−1i,P0

([0, δ])} = {P ∈ P(X ) | fi,P0(P ({xi})) ≤ δ},

whence M(P ) ⊆ {P ∈ P(X ) : fi,P0
(P ({xi})) ≤ δ ∀i = 1, . . . , n}, and P is a

probability interval if and only if

M(P ) = {P ∈ P(X ) : fi,P0
(P ({xi})) ≤ δ ∀i = 1, . . . , n}. (30)

Let us prove that this is equivalent to Equation (10).
Assume that Equation (10) does not hold. Since for any P,Q ∈ P(X )

d(P,Q) ≥ di(P ({xi}), Q) ∀i = 1, . . . , n

and as a consequence

d(P,Q) ≥ max
i=1,...,n

di(P ({xi}), Q),

this means that there are P, P0 ∈ P(X ) and ε > 0 such that

d(P, P0)− ε > di(P ({xi}), P0) = fi,P0(P ({xi})) ∀i = 1, . . . , n.

Given λ = d(P, P0), this means that fi,P0(P ({xi})) = di(P ({xi}), P0) ≤ λ − ε for
every i = 1, . . . , n, whence P ∈ ∩ni=1{P ′ ∈ P(X ) | di(P ′({xi})) ≤ λ − ε} but it

does not belong to Bλ−εd (P0). Thus, if we take this P0 and δ = λ − ε, we see that
Equation (30) does not hold and therefore the lower envelope of Bδd(P0) is not a
probability interval.

Conversely, if Equation (10) holds then given P0 ∈ P(X ) and δ > 0, if for
P ∈ P(X ) it holds that di(P ({xi})) ≤ δ for every i = 1, . . . , n, then

min{d(P ′, P0) | P ′({xi}) = P ({xi})} ≤ δ ∀i = 1, . . . , n,

whence by Equation (10)

max
i=1,...,n

min{d(P ′, P0) | P ′({xi}) = P ({xi})} = d(P, P0) ≤ δ
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and as a consequence P ∈ Bδd(P0). Therefore, the lower envelope of Bδd(P0) is a
probability interval. �

Proof of Proposition 4. (a) Consider P,Q,R ∈ P(X ) with respective mass func-
tions (p1, . . . , pn), (q1, . . . , qn) and (r1, . . . , rn). Since d∗(pi, qi) ≥ 0 ∀i =
1, . . . , n because d(P,Q) ≥ 0, we deduce that d∗ takes values in [0,∞). Let
us now analyse the properties satis�ed by d:

Ax.1a: d(P,Q) = 0 implies that d∗(pi, qi) = 0 ∀i = 1, . . . , n. By hypothesis,
this implies that pi = qi ∀i = 1, . . . , n, whence P = Q.

Ax.1b: d∗(pi, pi) = 0 ∀i = 1, . . . , n implies that d(P, P ) = 0.
Ax.1: d∗ satis�es Ax.1 if and only if it satis�es Ax.1a and Ax.1b, whence so

does d.
Ax.2: If d∗(pi, ri) ≤ d∗(pi, qi) + di(qi, ri) ∀i = 1, . . . , n, then given P,Q,R

there must be some j ∈ {1, . . . , n} such that d(P,R) = d∗(pj , rj),
whence d(P,R) ≤ d∗(pj , qj) + d∗(qj , rj) ≤ d(P,Q) + d(Q,R).

Ax.3: d∗(pi, qi) = d∗(qi, pi) ∀i = 1, . . . , n implies that d(P,Q) = d(Q,P ).
Ax.4: d∗(pi, αqi+(1−α)ri) ≤ max{d∗(pi, qi), d∗(pi, ri)} ∀i = 1, . . . , n implies

that d(P, αQ+ (1− α)R) ≤ max{d(P,Q), d(P,R)}.
Ax.5: If d∗ is continuous, then if a sequence (an, bn)n converges pointwise

to (a, b) it holds that limn d
∗(an, bn) = d∗(a, b). Therefore, if (Pn)n

converges pointwisely to P and (Qn)n converges pointwise to Q, then
limn d(Pn, Qn) = d(P,Q).

