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Abstract

The operation of taking the α-cut of a compact convex fuzzy set
is shown to be jointly measurable with respect to both α and the
fuzzy set. As a consequence, a number of mappings on product spaces
which are induced by a fuzzy random variable are shown to be jointly
measurable. Some applications to the relationships between fuzzy
random variables and other imprecise random elements are obtained.
Finally, a number of conditions are shown to be equivalent to being a
fuzzy random variable, at least in the case that the σ-algebra in the
sample space is complete, and logical implications and equivalences
between them are established in the general case.

Keywords: α-cut mapping; Fuzzy random variable; Product σ-
algebra; Random compact set.
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1 Introduction

Measurability is a key property in Probability Theory defining which func-
tions can be interpreted as random elements of a set of objects under study.
Many papers have dealt with the issue of measurability for fuzzy random
variables, which are mathematically more complex than ordinary random
variables. In fact, early papers of Puri and Ralescu presented different mea-
surability conditions [20, 19]. The interested reader is referred to papers
like [16, 13, 6, 22] for further details on measurability conditions and their
interrelationships.

The standard definition of a fuzzy random variable ensures that each α-
cut mapping U 7→ Uα (where U represents a fuzzy set in an appropriate
space) is measurable. That is, for fixed U and variable α, the way in which
the α-cut Uα changes as α changes is measurable. However, this is insufficient
for situations where U is not really fixed, for instance to describe procedures
which involve Uα but depend on functions of both U and α.

To fix ideas, consider the paper [24] by Terán and López-Dı́az. It studies
the problem of approximating a fuzzy set U (e.g., the home range of a wild
animal with a safe inner core with high membership and an external ring with
smaller membership) by a double sampling procedure. The animal is tagged
with a radio transmitter and at fixed intervals a number of measurements
of its position are taken. Since the animal moves freely, at the time of
measurement it is (1) in a random α-level of its range, and (2) in a random
location in that α-level. An estimator of the fuzzy range is then constructed
from this random information, which depends simultaneously on the home
range U and the sampled α-levels. To ensure that the estimator is a fuzzy
random variable, it becomes necessary to require that its dependence on both
U and α is jointly measurable. That paper also presents an application to
breast cancer data where the fuzzy set-valued estimator avoids an obfuscation
effect (created by the dependence between two relevant variables) which is
suffered by the traditional set-valued estimator.

This paper’s first contribution is to show that, for fuzzy random variables
having convex values (which are the most common in applications), measur-
ability with respect to α for any fixed U actually ensures joint measurability
with respect to U and α simultaneously.

The basic result is Theorem 4.1, which states that the mapping L :
(U, α) 7→ Uα is jointly measurable. This is obtained by combining a mea-
surability result in the theory of Carathéodory functions (with values in a
metric space), with the approximation scheme used in [23].

We obtain then a sequence of results which have in common that they
yield the joint measurability of mappings defined on product spaces and in
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many cases involve a fuzzy random variable.
Some of these mappings are related to standard objects and techniques to

handle fuzzy random variables, e.g., the support function of a fuzzy random
variable X,

s̃X : (ω, α, r) ∈ Ω× [0, 1]× Sd−1 7→ sup
x∈Xα
〈r, x〉

whose joint measurability was established by Krätschmer [14] and follows
from our results.

Others are very natural but seem not to have been considered in the
literature, e.g., the mapping

BX : (ω, α, x) ∈ Ω× [0, 1]× Rd 7→

{
1, x ∈ Xα(ω)

0, x 6∈ Xα(ω),

which is shown to be a Bernoulli random variable.
We show that an alternative approach to fuzzy random variables by Cas-

taing et al. [5], which looks formally more restrictive, is in fact equivalent
to graph measurability. We also show that a fuzzy random variable, when
looked at ‘vertically’ instead of ‘horizontally’ generates a probabilistic set,
thus connecting these two well-known approaches to combining fuzzy and
random uncertainty. Another example of a natural result which was missing
in the literature is that taking a random α-cut of a fuzzy random variable
yields a random set.

Finally, these results will be used to study a number of conditions closely
related to being a fuzzy random variable. Some of them are equivalent in
general, and the others are so under the assumption that the σ-algebra in
the sample space is complete.

The structure of the paper is as follows. Definitions and preliminary no-
tions are presented in Section 2. A number of support results from several
sources in the literature are collected in Section 3. Section 4 contains the
joint measurability results. Some applications are given in Section 5. Mea-
surability conditions for fuzzy random variables are studied in Section 6. We
have found it convenient to close the paper with a short discussion of graph
measurability for fuzzy random variables in Section 7.

