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Abstract It is well known that there are some maternal and fetal issues that
directly influence preterm births. However, all the variables provoking it are
not completely determined. On the other hand, chronodisruption alters ma-
ternal circadian rhythms, with negative consequences for the maturation of
the fetus. Thus, the objective of this work is to add other factors related to
maternal chronodisruption factors and to check if all together can improve
preterm birth prevention. The methodology followed to reach this objective is
based on machine learning approach. The data are composed by a cohort of
380 births labelled as preterm or term births. Variables defining each individ-
ual are related to maternal habits, night exposure to light or sleep duration
during gestation. In addition, maternal variables related to the gestation were
obtained as well as fetal characteristics. Preliminary statistical tests confirm
that cervix dilatation, fetus estimated weight and weight at birth were signif-
icantly lower (p < 0.05) in preterm group than in term group as expected.
A deeper study based on machine learning highlights some interesting and
non obvious relations between some factors related to night exposure to light
and sleeping habits. In fact, the decision tree obtained as predictive model
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indicates that light coming in through the window or lightness level of the
bedroom during the night are key features in predicting preterm delivery.

Keywords chronodisruption · light at night · sleep habits · machine learning ·
predictive model · preterm birth

1 Introduction

Preterm birth is defined as the birth of a baby at fewer than 37th week of
gestation, more exactly, before 259 days counted from the last menstruation.
It is therefore accepted that prematurity is related to the time of pregnancy.
Although there is no regular view for all authors, it is considered that a fetus
is viable from the 22 week of gestation (Lumley, 2003). A threat of preterm
is defined as the beginning of regular uterine contractions, dilation and cervi-
cal effacement between 23 and 36 gestation weeks. In the United States, the
preterm birth rate is 12-13% whereas in Europe and other developed countries
it is close to 5-9% (Goldenberg et al., 2008). Although the factors that deter-
mine the beginning of the birth are not yet known exactly, it is often postulated
that the inflammatory response is of vital importance in the triggering of both
term and preterm delivery. Other factors are uterine infection, premature rup-
ture of membranes (RPM), uterine distention, or insufficient maternal-fetal
immune recognition. There are also some risk factors associated with prema-
turity such as maternal age, obesity, anaemia, folic acid ingestion, gestational
diabetes, tobacco, alcohol, pollution, stress or multiple gestation (Llurna et al.,
2015), whose control or disappearance could reduce the prevalence of preterm
births.

It is well known that as consequence of night exposure at artificial light,
the prevalence of disturbances in circadian rhythms and disturbed sleep are
increasing in modern society (Pallesen et al., 2014). Chronodisruption is de-
fined as the relevant alteration of the internal temporal order of physiological
and behavioral circadian rhythms (Garaulet and Ordovás, 2013). There are
many works focused on studying issues related to this topic. For example,
De Arriba-Pérez et al. (2018) uses off the shelf wrist wearables to estimate
sleep quality, sleepiness level, chronotype and sleep regularity indicators. In
relation to premature delivery, the intensity of light during the night causes an
endogenous suppression of the melatonin levels produced (Reiter et al., 2014).
In this way, chronodisruption alters maternal circadian rhythms, with negative
consequences for the maturation of the fetus, which can lead to psychological
and behavioral problems in the newborn (Ferreira et al., 2012). Thus, most of
these factors could be used as a prognostic of premature delivery.

On the other hand, machine learning (ML) is nowadays an efficient tool
in decision support system design for many broad research areas (Montañés
et al., 2009; Gil-Pita et al., 2015) and in particular in Biomedicine (Fernández-
Navarro et al., 2019). Preterm birth prediction and related issues are a long-
standing problem where ML has been frequently applied. In (Rawashdeh et al.,
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2020) it is developed a model that acts as a decision support system for preg-
nant women at high risk of delivering prematurely before having cervical cer-
clage. They used data from 274 pregnancies managed with cervical cerclage
and build different ML models using decision trees, random forest, K-nearest
neighbors and neural networks. Weber et al. in (Weber et al., 2018) predicts
early spontaneous preterm birth among non-Hispanic black and white women
by applying ML to multilevel data from a large birth cohort. Gao et al. in
(Gao et al., 2019) model extreme preterm birth using deep learning models
that consider temporal relations documented in electronic health records. Fer-
gus et al. (Fergus et al., 2016) uses electrohysterography signals and different
artificial neural networks to identify relevant features for predicting preterm
births. In (Rezaeian et al., 2020) neural networks and logistic regression are
presented as a tool for prediction of mortality in premature neonates upon ad-
mission to neonatal intensive care units. Related to this topic, Li et al. (2018)
identifies the risk factors associated to small-for-gestational-age condition us-
ing machine learning and feature selection techniques.

