
Noname manuscript No.
(will be inserted by the editor)

On protocols for increasing the uniformity of random
bits generated with noisy quantum computers

Eĺıas F. Combarro · Federico Carminati ·
Sofia Vallecorsa · José Ranilla · Ignacio F.
Rúa

Received: date / Accepted: date

Abstract Generating random numbers is important for many real-world applica-
tions, including cryptography, statistical sampling and Monte Carlo simulations.
Quantum systems subject to a measurement produce random results via Born’s
rule, and thus it is natural to study the possibility of using such systems in order
to generate high-quality random numbers. However, current quantum devices are
subject to errors and noise, which can make the output bits deviate from the uni-
form distribution. In this work, we propose and analyse two protocols that can be
used to increase the uniformity of the bits obtained when running a circuit with a
Hadamard gate and a measurement in a noisy quantum computer. These protocols
may be used prior to other standard processes, such as randomness amplification.
We conduct experiments on both a quantum simulator and a real quantum com-
puter, obtaining results that suggest that these protocols are useful to improve the
probability of the generated bits passing statistical tests for uniformity.

Keywords Random bits · Quantum computers · Monobit test · Uniform
distribution

Eĺıas F. Combarro
Department of Computer Science, University of Oviedo, Spain
Openlab, CERN, Switzerland
E-mail: efernandezca@uniovi.es

Federico Carminati
Openlab, CERN, Switzerland
E-mail: Federico.Carminati@cern.ch

Sofia Vallecorsa
Openlab, CERN, Switzerland
E-mail: Sofia.Vallecorsa@cern.ch

José Ranilla
Department of Computer Science, University of Oviedo, Spain
E-mail: ranilla@uniovi.es

Ignacio F. Rúa
Department of Mathematics, University of Oviedo, Spain
E-mail: rua@uniovi.es

2 E.F. Combarro et al

1 Introduction

Random numbers of good quality are vital for practical applications in fields as
diverse as cryptography [23], probabilistic algorithms [17] and stochastical and
Monte Carlo simulations [3,12]. This need has been traditionally fulfilled with
the use of either pseudorandom number generators [19,16] or physical sources
of random bits [4,21,29]. In the last decades, the use of quantum information
technologies, including quantum computers, has emerged as an alternative way of
generating random numbers [14,24,18].

Randomness is embedded in the theory of quantum physics [6], where the
outcome of most phenomena cannot be completely determined and only the prob-
abilities of different results can be given. This unpredictability is considered by
many as an unavoidable property of physical reality [26] and, as such, can be ex-
ploited to design processes to obtain perfect random bits that can be used even in
the most demanding applications.

The most simple way of generating random bits by using quantum phenom-
ena is to consider a quantum system which is capable of being in two different
states and prepare it in an uniform superposition of those two basic states. Upon
measurement, the system will collapse in one of the two states with exactly the
same probability in virtue of Born’s rule [7]. Theoretically, then, such a system is
a perfect source of random bits.

In practice, however, there are many technical difficulties that make it very
hard to implement such a system and the resulting source of bits can be not com-
pletely uniform because of noise and errors [30,10,9]. A possible way to overcome
these problems is the use of different random sources in combination with random-
ness extractors [27] to amplify the uniformity of the resulting bits. This, however,
usually involves the use of several different quantum systems and somehow com-
plicated protocols [2,22].

In this paper, we focus on practical ways of improving the uniformity of random
bits generated with quantum computers while keeping the resources needed on the
bare minimum: a quantum computer with a single qubit and no additional sources
of randomness. We introduce two different families of protocols that can be used
with any circuit-based quantum computer and conduct experiments on both a
quantum simulator and on one of the quantum computers of the IBM Quantum
Experience [15]. The results show that, in the presence of noise and hardware
imperfections, these methods can greatly improve the probability of passing the
standard tests for uniformity when compared with the straightforward quantum
circuit for random bit generation.