(b) DenoteMi = {P ∈ P(X ) | d∗(P ({xi}), P0({xi})) ≤ δ}. Then
Bδd(P0) = {P ∈ P(X ) | d(P, P0) ≤ δ}

=
{
P ∈ P(X ) | max

i=1...,n
d∗(P ({xi}), P0({xi})) ≤ δ

}
= {P ∈ P(X ) | d∗(P ({xi}, P0({xi})) ≤ δ ∀i = 1, . . . , n} = ∩ni=1Mi,

whence the lower envelope of Bδd(P0) is a probability interval. �

Proof of Theorem 5. First of all, note that dPMM (P,Q) ≥ 0 for every P,Q ∈
P∗(X ), since applying Equation (15) with A = ∅, we get:

dPMM (P,Q) ≥ Q(∅)− P (∅)
1−Q(∅)

= 0.

From Equation (7),

BδdPMM (P0) = {P ∈ P(X ) | dPMM (P, P0) ≤ δ}

=

{
P ∈ P(X )

∣∣∣max
A⊂X

P0(A)− P (A)
1− P0(A)

≤ δ
}
.

For every A ⊂ X ,
P0(A)− P (A)
1− P0(A)

≤ δ ⇔ P0(A)− P (A) ≤ δ(1− P0(A))

⇔ (1 + δ)P0(A)− δ ≤ P (A)⇔ P (Ac) ≤ (1 + δ)P0(A
c).

We deduce that P ∈ BδdPMM (P0) if and only if

P (A) ≤ (1 + δ)P0(A) ∀A ⊆ X . (31)

Let us now see thatM(PPMM ) equals BδdPMM (P0). From [21, Cor.1],

M(PPMM ) = {P ∈ P(X ) | P ({x}) ≤ (1 + δ)P0({x}), ∀x ∈ X}.
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Applying Equation (31), if P ∈ BδdPMM (P0) then in particular it holds that P ({x}) ≤
(1 + δ)P0({x}), so P ∈M(PPMM ). Conversely, if P ∈M(PPMM )

P (A) =
∑
x∈A

P ({x}) ≤
∑
x∈A

(1 + δ)P0({x}) = (1 + δ)P0(A),

whence P ∈ BδdPMM (P0). Thus, the distortion model induced dPMM , P0 and δ > 0
coincides with the pari mutuel model induced by P0 and δ. �

Lemma 21. Let α1, . . . , αk, be strictly positive numbers and let β1, . . . , βk be non-
negative numbers. Then∑k

i=1(αi − βi)∑k
i=1 αi

≤ max
i=1,...,k

αi − βi
αi

and

∑k
i=1(βi − αi)∑k

i=1 αi
≤ max
i=1,...,k

βi − αi
αi

.

Proof. Let us prove the �rst inequality by induction; the proof of the second in-
equality is similar. The result trivially holds for k = 1. Let us consider the general
case: ∑k

i=1(αi − βi)∑k
i=1 αi

=
(α1 + α2 − β1 − β2) +

∑k
i=3(αi − βi)

(α1 + α2) +
∑k
i=3 αi

≤ max

{
α1 + α2 − β1 − β2

α1 + α2
,
α3 − β3
α3

, . . . ,
αk − βk
αk

}
≤ max

{
α1 − β1
α1

,
α2 − β2
α2

,
α3 − β3
α3

, . . . ,
αk − βk
αk

}
,

where we have used twice the induction hypothesis. �

Proof of Proposition 6. (a) We already know that dPMM takes non-negative
values from the proof of Theorem 5. In order to prove that dPMM satis�es
Ax.1, note that

dPMM (P,Q) = 0⇔ Q(A) ≤ P (A) ∀A ⊂ X ⇔ Q(A) = P (A) ∀A ⊂ X ⇔ Q = P.

To see that dPMM satis�es Ax.4, take P1, P2, P3 such that dPMM (P1, P2) ≤
δ and dPMM (P1, P3) ≤ δ, and take α ∈ (0, 1). Then for every event A ⊂ X
it holds that

(αP2 + (1− α)P3)(A)− P1(A)

(αP2 + (1− α)P3)(Ac)

=
α(P2(A)− P1(A)) + (1− α)(P3(A)− P1(A))

αP2(Ac) + (1− α)P3(Ac)

=
α(P1(A

c)− P2(A
c)) + (1− α)(P1(A

c)− P3(A
c))