The relation between pollutants and some chronobiology markers with re-
gard to preterm birth has also attracted attention. Regarding pollutants, In
(Ren et al., 2018) some maternal exposure to some ambient air pollutants are
identified as the primary risk factor for congenital heart defects. In addition
they show that a ML model has better predictive performance than traditional
logistic regression models. In the same line, it is suggested that maternal ex-
posure to outdoor gaseous air pollutants increases risk of preterm birth in
(Guo et al., 2019). (Mustieles et al., 2020) states that maternal preconception
urinary Bisphenol A and Bisphenol S concentrations, as well as paternal pre-
conception urinary parabens concentrations are associated with a higher risk
of preterm birth.

Regarding chronobiology markers, (Loy et al., 2020) examined the associa-
tions of maternal night-time eating and sleep duration during pregnancy with
gestation length and preterm birth. In addition, sleep habits are also consid-
ered in (Facco et al., 2019) where they concluded that self-reported late sleep
midpoint in both early and late pregnancy, but not short sleep duration, is
associated with an increased rate of preterm birth. Other factors as tempera-
ture are studied in (Sun et al., 2019), concluding that days of extreme heat,
but not extreme cold, are associated with higher risk of preterm birth.

However, the factors affecting preterm births are not fully described yet but
the rate of preterm births is increasing and thus it causes health, development
and economic problems.

The aim of this study is to design a predictive model to forecast the risk of
premature delivery based on several potential risk factors. The effect of some
of these risk factors (age, or diabetes for example) on preterm births is already
known. However, the impact of other risk factors related to chronodisruption
is rather studied. Thus, the model will help in preterm birth prevention con-
sidering factors related to night exposure to light.
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2 Methodology

2.1 Study population

An observational, retrospective and descriptive study was performed with 380
births that occurred between January 1st, 2015 and May 10th, 2016 in the
Universitary Central Hospital of Asturias (HUCA) (Spain). The study was
approved by Research Ethics Committee of the Principado of Asturias (Spain).
Those births in which the baby was born dead or the term was induced were
eliminated from the study. The control group births were selected by choosing
a term delivery occurred on the same day, just before each preterm delivery.
380 births were collected, 157 were preterm (between 24.4 and 36.9 weeks of
pregnancy) and 223 were term (between 37 and 42.3 weeks).

2.1.1 Measurement

Issues related to maternal, fetal and maternal sleep habits are considered to
define each patient. The main maternal characteristics are Age (years), Body
mass index (BMI) (Kg/m2), Obstetric history (Primiparity and primigravity),
Weight at the beginning of pregnancy (Kg), Weight gain thought pregnancy
(Kg), Multiple gestation (Yes or not), Toxic habits (Tobacco or alcohol), Group
B Streptococcus agalactiae carriage (Yes or not). The considered fetal variables
are Sex (Male or female), Nuchal translucency analysis in the first trimester
(NT) (mm), Estimated weight in the third trimester (g), Weight at birth (g),
Folic acid administration (Yes or not), Test O’Sullivan (Normal or altered),
Hemoglobin concentration at first trimester of pregnancy (g/dL), Cervix di-
latation (cm) , Premature rupture of membranes (PRM) (Yes or not).

With regard to maternal sleep habits a questionnaire (Hersh et al., 2015)
was used. In addition, the sleep habits related to night exposure to light is
coded according to the numerical scale established by (Davis et al., 2001). The
answers to both questionnaires were obtained by telephone survey. 387 patients
answered to survey, 223 of which experienced preterm deliveries whereas the
other 157 were term. The questionnaire items are the following:

– Time at which she turned off the light to go to sleep.
– Time at which she woke up on each day of a usual week.
– Number of hours usually spent looking at an electronic device after lights

are turned off.
– Whether a light or television was turned on in (or near) the bedroom while

sleeping.
– Average number of times per night (if any) that their sleep was interrupted.
– If sleep was interrupted, whether she turned a light on, and intensity and

duration of light exposure.
– Average sleep duration (in hours) for weekdays and weekend nights, sepa-

rately.
– Level of light in the bedroom during sleep on working days and weekends.