2 Preliminaries

A mapping f : (Ω1,A1)→ (Ω2,A2) between two measurable spaces is called
measurable if f−1(A2) ⊆ A1. If Ω1 is a product space then f is called
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jointly measurable if it is measurable with respect to the product σ-algebra
in Ω1. Joint measurability is thus a particular case of measurability and the
name emphasizes that f is required to be measurable with respect to all its
variables, as opposed to separate measurability or section measurability, i.e.,
the property that f is measurable as a function of each variable when the
values of all the other variables are fixed.

In the sequel, product spaces will always be endowed with the product σ-
algebra. A general probability space will be denoted (Ω,A, P ). The Lebesgue
measure in [0, 1] will be called λ. The closure of a set A will be denoted by
clA.

Let Kc(Rd) be the space of non-empty convex compact subsets of Rd. Let
Fc(Rd) be the space of fuzzy subsets of Rd, i.e, mappings U : Rd → [0, 1],
whose α-cuts belong to Kc(Rd). The α-cuts are

Uα = {x ∈ Rd : U(x) ≥ α}

for α ∈ (0, 1] and
U0 = cl{x ∈ Rd : U(x) > 0}.

In Kc(Rd) we consider the Hausdorff metric dH defined by

dH(K,L) = max{sup
x∈K

inf
y∈L
‖x− y‖, sup

y∈L
inf
x∈K
‖x− y‖}

for K,L ∈ Kc(Rd), where ‖ · ‖ denotes the Euclidean norm in Rd.
For each U ∈ Fc(Rd), let LU : [0, 1]→ Kc(Rd) be defined by LU(α) = Uα.

We denote by Fcc(Rd) the subspace of all those U ∈ Fc(Rd) such that LU is
continuous.

If E is a topological space, BE will denote its Borel σ-algebra, namely
the σ-algebra generated by its open sets. Thus Kc(Rd) is endowed with the
σ-algebra BKc(Rd).

Definition 2.1. A measurable mapping Γ : (Ω,A) → (Kc(Rd),BKc(Rd)) will
be called a random compact set.

The space Fc(Rd) is endowed with the smallest σ-algebra which makes
the α-cut mappings

Lα : U ∈ Fc(Rd) 7→ Uα ∈ Kc(Rd)

measurable for all α ∈ [0, 1]. Equivalently, this condition can be required only
for α ∈ (0, 1] or just in a countable dense subset of [0, 1]. That σ-algebra is
called the levelwise or cylindrical σ-algebra and denoted by σL.
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Definition 2.2. Let (Ω,A) be a measurable space. A mapping X : Ω →
Fc(Rd) is a fuzzy random variable if it is (A, σL)-measurable.

Therefore, X is a fuzzy random variable if and only if each mapping
Xα : Ω→ Kc(Rd) is a random compact set.

Definition 2.3. Let (S,Σ) be a measurable space, and let Y and Z be topo-
logical spaces. A function f : S × Y → Z is a Carathéodory function if:

1. For each y ∈ Y , the function f(·, y) : S → Z is (Σ,BZ)-measurable;
and

2. For each s ∈ S, the function f(s, ·) : Y → Z is continuous.

Definition 2.4. Let K ∈ Kc(Rd). The support function of K is the mapping

sK : Sd−1 → R
r 7→ max

x∈K
〈r, x〉,

where Sd−1 denotes the unit sphere.

3 Support results

This section collects a few tools which will be used in the sequel. Some recent
related results are in [4, 8].

The following classical result can be found in, e.g., [2, Theorem 4.51,
p. 153].

Lemma 3.1. Let (S,Σ) be a measurable space, Y a separable metrizable
space, and Z a metrizable space. Then every Carathéodory function f :
S × Y → Z is jointly measurable.

We provide a short proof for the following result using Lemma 3.1.

Lemma 3.2. The mapping

s : Sd−1 ×Kc(Rd)→ R
(r,K) 7→ s(r,K) = sK(r) = max

x∈K
〈r, x〉,

is jointly measurable.
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Proof. By [17, Theorem H.1, p. 596], s(·, K) is a Lipschitz function for each
K ∈ Kc(Rd). Similarly, it follows from, each r ∈ Sd−1. Therefore s is a
Carathéodory function. Since Sd−1 is a separable metric space and Kc(Rd) is
a measurable space with its Borel σ-algebra, by Lemma 3.1 the mapping s
is jointly measurable.

We will also need the following relationships between measurability defi-
nitions for random compact sets. A proof from Himmelberg’s measurability
theorem is presented for the reader’s convenience.

