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Abstract: Relevant integral stochastic orders share a common mathematical model, they are defined
by generators which are made up of increasing functions on appropriate directions. Motivated by the
aim to provide a unified study of those orders, we introduce a new class of integral stochastic orders
whose generators are composed of functions that are increasing on the directions of a finite number
of vectors. These orders will be called directional stochastic orders. Such stochastic orders are studied
in depth. In that analysis, the conical combinations of vectors in those finite subsets play a relevant
role. It is proved that directional stochastic orders are generated by non-stochastic pre-orders and the
class of their preserving mappings. Geometrical characterizations of directional stochastic orders are
developed. Those characterizations depend on the existence of non-trivial subspaces contained in
the set of conical combinations. An application of directional stochastic orders to the field of financial
mathematics is developed, namely, to the comparison of investments with random cash flows.

Keywords: convex cone; investment with random cash flows; non-trivial subspace; orthogonal
projection; stochastic order

MSC: Primary 60E15; Secondary 06A06

1. Introduction

This manuscript is focused on the theory of stochastic orders. A lot of effort has been
made on this topic during the last decades due to its importance from the theoretical and
applied points of view. Very basically, a stochastic order attempts to order probabilities in
some sense. Nowadays, stochastic orders are applied in numerous fields like insurance,
economics, decision theory, reliability, quality control, medicine, etc.

An integral stochastic order is a stochastic order which can be characterized by means
of the comparison of the integrals of a set of functions with respect to the corresponding
probabilities, such a set called generator of the order. Some integral stochastic orders have
a common condition in relation to the functions of their generators, these are composed
of functions which are increasing on appropriate directions. As examples of such orders,
we have

(i) the usual multivariate stochastic order, which has as a generator the set of all increasing
functions f : Rn → R, that is, the generator is made up of mappings which are
increasing on the directions of the vectors in {e1, e2, . . . , en}, where ei stands for the
ith-unit vector of Rn;

(ii) the time value of money stochastic order, a generator of that stochastic order is
given by the functions which are increasing on the directions of the vectors in
{ê1, ê2, . . . , ên−1, ên}, with êi = ei − ei+1, 1 ≤ i ≤ n− 1, and ên = en;

(iii) the family of strong extremality orders, a generator of the strong extremality order in
the direction u ∈ Sn−1 (unit sphere of Rn) is made up of functions which are increasing
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on the directions given by the vectors in {R−1
u e1,R−1

u e2, . . . ,R−1
u en}, where Ru is a

rotation matrix such thatRuu = 1√
n 1, with 1 = (1, . . . , 1)t ∈ Rn.

In order to develop a general analysis of integral stochastic orders satisfying the above
condition, we introduce a class of integral stochastic orders with generators which are
made up of increasing functions on the directions given by finite subsets of vectors in Rn.
These orders will be called directional stochastic orders. The aim of the manuscript was the
study of those orders in depth, developing characterizations and properties, and providing
useful results to apply in applied problems.

The results of this work permit to provide a thorough study of any order which
belongs to the class of directional orders without the necessity of a particular analysis.
Moreover, the class considered in the manuscript permits to introduce new orders (as we
develop in Section 6, to approach a problem in financial mathematics), the properties of
those orders being immediate to state by the theoretical study of the paper.

Our research plan will be focused on the analysis of the relations between two direc-
tional stochastic orders given by two different finite subsets of vectors in Rn (Section 3),
the development of geometrical characterizations of directional orders (Section 4), and
the study of relevant properties of those orders (Section 5). Moreover, a new directional
stochastic order for the comparison of investments with random cash flows is introduced
in Section 6, as an application of the results in the present manuscript.

2. Preliminaries

A binary relation �X on a set X which is reflexive, transitive, and antisymmetric is
said to be a partial order on X . The pair (X ,�X ) is called a partially ordered set. If �X is
reflexive and transitive, �X is called a pre-order.

Let (X ,�X ) be a partially ordered set. A set U ⊂ X is said to be an upper set if for
any x ∈ U and any y ∈ X with x �X y, y ∈ U.

Given (X ,�X ) and (Y ,�Y ) partially ordered sets, a mapping f : X → Y is order-
preserving if for any x1, x2 ∈ X with x1 �X x2, f (x1) �Y f (x2). A mapping f : X → R is
said to be �X -preserving if for any x1, x2 ∈ X such that x1 �X x2, f (x1) ≤ f (x2).

Let (X ,�X ) and (Y ,�Y ) be partially ordered sets. A mapping φ : X → Y is said to
be an order-isomorphism if φ is order-preserving, there exists φ−1 : Y → X inverse of φ
and φ−1 is order-preserving, equivalently, φ is bijective and for all x1, x2 ∈ X , x1 �X x2 if
and only if φ(x1) �Y φ(x2).

Two partially ordered sets (X ,�X ) and (Y ,�Y ) are said to be order-isomorphic if
there exists an order-isomorphism φ : X → Y .

A partial order � on Rn is said to be closed if the set {(x, y) ∈ Rn ×Rn | x � y} is
closed in the (usual) product topology.