Based on these data the variables detailed in Table 1 are considered.
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VARIABLE MEANING
DeviceMF Hours of usage of electronic devices before sleeping

with room lights off on working days (Monday to Friday)
DeviceSS Hours of usage of electronic devices before sleeping

with room lights off on wekkends
Interruption Awakenings at night ( with light turned on)
Midnight light If any light or television is on close to midnight
Sleeping hoursWDSleeping hours (in average) during working days
Sleeping hoursWE Sleeping hours (in average) during weekend days
Lightness Level of room lightness at night. Observed levels:

LEVEL 1: Room completely dark
LEVEL 2: You can see your hands
LEVEL 3: You can see to the end of the bed
LEVEL 4: You can see through the room

BedtimeWD Bedtime on working days. 3 categories:
BEFORE 23: She goes to bed before 11 at night.
23-00: She goes to bed between 11 and 12 at night.
AFTER 00: She goes to bed after midnight

BedtimeWE Bedtime on weekends. 3 categories:
BEFORE 23: She goes to bed before 11 at night
23-00: She goes to bed between 11 and 12 at night
AFTER 00: He goes to bed after midnight.

Occupation Occupation during pregnancy:
No: Does not work during pregnancy
No shift work: Work with a non-shift schedule
Shift work: Work with a shift schedule

Change of habits Number of hours, depth of sleep or lighting of the room

Table 1 Variables related to sleep habits

2.1.2 Statistical Analysis of variables

First of all a statistical analysis was carried out to study the behaviour of both
qualitative and quantitative variables depending on preterm or term delivery.
Quantitative variables are: age, BMI, initial weight, weight gain, hemoglobin,
cervix dilatation, nuchal translucency, estimated weight, weight at birth. Qual-
itative variables are primigravity, primiparity, multiparity, tobacco, alcohol,
group B streptococcus, folic acid, O’Sullivan test, PRM, fetal sex. Variables
related to sleep habit are all qualitative. Note that there are some variables
that are not useful for predicting preterm births. For example, although there
are statistical differences between preterm and term groups in weight at birth
variable, it is obviously excluded as it is a data we can only obtain after deliv-
ery. Table 2 and Table 3 lists the basic statistics for maternal and fetal variables
while Table 4 and Table 5 show the same information for variables related to
maternal habits. Note that for these last set of variables, the 76, 3% of mothers
associated to preterm delivery have answered to questionaries while in case of
term deliveries this percentage decreases to 67, 2%. Chi-square independence
test was performed for these qualitative variables while quantitative variables
were analysed with Student’s t-test, previously checking the normality of the
variables using the Kolmogorov-Smirnov test (p < 0.05 was considered signif-
icant for both tests). R-studio was used to perform this analysis. In case of
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qualitative variables, it is not possible to reject the null hypothesis that each
qualitative variable in Table 4 and Table 5 is independent of preterm birth
variable. On the other hand, variables with an asterisk in Table 2 and Table 3
show significant differences between preterm and term classes. However, note
that all of them are related to delivery and they are not useful to predict
preterm births in advance. Thus, they are not considered in this study. Note
that multiparity is strongly correlated to preterm births and consequently is
also removed from this study.

Preterm (n=157)
MinimunMean Maximun

Age (years) 15 32, 5 ± 0, 5 46
BMI (Kg/m2) 19,3 29, 1 ± 1, 3 203,7
Initial weight (g) 42 62, 2 ± 1,4 100
Weight gain(g) -0,9 3, 5 ± 0, 8 13
Hemoglobin (g/dL) 7,7 12, 8 ± 0, 1 15,2
Cervix dilatation (cm)* 0 2, 5 ± 0, 2 9
Nuchal Translucency (mm)0,8 1, 5 ± 0, 04 2,5
Estimated Weight (g)* 656 1914 ± 48, 3 3535
Weight at birth (g)* 600 2192, 1 ± 52 3600

Term (n=223)
MinimunMean Maximun

Age (years) 17 32, 8 ± 0, 4 43
BMI (Kg/m2) 18,9 28, 9 ± 0, 4 68,4
Initial weight (g) 45,5 65, 2 ± 0, 9 114
Weight gain(g) -3 3, 8 ± 0, 6 26
Hemoglobin (g/dL) 9,8 12, 8 ± 0, 1 14,9
Cervix dilatation (cm)* 0 3, 3 ± 0, 1 10
Nuchal Translucency (mm)0,7 1, 6 ± 0, 04 6,7
Estimated Weight (g)* 1887 3042, 2 ± 38 4410
Weight at birth (g)* 1040 2655, 7 ± 40, 14325

