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ABSTRACT

A novel generalization of the Winfree model of globally coupled phase oscillators, representing phase reduction under finite coupling, is stud-
ied analytically. We consider interactions through a non-infinitesimal (or finite) phase-response curve (PRC), in contrast to the infinitesimal
PRC of the original model. For a family of non-infinitesimal PRCs, the global dynamics is captured by one complex-valued ordinary differen-
tial equation resorting to the Ott–Antonsen ansatz. The phase diagrams are thereupon obtained for four illustrative cases of non-infinitesimal
PRC. Bistability between collective synchronization and full desynchronization is observed in all cases.
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In 1967, Winfree proposed a model for the spontaneous synchro-
nization of large ensembles of biological oscillators.1 The Winfree
model played a seminal role in the field of collective synchrony,
inspiring the Kuramoto model2,3 as well as promoting recent
advances in theoretical neuroscience.4 In spite of the simplifying
assumptions of the Winfree model, uniform all-to-all weak cou-
pling, analytical solutions have been found only recently using the
Ott–Antonsen ansatz,5,6 see also Ref. 7. Weak coupling is implicit
in the use of phase oscillators as the units of the model. More-
over, their interactions are modeled by the so-called infinitesimal
phase-response curve (iPRC), which is only valid in the limit of
vanishing coupling. In this paper, we extend the Winfree model
considering a non-infinitesimal (also called finite) PRC such that
the phase shift of one oscillator is not proportional to the mag-
nitude of the input. For a family of non-infinitesimal PRCs,
and a Lorentzian distribution of natural frequencies, the global
dynamics is captured by one complex-valued ordinary differen-
tial equation by means of the Ott–Antonsen ansatz.8–10 We obtain
phase diagrams for four instructive cases.

I. INTRODUCTION

Collective synchronization in large ensembles of self-sustained
oscillators is a pervasive phenomenon in nature and technology.11–13

The first successful attempt to model collective synchronization

is due to Winfree.1 Relying on his intuition, he devised a model
where the only degrees of freedom were the oscillators’ phases and
the coupling was uniform and global (i.e., mean-field type). In the
numerical simulations, a macroscopic cluster of synchronized oscil-
lators emerged spontaneously when either the natural frequencies
of the oscillators were narrowly distributed or the coupling was
large enough. In mathematical language, the phases in the Winfree
model are governed by a set of N ordinary differential equations
(i = 1, . . . , N),

θ̇i = ωi + Q̃(θi) A, (1a)

A =
ε

N

N
∑

j=1

P(θj). (1b)

Here, ωi is the natural frequency of the ith oscillator and ε > 0 is a
parameter controlling the coupling strength. The 2π-periodic func-
tion P specifies the pulse shape. Function Q̃ is also 2π-periodic and
is either called infinitesimal (or linear) phase-response curve (iPRC)
or sensitivity function.11,13,14

As already mentioned, the Winfree model relies on two
assumptions: weak coupling and all-to-all geometry. First of all,
weak coupling permits ignoring the oscillators’ amplitudes: the limit
cycles are strongly attractive compared to perturbations, caus-
ing amplitudes to be strongly damped degrees of freedom. In
addition, the effect of the mean field A on the phase is exactly
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proportional to A—higher powers of A are absent in Eq. (1a)—which
only holds in the limit of asymptotically small interactions.11,13–16

In this work, we generalized the Winfree model considering
nonlinear interactions. Mathematical tractability imposes certain
restrictions on the distribution of the natural frequencies and on
the class of “non-infinitesimal” (also called “finite” or “non-linear”)
PRCs, but we believe it is remarkable that such analytic solutions
exist. This limited progress should be welcome given the relevance
of the PRC theory in theoretical neuroscience,17,18 and recent exper-
iments evidence the insufficiency of the linear approximation.19,20

Our analysis is based on the so-called “Ott–Antonsen (OA) theory,”
which assumes a certain ansatz (the Poisson kernel) for the den-
sity of the phases in the thermodynamic limit (N → ∞). The OA
ansatz was initially applied to the Kuramoto model and its variants8,9

but eventually found application in several systems of pulse-coupled
oscillators: the original Winfree model5,6 (and a variant with het-
erogeneous iPRCs21), ensembles of theta neurons,22–24 quadratic
integrate-and-fire neurons,25–27 and excitable active rotators.28,29

II. WINFREE MODEL WITH NON-INFINITESIMAL PRC

We consider a modification of the Winfree model (1), in which
Eq. (1a) is replaced by