A mapping on a measurable space whose values are closed sets is called a
random closed set if it is Effros measurable, i.e., it follows that {X ∩G 6= ∅}
is measurable for every open set G.

Lemma 3.3. Let (Ω,A, P ) be a probability space. Let X : Ω→ Kc(Rd) and
consider the following properties:

1. X is a random compact set,

2. X is a random closed set,

3. GrX is measurable (i.e., GrX ∈ A⊗ BRd).

Then (1)⇔(2)⇒(3). Moreover, all three conditions are equivalent if A is
complete.

Proof. By [17, Theorem 1.3.14, p. 65], a mapping X with values in K(Rd) is
Borel measurable with respect to dH if and only if it is Effros measurable,
namely {X ∩ G 6= ∅} is measurable for every open set G. Since Kc(Rd) is a
closed subset of K(Rd), conditions (1) and (2) are equivalent.

Implication (2)⇒(3) is part (3)⇒(6) in [17, Theorem 1.3.3.(i), p. 59],
whereas ‘Effros measurability is equivalent to (2) if A is complete’ is part
(3)⇔(6) in [17, Theorem 1.3.3.(iii), p. 59].

Consider the following approximation of fuzzy sets in Fc(Rd) by elements
of Fcc(Rd) defined in [23, Lemma 10, p. 352].

Definition 3.1. For any ε > 0, define Rε : Fc(Rd)→ Fc(Rd) by

(RεU)α =

∫
[0,1]

U(α−ε)++t[α−(α−ε)+ ]dt

for α ∈ (0, 1], where x+ = max{x, 0}.
Lemma 3.4. Each mapping Rε has the following properties:

1. Rε is (σL, σL)-measurable for each ε > 0.

2. Rε(U) ∈ Fcc(Rd) for each ε > 0 and all U ∈ Fc(Rd).

3. dH(Rε(U)α, Uα)→ 0 as ε→ 0, for all U ∈ Fc(Rd) and α ∈ [0, 1].
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4 Joint measurability

In this section, in order to skip obvious steps in proofs we will make some
identifications between objects that are not identical, strictly speaking, but
which will be easily understood by the reader. A typical example is the
identification of (a, (b, c)) ∈ A× (B ×C), or ((a, b), c)) ∈ (A×B)×C, with
(a, b, c) ∈ A × B × C. Those products are isomorphic as measurable spaces
and so avoiding the distinction does not affect our measurability proofs.

The following is our starting point. Note that fuzzy random variables are
defined by recourse to taking α-cuts, therefore the mapping Lα : U 7→ Uα is
measurable by definition. We show that the operation of taking the α-cut
of U is not only measurable with respect to U but jointly measurable with
respect to both α and U .

Theorem 4.1. The mapping

L : Fc(Rd)× [0, 1]→ Kc(Rd)

(U, α) 7→ L(U, α) = Uα

is jointly measurable.

Proof. Set

Ln : Fc(Rd)× [0, 1]→ Kc(Rd)

(U, α) 7→ Ln(U, α) = (R1/nU)α.

Fix α ∈ [0, 1] and n ∈ N. We have Ln(·, α) = Lα ◦ R1/n. The mapping
R1/n is (σL, σL)-measurable by Lemma 3.3 and, by definition, Lα is (A, σL)-
measurable. Hence L(·, α) is measurable.

In its turn, for any fixed U ∈ Fc(Rd) the mapping Ln(U, ·) is continuous
because R1/n(U) ∈ Fcc(Rd). Therefore, each Ln is a Carathéodory function
and, by Lemma 3.1, jointly measurable, i.e., (σL⊗B[0,1],BKc(Rd))-measurable.

By Lemma 3.4, Ln(U, α)→ L(U, α) in the Hausdorff metric for each U, α.
Being the pointwise limit of a sequence of Borel measurable functions with
values in a metric space, L is measurable [10, Theorem 4.2.2, p. 125].

A fuzzy random variable X induces naturally the mapping

LX : Ω× [0, 1]→ Kc(Rd)

(ω, α) 7→ LX(ω, α) = Xα(ω).

With Theorem 4.1 we deduce
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Corollary 4.2. Let X : Ω → Fc(Rd) be a fuzzy random variable. Then LX
is jointly measurable.

Proof. For each (ω, α) ∈ Ω× [0, 1],

LX(ω, α) = Xα(ω) = [X(ω)]α = L(X(ω), α) = (L ◦ (X, π))(ω, α),

where π : Fc(Rd)×[0, 1]→ [0, 1] is the projection onto the second component.
Since both π and X are measurable, (X, π) is measurable with respect to the
product σ-algebra A× B[0,1]. Thus LX is measurable.