Table 2 Basic statistics for continuous variables related to maternal and fetal issues

2.2 Machine learning

As it was introduced before, the goal of this work is to study if night expo-
sure to light and habits related to sleep can influence in preterm delivery. The
approach followed in this work is based on ML which has been proved to be
successful solving biomedicine problems as it was pointed out in the introduc-
tion section. In this section we describe the particular approach we follow that
is sketched in Figure 1 and detailed in the following subsections.

2.2.1 Preprocessing

As it was described in section 2.1.1, the patient set is characterized by both
continuous and categorical variables. It is well known that some ML methods
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Preterm (n=157)
%YES %NO

Primigravity 44,6 54,8
Primiparity 72,6 26,8
Multiparity* 100 0
Tobacco 16,6 76,4
Alcohol 2,5 90,4
Group B streptococcus9,6 38,2
Folic acid 61,8 0,6
O’Sullivan test 39,5 7,6
PRM* 55,4 44,6

%MALE%FEMALE
Fetal sex 45.8 54.2

Term (n=223)
%YES %NO

Primigravity 45,3 53,8
Primiparity 66,8 32,3
Multiparity* 0,9 99,1
Tobacco 12,1 83,9
Alcohol 1,3 94,2
Group B streptococcus12,1 57,4
Folic acid 75,3 0,5
O’Sullivan test 42,2 6,7
PRM* 20,2 51,6

%MALE%FEMALE
Fetal sex 52.1 42.9

Table 3 Basic statistics for categorical variables related to maternal and fetal issues

are quite sensitive to variable scale. Thus, continuous variables are normalized
to avoid this circumstance. In addition, missing values are treated using K-
nearest neighbor imputation (Zhang, 2012).

In addition to the statistical analysis, predictive factors for preterm births
are obtained via ML methods and noise reduction techniques using R package
version 3.4.3. In particular, caret package version 6.0.78 has been used to
build classifiers and NoiseFiltersR package (version 0.1.0) was used for noise
reduction.

2.2.2 Noise elimination

ML methods strongly depend on the input data. Thus, it is extremely im-
portant to study if the input data are sound. To that extent, the following
techniques to identify noisy examples are employed:

– RobustFilter (Verbaeten, 2002) is a noise filter that builds a C4.5 decision
tree from the training data and then removes those instances misclassfied
by this tree. The process is repeated until no instances are removed.

– IteratedVoting method (Verbaeten, 2002) splits the dataset into n folds
and then builds and tests a C4.5 tree on every combination of n− 1 folds.
Thus, n − 1 votes are gathered for each instance. Removal is carried out
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Preterm (n=157)

%YES %NO
Midnight light 50.3 26
Change of habits 27.5 48.8

%< 1 %> 1 %NO
DeviceMF 33.3 6 37
DeviceSS 30.7 7.8 37.8

%with light %without light %NO
Interruption 35.5 20.4 20.4

%< 6 %[6, 9] %> 9
Sleeping hours-WD 20.4 39.4 16.5
Sleeping hours-WE 11.8 40.2 8.3
Lightness %LEVEL 1 %LEVEL 2 %LEVEL 3%LEVEL 4

41.7 11.8 11 11.8
%BEFORE 23 %23-00 %AFTER 00

BedtimeMF 20.5 39.3 16.5
BedtimeWE 11.8 40.3 24.4

%NO %No shift work %Shift work
Occupation 22.4 42.4 11.5

Table 4 Basic statistics for variables related to maternal habits (for preterm births)

Term (n=223)

%YES %NO
Midnight light 15.5 51.7
Change of habits 36.9 30.3

%< 1 %> 1 %YES
DeviceMF 31.5 9.5 26.2
DeviceSS 31.5 9.5 26.2

%with light %without light %NO
Interruption 25 23.8 18.4

%< 6 %[6, 9] %> 9
Sleeping hoursWD 13.1 39.3 14.8
Sleeping hoursWE 10.1 30.3 26.8
Lightness %LEVEL 1 %LEVEL 2 %LEVEL 3% LEVEL 4

45.2 8.3 5.4 8.3
%BEFORE 23 %23-00 %AFTER 00

BedtimeMF 20.2 36.3 10.7
BedtimeWE 10.7 30.9 25.6

%NO %No shift work %Shift work
Occupation 18.4 40.5 8.3

Table 5 Basic statistics for variables related to maternal habits (for term births)

by majority or consensus voting schemes. The process is repeated until no
more noisy instances are removed.