θ̇i = ωi + Q(θi, A), i = 1, . . . , N, (2)

where A is the mean field defined by (1b). At the lowest order in A,
model (2) converges to the Winfree model (1): dQ(θi, A)/dA|A=0 =

Q̃(θi). Assuming Q(θ , A) to be linear in A is equivalent to approxi-
mate the isochrons of a limit cycle by straight lines (or hyperplanes
if the dimensionality is larger than two) in the phase reduction
procedure.13,14

A. Non-infinitesimal PRC

Prior to specifying the PRC Q, we devote a few lines to iPRCs.
Traditionally, iPRCs are classified as type I or type II.30 For type
II, either an advance or a delay in the phase are possible depend-
ing upon the timing of the perturbation, while in the case of type I,
the timing of the perturbation does not change the sign of the phase
shift. The canonical examples of each type13,15 are Q̃(θ) ∝ 1 − cos θ

for type I (e.g., the theta neuron) and Q̃(θ) ∝ sin θ for type II (e.g.,
the Stuart–Landau oscillator). For non-infinitesimal PRCs, the pre-
vious classification falls short as the character of Q may change with
the strength of the stimulus.13,15

The types of PRC we consider are conditioned by the appli-
cability of the OA ansatz, as it enables a drastic dimensionality
reduction. The OA ansatz imposes that no harmonics in θ beyond
the first one are present in Q(θ , A). Still, the family of PRCs with
only first harmonic in θ is wide enough to make the problem non-
trivial. As we shall adopt pulses P(θ) with peak value at θ = 0 (and
multiples of 2π), we impose the additional constraint Q(0, A) = 0
motivated by the fact that the PRC vanishes at spiking/flashing times
for most neurons31,32 and certain fireflies.33,34 Therefore, we restrict
to a family of PRCs of this form,

Q(θ , A) = f1(A)(1 − cos θ) − f2(A) sin θ , (3)

where f1 and f2 are arbitrary functions of A, provided f1,2(0) = 0
for obvious physical reasons. In similarity with the classification of

FIG. 1. Rectified-Poisson pulse (4) for three values of parameter r .

iPRCs, we refer to the two terms in (3), proportional to (1 − cos θ)

and sin θ , as the type I and the type II components of the PRC,
respectively.

B. Pulse shape

In the study of the classical Winfree model, several pulse shapes
can be considered, see Ref. 6. In this work, we adopt a “rectified-
Poisson kernel”,6

P(θ) =
(1 − r)(1 + cos θ)

1 − 2r cos θ + r2
. (4)

This is a particularly convenient shape for the theoretical analy-
sis below. P(θ) is a symmetric unimodal function in the interval
[−π , π] [with the normalization

∫ π

−π
P(θ)dθ = 2π] that peaks at

θ = 0 and vanishes at θ = ±π . Parameter r is a real number allow-
ing a continuous interpolation between a flat pulse for r = −1 and
a Dirac-delta pulse, P(θ) = 2πδ(θ), for r = 1. In Fig. 1, the pulse
function P(θ) is depicted for three different values of r.

C. Natural frequencies

For the sake of achieving the maximal dimensionality reduc-
tion, we assume the natural frequencies to be distributed according
to a Lorentzian distribution of half-width 1 centered at ω0,

g(ω) =
1/π

(ω − ω0)
2 + 12

. (5)

III. OTT–ANTONSEN THEORY

Once the building blocks of the model have been introduced,
we apply the OA theory.8 In this way, we derive a complex-valued
ODE reproducing the long-time evolution of the model at the
macroscopic level. As the procedure is standard,6,8 the readers inter-
ested in the final result are pointed to Eqs. (10) and (11).

First of all, one must realize that our model (2) belongs to a
general class of oscillator systems of the form

θ̇i(t) = ωi + B(t) + Im
[

H(t)e−iθi(t)
]

, (6)
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which can be analyzed with the OA ansatz.8–10,35 Functions B and H
may depend explicitly on time or indirectly through a mean field.
For PRC (3), we have

B(t) = f1(A), H(t) = f2(A) − if1(A). (7)

In the thermodynamic limit, we can define a phase den-
sity F(θ |ω, t) such that F(θ |ω, t)dθ is the fraction of oscillators
of frequency ω at time t, with phases in the interval [θ , θ + dθ].
It is convenient to introduce the Fourier expansion of the density,