All the above concepts are defined in the case of pre-orders in a similar way.
See for instance [1–3] for an introduction to the theory of ordered sets.
A stochastic order is a pre-order relation on a set of probabilities.
In the present manuscript, we consider stochastic orders which are defined on Pn,

the set of probabilities of the measurable space (Rn,BRn), with BRn the usual Borel σ-
algebra on Rn.

Given a random vector X, E(X) will denote its expected value and PX its in-
duced probability.

Let � denote a stochastic order on Pn and let X and Y be two random vectors, X � Y
will mean that PX � PY.

A stochastic order � is said to be integral when there exists a set F of real measurable
mappings such that for two random vectors X and Y

X � Y if
∫
Rn

f dPX ≤
∫
Rn

f dPY

for any f ∈ F such that the integrals exist. The set F is said to be a generator of the order.
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Some integral stochastic orders which will appear in the manuscript are the following.
Let X and Y be Rn-valued random vectors,

(i) X is said to be smaller than Y in the usual stochastic order, denoted by X �st Y, if
E( f (X)) ≤ E( f (Y)) for all increasing functions f : Rn → R for which the expectations
exist (see, for instance, [4,5]).

(ii) Let F = { f : Rn → R | f (x + εiei) ≥ f (x + εi+1ei+1) for all x ∈ Rn, 0 ≤ εi+1 ≤ εi,
1 ≤ i ≤ n− 1, and f (x + εnen) ≥ f (x) for all x ∈ Rn and 0 ≤ εn }.
It is said that X is smaller than Y in the time value of money stochastic order,
if E( f (X)) ≤ E( f (Y)) for any f ∈ F such that the above expectations exist. This
relation will be denoted by X �tvm Y (see [6]).

(iii) Given u ∈ Sn−1 (unit sphere of Rn), letRu be a rotation matrix such thatRuu = 1√
n 1,

where 1 = (1, . . . , 1)t ∈ Rn. Let Cu
t = {x ∈ Rn | Ru(x − t) ≥ 0Rn} where t ∈ Rn,

and Gu = {ICu
t
| t ∈ Rn} (IA stands for the indicator function of A, with A ⊂ Rn).

Define the order �u on Rn given by x �u y if f (x) ≤ f (y) for all f ∈ Gu, with
x, y ∈ Rn.
We say that X is smaller than Y in the strong extremality stochastic order in the
direction u, denoted by X �SEu Y, if E( f (X)) ≤ E( f (Y)) for any �u-preserving
mapping f : Rn → R such that the above integrals exist (see [7]).

An introduction to the theory of stochastic orderings can be found, for instance,
in [4,5,8]. The reader is referred to [4,9] for a precise analysis of integral stochastic orders.

Let P be a probability in Pn, and let T : Rn → Rm be a measurable mapping, then
P ◦ T−1 will denote the probability on BRm given by P ◦ T−1(B) = P(T−1(B)) for any
B ∈ BRm .

Let a be an element of Rn, δa will stand for the degenerate distribution at a.
Let ei ∈ Rn be the ith-unit vector, that is, ei = (0, . . . , 0, 1, 0, . . . , 0) with number 1 in

position i, 1 ≤ i ≤ n. The zero vector of Rn will be denoted by 0Rn .
The usual componentwise order on Rn will be denoted by ≤.
Given V = {v1, . . . , vl} a set of vectors in Rn, the convex cone CV defined by V is the

set of all conical combinations of vectors in V, that is, CV = {∑l
i=1 αivi | αi ≥ 0, 1 ≤ i ≤ l}.

Moreover, 〈V〉 will denote the span of V, that is, 〈V〉 is the vector space of all linear
combinations of the elements in V with scalars in R.

Let S be a vector subspace of Rn, S⊥ will be its orthogonal supplementary subspace in
Rn and πS will stand for the orthogonal projection onto S.

The Minkowski sum of two subsets A and B of Rn, is the set A⊕ B = {a + b ∈ Rn |
a ∈ A, b ∈ B}. It is well-known that the Minkowski sum of two convex sets is a convex set.

3. Directional Stochastic Orders

In this section, the concept of V-directional stochastic order, where V is a finite subset
of Rn, is introduced. Relations between directional orders given by different subsets of Rn

are studied.
The following set of mappings provides the definition of the new class of stochastic

orders. Let V = {v1, . . . , vl} be a set of vectors in Rn. Consider

FV = { f : Rn → R | f (x + εvi) ≥ f (x) for all x ∈ Rn, ε ≥ 0, vi ∈ V}.

Definition 1. Let V = {v1, . . . , vl} be a set of vectors in Rn. Let X and Y be random vectors. It
will be said that X is less than Y in the V-directional stochastic order, if E( f (X)) ≤ E( f (Y)) for
any f ∈ FV such that the above expectations exist. This relation will be denoted by X �V Y.

Some multivariate stochastic orders are directional orders, as the following exam-
ples show.

Example 1. Recall that ei ∈ Rn is the ith-unit vector, 1 ≤ i ≤ n.