– EdgeBoostfilter (Wheway, 2001) combines an AdaBoost scheme with a
default C4.5 tree as weak classifier. After m iterations, those instances
with edge values are considered noisy and thus removed.

– HARF (Sluban et al., 2010) is a classifier-based filter that uses a Random-
Forest classifier. It considers the rate of disagreement in the predictions
made by the individual trees in the forest to detect the noisy examples: if
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Fig. 1 Machine learning procedure

this rate is high, the example is probably noisy; otherwise, it is considered
to be clean.

Each one of these noise elimination methods leads to a different data set.
Thus from the initial dataset we obtain for different ones, each one of them
will be the input to the different classifiers.

2.2.3 Classifiers

A classification system is a systematic approach to building classification mod-
els from an input data set. Examples include decision tree classifiers, neural
networks or instance based learners among other classifiers. Each technique
employs a learning algorithm to identify the model that best fits the relation-
ship between the attribute set and class label of the input data. The model
generated by a learning algorithm should both fit the input data well and cor-
rectly predict the class labels of examples it has never seen before. Therefore,
a key objective of any learning algorithm is to build models with good gen-
eralization capability, which is equivalent to look for models that accurately
predict the class labels of previously unknown examples. Thus, the classifica-
tion procedure is a cornerstone in any predictive problem. In addition, there
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is no a standard classification method so far. Thus, several different methods
were tested to select the one performing the best for this task, taking into
account the trade-off between performance and interpretability. The methods
consider in this work are described below.

– Tree based methods: Decision trees are one of the more extensively
applied classifiers in many different domains. A decision tree (generally
defined) is a tree whose internal nodes are tests on the variables that define
the inputs and whose leaf nodes are categories. A decision tree has three
different kind of nodes: A root node that has no incoming edges and zero
or more outgoing edges, internal nodes with exactly one incoming edge
and two or more outgoing edges and leafs or terminal nodes with exactly
one incoming edge and no outgoing edges. In a decision tree, each leaf
node is assigned a class label. The nonterminal nodes contain attribute
test conditions to separate examples that have different characteristics.
Each path from the root of the tree to a leaf determines a region, that is,
a more homogeneous group subset of the input data. Initially, the whole
training set is associated with a leaf. These classifiers usually adopt a greedy
approach in which decision trees are constructed in a top-down recursive
divide-and-conquer manner. Most algorithms for decision tree induction
also follow a top-down approach, which starts with a training set of tuples
and their associated class labels. The training set is recursively partitioned
into smaller subsets as the tree is being built. Applying a test in a recursive
procedure, it is decided if the set associated to a leaf is split into smaller
subsets associated to new leaves. When a subset is homogeneous (in some
sense) the procedure halts and the node is labelled as a leaf (terminal node).
Note that these greedy strategy makes decision tree grow by making a series
of locally optimum about which attribute to use for partitioning the data.
Every construction method of a tree revolves around the selection of the
splits, the decisions when to declare a node terminal or to continue splitting
it and the assignment of each terminal node to a class.
Different combinations of splitting selection measures, stopping criteria
and pruning techniques and class assignments to a leaf lead to differ-
ent methods. C5.0, C4.5 (Kuhn et al., 2018; Quinlan, 1994, 2000) and
CART (Breiman, 2001) are examples of this kind of classifiers. CART uses
Gini index as criteria to select the splits while C4.5 and C5.0 use Gain
ratio. CART uses cost complexity pruning to evaluate whether the tree
should be simplified while while C4.5 employs pessimistic pruning. C5.0
is an extension of C4.5 that is faster and in general more accurate than
C4.5 and has several basic improvements that are likely to generate smaller
trees. Although in recent years several new ML methods have been devel-
oped, decision tree methods are still useful when the problem has a lot of
nominal data (in addition to numeric data), unknown attributes or when
the dataset is not very large and with a lot of attributes. Unlike neural
networks or lazy learners, decision trees are human readable and easy to
comprehend (Kuhn and Johnson, 2013).
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Some other methods are also considered in this work due mainly to their
performance. On of them is the random forest method. It is supposed that
the prediction provided by a set of trees combined in some way improves
predictive performance over a single tree by reducing variance of the pre-
diction. Random forest is based on building trees using a random subset
of the top k predictors at each split in the tree. Each tree in the ensem-
ble is then used to generate a prediction for a new sample and these m
predictions are averaged to give the forests prediction.