The rest of the paper is organised as follows. In Section 2, we present the
basic concepts of quantum computing that are needed to understand the protocols
proposed in this work. In Section 3, we introduce the first protocol, that takes into
account the measurement errors of current computers and try to mitigate their
effects, while in Section 4 we propose another protocol that is less demanding
in the number of quantum circuits that have to be executed in order to obtain
a string of random bits. Section 5 is devoted to explaining the settings of the
experiments, both on the quantum simulator and on actual quantum hardware,
and to presenting and discussing their results. In that section, we also propose
some variants of the protocols. Finally, in Section 6 we raise some conclusions and
propose ideas for future work.

Protocols for uniformity of random bits with quantum computers 3

2 Generating random bits with a quantum computer

The field of quantum computing [25] studies the possibility of using quantum
effects such as superposition, entanglement and interference to perform compu-
tational tasks in a way that is advantageous (for instance, asymptotically faster)
over what is possible with classical algorithms and computers. Examples of quan-
tum algorithms that are better than their classical counterparts (or, at least, than
the best classical algorithms that we currently have) include Shor’s algorithms for
factoring integers and computing discrete logarithms [28], and Grover’s method
for searching in an unsorted database [13].

In quantum computing, the basic unit of information is the quantum bit or
qubit, which is physically implemented by means of a quantum system capable of
being in two different states. These states are usually denoted in Dirac notation by
|0〉 and |1〉, as a counterpart to the values 0 and 1 of a classical bit. Mathematically,
a qubit is represented by a normalized vector in a Hilbert space of dimension 2
with orthonormal basis {|0〉 , |1〉} (which is usually called the computational basis).
Thus, a qubit |ϕ〉 has the form

|ϕ〉 = α |0〉+ β |1〉

where α, β are complex numbers, called amplitudes, such that |α|2 + |β|2 = 1.

The actual state of a qubit cannot be observed directly, but when it is measured
(in the computational basis) we obtain |0〉 with probability |α|2 and |1〉 with
probability |β|2. This is usually called Born’s rule and relies on the normalization
of the qubit state so that the probabilities add up to 1. After the measurement, the
qubit loses its previous state and collapses to the basis state that was obtained,
meaning that if we do not further act on the qubit, subsequent measurements will
always produce the same result.

The physical transformations that the state of a qubit (and, in general, a
quantum system) can suffer are given by linear functions that preserve the nor-
malization of the state. Thus, they can be represented in the computational basis
as unitary matrices, that is, complex matrices U such that its conjugate transpose
U† is also its inverse, i.e., U ·U† = U† ·U = I, where I denotes the identity matrix.

Any such matrix is a possible transformation that can act on the state of a
qubit and, in the computational model of quantum circuits, it is usually called
a quantum gate. The quantum circuit model is the most used used in quantum
computing and the one that the great majority of current quantum computers
implement. In it, one or more qubits, initially in the state |0〉, are acted upon by
quantum gates and, at the end of the computation, measured to obtain a result.

Although there exist gates that can act on several qubits at once, in this paper
we will work with just 1-qubit gates. Among them, the most important ones are
the Pauli gates X,Y and Z, the exponentials of these Pauli gates RX(θ), RY (θ)
and RZ(θ) and the Hadamard gate H. These gates are given, in the computational
basis, by the following matrices:

X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
H =

1√
2

(
1 1
1 −1

)

4 E.F. Combarro et al

RX(θ) = e−i
θ
2
X =

 cos
(
θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos
(
θ
2

)
RY (θ) = e−i

θ
2
Y =

cos
(
θ
2

)
− sin

(
θ
2

)
sin
(
θ
2

)
cos
(
θ
2

)
RZ(θ) = e−i

θ
2
Z =

(
e−i

θ
2 0

0 ei
θ
2

)
We will also consider a quantum gate derived from RY (θ) that we will denote

by A(θ), which is given by

A(θ) = RY (2θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
Notice that, when restricted to real-valued amplitudes, the action of A(θ) is

just a counterclockwise rotation of angle θ.
With these definitions, now it is easy to see how a simple quantum circuit can