F(θ |ω, t) =

∞
∑

m=−∞

αm(ω, t)eimθ ,

with α−m = α∗
m. We notice as well that, by conservation of the num-

ber of oscillators, F satisfies the continuity equation: ∂tF + ∂θ (Fθ̇ ) =

0, where θ̇ is the speed of an oscillator of natural frequency ω.
Inserting the Fourier series of F into the continuity equation, we get

∂tαm(ω, t) = −im(ω + B)αm +
m

2
(H∗αm−1 − Hαm+1). (8)

A particular solution of this equation, the OA ansatz, is obtained
equating the coefficient of mth mode to the mth power of the
first mode: αm = αm

1 . Hence, for the solution in this so-called OA
manifold, we only need to consider the evolution of α1 ≡ α,

∂tα(ω, t) = −i(ω + B)α +
1

2

(

H∗ − Hα2
)

. (9)

This is still an infinite set of coupled integrodifferential equations.
A sharp reduction in the dimensionality of the problem is achieved
for rational g(ω) and specially for the Lorentzian distribution.8 As

the Kuramoto order parameter2 Z = eiθ is related to α via Z∗(t) =
∫ ∞

−∞
α(ω, t)g(ω)dω, we can evaluate this integral resorting to the

residue theorem obtaining Z∗(t) = α(ω0 − i1, t). (This is the result
of performing an analytic continuation of α from real to complex
ω and evaluating α at the pole of g(ω) in the lower half ω-plane.)
Thus, setting ω = ω0 − i1 in (9), we get a complex-valued ODE for
the Kuramoto order parameter,

Ż = (−1 + iω0)Z −
i

2
f1(A)(1 − Z)2 +

1

2
f2(A)(1 − Z2), (10)

where B and H have been written in terms of f1 and f2 accord-
ing to Eq. (7). To close Eq. (10), we need to express the mean
field A as a function of Z. For the pulse shape in Eq. (4) and a
Lorentzian frequency distribution, it can be proven (see Ref. 6 or
the supplementary material of Ref. 4) that

A = ε Re

(

1 + Z

1 − r Z

)

. (11)

Note that 0 ≤ A ≤ Amax, where the maximal value Amax = 2ε/(1 −

r) is achieved if Z = 1 (all oscillators exactly at θj = 0). In addition
to this, the central natural frequency ω0 is hereafter set to 1, as this
can always be achieved by rescaling time and f1,2.

IV. FOUR ILLUSTRATIVE PRCs

Among the infinite set of functions f1(A) and f2(A), we selected
a few illustrative case studies. In each of these cases, the charac-
ter of the PRC undergoes a crossover as A grows: from one iPRC

TABLE I. The four cases of non-infinitesimal PRCs analyzed in this paper. Functions

f 1 and f 2 determine the PRC in (3) [σ (A) is a crossover function, see (12)]. The code

in the last column indicates the iPRC and the asymptotic PRC at large A (see text).

Case f1(A) f2(A) Code

a σ (A) A σ (A) I − IIs

b A σ (A) σ (A) IIs − I
c 0 (1 − A)σ (A) IIs − IIr

d 0 −(1 − A)σ (A) IIr − IIs

type to a different PRC type for large A. We denote the limiting
PRC at A → ∞ as “asymptotic PRC” (aPRC). From now on, we
apply the classical distinction between types I and II to both iPRCs
and aPRCs. Recall that if the sign is the same for all θ , we call the
iPRC (or the aPRC) as type I (implying f2 = 0), while in the com-
plementary case with f1 = 0, we refer to the iPRC (or to the aPRC)
as canonical type II or simply type II. Notably, type II may either
promote or impede synchronization depending on the sign of f2. In
turn, we distinguish between two subclasses of type II: IIs ( f2 > 0)
and IIr ( f2 < 0) corresponding to the synchronizing and repulsive
interactions, respectively.