– Lazy learners: Instance based learner such as k Nearest Neighbors (k-
NN) (Peterson, 2009) are characterized for being one of the simplest ML
methods and for their reduced training time. k-NN classifiers are based
on learning by comparing a given test example with each example of the
training set. Each example represents a point in an n-dimensional space.
Then, to classify an example, a k-NN classifier searches the pattern space
for the k training tuples that are closest to the example to classify. These
k training examples are the k nearest neighbors of the example to classify.
Closeness is defined in terms of a distance metric, such as Euclidean dis-
tance. k-NN is quite sensitive to variable scale as it is based on distances,
does not work with missing values. On the other hand, the parameter k is
not known in advance and it is necessary to fix it experimentally. k-NN can
be useful when interpretability is not a requirement to model the solution
to a predictive problem.

– Neural Networks: Artificial Neural Networks (NN) (Cook, 2020) are in-
spired in biological neural networks and have been applied in a wide variety
of classification and regression problems. In particular, multilayer percep-
trons (MLP) are loop-free networks whose neurons are arranged in layers,
with each neuron providing input only to neurons in the next layer of the
sequence. The first layer contains input neurons and thus the number of
neurons in this layer is determined by the dimension of the examples in the
training set. The last layer contains the output neurons. The number of
hidden layers is not determined beforehand and it is usually experimentally
determined. MLP training involves adjusting the weights (the connections
between two neurons each of them lying in consecutive layers) of the model
in order to minimize the prediction error. This weight adjusting is itera-
tively performed in two steps: First, the input example moves from the
input layer through the hidden layers to the output layer. Thus the output
layer is measured against the ground truth labels. Then the weights are
updated using back-propagation. This process is then repeated until con-
vergence. The learning of this kind of methods are the weight values. Thus,
the interpretability of these models is low although they are accurate in
general.

2.2.4 Training

Training a ML method is as complex as necessary to avoid overfitting and to
correctly optimize the different hyperparameters associated to each method.
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In this case we have applied repeated cross-validation with 10 folds. The rep-
etition parameter was 30.

2.2.5 Evaluation

To evaluate the performance of the presented method several metrics are se-
lected from the confusion matrix shown in Table 6. The confusion matrix
is a contingency table that shows how the objects of a binary classification
problem are classified according to their real value and the one predicted by
the classification method.

Predicted

Preterm Term

R
e
a
l

Preterm True Positive (TP) False Negative (FN)

Term False Positive (FP) True Negative (TN)

Table 6 Confusion matrix.

From the afore defined confusion matrix the F1 = 2∗TP
2∗TP+FP+FN , Sensitivity=

TP
TP+FN and Specificity= TN

TN+FP are computed.

3 Results

We consider the original data set plus other 4 different data sets obtained
from the original one, after applying the noise removal techniques described
in subsection 2.2.2. Thus, 24 different learning procedures were tested as re-
sult of combining 6 different classifiers (see subsection 2.2.3) with 4 different
noise reduction techniques. Thus, it is necessary to select the best combina-
tion of learner plus noise filter to construct the predictive model. In addition,
each method is optimized during the training step according to its particular
parameter setting.

Table 7 shows the performance in test of each classification method plus
noise reduction combination in terms of Sensitivity, Specificity, Precision and
F1. As it can be seen, Robust noise reduction technique together with C5.0
classification method is the combination obtaining the best performance in
terms of F , Sensitivity and Specificity. Thus, this combination is the one
selected to build the model for predicting pre-term births.