(theoretically) lead to the generation of perfect random bits. We start with a qubit
in state |0〉, we apply the Hadamard gate H to obtain

1√
2

(|0〉+ |1〉)

and we measure the qubit. The probability of obtaining |0〉 is
(

1√
2

)2
= 1

2 which

is equal to the probability of obtaining |1〉.
This is usually represented by a quantum circuit like the one in Figure 1a. In

this kind of representation, each wire is a qubit and the different gates are drawn
insides boxes and applied from left to right. The initial state of each qubit (usually
|0〉) is written at the beginning of each wire and the meter inside a box is not a
quantum gate but denotes a measurement of the corresponding qubit.

Thus, a simple circuit like the one in Figure 1a which can be executed by
any circuit-based quantum computer, is all that is theoretically needed to sample
from a uniform distribution of bits. However, it has been noted [30,10,9] that,
in practice, current quantum computers executing such a circuit can produce se-
quences that are far from being uniform. Our goal in this paper is to present some
simple, practical protocols that can be used with current quantum computers to
increase the uniformity of random bits generated with circuits similar to the one
in Figure 1a. We describe them in the following two sections.

3 First protocol

In theory, the use of the circuit of Figure 1a produces perfect random bits when
run on an ideal quantum computer. However, current quantum computers are
subject to noise and errors in the application of the gates. Actually, practical
experiments show that in real life the results of using such a procedure can be far
from uniform [30,10,9].

One important source of this deviation is the presence of measurement er-
rors [9]. The implementation of measurements in current quantum computers is

Protocols for uniformity of random bits with quantum computers 5

|0〉 H

Circuit to generate uniform bits

|0〉 X

Circuit to generate and measure |1〉

|0〉

Circuit to generate and measure |0〉

|0〉 A(θ)

Circuit to account for measurement errors

Fig. 2: Quantum circuits used in our protocols

imperfect and it can sometimes happen that the system is in one basic state but
a different one is measured. We will denote by e0 the probability of measuring |0〉
when the real state of the system is |1〉, and by e1 the probability of measuring
|1〉 when the system is in state |0〉. On the quantum computer of the IBM Quan-
tum Experience [15] that we will be using for our experiments in Section 5, e1 is
typically between 0.03 and 0.04 and e0 around 0.06 or 0.07 (but can, sometimes,
be as high as 0.13). This is considerably higher than the errors introduced by the
1-qubit quantum gates, which are usually below 0.001 and, sometimes, as low as
0.0001. Obviously, these measurement errors greatly affect even simple circuits like
the one in Figure 1a, making the output noticeably diverge from uniformity.

In this section, we propose a simple protocol that uses the values e0 and e1
to modify the circuit in Figure 1a in order to try to make the output closer to
uniformity in actual executions. The values of e0 and e1 can be estimated with
simple circuits and then those values can be used in the protocol. Namely, to
estimate e0, we can use the circuit in Figure 1b. The use of the X gate sets the
state of the qubit to |1〉 so, when we perform the measurement, we should always
obtain |1〉 as a result. If we execute this circuit a number of times N and we count
the number of times N0 that we obtain |0〉 as a result, we can estimate e0 by N0

N .
Similarly, we can execute the circuit in Figure 1c N times, count the number of
times N1 that the result is |1〉 and use N1

N to estimate e1.
Notice that

A
(π

4

)
|0〉 =

1√
2

(
1 −1
1 1

)(
1
0

)
=

1√
2

(
1
1

)
=

1√
2

(
1 1
1 −1

)(
1
0

)
= H |0〉

Thus, since all the circuits we will work with start with qubits in state |0〉, we
can consider the application of the H gate as an application of the A(θ) rotation
with a π

4 angle. The main idea of the protocol is to use the values of e0 and e1
(or their estimations) to correct the value of θ in the A(θ) rotation so that the
joint action of the rotation and the measurement (taking into account the possible
errors) is equivalent to a π

4 -rotation and then execute the circuit in Figure 1d with
that choice of θ.