Also naturally induced by a fuzzy random variable is the 0-1 mapping

BX : Ω× [0, 1]× Rd → R

(ω, α, x) 7→ BX(ω, α, x) =

{
1, x ∈ Xα(ω)

0, x 6∈ Xα(ω).

Proposition 4.3. Let X : Ω → Fc(Rd) be a fuzzy random variable. Then,
BX is a Bernoulli random variable.

Proof. Since BX has only two different values, it is enough to prove that
B−1
X ({1}) is measurable. But

B−1
X ({1}) = {(ω, α, x) ∈ Ω× [0, 1]× Rd : x ∈ Xα(ω)}

= {(ω, α, x) ∈ Ω× [0, 1]× Rd : x ∈ LX(ω, α)} = GrLX .

By Corollary 4.2, LX is a random compact set. Hence by Lemma 3.3, its
graph GrLX is a measurable set.

Measurability of fuzzy random variables with convex values, as is well
known, can also be approached using support functions. Consider the support
mapping

s̃ : Sd−1 × [0, 1]×Fc(Rd)→ R
(r, α, U) 7→ s̃(r, α, U) = max

x∈Uα
〈r, x〉.

Proposition 4.4. The support mapping s̃ is jointly measurable.

Proof. Let φ : Sd−1 × [0, 1]×Fc(Rd)→ Sd−1 ×Kc(Rd) be the mapping given
by φ(r, α, U) = (r, L(U, α)). By Theorem 4.1, L is measurable, therefore φ is
measurable because each component is so. Since s̃ is the composition s ◦ φ,
it is measurable as well.
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The support function allows us to define the following mappings:

mid : Sd−1 × [0, 1]×Fc(Rd)→ R

(r, α, U) 7→ mid(r, α, U) =
s(r, α, U)− s(−r, α, U)

2
,

spr : Sd−1 × [0, 1]×Fc(Rd)→ R

(r, α, U) 7→ spr(r, α, U) =
s(r, α, U) + s(−r, α, U)

2
.

For any r ∈ Sd−1, projecting U over the line {tr : t ∈ R} yields a one-
dimensional fuzzy set πr(U) with πr(U)(t) being the membership degree of
tr in the projection. With that notation, mid(r, α, U) and spr(r, α, U) are the
midpoint and the radius (or spread) of πr(U)α. These generalized midpoint
and spread were introduced by Trutschnig et al. [26].

An alternative representation is obtained by considering the infimum and
the supremum instead of the midpoint and the spread:

inf : Sd−1 × [0, 1]×Fc(Rd)→ R
(r, α, U) 7→ inf(r, α, U) = −s(−r, α, U)

sup : Sd−1 × [0, 1]×Fc(Rd)→ R
(r, α, U) 7→ sup(r, α, U) = s(r, α, U)

Clearly, the two functions mid(·, ·, U) and spr(·, ·, U), or the two functions
inf(·, ·, U) and sup(·, ·, U) identify U .

Corollary 4.5. The functions inf, sup, mid and spr are jointly measurable.

Proof. It follows from Proposition 4.4.

From a fuzzy random variable X, we can easily construct its support
mapping and prove its measurability now [14, Lemma 4].

Proposition 4.6. Let X : Ω→ Fc(Rd) be a fuzzy random variable. Then

s̃X : Ω× [0, 1]× Sd−1 → R
(ω, α, r) 7→ s̃X(ω, α, r) = max

x∈Xα(ω)
〈r, x〉

is jointly measurable.

9



Proof. For a fixed (ω, α, r) ∈ Ω×[0, 1]×Sd−1 we have s̃X(ω, α, r) = s̃(r, LX(ω, α)).
Reasoning like in the proof of Proposition 4.4 we conclude that s̃X is mea-
surable.

Corollary 4.7. Let X : Ω → Fc(Rd) be a fuzzy random variable. Then the
mappings

midX : (ω, r, α) 7→ mid(X(ω), r, α) ∈ R,

sprX : (ω, r, α) 7→ spr(X(ω), r, α) ∈ R,

infX : (ω, r, α) 7→ inf(X(ω), r, α) ∈ R,

supX : (ω, r, α) 7→ sup(X(ω), r, α) ∈ R

are jointly measurable.

5 Some consequences

In this section, we will explore some applications of the former results as
regards the connections between fuzzy random variables and some related
results, like random sets and probabilistic sets.