(i) Let V = {e1, e2, . . . , en}. Then, �V is the order �st.
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(ii) Let V = {ê1, ê2, . . . , ên−1, ên}, where êi = ei − ei+1, 1 ≤ i ≤ n− 1, and ên = en. According
to Theorem 1 in [6], �V is the order �tvm.

(iii) Let V = {R−1
u e1,R−1

u e2, . . . ,R−1
u en}, where u ∈ Sn−1 and Ru is a rotation matrix such

thatRuu = 1√
n 1, with 1 = (1, . . . , 1)t ∈ Rn. Then,�V is the order�SEu since the condition

X �SEu Y is equivalent to RuX �st RuY (see [7]).

Let us study relations between two directional stochastic orders given by different
subsets of Rn.

Proposition 1. Let V and V′ be finite sets of vectors in Rn. Then, �V implies �V′ if and only if
FV′ ⊆ FV .

Proof. Assume that �V implies �V′ but FV′ 6⊆ FV . Then, there exist f ∈ FV′ , x ∈ Rn,
v ∈ V, and ε ≥ 0 with f (x + εv) < f (x). Therefore, the relation δx �V′ δx+εv is false,
but this is a contradiction with the fact that �V implies �V′ , because δx �V δx+εv.

The converse is trivial.

In order to obtain other relations between two directional stochastic orders, we con-
sider the conical combinations of vectors in those subsets. In fact, we will see that the
V-directional stochastic order is characterized by means of the cone CV .

Lemma 1. Let V = {v1, . . . , vl} be a set of vectors in Rn. Then, CV is a convex closed set.

Proof. The convexity of CV is trivial.
If CV = {0Rn}, it is closed. Consider CV 6= {0Rn}. Note that CV = CV\{0Rn}. Now,

Proposition 1.4.7 in [10] provides that CV is closed.

The following results will provide that CV characterizes �V .

Proposition 2 (Theorem A.3.1 in [11]). Let A be a closed convex set in Rn that does not contain
the origin. Then, there exists a real linear function ξ defined on Rn and α > 0 such that ξ(x) ≥ α
for all x in A. In particular, the hyperplane ξ(x) = 0 does not intersect A.

Lemma 2. Let V = {v1, . . . , vl} be a set of vectors in Rn. Let v̂ ∈ Rn with v̂ /∈ CV . Let
B = {λv̂ | λ ≥ 1} and CV − B = {v− w | v ∈ CV and w ∈ B}. Then,

(i) CV − B is a convex closed set,
(ii) CV − B does not contain the origin.

Proof. It is easy to prove that B is convex and closed. As a consequence, so is −B. Then,
CV − B = CV ⊕ (−B) is a convex set.

Let {xm}m ⊆ CV − B such that limm xm = x ∈ Rn. Let us see that x ∈ CV − B. For all
m ∈ N, xm = am − bm with am ∈ CV and bm = λmv̂ ∈ B.

If {bm}m is bounded, so is {am}m. Thus, there are convergent subsequences such that
limk bmk = b and limk amk = a. Since B and CV are closed, b ∈ B and a ∈ CV . Hence,
x ∈ CV − B.

If {bm}m is not bounded, then {λm}m is unbounded, and there exists a subsequence
with limk λmk = +∞. Take xmk /λmk = amk /λmk − bmk /λmk = amk /λmk − v̂.

We obtain that 0Rn = limk amk /λmk − v̂, but {amk /λmk}k ⊆ CV which is closed. As a
consequence, v̂ ∈ CV , which is a contradiction.

Now, suppose that 0Rn ∈ CV − B. Then, there exists v ∈ CV such that v = λv̂ with
λ ≥ 1. Then, v̂ ∈ CV , which is a contradiction.

Proposition 3. Let V = {v1, . . . , vl} be a set of vectors in Rn. Let v̂ ∈ Rn with v̂ 6∈ CV . Then,
there exists a linear function ξ : Rn → R such that ξ(vi) ≥ 0 for all 1 ≤ i ≤ l, and ξ(v̂) < 0.
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Proof. According to Lemma 2, CV − B is a closed convex set which does not contain the
origin. Proposition 2 provides that there exits a linear mapping ξ : Rn → R such that
ξ(v) > 0 for all v ∈ CV − B. Note that −v̂ ∈ CV − B. Then, ξ(v̂) < 0.

Now, consider vi = αivi − v̂, 1 ≤ i ≤ l, where αi ≥ 0. Clearly, vi ∈ CV − B for all
1 ≤ i ≤ l. Then, ξ(vi) = αiξ(vi)− ξ(v̂) > 0 for all αi ≥ 0. As a consequence, ξ(vi) ≥ 0 for
all 1 ≤ i ≤ l.

By means of the previous results, we will see that the functions in FV are determined
by CV . As a consequence, the stochastic order �V is characterized by the convex cone CV .

Proposition 4. Let V = {v1, . . . , vl} be a set of vectors in Rn and v ∈ Rn. Then, FV = FV∪{v}
if and only if v ∈ CV .