αP2(Ac) + (1− α)P3(Ac)
≤ δ,

using the second inequality in Lemma 21.
To see that dPMM satis�es Ax.5 it su�ces to note that the maximum is

a continuous function and that the ratio in Equation (15) is bounded above
once Q ∈ P∗(X ) is �xed.
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(b) To see that dPMM does not satisfy the triangle inequality (Ax.2), consider
X = {x1, x2, x3} and the probabilities P1, P2, P3 given by:

P1 P2 P3

{x1} 0.439 0.400 0.0279
{x2} 0.236 0.424 0.5922
{x3} 0.325 0.176 0.3799
{x1, x2} 0.675 0.824 0.6201
{x1, x3} 0.764 0.576 0.4078
{x2, x3} 0.561 0.600 0.9721

We obtain

dPMM (P1, P3) = 14.735, dPMM (P2, P3) = 13.337, dPMM (P1, P2) = 0.8466.

We can see that the triangle inequality is not satis�ed because:

dPMM (P1, P3) = 14.735 > 0.8466 + 13.337 = dPMM (P1, P2) + dPMM (P2, P3).

The fact that dPMM is not symmetric (Ax.3) is trivial, since in the de-
nominator the term 1 − Q appears. For an explicit example, take X =
{x1, x2}, Q the uniform distribution, and P ({x1}) = α < 1

2 . By Equa-
tion (15),

dPMM (P,Q) =
0.5− α
1− 0.5

=
0.5− α
0.5

and

dPMM (Q,P ) =
1− α− 0.5

α
=

0.5− α
α

and therefore dPMM (P,Q) 6= dPMM (Q,P ).
(c) For every P,Q ∈ P∗(X ), we can equivalently express dPMM as

dPMM (P,Q) = max
Q(A)6=1

Q(A)− P (A)
1−Q(A)

= max
B⊂X

P (B)−Q(B)

Q(B)
.

Since by Equation (12) Q({x}) > 0 ∀x ∈ X ,

P (B)−Q(B)

Q(B)
=

∑
x∈B(P ({x})−Q({x}))∑

x∈B Q({x})
≤ max

x∈B

P ({x})−Q({x})
Q({x})

for every non-empty event B, using the second inequality in Lemma 21.
This implies that

dPMM (P,Q) ≤ max
x∈X

P ({x})−Q({x})
Q({x})

.

The other inequality trivially holds, just taking B = X \{x}, where x is an
element where the maximum is attained. �

Proof of Proposition 7. On the one hand, from Equation (14) we know that δ <
P0(A)

1−P0(A) for every A ⊂ X . Let us prove that there exists P ∈ B
δ
dPMM

(P0) such that

dPMM (P, P0) = δ. Take x ∈ X , and consider P determined by:

P ({x′}) =

{
(1 + δ)P0({x})− δ if x′ = x,

(1 + δ)P0({x}) if x′ 6= x.

It satis�es the following properties:
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• P is a probability measure. First of all, P ({x′}) > 0 for every x′ 6= x by
de�nition. On the other hand, P ({x}) = PPMM ({x}) > 0. Also:∑

x′∈X
P ({x′}) = (1 + δ)P0({x})− δ +

∑
x′ 6=x

(1 + δ)P0({x}) = 1 + δ − δ = 1.

We conclude that P is a probability measure.

• dPMM (P, P0) = δ. Let us compute maxB⊂X
P0(B)−P (B)

1−P0(B) . There are two
cases:
� If x /∈ B,
P0(B)− P (B)

1− P0(B)
=
P0(B)− (1 + δ)P0(B)

1− P0(B)
=
−δP0(B)

1− P0(B)
≤ 0 ≤ δ.

� If x ∈ B,
P0(B)− P (B)

1− P0(B)
=
P0(B)− (1 + δ)P0(B) + δ

1− P0(B)
=
δ(1− P0(B))

1− P0(B)
= δ.

