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Abstract—A common approach in the literature when obtaining
surrogate models of reflectarray unit cells is to include, among other
variables, the angles of incidence as input variables to the model. In this
work, we use support vector regression (SVR) to compare this approach
with a new strategy which consists in grouping the refletarray elements
under a small set of angles of incidence and train surrogate models
per angle of incidence pair. In this case, the dimensionality of the SVR
decreases in two with regard to the former approach. In both cases, two
geometrical variables are considered for reflectarray design, obtaining
4D and 2D SVRs, respectively. In contrast to the common approach in
the literature, the comparison between the 4D and 2D SVRs shows that a
proper discretization of the angles of incidence is more competitive than
introducing the angles as input variables in the SVR. The 2D SVR offers a
shorter training time, faster reflectarray analysis, and a similar accuracy
than the 4D SVR, making it more suitable for design and optimization
procedures.

Index Terms—Machine learning, surrogate model, support vector
regression (SVR), angle of incidence, reflectarray antenna

I. INTRODUCTION

URROGATE models for reflectarray analysis have been proposed
S to speed-up the analysis, design and optimization of this kind of
antenna using different machine learning techniques (MLTs) such
as artificial neural network [1]-[6], support vector machines for
regression (SVR) [7] and ordinary kriging (OK) [8]. The first efforts
were aimed at predicting the phase-shift of the reflectarray element
[1]-[4], which corresponds to the phase of the complex direct
coefficients. This is useful since this phase mainly controls the shape
of the copolar far field pattern [9]. In addition, it can also be used to
obtain the reflectarray layout [10]. However, an accurate prediction
of the crosspolar pattern requires the characterization of the full
reflection coefficient matrix [11]. Thus, later works on MLTs applied
to reflectarrays have also considered the cross-coefficients [5]-[8]. An
example of application in which this is critical is contoured beams
for space applications, where cross-polarization requirements are very
tight and the crosspolar pattern is more than 30 dB below the copolar
pattern in the region of interest [10].
In the above-mentioned MLTs, the behaviour of a reflectarray unit
cell is characterized by four complex numbers known as reflection
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Fig. 1. Sketch of a single-offset reflectarray configuration.

coefficients. These coefficients mainly depend on the geometrical
features of the unit cell, although they are also affected by frequency
and the angles of incidence [12], [13]. Thus, it is common practise
to consider one or more geometrical features, the angle of incidence
and frequency as input parameters to the MLT [2], [3], [8]. However,
in order to keep a constant sampling density the number of training
samples grows exponentially with the number of input space dimen-
sions. As a consequence, the higher the dimensionality of the input
space, the greater the workload to obtain the surrogate model.

Dimensionality may be reduced by training one surrogate model
per incidence angle (6, ¢). In this way, the dimensionality is reduced
by two dimensions, potentially improving performance of the MLT.
However, each reflectarray element experiences a different angle of
incidence, and having one model per reflectarray element may deem
ineffective the time savings from the reduced dimensionality. Instead,
the number of models may be reduced by grouping a number of
reflectarray elements under the same angle of incidence. This was
the strategy followed in [7], [10]. Nevertheless, there exists no study
in the literature that compares these different approaches with regard
to angles of incidence: including them as input variables in the model,
or generating one model per considered angle of incidence. Currently,
it is a question open to debate in the community which approach is
more interesting to use.

In this work, a systematic study comparing the two methodologies
concerning the use of angles of incidence in surrogate models with
SVR is presented. Two geometrical features of a reflectarray unit cell
are used as input variables of the SVR in both cases, thus obtaining a
4D SVR model when the angles of incidence are also considered as
input variables, and a 2D SVR model per angle of incidence. In both
cases, the training process is based on cross-validation to find the
optimum model. A 2D SVR model is compared with the 4D SVR at



both the surrogate model level and the antenna level (by evaluating
different radiation patterns). This comparison comprises two aspects:
accuracy and computational efficiency. In all instances, the errors are
computed with regard to the reference simulations provided by a full-
wave analysis tool based on local periodicity (FW-LP) employed to
generate the electromagnetic samples and analyse the reflectarray.