Proof. Suppose that v ∈ CV , that is, v = ∑l
i=1 αivi with αi ≥ 0 for all 1 ≤ i ≤ l. Clearly,

FV∪{v} ⊆ FV . Let f ∈ FV . For all ε ≥ 0 and x ∈ Rn, f (x + εv) = f (x + ∑l
i=1 εαivi) ≥

f (x + ∑l−1
i=1 εαivi) ≥ . . . ≥ f (x). Then, f ∈ FV∪{v}, and so FV ⊆ FV∪{v}.

Conversely, suppose that FV = FV∪{v} and v 6∈ CV . By Proposition 3, there exists a
linear function ξ : Rn → R such that ξ(vi) ≥ 0 for all 1 ≤ i ≤ l, and ξ(v) < 0. Therefore,
ξ ∈ FV , but ξ 6∈ FV∪{v}, which is a contradiction.

Proposition 5. Let V = {v1, . . . , vl} be a set of vectors in Rn and v ∈ Rn. Then, �V is the same
order as �V∪{v} if and only if v ∈ CV .

Proof. It follows from Propositions 1 and 4.

Proposition 6. Let V and V̂ be finite sets of vectors in Rn. Then, �V̂ implies �V if and only if
V̂ ⊆ CV .

Proof. Firstly, suppose that V̂ ⊆ CV . Clearly, FV ⊆ FV̂ . Proposition 1 ensures that �V̂
implies �V .

Now, suppose that �V̂ implies �V but there exists v̂ ∈ V̂ with v̂ 6∈ CV . As a con-
sequence of Proposition 3, there exists a linear function ξ : Rn → R such that ξ ∈ FV
with ξ(v̂) < 0, but this is a contradiction with δ0Rn �V δv̂ which must be true because
δ0Rn �V̂ δv̂.

Proposition 7. Let V = {v1, . . . , vl} be a subset of Rn with {v1, . . . , vr} linearly independent
vectors. Then, there exist wr+1, . . . , wl ∈ Rn such that (Pn,�V) is order-isomorphic to (Pn,�V̂),
with V̂ = {e1, . . . , er, wr+1, . . . , wl}.

Proof. Consider {v1, . . . , vr, br+1, . . . , bn} a basis of Rn. Let h : Rn → Rn be the linear
map such that h(vi) = ei, 1 ≤ i ≤ r, and h(bj) = ej, r + 1 ≤ j ≤ n. Note that h is a
bijective mapping.

Let h̃ : Pn → Pn given by h̃(P) = P ◦ h−1, for any P ∈ Pn.
Observe that h is bijective and measurable, as a consequence, so is h−1 (see, for in-

stance, [12,13]). That guarantees that h̃ is bijective.
Let V̂ = {e1, . . . , er, h(vr+1), . . . , h(vl)}. Firstly, let us see that FV̂ = { f ◦ h−1 | f ∈

FV}. Let f ∈ FV . For all v ∈ V̂, x ∈ Rn and ε ≥ 0 it holds that f ◦ h−1(x + εv) =
f (h−1(x) + εh−1(v)) ≥ f (h−1(x)) because h−1(v) ∈ V. In a similar way, f ∈ FV̂ implies
that f ◦ h ∈ FV .

Now, suppose that X �V Y. For all f ∈ FV , E( f (X)) ≤ E( f (Y)) holds. Then,
E( f ◦ h−1(h(X))) ≤ E( f ◦ h−1(h(Y))). As a consequence, h(X) �V̂ h(Y).

The converse can be proved analogously.
Hence, PX �V PY if and only if h̃(PX) �V̂ h̃(PY). Thus, (Pn,�V) is order-isomorphic

to (Pn,�V̂).
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4. Geometrical Characterization of Directional Stochastic Orders

In this section, we analyze the way in which the set of conical combinations of vectors
in V determines the V-directional stochastic order.

Definition 2. Let V = {v1, . . . , vl} be a set of vectors in Rn. Let x and y be vectors in Rn. It is
said that x is less than y in ≤CV if y− x ∈ CV . This relation will be denoted by x ≤CV y.

Note that ≤CV is reflexive and transitive, but it is not antisymmetric if CV contains
non-trivial subspaces of Rn. In the case where CV does not contain non-trivial subspaces of
Rn, (Rn,≤CV ) is a partially ordered set.

Let us consider the class F≤CV
of all ≤CV -preserving mappings, that is, f ∈ F≤CV

when for any x and y in Rn such that x ≤CV y, f (x) ≤ f (y) holds.

Definition 3. Let V = {v1, . . . , vl} be a set of vectors in Rn. Let X and Y be random vectors.
It will be said that X is less than Y in the stochastic order �CV if E( f (X)) ≤ E( f (Y)) for any
f ∈ F≤CV

such that the above expectations exist. This relation will be denoted by X �CV Y.

Proposition 8. Let V = {v1, . . . , vl} be a set of vectors in Rn. Then, �V is the same stochastic
order as �CV .

Proof. Proposition 1 ensures the result if F≤CV
= FV .