Therefore, dPMM (P, P0) = δ. �

Proof of Proposition 8. We need to prove that

PB(A) = max

{
0, (1 + δB)

P0(A ∩B)

P0(B)
− δB

}
with δB = δ/((1+δ)P0(B)−δ). Since by [21, Thm. 1] the PMM induces a probability
interval, and hence a 2-monotone lower probability, we have that [31, Thm. 7.2]

PB(A) =
PPMM (A ∩B)

PPMM (A ∩B) + PPMM (Ac ∩B)

=
max{0, (1 + δ)P0(A ∩B)− δ}

max{0, (1 + δ)P0(A ∩B)− δ}+min{1, (1 + δ)P0(Ac ∩B)}
,

that is zero as soon as (1 + δ)P0(A ∩ B) ≤ δ. Let us now look at the case (1 +
δ)P0(A ∩B) > δ, in which case the equality becomes

PB(A) =
(1 + δ)P0(A ∩B)− δ

(1 + δ)P0(A ∩B)− δ +min{1, (1 + δ)P0(Ac ∩B)}

since we have P0(A∩B) +P0(A
c ∩B) < 1, we can deduce (1+ δ)P0(A∩B) + (1+

δ)P0(A
c ∩ B) < (1 + δ). Furthermore, as δ is a lower bound of (1 + δ)P0(A ∩ B),

we also have (1 + δ)P0(A
c ∩B) < 1, hence the equality becomes

PB(A) =
(1 + δ)P0(A ∩B)− δ

(1 + δ)P0(A ∩B)− δ + (1 + δ)P0(Ac ∩B)

=
(1 + δ)P0(A ∩B)− δ
(1 + δ)P0(B)− δ

=
(1 + δ)P0(B)

PPMM (B)

P0(A ∩B)

P0(B)
− δ

PPMM (B)
,

which �nishes the proof because (1+δ)P0(B)/PPMM (B) = 1 + δB . �

Proof of Theorem 9. First of all, note that dLV (P,Q) ≥ 0 for every P,Q ∈ P∗(X ).
The reason is that taking the sure event X we obtain that:

dLV (P,Q) ≥ Q(X )− P (X )
Q(X )

= 0,
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whence dLV .
Using the function dLV , the probability P0 and the parameter δ ∈ (0, 1), we can

de�ne the following credal set using Equation (7):

BδdLV (P0) = {P ∈ P(X ) | dLV (P, P0) ≤ δ}

=

{
P ∈ P(X )

∣∣∣max
A 6=∅

P0(A)− P (A)
P0(A)

≤ δ
}
.

This means that P ∈ BδdLV (P0) if and only if for every A 6= ∅, it holds that:

P0(A)− P (A)
P0(A)

≤ δ ⇔ P0(A)− P (A) ≤ δP0(A)⇔ P (A) ≥ (1− δ)P0(A).

Hence, BδdLV (P0) can be equivalently expressed as

BδdLV (P0) = {P ∈ P(X ) | P (A) ≥ (1− δ)P0(A), ∀A ⊆ X};

by Equation (17), this is the credal set associated with a linear vacuous model
induced by P0 and δ. �

Proof of Proposition 10. (a) We already know from Theorem 9 that dLV is
non-negative.

Consider now P ∈ P(X ) and A 6= ∅, it holds that:

P (A)− P (A)
P (A)

= 0.

This means that dLV (P, P ) = 0 and therefore dLV satis�es Ax.1b.
Thirdly, assume that dLV (P,Q) = 0. This means that for every A ⊂ X

with Q(A) > 0, it holds that:

Q(A)− P (A)
Q(A)

≤ 0⇒ Q(A) = P (A).

Since we are assuming that Q({x}) > 0 for every x ∈ X , this means that
Q({x}) ≤ P ({x}) ∀x ∈ X , whence Q = P . Thus, dLV satis�es Ax.1a.
Since we have also proved that d(P, P ) = 0 for every P , we conclude that
it also satis�es Ax.1.

Next, let us show that dLV (P,Q) satis�es the triangular inequality (Ax.2),
in the sense that for any P1, P2, P3, we have

dLV (P3, P1) ≤ dLV (P3, P2) + dLV (P2, P1),

or equivalently:

max
A 6=∅

P1(A)− P3(A)

P1(A)
≤ max

A6=∅

P2(A)− P3(A)

P2(A)
+ max

A6=∅

P1(A)− P2(A)

P1(A)
. (32)

Let us �rst assume that the maximal values are obtained on A1, A2, A3,
hence Equation (32) becomes

P1(A1)− P3(A1)

P1(A1)
≤ P2(A2)− P3(A2)

P2(A2)
+
P1(A3)− P2(A3)

P1(A3)
.