We start by considering an alternative approach to fuzzy random variables
introduced by Castaing et al. [5] (and used by, e.g., [21]). That paper, as is
at times the case when non-fuzzy researchers consider fuzzy sets (e.g., [1]),
introduces its own non-standard terminology in which a fuzzy set with non-
empty closed convex α-sets is called a fuzzy convex upper semicontinuous
variable.

Definition 5.1. Let (Ω,A, P ) be a probability space. A random fuzzy convex
upper semicontinuous variable is a (A⊗BRd ,B[0,1])-measurable mapping Y :
Ω × Rd → [0, 1] such that, for each ω ∈ Ω, the mapping Y (ω, ·) : E → [0, 1]
is a fuzzy convex upper semicontinuous variable.

Notice that Castaing et al. required (Ω,A, P ) to be complete, which is
not necessary for the definition to make sense.

Proposition 5.1. Let X : Ω→ Fc(Rd) be a fuzzy random variable. Then,

CX : Ω× Rd → [0, 1]

(ω, x) 7→ CX(ω, x) = X(ω)(x)

is a random fuzzy convex upper semicontinuous variable.
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Proof. We have C−1
X ([0,∞)) = Ω× Rd. For α ∈ (0, 1],

C−1
X ([α,∞)) = {(ω, x) ∈ Ω× Rd : CX(ω, x) ≥ α}

= {(ω, x) ∈ Ω×Rd : X(ω)(x) ≥ α} = {(ω, x) ∈ Ω×Rd : x ∈ Xα(ω)} = GrXα,

so by Lemma 3.3, CX is measurable. It remains to show that for each ω ∈ Ω,
the mapping CX(ω, ·) : Rd → [0, 1] is a fuzzy convex upper semicontinuous
variable. Notice that X(ω) belongs to Fc(Rd), so it satisfies all conditions.

We consider now the probabilistic sets introduced by Hirota [12], one of
the early notions to combine probabilistic uncertainty with fuzzy sets.

Definition 5.2. A probabilistic set A on Rd is a function

H : Rd × Ω→ [0, 1]

(x, ω) 7→ H(x, ω)

such that H(x, ·) is measurable for each x ∈ Rd.

Apparently, it has not been realized that a fuzzy random variable induces
naturally a probabilistic set. At least we have not found this observation
in the sources which discuss both types of objects, see [15, Chapter 7], [3,
Section 7.4.1], [18, Section 6.5], [9, Section 1.5.6].

Corollary 5.2. Let X : Ω→ Fc(Rd) be a fuzzy random variable. Then,

HX : Rd × Ω→ [0, 1]

(x, ω) 7→ HX(ω, x) = Xω(x)

is a probabilistic set.

Proof. By Proposition 5.1, CX is jointly measurable, so it follows that
HX(x, ·) = CX(·, x) is measurable for each x ∈ Rd.

Another consequence of Theorem 4.1 is that the randomly chosen α-cut
of a fuzzy random variable is a random compact set. While this is a very
natural result, to the best of our knowledge it had not been established in
the literature.

Corollary 5.3. Let X : Ω→ Fc(Rd) be a fuzzy random variable and ξ : Ω→
[0, 1] a random variable. Then

Xξ : Ω→ Kc(Rd)

ω 7→ Xξ(ω)(ω)

is a random compact set.
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Proof. For any ω ∈ Ω,

Xξ(ω) = LX(ω, ξ(ω)) = (LX ◦ (id, ξ))(ω),

where id : Ω → Ω is the identity function. Since id and ξ are measurable,
it turns out that (id, ξ) is measurable with respect to the product σ-algebra
A⊗B[0,1]. By Corollary 4.2, LX is measurable. Therefore Xξ is a composition
of Borel measurable mappings, whence it is measurable.

A further application of Corollary 5.3 is the following.

Proposition 5.4. Let X : (Ω,A, P ) → Fc(Rd) be a fuzzy random variable.
For any density function ϕ on [0, 1], the mapping

P : BKc(Rd) → [0, 1]

A 7→ P(A) =

∫
[0,1]

P (Xα ∈ A)ϕ(α)dα

is well defined and is a probability measure.

Proof. Let ξ be a random variable in ([0, 1], λ) with density function ϕ. Con-
sider the mapping

X̂ : Ω× [0, 1]→ Fc(Rd)

(ω, α) 7→ X̂(ω, α) = X(ω).

Since for any A ∈ σL we have X̂−1(A) = X−1(A)× [0, 1], clearly X̂ is a fuzzy
random variable. Similarly, define the random variable

ξ̂ : Ω× [0, 1]→ [0, 1]

(ω, α) 7→ ξ̂(ω, α) = ξ(α).