II. PROBLEM STATEMENT
A. Introduction

For reflectarray antennas, the final goal of employing surrogate
models is to predict the electromagnetic response of the unit cell for
a fast and accurate analysis of the antenna. In this work, the single-
offset configuration shown in Fig. 1 is considered. The antenna is
comprised of a flat panel with an array of K reflecting elements
which are characterized by the matrix of reflection coefficients:

Ry =

( Pxx,k )

Pxy,k
Pyx,k

Pyy.k

with k = 1,2,...,K. In (1), pxx and py, are known as the
direct coefficients and control the shape of the copolar pattern. pyy
and pyx are the cross-coefficients and they represent an important
contribution to the crosspolar pattern. Thus, a correct characterization
of the complete radiation pattern requires to model the full reflection
coefficient matrix. The reflection coefficients are complex numbers
and they are computed with a FW-LP [9], [12]. A correct computation
takes into account the geometrical features of the cell, substrate
characteristics, periodicity, frequency, and angle of incidence (which
is defined for the k—th element in Fig. 1). From these parameters,
the most important are the geometrical features, since they allow
to perform array design to obtain a certain copolar pattern. The
periodicity and substrate are usually fixed beforehand.

The importance of using the real angle of incidence at each element
for reflectarray analysis has been known for many years and used in
the design of reflectarrays [12], [13]. On the one hand, the copolar
pattern is not very sensitive to the angle of incidence thanks to the
angular stability of the direct coefficients. This is the reason why it is
possible to achieve copolar designs using the normal incidence curve
[14]-[16]. On the other hand, the cross-coefficients exhibit a highly
non-linear behaviour with the angle of incidence which motivates the
use of a good approximation of the real angle of incidence for the
analysis of the crosspolar pattern. This general behaviour is expected
for common reflectarray unit cells in the literature.

In light of the previous considerations, we analyse two approaches
to include the angle of incidence in surrogate models for reflectarray
unit cells. In the first approach, two geometric features of the unit
cell (noted as Tx and 7)) along with 6 and ¢ are considered as
input variables to the model. These variables may be grouped into
a 4D input vector X = (Tx,Ty,6,¢) which is used to produce a
single 4D SVR model that characterises each component of the
reflection coefficients in (1). In the second approach, the input
vector is formed as ¥ = (T, Ty). Thus, one 2D SVR model should
be produced per considered angle of incidence to characterise the
reflection coefficients.

B. Surrogate Modelling Based on SVR

The basic SVR theory applied to reflectarray analysis and the
training strategy employed in this work can be both consulted in
[7]. Here we will review some basic concepts and define the errors
which will be used in later Sections to compare the different models.

In the problem at hand, the training procedure uses a set comprised
of N inputs (¥; € y C RE ) and outputs (p; € R, where p; denotes the

real part, imaginary part or magnitude of the reflection coefficients),
T = {%i,pi}i=1,2, ..., N to obtain a function f that estimates the value
of p, corresponding to any new input X € y. Here, the selection of
the optimal SVR model follows an efficient grid search in addition to
a cross-validation procedure, as detailed in [7]. This is accomplished
by dividing the whole data set into three disjoint subsets: training
(N < 0.7N), validation (N, = 0.15N), and test (N; = 0.15N).

In addition, we use the following definition of the relative error to
measure the accuracy of the model:

RE =201 M dB 2
svr = 20logio {15, (dB), 2

where g = (p1,p02,-..,PMm) is a vector of M samples of the actual
output of the FW-LP, and € = (ej,ep,...,ep) is a vector of M
samples of the difference between the predicted output and the real
FW-LP output, i.e., ¢; = p; — f(X;), i =1,2,..., M.

At the antenna level, we employ the following relative error as a
figure of merit:

IGEw-Lp — Gsvrll
SVRIL g,

REgp = 100 - 5, 3)
IGrw-Lpll

where G is either the copolar or the crosspolar gain pattern, which
was obtained either analysing the antenna with a FW-LP (a MoM-LP
in the present case [17]) and the real angles of incidence for each
element, or estimating (1) with the SVR and a reduced set of angles.