There are two possible cases:
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� If P2(A1) ≥ P1(A1), we have that

P1(A1)− P3(A1)

P1(A1)
≤ P2(A1)− P3(A1)

P2(A1)
+
P1(A3)− P2(A3)

P1(A3)

≤ P2(A2)− P3(A2)

P2(A2)
+
P1(A3)− P2(A3)

P1(A3)

where the �rst inequality holds because

P1(A1)− P3(A1)

P1(A1)
≤ P2(A1)− P3(A1)

P2(A1)
and

P1(A3)− P2(A3)

P1(A3)
≥ 0.

� If P1(A1) ≥ P2(A1),

P1(A1)− P3(A1)

P1(A1)
=
P2(A1)− P3(A1)

P1(A1)
+
P1(A1)− P2(A1)

P1(A1)

≤ P2(A1)− P3(A1)

P2(A1)
+
P1(A1)− P2(A1)

P1(A1)

≤ P2(A2)− P3(A2)

P2(A2)
+
P1(A3)− P2(A3)

P1(A3)
.

We conclude that dLV satis�es Ax.2.
To see that dLV also satis�es Ax.4, take Q1, Q2, P ∈ P∗(X ) such that

dLV (P,Q1) ≤ δ and dLV (P,Q2) ≤ δ, and take α ∈ (0, 1). Then for every
event A 6= ∅ it holds that

(αQ1 + (1− α)Q2)(A)− P (A)
(αQ1 + (1− α)Q2)(A)

=
α(Q1(A)− P (A)) + (1− α)(Q2(A)− P (A))

αQ1(A) + (1− α)Q2(A)

≤ max

{
α(Q1(A)− P (A))

αQ1(A)
,
(1− α)(Q2(A)− P (A))

αQ2(A)

}
≤ δ,

applying the �rst inequality in Lemma 21.
Finally, if ‖P −Q‖ < δ, it follows that

Q(A)− P (A)
Q(A)

≤ δ

minA 6=∅ PLV (A)
,

and minA 6=∅ P (A) > 0 by Equation (12). Thus, dLV satis�es Ax.6.
(b) Let us show that dLV is not symmetric (Ax.3). Take X = {x1, x2}, and

let Q be the uniform distribution on X . Take also P ∈ P∗(X ) given by
P ({x1}) = α < 0.5. By Equation (18),

dLV (P,Q) =
0.5− α
0.5

, dLV (Q,P ) =
1− α− 0.5

1− α
=

0.5− α
1− α

,

so dLV (P,Q) 6= dLV (Q,P ).
(c) Consider any A 6= ∅. Then

Q(A)− P (A)
Q(A)

=

∑
x∈A(Q({x})− P ({x}))∑

x∈AQ({x})
≤ max

x∈A

Q({x})− P ({x})
Q({x})

,

where the last inequality follows from Lemma 21. This implies that:

dLV (P,Q) ≤ max
x∈A

Q({x})− P ({x})
Q({x})

.
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The reverse inequality follows just taking the element x where the maximum
is attained, and considering B = X \ {x}. �

Proof of Proposition 11. Let us prove that there exists P ∈ BδdLV (P0) such that
dLV (P, P0) = δ. Consider a �xed event A ⊂ X and P given by:

P ({x}) =

{
(1− δ)P0({x}) if x ∈ A,
(1− δ)P0({x}) + δ P0({x})

P0(Ac)
if x /∈ A,

and P (B) =
∑
x∈B P ({x}). P satis�es the following properties:

• P is a probability measure. First of all, P ({x}) ≥ 0 trivially holds for every
x ∈ X . Also:∑

x∈X
P ({x}) =

∑
x∈A

P ({x}) +
∑
x/∈A

P ({x})

=
∑
x∈A

(1− δ)P0({x}) +
∑
x/∈A

(
(1− δ)P0({x}) + δ

P0({x})
P0(Ac)

)
= (1− δ)P0(A) + δ + (1− δ)P0(A

c) = 1.

We conclude that P is a probability measure.

• P ∈ BδdLV (P0). Let us prove that
P0({x})−P ({x})

P0({x}) ≤ δ for every B ⊆ X . We

consider the following cases:
� If x ∈ A,

P0({x})− P ({x})
P0({x})

=
P0({x})− (1− δ)P0({x})

P0({x})
= δ.

� If x ∈ Ac,

P0({x})− P ({x})
P0({x})

=
P0(x)− (1− δ)P0(x)− δ P0(x)

P0(Ac)

P0(x)

= δ
P0(x)− P0(x)

P0(Ac)

P0(x)
= δ

(
1− 1

P0(Ac)

)
≤ 0 ≤ δ.