We have that for all x ∈ Rn, ε ≥ 0 and vi ∈ V, x ≤CV x + εvi. Then, F≤CV
⊆ FV . Let

f ∈ FV . Let x and y be vectors in Rn such that x ≤CV y. Then, y− x = ∑l
i=1 αivi, where

αi ≥ 0 with 1 ≤ i ≤ l. Therefore, f (y) = f (x + ∑l
i=1 αivi) ≥ f (x + ∑l−1

i=1 αivi) ≥ . . . ≥
f (x + α1v1) ≥ f (x). Hence, f ∈ F≤CV

. As a consequence, FV ⊆ F≤CV
.

We have seen that directional stochastic orders are generated by pre-orders on Rn

and the corresponding class of preserving mappings. In the case where the pre-orders are
orders, those stochastic orders have been studied in mathematical literature. The reader is
referred, for instance, to [4,14–17] and their references for this kind of stochastic orders.

Now, we study characterizations of �V depending on the existence of non-trivial
subspaces of Rn contained in CV .

Firstly, we consider the case where CV does not contain non-trivial vector subspaces.
Recall that in this case, (Rn,≤CV ) is a partially ordered set.

Proposition 9. Let V = {v1, . . . , vl} be a set of vectors in Rn such that CV does not contain
non-trivial vector subspaces. Then, ≤CV is a closed order.

Proof. We should prove that D = {(x, y) ∈ Rn×Rn | x ≤CV y} is closed. Let {(xm, ym)}m ⊆
D be a sequence which converges to (x, y) ∈ Rn × Rn. Therefore, ym − xm ∈ CV for all
m ∈ N, and {ym − xm}m tends to y− x. By Lemma 1, CV is closed. Then, y− x ∈ CV and so
x ≤CV y.

Corollary 1. Let V = {v1, . . . , vl} be a set of vectors in Rn such that CV does not contain
non-trivial vector subspaces. Let X and Y be random vectors. Then, the following conditions
are equivalent,

(i) X �V Y,
(ii) there are random vectors X′ and Y′ defined on the same probability space, with the same

distributions as X and Y, respectively, such that X′ ≤CV Y′ almost surely,
(iii) E( f (X)) ≤ E( f (Y)) for all bounded, continuous, and ≤CV -preserving functions f ,
(iv) P(X ∈ U) ≤ P(Y ∈ U) for all upper sets U with respect to ≤CV ,
(v) P(X ∈ U) ≤ P(Y ∈ U) for all closed upper sets U with respect to ≤CV .
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Proof. Since the partial order ≤CV is closed, the result follows from [14]. See also
Theorems 2.6.3 and 2.6.4 in [4].

Now, we study the case where non-trivial subspaces of Rn are contained in CV . Note
that in this case, ≤CV is not an order but a pre-order.

Proposition 10. Let V = {v1, . . . , vl} be a set of vectors in Rn such that there exists a non-
trivial subspace S of Rn with S ⊆ CV . Then, �V is the same stochastic order as �V̂ , where
V̂ = {s1, . . . , sr,−s1, . . . ,−sr, πS⊥(v1), . . . , πS⊥(vl)}, {s1, . . . , sr} being a basis of S.

Proof. Note that −πS(vi) ∈ S ⊆ CV , 1 ≤ i ≤ l. Then, πS⊥(vi) = vi − πS(vi) ∈ CV for all
1 ≤ i ≤ l. As a consequence, V̂ ⊆ CV . By Proposition 6, �V̂ implies �V .

On the other hand, for any vj ∈ V, vj = πS(vj) + πS⊥(vj). Therefore, vj ∈ CV̂ . Then,
V ⊆ CV̂ . Proposition 6 ensures that �V implies �V̂ .

As a consequence, �V and �V̂ are the same stochastic order.

Proposition 11. Let V = {v1, . . . , vl} be a set of vectors in Rn such that there exists a non-trivial
subspace S of Rn with S ⊆ CV . Let X and Y be random vectors. Then, X �V Y if and only if
πS⊥(X) �V πS⊥(Y).

Proof. By Proposition 10, we have that X �V Y if and only if X �V̂ Y, where V̂ =
{s1, . . . , sr,−s1, . . . ,−sr, πS⊥(v1), . . . , πS⊥(vl)}, {s1, . . . , sr} being a basis of S. This is the
same as E( f (X)) ≤ E( f (Y)) for all f ∈ FV̂ .

Let s ∈ S, then −s ∈ S. For all f ∈ FV̂ , ε ≥ 0 and x ∈ Rn, f (x) ≤ f (x + εs) and
f (x) ≤ f (x + ε(−s)) = f (x − εs). As a consequence, any f in FV̂ is constant on the
direction of any vector in S. Then, for all x ∈ Rn, f (x) = f (πS⊥(x) + πS(x)) = f (πS⊥(x)).

Now, E( f (X)) ≤ E( f (Y)) for all f ∈ FV̂ is equivalent to E( f (πS⊥(X)) ≤ E( f (πS⊥(Y))
for all f ∈ FV̂ , that is, πS⊥(X) �V̂ πS⊥(Y), which is equivalent to πS⊥(X) �V πS⊥(Y) by
Proposition 10.