As we are interested in introducing one crossover in the PRC
between the iPRC and the aPRC and have three fundamentally dif-
ferent types (I, IIs, and IIr), this gives six possible combinations.
However, we shall consider only four of these iPRC–aPRC pairs,
since only type IIs favors synchrony and is to be included either in
the iPRC or in the aPRC. Otherwise, no synchronization phenom-
ena are expected: type I is neutral and type IIr is repulsive. Hence, we
focus on the four cases listed in Table I, in which different PRC types
characterize small and large A regimes. As a guide, in the fourth col-
umn of the table, we write a code X–Y, where X refers to the iPRC
and Y to the aPRC. The saturation function σ(A) in the table has
positive slope at A = 0 and saturates at large A. In particular, we
chose this specific saturation function in our study,

σ(A) =
A

1 + A
. (12)

(Our results have been occasionally tested against another choice
σ(A) = tanh(A), finding no qualitative difference.) Graphical rep-
resentations of the four PRCs (cases a–d), for four representative A
values, are shown in Figs. 2(a)–2(d). In each panel, the PRC appears
divided by A as usual,13 and the lack of overlapping between different
lines evidences its nonlinearity.

In Sec. V, we obtain the phase diagrams corresponding to
each of the four cases introduced here, based on the analysis of
the complex-valued ordinary differential Eq. (10). But before doing
so, it is worth making direct simulations of full system (2) and test
(and understand) the correspondence with the solutions of Eq. (10).
We simulated the full model in case d with ω0 = 1, heterogeneity
parameter 1 = 0.01, pulse-shape parameter r = 0.9, and coupling
constant ε = 0.4. As may be seen in Fig. 3, the population exhibits
bistability between a desynchronized state and a synchronized state
with some oscillators oscillating with the same frequency. This bista-
bility is not surprising as the system is “more synchronizing” when
already synchronized since the aPRC is of type IIs, while it is hardly
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FIG. 2. The non-infinitesimal PRCs analyzed in this
work as a function of θ for four representative values
of A, including A = 0+ (iPRC) and A = 8 (resembling
the aPRC). Panels (a)–(d) correspond to cases a–d,
respectively (see Table I). The code iPRC–aPRC is
indicated in each panel.

synchronizable when already desynchronized by virtue of the type
IIr iPRC. In terms of Z, the synchronous solution is (approximately)
a periodic orbit, while the desynchronized state exhibits only small
fluctuations around a point due to finite size effects (N = 500). The
agreement with the stable fixed point and the stable limit cycle of
Eq. (10), also represented in Figs. 3(b) and 3(d), is excellent.

V. PHASE DIAGRAMS

In the remainder of this paper, we obtain the phase diagrams
for the four reference cases by means of Eq. (10). As (10) is a
(generic) planar system, the only possible attractors are fixed points
and limit cycles. Their bifurcation loci, depicted in the phase dia-
grams below, have been obtained using the MATCONT toolbox36 of
MATLAB. Moreover, we recall that Z is only physically meaningful
inside the unit disk |Z| ≤ 1 and, therefore, attractors and bifurca-
tions occurring outside it are ignored. As seen in Fig. 3, limit cycles
correspond to synchronized solutions in which a macroscopic part
of the population rotates at the same average frequency.

A. Case a: I− IIs

In Fig. 4(a), we show the phase diagram spanned by param-
eters 1 and ε. Bifurcation lines for three values of parameter r,
controlling the pulse width, are depicted. The results almost repli-
cate those in Ref. 6 for the standard Winfree model with type IIs

iPRC. Synchronization is found in two adjacent regions, in one of
them (dark shaded) coexisting with a desynchronized state. [There
exists a region (not shown) besides the bistability region where
two desynchronized states coexist, see Refs. 5 and 6]. In contrast

to the averaging approximation (the Kuramoto–Sakaguchi model),
valid at small ε and 1, synchronization becomes impossible if the
population is too heterogeneous (large 1).

For small coupling (and heterogeneity), synchronization
emerges from a supercritical Hopf bifurcation undergone by the
desynchronized state, akin to the classical Kuramoto transition.8

This Hopf bifurcation line terminates at a double zero eigenvalue
(Bogdanov–Takens, BT) point. A homoclinic (Hom) line emanates
from the BT point limiting the coexistence region. As observed for
the regular Winfree model,5,6 synchronization is more efficient for
narrow pulses. The pulse width does not qualitatively change the
phase diagram.

The phase diagram only differs appreciably from those in
Ref. 6 at the origin. We see that, due to the type I iPRC, the Hopf
line approaches the origin with an infinite slope. In particular, the
asymptotic dependence of the critical εH on 1 follows an unusual
square-root law with the frequency dispersion 1,

εH =

√

21

1 + r
. (13)

We can deduce this result deriving the associated Kuramoto–
Sakaguchi model of model (2) via averaging. Or, alternatively, pre-
serving in (10) only linear, rotationally invariant terms in Z and
equating the linear coefficient to i�.