Finally, it is interesting to highlight that in the 4D case, since the
angle of incidence is considered an input variable, 10 SVR models
are necessary to characterize Ry,Vk = 1,2,...,K. These are the
magnitude of two direct coefficients and the real and imaginary
parts of the four coefficients. Meanwhile, in the 2D case, each angle
of incidence requires ten models, making a total number of 10M,
models, where M, is the number of considered angles of incidence.

C. Penalties of Dimensionality

In light of what is said above, it seems that the 4D case should
outperform the 2D case since the latter requires a higher number of
surrogate models to characterize all the elements in the reflectarray.
Nevertheless, this may not be the case since the number of training
samples, N,, and the training time complexity dependence over N,
might be very different for each procedure. For common training
strategies, the time complexity varies between O (er) and O (Ng )
[18], depending on the value of the hyper-parameters, including the
LibSVM library [19], [20] used here. This dependence on the hyper-
parameters was verified by experiments in previous works [7, Fig. 4].

The use of angle information as two extra input dimensions of
the SVR associates a noticeable growth in the number of training
samples to maintain a comparable accuracy to the 2D case. Let us
assume that the number of samples is multiplied by factor Mp > 1
when producing a 4D SVR model instead of a 2D SVR model. Let us
also assume that this factor M is similar to the number of considered
incidence angles for the 2D case, M,. Therefore, the computational
time to produce the FW-LP samples is approximately the same for
both types of SVR. Nevertheless, the computational time required to
produce the SVR models does not follow this pattern. The training
of the M, 2D SVR models is proportional to MaNg, in the best
case, and to MaNE, in the worst case. Meanwhile, the training of the
4D SVR model is proportional to MIQ)N%, in the best case, and to
M3D Nf, in the worst case. Thus, the time complexity of the 4D SVR is
considerably larger than its 2D SVR counterpart, unless Mp < M.
This preliminar analysis is corroborated by the numerical results in
the following Sections.



D. Discretization of the Angles of Incidence

There are three possibilities to generate the 2D SVR. First, we can
generate models only for normal incidence. However, as discussed
in Section II-A, this is only suitable for the direct coefficients in (1)
due to their good angular stability. Thus, a second method may be to
generate models for each reflectarray element, considering the real
angle of incidence at each unit cell. This would be the most accurate
method at the expense of generating 10K models in total. Since
reflectarrays are usually comprised of hundreds or even thousands of
elements (K), we deem this approach unsuitable. Instead, we consider
a third possibility that is a compromise between the previous two. By
defining a reduced set of angles of incidence, much smaller than the
total number of unit cells in the antenna, the reflectarray elements
can be assigned to the closest angle of incidence, thus reducing the
total number of (6, ¢) pairs and SVR models.

A study was carried out to select the best discretization of (6, ¢)
with the same testing conditions as in [10]. From this study, a
few conclusions were drawn. First, although the copolar pattern is
robust against the discretization, the crosspolar pattern is not. In fact,
when using normal incidence, the error for the copolar pattern is
lower than 1.7%, but it is around 80% for the crosspolar pattern.
To achieve an overall low error in the prediction of the far field, a
proper discretization of 6 and ¢ is required. A uniform discretization
with steps of AG = 5° and Ag = 10° provides an error lower than
1% for the copolar pattern and lower than 10% for the crosspolar
pattern. These values guarantee acceptable errors in the prediction of
the radiation patterns. For this work, we have chosen a non-uniform
discretization in which the selected training angle for 6 is given by
the set {5°,10°, 17°,23°,29°,35°,40°} and ¢ is discretized uniformly
in steps of Ap = 10°, giving a total of 152 (6, ¢) pairs. With this
discretization, the error of the copolar pattern is 0.33% and for the
crosspolar pattern is 4.58%.

III. CELL MODELLING PERFORMANCE

From here on, we employ the same unit cell and substrate as in
[10]. This unit cell is comprised of two sets of parallel dipoles in
two layers of metallization and analysed with the MoM-LP of [17].

A. Training Performance

First, we will compare the training performance of the 2D and
4D SVRs. In order to do so, we will split each set of samples into
three different subsets as indicated in Section II-B. In addition, we
will focus on the time cost and on the accuracy. The latter will be
measured in terms of the relative error of the regression over the test
set as given by (2). For the 2D SVR, the number of considered angles
will be M, = 76, which is halved from 152 pairs using symmetry in
¢, and the number of samples per angle will be 2500. Thus, the total
amount of samples will be N = 190000 for the 2D case. Meanwhile,
N = 65000 for the 4D case.