Corollary 2. Let V = {v1, . . . , vl} be a subset of Rn with 〈e1, . . . , er〉 ⊆ CV where r < n.
Let X and Y be random vectors. Then, X �V Y if and only if (0, . . . , 0, Xr+1, . . . , Xn) �V
(0, . . . , 0, Yr+1, . . . , Yn).

Note that Proposition 9 and Corollary 1 show the behavior of �V when (Rn,≤CV ) is
a partially ordered set. Proposition 11 ensures that, in the case where the non-stochastic
pre-order ≤CV is not an order, that is, a non-trivial subspace S of Rn is contained in CV ,
the orthogonal projection onto S⊥ characterizes the stochastic order �V . In light of that
result, the idea is to consider a maximal subspace S under the above conditions and work
“outside” S in order to obtain properties similar to those for the case where (Rn,≤CV ) is a
partially ordered set.

Proposition 12. Let V = {v1, . . . , vl} be a set of vectors in Rn such that there exists a non-
trivial subspace S of Rn with S ⊆ CV . Then, X �V Y if and only if φ(X) �φ(V) φ(Y), where
φ = h ◦ πS⊥ and h : S⊥ → Rn−dim S is any linear bijective mapping.

Proof. Proposition 10 ensures that X �V Y if and only if X �V̂ Y where V̂ = {s1, . . . , sr,−s1,
. . . ,−sr, πS⊥(v1), . . . , πS⊥(vl)}, {s1, . . . , sr} being a basis of S. Note that φ(V̂) = {0Rn−dim S ,
φ(v1), φ(v2), . . . , φ(vl)}.

Let f ∈ FV̂ . Consider f ◦ h−1 : Rn−dim S → R. For all φ(vi) ∈ φ(V̂) with 1 ≤ i ≤ l,
ε ≥ 0 and x ∈ Rn−dim S, f ◦ h−1(x + εφ(vi)) = f (h−1(x) + επS⊥(vi)) ≥ f (h−1(x)) =
f ◦ h−1(x). Trivially, for all ε ≥ 0 and x ∈ Rn−dim S, f ◦ h−1(x + ε0Rn−dim S) = f ◦ h−1(x).
Hence, f ◦ h−1 ∈ Fφ(V̂).

Let g ∈ Fφ(V̂). Consider g ◦ φ : Rn → R. For all ε ≥ 0 and x ∈ Rn, we have that
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(1) g ◦ φ(x + εv̂) = g(φ(x) + εφ(vi)) ≥ g(φ(x)) when v̂ = πS⊥(vi) with 1 ≤ i ≤ l,
(2) g ◦ φ(x + εv̂) = g(φ(x)) when v̂ ∈ S.

As a consequence, for all v̂ ∈ V̂, ε ≥ 0 and x ∈ Rn, g ◦ φ(x + εv̂) ≥ g(φ(x)) = g ◦ φ(x).
Thus, g ◦ φ ∈ FV̂ . Moreover, (g ◦ φ)|S⊥

= (g ◦ h)|S⊥ when we apply these maps to vectors

in S⊥.
Now, by Proposition 11, X �V̂ Y if and only if E( f (πS⊥(X)) ≤ E( f (πS⊥(Y)) for

all f ∈ FV̂ , which is E( f ◦ h−1(φ(X)) ≤ E( f ◦ h−1(φ(Y)) for all f ∈ FV̂ . Note that the
previous condition involves vectors in S⊥. As a consequence, X �V̂ Y if and only if
φ(X) �φ(V̂) φ(Y). We have that φ(V̂) = {0Rn−dim S , φ(v1), φ(v2), . . . , φ(vl)}, and φ(V) =

{φ(v1), φ(v2), . . . , φ(vl)}, with 0Rn−dim S ∈ Cφ(V). Now, Proposition 5 ensures the result.

5. Properties of Directional Stochastic Orders

The main properties of directional stochastic orders are analyzed in this section.

Proposition 13. Let V = {v1, . . . , vl} be a set of vectors in Rn. Then, X �V Y implies
E(X) ≤ E(Y), if and only if, vi ≥ 0Rn for all 1 ≤ i ≤ l.

Proof. Suppose that vi ≥ 0Rn for all 1 ≤ i ≤ l. Let Sj be the span of {ej}, where 1 ≤ j ≤ n.
For all vi ∈ V, ε ≥ 0 and x ∈ Rn, πSj(x + εvi) ≥ πSj(x) because vi ≥ 0Rn for all 1 ≤ i ≤ l.
Then, πSj ∈ FV for all 1 ≤ j ≤ n. Therefore, X �V Y implies that E(πSj(X)) ≤ E(πSj(Y))
for all 1 ≤ j ≤ n, so E(X) ≤ E(Y).

Conversely, suppose that for all random vectors X and Y such that X �V Y, E(X) ≤ E(Y)
holds. Note that for every f ∈ FV , f (0Rn + 1vi) ≥ f (0Rn) for all 1 ≤ i ≤ l. Then, δ0Rn �V δvi

for all 1 ≤ i ≤ l. As a consequence, 0Rn = E(δ0Rn ) ≤ E(δvi ) = vi for all 1 ≤ i ≤ l.