• Finally, dLV (P, P0) = δ, because we have seen that for every x ∈ A it holds
that:

P0({x})− P ({x})
P0({x})

= δ

and applying Proposition 10(c) we get:

dLV (P, P0) = max
x∈X

P0({x})− P ({x})
P0({x})

= δ.

We conclude that maxP∈BδdLV (P0) dLV (P, P0) = δ. �

Proof of Proposition 13. Recall that we are assuming throughout that n ≥ 2. Let
PA be the extreme point associated with A ⊆ X by means of Equation (25). For
any x ∈ A, it holds that

PA({x}) =
(1− δ)P0({x})
1− δP0(A)

< P0({x})

⇔ P0({x})− δP0({x}) < P0({x})− δP0({x})P0(A)⇔ δP0({x})[1− P0(A)] > 0,
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that holds if A is a proper subset of X by Equation (12). On the other hand, if
x /∈ A, it holds that

PA({x}) =
P0({x})

1− δP0(A)
> P0({x}).

From this we deduce that if A1, A2 are proper subsets of X and A1 6= A2, then
there is some x ∈ A14A2, and in that case PA1({x}) 6= PA2({x}).

Finally, both A = ∅ and A = X produce PA = P0. Therefore, the number
of extreme points is at most 2n − 1, and at least 2n − 2. To see that P0 is not
an extreme point, note that, from Equation (24) for ε > 0 small enough, the ball
centered in P0 and with radius ε in the Euclidean distance is included in the credal
set BεdCOR(P0). Thus, B

δ
dCOR

(P0) has 2
n − 2 di�erent extreme points. �

Proof of Theorem 14. First of all, let us see that dCOR is non-negative. For this
aim, note that if we consider A = B = X , we obtain:

dCOR(P,Q) ≥ 1− P (X ) · P (X )
P (X ) · P (X )

= 0.

Using the function dCOR, the probability P0 and the parameter δ ∈ (0, 1) we can
de�ne the following credal set by Equation (7):

BδdCOR(P0) = {P ∈ P(X ) | dCOR(P, P0) ≤ δ}

=

{
P ∈ P(X )

∣∣∣ max
A,B⊆X

(
1− P (A) · P0(B)

P (B) · P0(A)

)
≤ δ
}
.

This means that P ∈ BδdCOR(P0) if and only if for every non-empty A,B ⊆ X , it
holds that:

1− P (A) · P0(B)

P (B) · P0(A)
≤ δ ⇔ (1− δ)P (B)P0(A) ≤ P (A)P0(B)

⇔ (1− δ)P0(A)

P0(B)
≤ P (A)

P (B)
.

This means that P ∈ BδdCOR(P0) if and only if P ∈M(PCOR). �

Proof of Proposition 15. From the proof of Theorem 14 we already know that dCOR
is non-negative.

Take P ∈ P∗(X ), and let us see that d(P, P ) = 0. For every non-empty A,B,

1− P (A) · P (B)

P (B) · P (A)
= 0,

whence d(P, P ) = 0. This means that dCOR satis�es Ax.1b.
Let us see that dCOR also satis�es property Ax.1a. Take P,Q ∈ P∗(X ) such that

dCOR(P,Q) = 0. This means that for each non-empty A,B ⊆ X , it holds that:

1− P (A) ·Q(B)

P (B) ·Q(A)
≤ 0⇔ P (B) ·Q(A) ≥ P (A) ·Q(B),

and this can only hold for every non-empty A,B if P = Q. From this we deduce
that dCOR satis�es Ax.1.
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Let us now prove that dCOR satis�es Ax.2. For this let A1, B1, A2, B2 and
A3, B3 be the pairs of events where the maxima of dCOR(P1, P3), dCOR(P2, P3) and
dCOR(P1, P2) are respectively attained, i.e.:

dCOR(P1, P3) = 1− P1(A1)P3(B1)

P1(B1)P3(A1)
, dCOR(P2, P3) = 1− P2(A2)P3(B2)

P2(B2)P3(A2)

dCOR(P1, P2) = 1− P1(A3)P2(B3)

P1(B3)P2(A3)
.