T-tests were applied to validate the statistical significance for each compar-
ison between C5.0 and the other ML methods when noise filtering methods is
fixed with p value 0.05 (see Table 8). Data in table 8 show that when Robust
noise filtering method is applied there is no significant differences between
the values of F, Sensitivity and Specificity obtained by C5.0 and J48. On the
other hand, the values of F, Sensitivity and Specificity obtained by C5.0 are
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Robust
F Sensitivity Specificity

C5.0 0.85 0.86 0.78
J48 0.83 0.85 0.73

rpart 0.82 0.80 0.80
MLP 0.78 0.76 0.75
k-NN 0.69 0.76 0.45

rf 0.83 0.82 0.81
IterativeVoting

F Sensitivity Specificity
C5.0 0.74 0.73 0.76
J48 0.79 0.80 0.76

rpart 0.78 0.77 0.78
MLP 0.78 0.77 0.79
k-NN 0.64 0.69 0.51

rf 0.76 0.73 0.81
edgeBoost

F Sensitivity Specificity
C5.0 0.53 0.53 0.53
J48 0.57 0.62 0.49

rpart 0.57 0.61 0.50
MLP 0.59 0.61 0.55
k-NN 0.56 0.60 0.46

rf 0.56 0.57 0.55
HARF

F Sensitivity Specificity
C5.0 0.64 0.65 0.56
J48 0.66 0.66 0.60

rpart 0.65 0.72 0.47
MLP 0.69 0.68 0.67
k-NN 0.60 0.64 0.45

rf 0.66 0.68 0.57

Table 7 Performance (in average) of the different combinations of machine learners and
noise reducers in terms of F , Sensitivity and Specificity.

statistically better than those obtained by Rpart and MLP. In addition, the
values of F, Sensitivity obtained by C5.0 are statistically better than those
k-NN and Specificity and Sensitivity for C5.0 are also statistically higher than
the obtained by rf.

When Iterative Voting method is applied as noise filter, we find significant
differences only for Specificity in case of comparing C5.0 and J48 performances
and for F, Sensitivity and Specificity when C5.0 and k-NN are compared. If
EdgeBoost is considered as noise filter, we found almost no significant dif-
ferences among the different ML methods (only between F-measure obtained
by C5.0 and k-NN). In case of using HARF noise filter, only the F measure
obtained by C5.0 is significantly higher than that obtained by rpart and k-NN
and the Sensitivity obtained by C5.0 also outperforms the one obtained by k-
NN. Thus, it seems clear that the combination Robust filtering together with
C5.0 as ML method is the best. The underlying model is depicted in Figure 4.
From this model the most important variables are also extracted (see Figure
3).
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Robust Iterative Voting EdgeBoost HARF
C5.0-J48 - Specificity - -

F - -
C5.0-rpart Specificity - - F

Sensitivity - -
F - - -

C5.0-MLP Specificity - - -
Sensitivity - - -

F F F F
C5.0-k-NN Specificity F

Sensitivity Sensitivity F Sensitivity
C5.0-rf Specificity - - -

Sensitivity - - -

Table 8 Statistical differences among different ML methods when the noise filter is fixed

We have also compared the results obtained by C5.0 across the different
noise reduction methods, obtaining in this case statistical significance between
the performance obtained by C5.0 together with Robust filtering and the ob-
tained between C5.0 and one of the other three noise filters.

Figure 2 deepens in the performance of the selected combination across the
30 Cross-validation iterations.

4 Discussion

Our results from statistical analysis allow us to confirm that several well known
obstetrical factors as cervix dilatation, multiple gestation or estimated birth
weight or premature rupture of membranes increase preterm risk as previously
other authors pointed out (Goldenberg et al., 2008; Denbow and Lyon, 2005).

Preterm birth is considered a public health problem but the etiology of
prematurity is not completely understood due to complex interactions of dif-
ferent factors as genetics, environmental or mother‘s own causes. Previous
authors have been identified various environmental exposures as potential risk
factors for preterm birth (Stieb et al., 2012; Ferguson et al., 2013). In addition
Giorgis-Allemand et al. (Giorgis-Allemand et al., 2017) have proposed that
meteorological conditions and environmental pollutants may be considered as
risk factors. Artificial light at night is also considered a form of pollution
which involves disturbances with circadian rhythms affecting many physio-
logical parameters such as sleep-wake cycle or temperature rhythm (Touitou
et al., 2017). In addition, night exposure to artificial light increases the risk of
miscarriage. In this way shift work has been associated with risk of preterm
birth (Zhu et al., 2004). Given that in today’s society future mothers, like all
of us, are exposed to the deleterious effect of artificial light at night, it seems
interesting to be able to predict the risk of preterm delivery based on light
and other classic risk factors. So we have designed a model to predict preterm
birth risks that takes into account for the first time the current lifestyle re-
lated to sleep habits and night exposure to light. In fact, Figure 3 shows the
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Fig. 2 Boxplot of F , Sensitivity and Specificity of C5.0 plus Robust filtering method

importance of each variable in this process. It shows the overall importance
(ranging from 0 to 100) of the factors considered in this work. Note that there
are some traditional well known factors as Mother’s age, NT or BMI. However,
the most important variables are those related to maternal light exposure.