Proposition 14. Let V = {v1, . . . , vl} be a set of vectors in Rn. Let X and Y be random vectors
such that X �V Y. Then, αX �V αY for all scalars α ≥ 0.

Proof. Let α ≥ 0 and f ∈ FV . Consider g : Rn → R such that for all x ∈ Rn, g(x) = f (αx).
For all x ∈ Rn, vi ∈ V and ε ≥ 0, g(x + εvi) = f (αx + αεvi) ≥ f (αx) = g(x). Then g ∈ FV ,
which proves the result.

Proposition 15. Let V = {v1, . . . , vl} be a set of vectors in Rn. Then,�V is closed under mixtures.

Proof. Note that �V is an integral order.

Proposition 16. Let V = {v1, . . . , vl} be a set of vectors in Rn. Then, �V is closed un-
der convolution.

Proof. Note that for all z ∈ Rn and any f ∈ FV , the mapping g : Rn → R, with
g(x) = f (x + z) for all x ∈ Rn, is in FV .

The behavior of directional stochastic orders under weak convergence is analyzed now.

Proposition 17. Let V = {v1, . . . , vl} be a set of vectors in Rn. The stochastic order �V is closed
under weak convergence.

Proof. Firstly, consider the case where V = {v1, . . . , vl} is a set of vectors in Rn such that
CV does not contain non-trivial vector subspaces. By Corollary 1, there exits a generator of
�V of bounded continuous functions. Thus, �V is closed under weak convergence.

In case of non-trivial vector subspaces in CV , let S = CV ∩ (−CV). Note that S 6= {0Rn}.
It is not hard to prove that S is a subspace of Rn contained in CV such that any other
subspace in CV is contained in S. By Proposition 12, X �V Y if and only if φ(X) �φ(V) φ(Y),
where φ = h ◦ πS⊥ and h is any linear bijective map from S⊥ to Rn−dim S. As a result of the
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maximality of S, Cφ(V) does not contain non-trivial vector subspaces of Rn−dim S. Therefore,
�φ(V) is closed under weak convergence. Since φ is continuous, by Proposition 12, �V is
also closed under weak convergence.

6. An Application of Directional Stochastic Orders

An application of directional stochastic orders to financial mathematics is developed
in this section.

Consider the comparison of two investments which provide n random cash flows.
Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be the corresponding random vectors
of cash flows, where Xi and Yi denote the cash flow at instant ti of the corresponding
investment, with 1 ≤ i ≤ n, and t1 < t2 < . . . < tn.

Assume an economic context with negative rates of interest or under negative inflation
rates, when financial institutions and companies should pay some rates for the money
custody. In that case, a company could prefer to receive earnings streams or cash flows
later on. Very basically, the later the flows arrive, the lower the rates the company pays.

Under this framework, a company would prefer to “transfer” the first cash flow to
the second cash flow, the second flow to the third flow, and so on. Thus, the comparison
of investments could be performed by means of the comparison of the expected benefits
of mappings which are increasing in the direction of e2 − e1, e3 − e2, . . . , en − en−1, which
reflect that transfer preference. Of course those mappings should be increasing in the
direction of e1, that is, the greater the first flow is, the better the result of the investment.

Let V = {e1, e2 − e1, e3 − e2, . . . , en − en−1}. Consider the mappings of FV . Such func-
tions reflect the preferences of the companies under the considered economic framework.

For instance, in a 2-years investment with flows at the end of each year, the vector of
flows (2, 10) is preferred to the vector of flows (5, 7). Note that for any f ∈ FV , it holds
that f (5, 7) ≤ f (2, 10) since (2, 10) = (5, 7) + 3(e2 − e1).

Observe that the mappings of FV are also increasing in the directions of ei, with
2 ≤ i ≤ n, since ei ∈ CV , and so, in accordance with Proposition 4, it holds thatFV = FV∪{ei}.
From an applied point of view, this means that the greater the flows are, the greater the
profit of the investment.

The following criterion can be introduced to compare investments under the above
economic situation. The investment associated with the random vector Y is preferred to
the investment of random vector X, if E( f (X)) ≤ E( f (Y)) for any mapping f ∈ FV , that
is, when X �V Y.

The unified study of directional stochastic orders developed in this manuscript permits
to derive properties of the proposed order immediately.

(i) According to Proposition 7, the directional stochastic order �V is order-isomorphic
to the usual stochastic order. The proof of that proposition provides that the order-
isomorphism is given by the bijective linear map h : Rn → Rn such that h(e1) = e1
and h(ei+1 − ei) = ei+1, 1 ≤ i ≤ n− 1. Note that h is bijective since V is a basis of Rn.
Proposition 7 ensures that X �V Y, that is, PX �V PY, if and only if, h̃(PX) =

PX ◦ h−1 �st h̃(PY) = PY ◦ h−1, equivalently, h(X) �st h(Y). That is the same as
AX �st AY, where A is an n× n real matrix such that (A)ij = 1 if j ≥ i, otherwise 0.
Hence, X �V Y if and only if

(X1 + X2 + . . . + Xn, X2 + X3 + . . . + Xn, . . . , Xn−1 + Xn, Xn)

�st (Y1 + Y2 + . . . + Yn, Y2 + Y3 + . . . + Yn, . . . , Yn−1 + Yn, Yn).