Fig. 2 shows the total training time cost, iy, for both 2D and 4D
SVRs against the percentage of training samples (N,-) with respect to
the total number of samples, i.e. N;-/N-100 (%). For the 2D approach,
this time cost is the sum of the time costs of the training of every
output variable and angle of incidence. For the 4D approach, this
time cost is the sum of the time costs of the training of every output
variable. As expected, fy,in increases with N, for both approaches.
Nevertheless, the time cost of the 4D approach is much higher than
for the 2D case. Indeed, except for the three left-most points of the
curve, the time cost of the 4D training is around 50 times higher.

Fig. 3 plots the average value of the relative test error given by (2)
of the direct coefficients magnitude, the real and the imaginary parts
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Fig. 2. Total training time, fyin (S), vs. the percentage of training patterns
with respect to the total number of samples, N,-/N - 100 (%), for both the
2D and 4D SVRs. N for 4D SVR is 65000, while for 2D SVR is 190 000.
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Fig. 3. Average relative test error, REgyr (dB), of the reflection coefficients
vs. the percentage of training patterns with respect to the total number of
samples, N, /N - 100 (%), for both the 2D and 4D SVRs. N for 4D SVR is
65000, while for 2D SVR is 190 000.

of all the reflection coefficients versus the percentage of training sam-
ples. The relative error rapidly decreases with the number of training
patterns until the percentage of the samples reaches approximately
30%, where the slope of the relative error starts to approach to zero.
This effect is more noticeable in the 2D cases than in the 4D case. In
addition, it is more critical the error for the real and imaginary parts
of the reflection coefficients, from which their phase is extracted, as
well as the magnitude of the cross-coefficients. An average relative
error lower than —30dB ensures a high degree of accuracy between
the SVR-based model and the MoM-LP simulations. In light of the
above considerations, a good trade-off between training time and
relative error may be achieved for N, = 0.3N.

All the results given in this section have been obtained using, in
sequential mode, a workstation with 2 Intel Xeon E5-2650v3 CPU
at 2.3 GHz and 256 GB of RAM.

B. Reflection Coefficients

The low error achieved in the surrogate model training should
materialize in accurate predictions of the reflection coefficients. Fig. 4
shows a comparison between the MoM-LP, 2D SVR and 4D SVR
of the magnitude and phase for the direct coefficient pyy and for
the cross-coefficient pyx at oblique incidence (6, ¢) = (36°,50°) and
using N, = 0.3N. As it can be seen, there is a high degree of accuracy
for both SVRs when compared with MoM-LP. In fact, for the curves



—— pyx (MOM-LP) = = py (SVR 2D) pyx (SVR 4D)

= pyy (MOM-LP) = = pyy (SVR 2D) ====: py,, (SVR 4D)

Magnitude of pyy (dB)
Magnitude of py, (dB)

Il Il
4 45 5 55 6 65 7 15 8§ 85 9 95 10

T, =T, (mm)
180
90 | 2 .

—~ "’Q§§
[ ~
2 [UIS h
_g P 2!
~

—90 |- Pyy

~180 | | | | |

|
4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
T =Ty (mm)

Fig. 4. Comparison between the MoM-LP and SVR simulations of the
magnitude (top) and phase (bottom) for the direct reflection coefficient py,
and the cross-coefficient pyx for oblique incidence (6, ¢) = (36°,50°).

shown in Fig. 4, the mean absolute deviation (MAD) for the phase of
Pyy 18 0.45° and 0.41° for the 2D and 4D SVRs, respectively. Those
numbers are 3.81° and 1.93° for the cross-coefficient pyx. Regarding
the magnitude, the MAD for pyy is —77.43dB and —68.84dB for
the 2D and 4D SVRs, respectively; while for pyx they are —56.96 dB
and —57.54dB respectively. Similar results were obtained for the
coefficients pxx and pxy in both magnitude and phase.