To determine the value of θ that we should use, we will make a simplified
assumption. We will suppose that, when executing the circuit of Figure 1d, the
measurement error occurs after the state has collapsed to either |0〉 or |1〉 and that
then it has a probability (given by e0 and e1) of flipping to the opposite state,
leading to the final result that we observe.

6 E.F. Combarro et al

Algorithm 1 Protocol 1
Input: N,L non-negative integers
Output: A sequence of L bits
N0 ← 0
for i:=1 to N do

Run the circuit of Figure 1b
if the result is |0〉 then

N0 ← N0 + 1

end if
end for
e0 ← N0

N
N1 ← 0
for i:=1 to N do

Run the circuit of Figure 1c
if the result is |1〉 then

N1 ← N1 + 1

end if
end for
e1 ← N1

N

θ ← arccos
√

1−2e0
2(1−e0−e1)

for i:=1 to L do
Run the circuit of Figure 1d
if the result is |0〉 then

Output 0

end if
if the result is |1〉 then

Output 1

end if
end for

Then, the probability of obtaining |0〉 from the execution of the circuit in
Figure 1d is given by

cos2(θ) · (1− e1) + sin2(θ) · e0

that is, the probability of measuring |0〉 given that the actual state was |0〉 plus
the probability of measuring |1〉 given that the actual state was |1〉.

We want this probability to be 1
2 , from where we should choose θ to be

θ = arccos

√
1− 2e0

2(1− e0 − e1)

Notice that if e0 = e1 = 0, then the value of θ is π
4 , as expected.

Once we have computed θ from the estimations of e0 and e1, we run the circuit
of Figure 1d L times and output the bits that we measure.

In summary, the protocol we propose is the one given in Algorithm 1.

4 Second protocol

In the previous section, we have proposed a protocol to correct the angle of rotation
from the π

4 of the circuit of Figure 1a to a value θ for the circuit of Figure 1d that
needs a priori estimations of the probabilities e0 and e1 of measurement error.

Protocols for uniformity of random bits with quantum computers 7

This approach has the drawback of requiring the execution of additional circuits
(those in Figures 1b and 1c) to obtain such estimations.

In this section, we take an alternative approach. We run the circuit of Figure 1d
with some value of θ and then use the outputs of the circuit to determine a new
value θ′ that, hopefully, will provide closer to uniform bits. The idea is that,
because of the measurement and gate errors, when we run the circuit of Figure 1d
with an angle θ instead of obtaining |0〉 with probability cos2(θ) and |1〉 with
probability sin2(θ), we obtain |0〉 with some probability p0 and |1〉 with some
probability p1. Since p0 + p1 = 1, there exists an angle θreal such that p0 =
cos2(θreal) and p1 = sin2(θreal) and we can assume that, instead of running the
circuit of Figure 1d with angle θold = θ, we are running it with angle θreal. If we
estimate θreal, then the value

θnew = θold +
(π

4
− θreal

)
would give us an angle that takes into account the actual bias of the quantum
computer in which we are running the circuit in order to obtain a distribution
with equal probability of measuring |0〉 and |1〉.

Since we know that p0 = cos2(θreal) and p1 = sin2(θreal), in order to estimate
θreal we run the circuit of Figure 1d with some θ L times, count L0 the number
of times we measure |0〉 and L1 the number of times that we measure |1〉 and
estimate θreal by using

θreal = arctan

√
L1

L0

Notice that, in order to determine the new angle θnew, we need the values θold,
L0 and L1. Once we have the protocol running, we will use the values from the
previous sequence. The initial setup will be θold = π

4 and L0 = L1 = L
2 . This

can be seen as a kind on Bayesian-line process in which we have a prior belief (at
the beginning, we do not have any reason to suppose that the actual quantum
computer deviates from uniformity in one direction more than in the other), and
we use the results we obtain to update our posterior believes.