We then have to prove that dCOR(P1, P3) ≤ dCOR(P1, P2)+dCOR(P2, P3), or equiv-
alently:

1 +
P1(A1)P3(B1)

P1(B1)P3(A1)
≥ P1(A3)P2(B3)

P1(B3)P2(A3)
+
P2(A2)P3(B2)

P2(B2)P3(A2)
. (33)

We consider the following cases:

Case 1: Assume that P1(A1)
P1(B1)

≥ P2(A1)
P2(B1)

. In that case:

P1(A1)P3(B1)

P1(B1)P3(A1)
≥ P2(A1)P3(B1)

P2(B1)P3(A1)
≥ P2(A2)P3(B2)

P2(B2)P3(A2)
,

whence

dCOR(P1, P3) ≤ dCOR(P2, P3) ≤ dCOR(P1, P2) + dCOR(P2, P3).

Case 2: Assume that P3(B1)
P3(A1)

≥ P2(B1)
P2(A1)

. Then:

P1(A1)P3(B1)

P1(B1)P3(A1)
≥ P1(A1)P2(B1)

P1(B1)P2(A1)
≥ P1(A3)P2(B3)

P1(A3)P2(B3)
,

whence

dCOR(P1, P3) ≤ dCOR(P1, P2) ≤ dCOR(P1, P2) + dCOR(P2, P3).

Case 3: Assume that P1(A1)
P1(B1)

� P2(A1)
P2(B1)

and P3(B1)
P3(A1)

� P2(B1)
P2(A1)

. It holds that:

P1(A3)P2(B3)

P1(B3)P2(A3)
+
P2(A2)P3(B2)

P2(B2)P3(A2)
≤ P1(A1)P2(B1)

P1(B1)P2(A1)
+
P2(A1)P3(B1)

P2(B1)P3(A1)

=
P1(A1)P2(B1)P3(A1)P3(B1)

P1(B1)P2(A1)P3(B1)P3(A1)
+
P2(A1)P3(B1)

P2(B1)P3(A1)

=

(
P1(A1)P3(B1)

P1(B1)P3(A1)

)(
P2(B1)P3(A1)

P2(A1)P3(B1)

)
+
P2(A1)P3(B1)

P2(B1)P3(A1)
. (34)

We need to prove that this quantity is not greater than 1+ P1(A1)P3(B1)
P1(B1)P3(A1)

. If

we use the following notation:

t :=
P1(A1)P3(B1)

P1(B1)P3(A1)
α =

P2(B1)P3(A1)

P2(A1)P3(B1)
,

then, Equation (34) is smaller than or equal to 1+ P1(A1)P3(B1)
P1(B1)P3(A1)

if and only

if αt+ 1
α ≤ 1 + t. Since α ≥ 1 because P3(B1)

P3(A1)
≤ P2(B1)

P2(A1)
, it follows that

αt+
1

α
≤ 1 + t⇔ t ≤ 1

α
⇔ P1(A1)P3(B1)

P1(B1)P3(A1)
≤ P2(A1)P3(B1)

P2(B1)P3(A1)
⇔ P1(A1)

P1(B1)
≤ P2(A1)

P3(B1)
,

equality that holds by assumption. Then, Equation (33) holds, and so is
the triangle inequality.
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That dCOR is symmetric (Ax.3) is trivial, because if we exchange the role of P
and Q, we just need to also exchange the role of A and B.

We prove next that it satis�es Ax.4. From Equation (26),

dCOR(P0, Q) ≤ δ ⇔ (1− δ)P0(A)

P0(B)
≤ Q(A)

Q(B)
,

and trivially this inequality is preserved under convex combinations.
Finally, to see that dCOR is continuous, note that, for any P,Q ∈ P(X ) such that

‖P −Q‖ < δ, it holds that

P (A)Q(B)

P (B)Q(A)
≥
(
max
x∈X

P ({x})− δ
P ({x})

)2

,

because for any event A it holds that

P (A)

Q(A)
≥ P (A)

P (A) + δ
≥ max

x∈X

P ({x})
P ({x}) + δ

≥ max
x∈X

P ({x})− δ
P ({x})

,

and similarly given B 6= ∅
Q(B)

P (B)
≥ P (B)− δ

P (B)
≥ max

x∈X

P ({x})− δ
P ({x})

.