By Corollary 5.3, it follows that X̂ξ̂ : Ω × [0, 1] → Kc(Rd) is a random set.
Then its induced distribution (P ⊗ λ)X̂

ξ̂
is a probability distribution. It

suffices to show that (P ⊗ λ)X̂
ξ̂

= P.

Let A ∈ BKc(Rd) Then, by the Fubini theorem,

(P ⊗ λ)X̂
ξ̂
(A) =

∫
Ω×[0,1]

I{X̂
ξ̂
∈A}d(P ⊗ λ) =

∫
Ω

∫
[0,1]

I{X̂
ξ̂
∈A}dλ dP

For a fixed ω ∈ Ω, let f : [0, 1]→ R be defined by

f(α) = I{α∈[0,1]:Xα(ω)∈A}.
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Since I{X̂
ξ̂
∈A}(ω, ·) is a random variable, it follows that

{α ∈ [0, 1] : Xξ(α)(ω) ∈ A} = {α ∈ [0, 1] : X̂ξ̂(ω, α) ∈ A}

=
(
I{X̂

ξ̂
∈A}(ω, ·)

)−1

({1})

is measurable, therefore f is a random variable. Then∫
[0,1]

I{X̂
ξ̂
∈A}(ω, ·)dλ =

∫
[0,1]

I{X̂
ξ̂
∈A}(ω, α)dα

=

∫
[0,1]

f(ξ(α))dα =

∫
[0,1]

f(α)ϕ(α)dα,

where the last term is the expectation of f(ξ) with respect to the probability
measure λ. Therefore,

(P ⊗ λ)X̂
ξ̂
(A) =

∫
Ω

∫
[0,1]

I{α∈[0,1]:Xα(ω)∈A}(α)ϕ(α)dα dP

=

∫
[0,1]

P ({ω ∈ Ω : Xα(ω) ∈ A})ϕ(α)dα

=

∫
[0,1]

P (Xα(ω) ∈ A)ϕ(α)dα = P(A)

6 Measurability of fuzzy random variables

We will now take advantage of the previous results to present a number of
conditions which are either equivalent or closely related (equivalent under
mild conditions) to being a fuzzy random variable.

Definition 6.1. The endograph of a fuzzy set U ∈ Fc(Rd) is the following
subset of Rd × [0, 1]:

endU = {(x, α) ∈ Rd × [0, 1] : U(x) ≥ α}.

Definition 6.2. The sendograph (supported endograph) of U is

sendU = {(x, α) ∈ Rd × [0, 1] : x ∈ U0, U(x) ≥ α}.
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Theorem 6.1. Let (Ω,A, P ) be a probability space. Let X : Ω→ Fc(Rd) be
a mapping. Then the following conditions are equivalent:

1. X is a fuzzy random variable,

2. LX is a random compact set,

3. s̃X is a random variable,

4. s̃X(·, α, r) is a random variable for each α ∈ [0, 1] and r ∈ Sd−1,

5. sendX is a random compact set,

6. endX is a random closed set.

Proof. Step 1. (1)⇔(2):
Implication (1)⇒(2) is the same as Corollary 4.2, while the converse fol-

lows from the fact that, if LX is measurable, then each L(·, α) = Xα is
measurable.

Step 2. (1)⇒(3)⇒(4)⇒(1):
The first implication is Proposition 4.6. The second one is trivial. Impli-

cation (4)⇒(1) is known and follows from the fact that the measurability of
each support functional of a Kc(Rd)-valued mapping implies it is a random
compact set [17, Proposition 1.3.8, p. 61].

Step 3. (1)⇒(5)⇒(6)⇒(1):
Implication (1)⇔(5) was proved by Trutschnig [25, Theorem 22].
(5)⇒(6): Let us show that endX is Effros measurable. Let G be an open

set of Rd × [0, 1], then

{endX ∩G 6= ∅} = {(sendX ∪ (Rd × {0})) ∩G 6= ∅}
= {sendX ∩G 6= ∅} ∪ {(Rd × {0})) ∩G 6= ∅}.

By Lemma 3.3, the first term of the union is measurable, as is the second one
since it is either Ω or ∅. By the arbitrariness of G, endX is Effros measurable,
i.e., a random closed set.

(6)⇒(1): Let G ⊆ Rd be open. For each α ∈ (0, 1],

{Xα ∩G 6= ∅} = {endX ∩ (G× {α}) 6= ∅}.

Since G × {α} is not open in the product topology of Rd × [0, 1], a little
work is needed. We write G as a countable union of compact sets

⋃
nKn (for

instance, closed balls). Then

{endX ∩ (G× {α}) 6= ∅} = {endX ∩ (
⋃
n

Kn × {α}) 6= ∅}
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=
⋃
n

{endX ∩ (Kn × {α}) 6= ∅}.