The whole protocol is summarized in Algorithm 2. Notice that, in contrast
with the first protocol, here we generate K sequences of L bits (and not just one).
Note also that, in order to do that, we run exactly K ·L circuits, while in Protocol
1 we need to run 2N + L circuits to generate just L bits.

5 Experiments

To test the effectiveness of the protocols proposed in Sections 3 and 4, we have
conducted millions experiments on quantum simulators and several thousands ex-
periments on actual quantum computers. In the following subsections, we describe
the settings of the experiments and how we propose to evaluate the performance,
and we present and discuss the results we have obtained.

8 E.F. Combarro et al

Algorithm 2 Protocol 2
Input: L,K non-negative integers
Output: K sequences of L bits
L0 ← L

2

L1 ← L
2

θold = π
4

for i:=1 to K do

θreal = arctan
√
L1
L0

θnew = θold + (π
4
− θreal)

L0 ← 0
L1 ← 0
for j:=1 to L do

Run the circuit of Figure 1d with θ = θnew
if the result is |0〉 then

Output 0
L0 ← L0 + 1

end if
if the result is |1〉 then

Output 1
L1 ← L1 + 1

end if
end for

end for

5.1 Settings of the experiments and evaluation

We have implemented the protocols described in previous sections using IBM’s
Qiskit quantum programming language [1]. This allowed us to run them on both
quantum simulators and on actual quantum hardware from the IBM Quantum
Experience [15]. Among the available physical quantum devices, we have selected
IBM Armonk which, as the rest of devices available on the platform, uses supercon-
ducting transmon technology and supports general rotation gates. This computer
has just one qubit, which makes it unsuitable for running most quantum algo-
rithms. However, it is perfect for our protocols, since we don’t need more than one
qubit and, in addition, we avoid crosstalk from other qubits that could introduce
extra noise.

Since the objective of our protocols is increasing the uniformity of the indi-
vidual generated bits, to evaluate the performance we have used the monobit or
frequency test from the NIST Test Suite for Random and Pseudorandom Number
Generators [5]. This test checks whether the proportion of 0’s and 1’s in a string
of bits follows that of a sequence of bits generated with a perfect uniform distri-
bution. This is the most basic test for uniformity and, as noted in [5], “all the
subsequent tests depend on the passing of this test”. This test is also part of some
other popular test suites such as Dieharder [8] or TestU01 [20]. The test works as
described in Algorithm 3.

The quantum computing paradigm is probabilistic instead of deterministic,
and thus each execution of the same circuit can lead to different results. Thus,
in each execution on the computers of the IBM Quantum Experience one of the
parameters is the number of repetitions or shots. In all our experiments, we have
selected the number of shots to be 8192, which is the maximum allowed. Thus,
from each circuit that we executed on either the quantum simulator or on IBM

Protocols for uniformity of random bits with quantum computers 9

Algorithm 3 Monobit test
Input: A string s of N bits
Output: “YES” if the test is passed, “NO” otherwise
N0 ← number of 0’s in s
N1 ← number of 1’s in s

D ← |N0−N1|√
2N

p← 2√
π

∫∞
D e−x

2
dx

if p ≥ 0.01 then
Output “YES”

else
Output “NO”

end if

Armonk we obtained a binary string of length 8192 and, consequently, we set
N = 8192 in Algorithm 3.

5.1.1 Settings of the experiments on the quantum simulator

As a first way of validating the protocols introduced in Sections 3 and 4, we have
run them on the quantum simulator provided with Qiskit. The use of the simulator
is much faster than executing the protocols on actual quantum hardware but it
also allows the inclusion of models of noise that mimic the behaviour of the actual
quantum computers.