The relative error over the test set was calculated for all coefficients
for both SVRs using (2). For the 2D SVR it includes the coefficients
for all angles of incidence. The average value of the relative error is
—40.47dB for the 2D SVR and —36.94dB for the 4D SVR.

IV. RADIATION PATTERNS

The most immediate result of the SVR is the accurate prediction of
the reflection coefficients in (1). However, the ultimate goal is to use
the SVR for the efficient analysis of reflectarrays. This encompasses
two aspects: the acceleration with regard to MoM-LP simulations and
the accuracy in the prediction of the far field. For this Section, details
on the antenna optics are the same as those in [10].

A. Acceleration of Reflectarray Analysis

Fig. 5 shows the acceleration results for the 2D and 4D SVRs
for different values of N, /N - 100 (%). It can be observed how the
SVR becomes slower when N, increases. This is expected since the
number of support vectors per coefficient increases to obtain a higher
accuracy. Nevertheless, for a similar accuracy as the 2D SVR, the 4D
SVR is much slower (between 10 and 20 times slower), and even the
fastest 4D SVR, with N, = 0.01N, is more than two times slower than
the slowest 2D SVR and presents worse accuracy in the prediction
of the reflection coefficients than the 2D SVR.

B. Accuracy in the Radiation Pattern Computation

Fig. 6 shows the relative error (3), for both the 2D and 4D SVRs,
as a function of the percentage N, /N - 100 (%). It has been obtained
with the same large reflectarray with European contoured-beam as in
[10]. For all cases, it can be seen that the error rapidly decreases with
N;. For the 4D SVR, the error of the copolar pattern stagnates around
1%, and around 2% for the crosspolar pattern. In contrast, for the 2D
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Fig. 5. Reflectarray analysis speed-up (S,) of the 4D and 2D SVRs for
different values of the percentage of training samples.
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Fig. 6. Relative error in the computation of the far field with the 2D and 4D
SVRs for the copolar (CP) and crosspolar (XP) patterns versus the percentage
of the training samples.

SVR the relative error for the copolar pattern is more stable and
lower, with a value around 0.3%, but the crosspolar pattern presents
a relative error around around 4%. It is interesting to note that the
error stagnates very quickly when increasing the number of training
samples in contrast to the test error shown in Fig. 3. This means that
there is a point in which obtaining better accuracy in the prediction
of the reflection coefficients does not translate into a lower error in
the prediction of the radiation pattern. It is also noteworthy that the
test error achieved by the 2D SVR model is lower than the test error
for the 4D SVR model (see Fig. 3). This shows the effect of the
angles of incidence discretization on the prediction of the radiation
pattern, which affects more the crosspolar component than the copolar
pattern. Since the 4D SVR includes the angles of incidence as input
variables, it does not suffer from this problem. However, the error
for the copolar pattern using the 2D SVR is lower.

C. Evaluation of Different Radiation Patterns

Here, we will graphically compare the different approaches. To
that end, a dual-linear reflectarray will be designed by following
the steps detailed in [10]. Please note that according to Fig. 1, the
vertical polarization (V) corresponds to the field aligned to the X,
axis. In addition, the following tools will be compared. The MoM-
LP will serve as the baseline. Then, attending to the results of Fig. 6,
the 4D SVR with N, = 0.3N and the 2D SVR with N, = 0.1N
will be compared. With these values of N,, the total number of
training samples considering all (6, ¢) pairs is approximately the
same (19500 for the 4D SVR and 19000 for 2D SVR). This will
make the comparison fairer while guaranteeing a low error for the
copolar and crosspolar patterns. Table I gathers information about



Table T
SUMMARY OF THE SELECTED SVRS FOR THE FINAL COMPARISON. TIMES
WERE MEASURED IN PARALLEL MODE.

SVR Ny Tgen. pat. (s) Tirain (S) Speed-up
4D 19500 132 32363 271
2D 19000 128 55 7462
0.15 7 oy i
“\ \\0 Coverage 28 dBi |,
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Fig. 7. Comparison of the MoM-LP simulation and SVR predictions for
the (a) copolar and (b) crosspolar patterns for polarization V of a very large
reflectarray with European coverage for DTH application.

the selected SVRs. Please note that despite the similar number of
training patterns, the 4D SVR training is much slower.