Since Kn × {α} is compact and endX is a random closed set, the event
{endX ∩ (Kn × {α}) 6= ∅} is measurable by [11, Theorem 3.2.(i)]. Thence
{Xα ∩ G 6= ∅} ∈ A for any open G, namely Xα (α > 0) is a random closed
set. By Lemma 3.3, it is a random compact set. There follows that X0 is so
as well, since it is the pointwise dH-limit of the sequence X1/n. Thus X is a
fuzzy random variable.

In connection to Theorem 6.1, we should mention that the reader can find
other equivalent conditions in earlier papers. For instance, Krätschmer [13]
(see also [14]) proved that being a fuzzy random variable is equivalent to being
a measurable function with respect to the Borel σ-algebra of some topologies
in the space of fuzzy sets. Another family of results includes those in [16, 22]
which characterize fuzzy random variables as those functions which can be
approximated by a sequence of certain better behaved functions. Theorem
6.1 complements those results by expressing the property of being a fuzzy
random variable in terms of the measurability of functions taking on simpler
values (random sets or random variables).

Theorem 6.2. Let (Ω,A, P ) be a probability space. Let X : Ω→ Fc(Rd) be
a mapping. Consider the following conditions:

(1) X is a fuzzy random variable,

(2) BX is a random variable,

(3) Gr sendX ∈ A⊗ BRd ⊗ B[0,1].

(4) GrXα ∈ A⊗ BRd for each α ∈ [0, 1],

(5) Gr endX ∈ A⊗ BRd ⊗ B[0,1],

(6) GrXα ∈ A⊗ BRd for each α ∈ (0, 1],

(7) CX is a random fuzzy convex upper semicontinuous variable.

Then the following implications hold true:
(1)⇒(2)⇔(3)⇒(4)⇒(6)⇔(7),
(3)⇒(5)⇒(6).

Proof. Proof of the first chain. Implication (1)⇒(2) is Proposition 4.3. To
prove (2)⇔(3), observe

Gr sendX = {(ω, x, α) ∈ Ω× Rd × [0, 1] : (x, α) ∈ sendX(ω)}
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= {(ω, x, α) ∈ Ω× Rd × [0, 1] : x ∈ X0(ω), X(ω)(x) ≥ α}
= {(ω, x, α) ∈ Ω× Rd × [0, 1] : x ∈ Xα(ω)}.

This set is identical with the event B−1
X ({1}) ⊆ Ω× [0, 1]×Rd except for the

order of the spaces Ω, Rd and [0, 1]. Recall that BX is 0-1 valued, whence it
is a random variable if and only if B−1

X ({1}) is measurable, which happens if
and only if (3) holds.

To prove (3)⇒(4) notice that, for each α ∈ [0, 1],

GrXα × {α} = {(ω, x, α) ∈ Ω× Rd × {α} : x ∈ Xα(ω)}

= (Gr sendX) ∩ (Ω× Rd × {α}).
Thence GrXα × {α} or, equivalently, GrXα is a measurable set.

Implication (4)⇒(6) is trivial. Equivalence (6)⇔(7) is just the proof of
Proposition 5.1.

Proof of the second chain. To prove (3)⇒(5), one easily checks

Gr endX = (Gr sendX) ∪ (Ω× Rd × {0}),

from which the desired implication follows. In its turn, implication (5)⇒(6)
is analogous to implication (3)⇒(4) above.

If the probability space is assumed to be complete, then all conditions
above turn out to be equivalent. That assumption is mild in the sense that
it is usually not considered problematic in Probability Theory to assume
completeness and it is often used as a blanket assumption to avoid some
burdensome details in proofs. Those details involve, for instance, routinely
modifying a function in a set of probability 0 to ensure that a certain null
(possibly non-measurable) set becomes measurable, or to make the function
a random variable instead of just measurable except for a null set. Since all
null sets are measurable in a complete σ-algebra, completing the σ-algebra
is a way to avoid those situations while ensuring that all random variables
with respect to the original σ-algebra are still random variables with respect
to the completion.

Theorem 6.3. Let (Ω,A, P ) be a complete probability space. For a mapping
from Ω to Fc(Rd), all twelve different conditions in Theorems 6.1 and 6.2
are equivalent.

Proof. There suffices to prove (6)⇒(1) in Theorem 6.2 under the additional
assumption of completeness, since that implies that all conditions in Theorem
6.2 are equivalent to being a fuzzy random variable; Theorem 6.1 already
states that the remaining conditions are equivalent.
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Under (6), Lemma 3.3 implies that Xα is a random compact set for all
α ∈ (0, 1]. As already mentioned in the proof of Theorem 6.1, that implies
that X0 is a random compact set as well, whence X is a fuzzy random
variable.