Using Equation (12),

dCOR(P,Q) ≤ 1−
(
max
x∈X

P ({x})− δ
P ({x})

)2

and as a consequence dCOR satis�es Ax.5. �

Proof of Proposition 16. Let us �x an event A ⊆ X , and consider the associated
extreme point PA of BδdCOR(P0) given by Equation (25). Let us now consider the
events A,Ac. We have

PA(A)

PA(Ac)
=

(1− δ)P0(A ∩A) + P0(A
c ∩A)

(1− δ)P0(A ∩Ac) + P0(Ac ∩Ac)
=

(1− δ)P0(A)

P0(Ac)
.

Since
(1− δ)P0(A)

P0(Ac)

P0(A
c)

P0(A)
= 1− δ,

we obtain that dCOR(PA, P0) ≥ δ and as a consequence dCOR(PA, P0) = δ. �

Proof of Proposition 17. (a) The lower probability Q
COR

can be expressed as

Q
COR

= f(P0), where f : [0, 1]→ [0, 1] is given by:

f(t) =
(1− δ)t
1− δt

= (1− δ)t
∞∑
n=0

(δt)n ∀t ∈ [0, 1].

Since f(0) = 1, f(1) = 1 and f (n) ≥ 0, it follows that f is completely
monotone [4, Thm.3]. Then, since f(P0) is the composition of two com-
pletely monotone functions we deduce that it is also completely monotone
[4, Thm.2].

(b) By de�nition of the credal set,

P ∈M(Q
COR

)⇔ P (A) ≥ Q
COR

(A) ∀A⇔ P (G(IA)) ≥ 0

⇔ P (G(IA)
+)− P (G(IA)−) ≥ 0⇔ P (G(IA)

+)

P (G(IA)−)
≥ 1 =

(1− δ)P0(G(IA)
+)

P0(G(IA)−)
.
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Since G(IA) = IA −QCOR(A), it follows that G(IA)
+ = (1−Q

COR
(A))IA

and G(IA)
− = −(−Q

COR
(A))IAc = Q

COR
(A)IAc . Therefore,

P (G(IA)
+)

P (G(IA)−)
≥ (1− δ)P0(G(IA)

+)

P0(G(IA)−)

⇔
(1−Q

COR
(A))P (A)

Q
COR

(A)P (Ac)
≥ (1− δ)

(1−Q
COR

(A))P0(A)

Q
COR

(A)P0(Ac)

⇔ P (A)

P (Ac)
≥ (1− δ) P0(A)

P0(Ac)
.

(c) Since Q
COR

is a belief function, in particular it is 2-monotone, thus its asso-
ciated credal set has at most n! extreme points, and these are in correspon-
dence with the permutations (see the procedure described in Equation (2)).
Let us prove that this upper bound is attained.

Let P0 be the uniform distribution on X = {1, . . . , n}, and take δ < 1
n .

For any permutation σ, applying Equation (2) we obtain that

Q
COR

({xσ(1)}) =
(1− δ)/n
1− δ/n

=
1− δ
n− δ

Q
COR

({xσ(1), xσ(2)}) =
2(1− δ)/n
1− 2δ/n

=
2(1− δ)
n− 2δ

,

and, more generally, Q
COR

({xσ(1), . . . , xσ(k)}) = k(1−δ)
n−kδ . This implies that

the extreme point associated with σ satis�es

Pσ({xσ(k)}) =
k(1− δ)
n− kδ

− (k − 1)(1− δ)
n− (k − 1)δ

=
n(1− δ)

(n− kδ)(n− (k − 1)δ)
.

This implies that Pσ({xσ(k)}) 6= Pσ({xσ(k′)}) for any k 6= k′, and as a
consequence the n! di�erent permutations produce n! di�erent extreme
points. �

Proof of Theorem 18. First of all, d′COR is non negative because if P (A)Q(Ac)
P (Ac)Q(A) > 1

for some A 6= ∅,X , then taking Ac we obtain P (Ac)Q(A)
P (A)Q(Ac) < 1, hence the maximum

is always non-negative.
To prove thatM(Q

COR
) coincides with Bδd′COR

(P0), it su�ces to note that

1− P (A)

P (Ac)

Q(Ac)

Q(A)
≤ δ ∀A 6= ∅,X ⇔ 1− δ ≤ P (A)

P (Ac)

Q(Ac)

Q(A)
∀A 6= ∅,X

⇔ P (A)

P (Ac)
≥ (1− δ) Q(A)

Q(Ac)
∀A ⊆ X ,

and to replace Q by P0. �
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