Fig. 7 shows, for polarization V, the radiation pattern for the very
large reflectarray with European coverage used for the study of Fig. 6.
The accuracy in the prediction of the copolar pattern for both SVR
is very high, with very slight discrepancies for the 4D SVR for the
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Fig. 8. Main cuts for the copolar and crosspolar radiation pattern with (a)
squared-cosecant pattern in elevation and (b) sectored beam in azimuth for
polarization V comparing the MoM-LP and SVR predictions.

10dBi curves and below. The 4D SVR is only slightly better for the
prediction of the crosspolar pattern. The 2D SVR has high accuracy
for the high levels of the crosspolar pattern, although presents some
minor discrepancies for lower levels.

The comparison has also been carried out with a different radiation
pattern than the one employed in the study of Section IV-B: a shaped-
beam reflectarray with a sectored beam pattern in azimuth and a
squared-cosecant pattern in elevation. This radiation pattern presents
a dynamic range in the coverage zone of almost 15 dB in elevation,
where the copolar component has to smoothly decrease over an
angular span of 50°. Fig. 8 shows the main cuts for this radiation
pattern. The copolar component is predicted with a high degree of
accuracy by the 2D SVR. The 4D SVR presents deeper nulls as well
as slightly higher ripple in the coverage zone of the squared-cosecant
beam in elevation. For the crosspolar pattern, both SVRs present
similar results and model with high accuracy the region of maximum
crosspolar gain, but present some deviation for values lower than
—30dBi (50dB below peak gain).

Finally, Table II summarizes the errors obtained for the previous
patterns, including also a pencil beam. For all examples, similar



Table 11
RELATIVE ERRORS (%) IN THE PREDICTION OF THE THREE RADIATION
PATTERNS FOR THE COPOLAR (CP) AND CROSSPOLAR (XP) PATTERNS.

Tool  Contoured-beam  Shaped-beam  Pencil beam

Cp XP CP XP Cp XP

2D SVR 0.1 4.00 0.91 347 021 214
4D SVR  1.25 1.81 208 253 040 1.01

results were obtained in both linear polarizations. As it can be
seen, the 2D SVR model offers lower error in the copolar pattern,
although the 4D SVR is slightly better at predicting the crosspolar
pattern. In light of these results, it is clear that the 4D SVR, which
includes the angles of incidence (6,¢) as input variables, offers
slightly more accuracy in the prediction of the crosspolar pattern
than the 2D SVR. However, this higher accuracy is achieved at the
expense of greater training time and lower computational efficiency
in the analysis of reflectarray antennas. Thus, a compromise might be
achieved to greatly accelerate training and analysis time by employing
a 2D discretization of the angles of incidence at the expense of
slightly decreasing the accuracy of the crosspolar pattern while also
maintaining and even increasing the accuracy in the prediction of the
copolar pattern.

V. CONCLUSIONS

In this work, we have carried out a study on the use of the angles
of incidence in surrogate models based on support vector regression
(SVR) for reflectarray design. Two approaches were considered:
including the angles of incidence plus two geometrical features of
the unit cell as input variables, obtaining a 4D SVR; and grouping
different angles of incidence into discrete sets and obtaining 2D SVR
models per set. When the 2D and 4D SVRs are compared, the 2D
SVR is considerably faster than the 4D SVR. It is between one and
two orders of magnitude faster to train and more than one order of
magnitude faster to accelerate the reflectarray analysis. Moreover, the
copolar pattern presents a higher degree of accuracy with regard to
MoM-LP simulations. Only in the prediction of the crosspolar pattern
is the 4D SVR slightly more accurate, although both approaches
(2D and 4D) achieve errors below 4%. In addition, it has also been
shown that there is a point at which obtaining better accuracy in the
prediction of the reflection coefficients does not translate into a lower
error in the prediction of the radiation pattern.

In contrast to the common approach in the literature, this work has
shown that it is more competitive to group the reflectarray elements
under a small set of angles of incidence and train surrogate models
per each angle of the set, than using the angles of incidence as input
variables to the surrogate models. The presented methodology pro-
vides faster trainings and reflectarray analyses without significantly
compromising the analysis accuracy.
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