7 Discussion: on the definition of a fuzzy ran-

dom variable

In this paper, there appear two conditions which have been used in the
literature as definitions of the term ‘fuzzy random variable’. Both of them
define a fuzzy random variable X by the property that each α-cut mapping
Xα be a random compact set. But the latter can be understood as Xα

being measurable with respect to the Borel σ-algebra of the metric space
(Kc(Rd), dH) (function measurability), or as GrXα being in the product σ-
algebra of Ω× Rd (graph measurability).

It has become usual to refer to the former condition as a fuzzy random
variable in ‘Puri and Ralescu’s sense’. Their original paper [20], though, does
use the latter (it must be emphasized that they use still other conditions in
other papers, e.g., [19]). Notice that, more broadly, all conditions in Section
6 can be split into two kinds with a family resemblance: those in Theorem 6.1
involve measurability of certain functions and those in Theorem 6.2 (except
for (2)) involve measurability of certain graphs.

In particular, implication (1)⇒(7) in Theorem 6.2 raises the question
whether the definition of a random fuzzy convex upper semicontinuous vari-
able in [5] may be more convenient than the usual definition of a fuzzy random
variable. Graph measurability is a weaker condition and it is more elemen-
tary (it does not involve spaces of sets). It is elegant and some of its theorems
are beautiful.

Despite appearing in the original definition of a fuzzy random variable,
graph measurability ended up being abandoned by the fuzzy community for
a long time. To the best of our knowledge, no written record of the plausible
reasons exists. This discussion aims at providing one.

Graph measurability is strongly associated to conceiving a set-valued
mapping as a one-to-many relation. To understand why, consider the fact
that a function f : R → R is Borel measurable if and only if its graph is
a Borel subset of R × R. Whereas both copies of R play asymmetric roles
in function measurability, graph measurability is entirely and surprisingly
symmetric. This almost begs for an explanation in the form of a theory in
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which that asymmetry can be reverted as

f : R→ R measurable⇔ Gr f measurable⇔ f−1 : R→ P(R) measurable.

Taking preimages is the prototype of a one-to-many relation. This mindset
is underlined by the titles of some of the classical papers [7, 11].

The usual interpretations of fuzzy data do not fit well with this semantics,
whence the definition of fuzzy random variables via graph measurability is
not semantically forceful. Indeed, if a man chosen at random is recorded
as being ‘tall’ and that word is modelled by a fuzzy set, it will typically
be understood that ‘tall’ corresponds to a generalized non-numerical value
(called the ontic view) or that it represents a state of limited knowledge about
his height, an unknown real number (called the epistemic view). But it will
not be interpreted that this man has all possible heights to some partial
degree indicated by the fuzzy set ‘tall’ (the fuzzy analog of the one-to-many
semantics).

From the technical point of view, graph measurability comes with a num-
ber of obstacles for the development of a theory of fuzzy random variables.

Let X, Y : Ω→ Fc(Rd) be fuzzy-valued mappings. If they are measurable
as functions between measurable spaces, one automatically has notions like
the induced distribution (PX = P ◦X−1) or independence (P(X,Y ) = PX⊗PY ).
Graph measurability does not lend itself easily to a transposition of those
basic probability notions.

Further, if f : Fc(Rd) → Fc(Rd) is measurable and X is a fuzzy random
variable in the sense of dH-Borel measurability, then f(X) is a composition
of measurable functions and thus a fuzzy random variable. If X is graph
measurable, is the transformed variable f(X) graph measurable? Even as-
suming that f is Zadeh’s extension of a continuous function g : Rd → Rd, a
particularly favourable case, we have

Gr f(X)α = {(ω, x) : x ∈ f(X(ω))α} = {(ω, g(x)) : x ∈ Xα(ω)}

= (id, g)(GrXα)

where id denotes the identity mapping in Ω. But the measurable image of a
Borel measurable set is not necessarily measurable.

Moreover, graph measurability does not necessarily imply that very use-
ful mappings like s̃(r, α,X) are random variables. Compare Proposition 4.6
which states that s̃X = s̃(·, ·, X(·)) is jointly measurable in its three argu-
ments if X satisfies Definition 2.2.

It can also be mentioned that graph measurability equally creates prob-
lems in the theory of random sets, where assuming it is not enough to ensure
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the measurability of some interesting events or to imply key results like the
measurable selection theorem.
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