B. Case b: IIs − I

In case b, iPRC and aPRC are interchanged with respect to case
a. This means that synchronization is favored at small coupling but
becomes increasingly difficult as the coupling grows. Accordingly,
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FIG. 3. (a) Raster plot—a dot indicates at which time one oscillator phase crosses a multiple of 2π—for a population of N = 500 and the non-infinitesimal PRC of case d,
see Table I and Fig. 2(d). The initial condition is uniform θj(t = 0) = 0.01, and parameters are 1 = 0.01, r = 0.9, ε = 0.4. The frequencies are deterministically drawn
from a Lorentzian distribution: ωi = ω0 + 1 tan[π(2i − N − 1)/(2N)]. (c) The same as (a) but for random initial distribution of phases. (b) and (d) depict the Kuramoto

order parameter Z(t) = N−1
∑

j e
iθj (t) for 50 t.u., once the simulations in (a) and (c), respectively, reached the stationary state. The red dashed line and the red cross in

panels (b) and (d) are the periodic and fixed point attractors of Eq. (10), coexisting at the same parameter values.

the phase diagram in Fig. 4(b) shows the expected supercritical Hopf
bifurcation line emanating as a straight line from the origin:5,6 εH ∝

1 + O(12).
At large ε, there is a bistability region such that the synchro-

nized state disappears in a saddle-node bifurcation of limit cycles
(SNLCs). The locus of the SNLC is a line that emanates from a gen-
eralized Hopf (or Bautin) point (GH) and terminates at the ε axis at
a point marked with a star on the ε-axis of the phase diagram. The
stars pinpoint the (equivariant) transcritical (TC) bifurcation,37 in
which the fully synchronized state [θi(t) = θj(t)] of identical oscil-
lators (1 = 0) becomes unstable. For r = 0.9, the instability of full
synchronization takes place at εc = 9.555 . . ., far above the range of
ε displayed in the phase diagram. The location of εc was not calcu-
lated using (10) but by directly looking for the stability threshold to
the fully synchronized state, see the Appendix.

Finally, note that the synchronization region shrinks as the
pulse becomes wider, but there is not a qualitative change in the
phase diagram whatsoever.

C. Case c: IIs − IIr

In this case, the aPRC is repulsive, in contrast to case b, where
the aPRC is type I (i.e., neutral in terms of synchronization). In turn,
the phase diagram in Fig. 4(c) shows a quite small synchronization
region (notice the scale of the axes). Synchronization is bounded
exclusively by a supercritical Hopf bifurcation, save for broad pulses.

In the latter case, a GH point is found, and the Hopf bifurcation is
subcritical at the left of it. Accordingly, we find a bistability region
bounded by a line of saddle-node bifurcation of limit cycles (SNLCs)
and a subcritical Hopf bifurcation, as in case b. The precise value
of r below which the bistability region exists (i.e., the GH point is
present) is r∗ ' 0.278 91.

Note also the presence of a TC point in the phase diagram
at 1 = 0, above which full synchrony destabilizes.38 The transcrit-
ical bifurcation is not structurally stable, see, e.g., Fig. 1 in Ref. 39
and increasing 1 from 0 may either leave no trace of bifurcation
or “decay” into two saddle-node bifurcation of limit cycles. The lat-
ter scenario occurs for r < 0.275 77 . . ., see the bifurcation lines for
r = 0.1 in Fig. 4(c), but in our case, one of the bifurcations is not
shown as it entails |Z| > 1.

D. Case d: IIr − IIs

Case d exhibits the most complex phase diagram among all
those obtained here. The aPRC is of type IIs, as in case a, and
(accordingly) the large ε region is organized by two codimension-
two points: the Bogdanov–Takens (BT) and the saddle-node
separatrix-loop (SNSL) codimension-two points. The associated
region of bistability between synchrony and asynchrony is bounded
by homoclinic, saddle-node, and Hopf bifurcations.