The resulting predictive model can be seen in Figure 4. As it can be checked,
the model includes previously confirmed risk factors (BMI) but also those
related to maternal habits linked to hours of sleep and night exposure to
light. In addition, it is shown for the first time the great importance of the
artificial light pollutant as a critical risk factor for preterm labor. In fact, our
model shows that other classical preterm risk factors like BMI become less
important as predictive risk factors. The model reveals that the main risk
factor for preterm labor is the maternal exposure to artificial light close to
midnight. Furthermore according to our model other maternal habits like the
use of electronics devices before sleeping is also an important risk factor even
if they are not are exposed to light at midnight. This factor, together with
high levels of lightness at night influences preterm births.

Shift work is also a critical factor to induce preterm labor in those pregnant
women usually exposed to artificial light during midnight. In view of our results
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Fig. 3 Mean importance of each variable during the training process

maternal exposure to artificial light is an important risk factor to cause preterm
labor, these habits are clearly avoidable factors. Our predictive model may be
therefore very useful in the obstetrics clinic to prevent preterm birth.
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YES NO NO

Lightness

YES

==LEVEL 4 !=LEVEL 4

Fig. 4 Model for predicting preterm births

There are an increasing number of scientific articles that suggests the kind
of work (shift work, work in fixed night shifts, longer hours) as a factor that
increases the risk of adverse pregnant outcomes (Croteau et al., 2007),(Davari
et al., 2018),(Cai et al., 2019). In this way, in (Nehme et al., 2019) found
that pregnant women working at night exposed to continuous light, decreased
nocturnal melatonin levels and increased the risk of bleeding and miscarriage.

The results of this study suggest that we should change our lifestyle mainly
during gestation. In present society we are overexposed to artificial light at
night specially during weekends, generating social jet lag (Loy et al., 2020).
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In addition we are daily exposed to electronic devices like computers, mobiles
or ebooks, all of them emitting intense light. It is known that light exposure
during night results in chronodisruption, thus altering the main biological
rhythms among them the hormone melatonin circadian rhythm (Reiter et al.,
2014). In this way, it has been observed that melatonin concentration increases
during pregnancy (Nakamura et al., 2001); and it seems to be involved in
gestation normal evolution, since it is of vital importance for the placenta
development and function, and for the induction of the rhythmicity of the
fetal organs (Voiculescu et al., 2014). So, the suppression of this hormone
during pregnancy affects the maturation process in the fetus (Ferreira et al.,
2012), such as retardation in growth (Nakamura et al., 2001). It is possible to
argue that chronodisruption caused by night exposure to light causes uterine
growth retardation, and finally premature delivery. Note that the influence of
the use of electronic devices, or the abuse of artificial light until late at night on
pregnant has not been previously studied in depth. Our results are therefore
pioneering in this area.

ML has been extensively applied in biomedicine as an efficient tool to help
in decision making processes. In particular, it has been previously used for
studying risk factors associated to delivery (Gao et al., 2019; Rawashdeh et al.,
2020; Weber et al., 2018). In this work we have tested different ML approaches,
showing decision trees as an accurate tool to predict preterm delivery from
variables based on maternal habits, especially related to night exposure to
light.

In conclusion, we have developed a model to predict the risk of preterm
birth in pregnant women considering classical factors as well as other factors
based on night exposure to light. Thus, it is possible to recommend preventive
actions and to reduce the incidence of prematurity.
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manejo del parto pretérmino. Documentos de Consenso S.E.G.O.

Loy, S. L., Cheung, Y. B., Cai, S., Colega, M. T., Godfrey, K. M., Chong,
Y.-S., Shek, L. P.-C., Tan, K. H., Chong, M. F.-F., Yap, F., and Chan, J.
K. Y. (2020). Maternal night-time eating and sleep duration in relation to
length of gestation and preterm birth. Clinical Nutrition, 39(6):1935 – 1942.

Lumley, J. (2003). Defining the problem: The epidemiology of preterm birth.
In BJOG: An International Journal of Obstetrics and Gynaecology.
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