It is interesting to note the importance of that characterization of the order �V by
means of the usual multivariate stochastic order �st, since there are statistical tests to
infer on the order �st in statistical literature (see, for instance, [18]). This permits to
apply inferential procedures to tests on the order �V .
That is, the stochastic order �V is easily characterized by means of the well-known
usual stochastic order.
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(ii) Since CV does not contain non-trivial vector subspaces, Corollary 1 provides important
characterizations of the order�V , like that based on the construction of random vectors
on the same probability space, namely, X �V Y if and only if there are random vectors
X′ and Y′ on a same probability space, with the probability distributions of X and Y,
respectively, such that X′ ≤CV Y′ almost surely, that is, Y′ − X′ ∈ {∑n

i=1 αi(ei − ei−1) |
αi ≥ 0, e0 = 0Rn} almost surely.

(iii) Since {e1, . . . , en} ⊂ CV , Proposition 6 assures that the usual stochastic order �st
implies the order �V .

(iv) By the results of Section 5, we obtain that the order is not closed with respect to
the formation of expectations, but is closed under the product by positive scalars,
under mixtures, under convolution, and under weak convergence.

(v) The above-mentioned order-isomorphism simplifies the analysis of the directional
stochastic order with normal random vectors.
Let X ∼ N(µX, ΣX) and Y ∼ N(µY, ΣY). Observe that X �V Y is the same as
h(X) �st h(Y), and this is equivalent to AX �st AY. Note that AX ∼ N(AµX , AΣX At)
and AY ∼ N(AµY, AΣY At). Sufficient and necessary conditions to order normal
distributions in the usual multivariate stochastic order can be found, for instance,
in Theorem 3.3.13 in [4]. Thus, X �V Y if and only if AΣX At = AΣY At, and (AµX)i ≤
(AµY)i for any 1 ≤ i ≤ n.
Note that (AµX)i ≤ (AµY)i for any 1 ≤ i ≤ n, is the same as µXi + µXi+1 + · · ·+ µXn ≤
µYi + µYi+1 + · · ·+ µYn for any 1 ≤ i ≤ n, and AΣX At = AΣY At implies ΣX = ΣY
since A is regular.
Then, X �V Y if and only if µXi + µXi+1 + · · ·+ µXn ≤ µYi + µYi+1 + · · ·+ µYn for any
1 ≤ i ≤ n, and ΣX = ΣY.
Thus, the comparison of investments in our framework when random cash flows
follow normal distribution, is reduced to the simple comparison of the mean vectors
and matrix covariances.

(vi) Consider the case of t multivariate distributions. Let X and Y be t random vectors
with freedom degrees νX and νY, mean vectors µX and µY, and matrices parameter
ΣX and ΣY, respectively.
We know that X �V Y if and only if h(X) �st h(Y), equivalently AX �st AY.
It is known that AX and AY have t distribution with freedom degrees νX and νY, mean
vectors AµX and AµY, and matrices parameter AΣX At and AΣY At, respectively. Now,
by Proposition 3.26 in [6], X �V Y if and only if νX = νY, (AµX)i ≤ (AµY)i for any
1 ≤ i ≤ n, and AΣX At = AΣY At.
As a consequence, X �V Y if and only if νX = νY, µXi + µXi+1 + · · ·+ µXn ≤ µYi +
µYi+1 + · · ·+ µYn for any 1 ≤ i ≤ n, and ΣX = ΣY.
Hence, the comparison of investments with cash flows following t distribution, can be
performed by the comparison of the mean vectors and matrix covariances.
Observe that this reasoning could be applied to other multivariate distributions.

To conclude, it is interesting to note that the generator of the order �V satisfies
desirable properties for different scenarios which could happen. For instance, suppose that
during the period of the investment, there is a risk of non-payment of flows, risk which
decreases over time.

In such a case, the random cash flows X1, X2, . . . , Xn are replaced by p1X1, p2X2, . . . ,
pnXn, respectively, where pi is the probability of receiving the cash flow Xi, 1 ≤ i ≤ n.
Note that p1 ≤ p2 ≤ . . . ≤ pn since the risk is decreasing. It is not hard to see that if
f ∈ FV , the mapping fp : R→ R, with fp(x1, x2, . . . , xn) = f (p1x1, p2x2, . . . , pnxn) for any
(x1, x2, . . . , xn) ∈ Rn, is also in FV , and so, the comparison of investments is unaffected by
the new scenario.

7. Conclusions

In this manuscript, we have introduced a unified approach of those integral stochastic
orders whose generators are given by mappings which are increasing on the directions
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of the vectors of a finite set of Rn. Those stochastic orders have been called directional
stochastic orders. Several characterizations of directional stochastic orders are provided in
the manuscript, like those based on geometrical arguments, or on non-stochastic pre-orders
and their preserving mappings. The results of the manuscript have been illustrated with
an application to financial mathematics.
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