Remarkably, there is also a bistability region at small ε val-
ues for r > r∗ ' 0.278 91 (recall the simulations in Fig. 3), which
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FIG. 4. Synchronization regions of the Winfree model in the (1, ε)-plane for the four cases of PRCs described in Table I, and three different values of the parameter
r ∈ {0.1, 0.5, 0.9}. Panels (a)–(d) correspond to cases a–d, respectively. For the value r = 0.9, light shaded regions indicate where there is a stable limit cycle, corre-
sponding to a macroscopic synchronized state. In the dark shaded regions, the limit cycle (synchronous state) coexists with a stable fixed point (asynchronous state). The
codimension-two points are depicted by specific symbols: generalized Hopf (GH—N), saddle-node separatrix-loop (SNSL—�), Bogdanov–Takens (BT—•), and transcritical
(TC—F) bifurcations. The bifurcation corresponding to each line type is indicated in the legend of the respective panel. Insets in panels (c) and (d) are magnifications of the
regions inside the respective rectangles.

is bounded by a subcritical Hopf and a saddle-node of limit cycles
bifurcations. In contrast to previous cases, this synchronization
region is detached from the origin due to the repulsive charac-
ter of the iPRC. To be more precise, the bottom corner of the
lower bistability region located at point TC approaches the origin
as r → 1.

VI. CONCLUSIONS

In this work, we have studied a non-trivial extension of the
Winfree model in which the PRC is nonlinear in the mean field.
If the PRC contains only the first harmonic of the angle, the OA
ansatz permits a sharp dimensionality reduction. Among all possible
dependencies of the PRC on the mean field, we have considered only
those with a crossover between two different canonical components.
In particular, we have analyzed four cases in which an attractive type
II component competes either against a repulsive type II component
or against a type I component. Synchronization regions are peculiar
for each case. Bistability between macroscopic synchronization and

complete desynchronization is found in all cases (in case c, only for
broad pulses), but in different relative locations in the 1–ε plane.

Our results indicate that the nonlinearity of the PRC with
the forcing, by itself, is not enough to generate complex collective
phenomena. This is certain for a Lorentzian distribution of frequen-
cies since the reduced system is only two dimensional, irrespective
of the exact form of f1(A) and f2(A). As happens in Kuramoto-
like models, phenomena such as clustering or glassy dynam-
ics may require multiple Fourier components40 (in the PRC) or
stronger heterogeneity,41 respectively. Concerning collective chaos,
other ingredients such as a time-varying coupling,42 two interacting
populations,43 or multimodal frequency distributions44 appear to be
imperative.

Needless to say, our study is only a drop in the ocean of
possible PRCs and model generalizations. For instance, relaxation
oscillators45 and bursting (neuronal) oscillators46 have PRCs very
different from the first-harmonic shape function in Eq. (3). Never-
theless, in spite of its limitations, we regard the model defined by
Eqs. (2) and (3) as a noteworthy example of a system in which the
OA theory can be fully applied.

Chaos 30, 073139 (2020); doi: 10.1063/5.0015131 30, 073139-6

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

ACKNOWLEDGMENTS

We acknowledge support by the Agencia Estatal de Investi-
gación and Fondo Europeo de Desarrollo Regional under Project
No. FIS2016-74957-P (AEI/FEDER, EU).

APPENDIX: IDENTICAL OSCILLATORS

If the oscillators are identical, there is a fully synchronized
solution θj(t) = 9(t). The dynamics of 9 obeys

9̇ = ω0 + f1[εP(9)](1 − cos 9) − f2[εP(9)] sin 9 .

Next, we calculate the stability threshold of full synchrony, fixing
ω0 = 1 as in the main text. In the thermodynamic limit (N → ∞),
we may perturb one oscillator, say, the first one, without changing
the mean field. Hence, one infinitesimal perturbation δθ = θ1 − 9

obeys

δ̇θ = λ(9) δθ ,

where the multiplicative factor λ(9) = f1[εP(9)] sin 9 − f2[εP(9)]
cos 9 depends on time through 9(t). In order to know the average
exponential growth (or contraction) rate of δθ , we need to integrate
over variable 9 , taking into account its density ρ(9). These mean
that the sign of constant λ, given by

λ =

∫ π

−π

λ(9)ρ(9)d9 ,

determines the stability of the fully synchronized solution. If λ is
positive, the oscillator “evaporates” from the main cluster, i.e., full
synchrony is unstable.

The density ρ(9) is proportional to the inverse of the speed:
ρ(9) ∝ 9̇−1. Imposing λ = 0, we obtain the condition for the
stability threshold of full synchrony,

∫ π

−π

f1[εcP(9)] sin 9 − f2[εcP(9)] cos 9

1 + f1[εcP(9)](1 − cos 9) − f2[εcP(9)] sin 9
d9 = 0.

This integral cannot be solved analytically, but the threshold
coupling εc is easily found numerically.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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