For our experiments, we have chosen to run first the circuit of Figure 1a in
perfect conditions, that is, with no noise. Then, we have introduced a noise model
taken from IBM Armonk, the real quantum computer that we will be using in
the second part of our experimentation. In this setup, for the gate errors we have
used the values given by the model retrieved from the actual quantum computer
(which were all around 10−4), and then we have considered three different settings
for the readout errors: e0 = 0.065 and e1 = 0.035, e0 = 0.07 and e1 = 0.03, and
e0 = 0.06 and e1 = 0.04. These figures are typical values that can be observed on
IBM Armonk, and they capture different situations with more or less asymmetry.
The case with e0 = 0.06 and e1 = 0.04 should be the more favorable for the circuit
of Figure 1a to produce bit sequences that pass the frequency test, while the case
e0 = 0.07 and e1 = 0.03 should make it much more difficult. We have chosen these
different values to test the behaviour our protocols under a range of situations.

In all the settings, we have run the circuit of Figure 1a 8192 times (to be
consistent with the maximum number of shots of the actual quantum computer)
and then performed the monobit test on the output bit sequence. We have repeated
the process 220 times (that is, we have tested more than one million bit sequences
of length 8192). For Protocol 1, we have selected N = L = 8192 and we have,
again, run the protocol 220 times. For Protocol 2, we have selected K to be 128
and L to be 8192 and we have run the whole protocol 213 times, again obtaining
a total of 220 bit sequences of length 8192.

5.1.2 Settings of the experiments on the actual quantum computer

To establish a baseline for the IBM Armonk quantum computer, we have run
the circuit of Figure 1a without any modification or correction for a little more

10 E.F. Combarro et al

than 10,000 times (each execution consists of the maximum number of shots,
which, as mentioned, is 8192). Then, we have run Protocols 1 and 2 exactly as
described in Sections 3 and 4 for more than 1,000 times each. We have also run
some modifications of these protocols, described in the following list:

– Variants of Protocol 1:
– Original: The one described in Section 3, with no modification, and setting
N = L = 8192 (the maximum number of shots).

– Calibration: IBM provides calibrations of their quantum computers, in-
cluding values of the measurement errors e0 and e1. We use these calibra-
tions instead of estimating e0 and e1 ourselves.

– Initial: To decrease the number of of times we need to run the circuits of
Figures 1b and 1c, we perform just one initial estimation of e0 and e1 and
then execute Protocol 1 with those values of e0 and e1 128 times (so that
we get 8192 · 128 = 220 bits)

– Initial 10: Similar to initial, but instead of running the circuits of Fig-
ures 1b and 1c just once, we run each of them 10 times and take e0 and e1
as the average of the individual estimations. Then, we run Protocol 1 with
those values of e0 and e1 128 times.

– Blocks: Similar to initial, but instead of 128 times, we run Protocol 1
with the estimated values of e0 and e1 just 8 times.

– Accumulated: We run Protocol 1 128 times, but instead of performing an
independent estimation of e0 and e1 each time, we accumulate the values
of the estimations and use their average for each execution of the circuit of
Figure 1d.

– Reject: We run Protocol 1 128 times, each time conducting the monobit
test with the 8192 bits of the output. If the test is passed, we keep the
values of e0, e1 and θ for the next sequence and we do not run the circuits
of Figure 1b and 1c. If the test fails, then we run the circuits to estimate
e0 and e1 (we reject the previous values of e0 and e1).

– Variants of Protocol 2:
– Original: The one described in Section 3, with no modification, and setting
K = 128 and L = 8192

– Reject: After each execution of the inner For loop of Algorithm 2, we run
the monobit test with the 8192 bits just obtained. If the test is passed, we
do not update the value of θ (that is, we keep θnew = θold). If the test fails,
we update the value of θ as in the original protocol.

– Half: Exactly as the original protocol, but with the update θnew = θold+
π
4
−θreal
2 .

– Reject+Half: This is a mixture of both reject and half. We run the
monobit test with each sequence of 8192 bits. If the test is passed, we keep
the value of the angle unchanged. If it fails, we update it with θnew =

θold +
π
4
−θreal
2 .

The main goal of introducing these variants is, in the case of Protocol 1, to
try to reduce the number of extra circuits that we need to run while keeping the
ability to correct the angle with estimations of the measurement errors. In the case
of Protocol 2, the variants aim to prevent the algorithm from overcompensating
when one of the runs is far from uniform (see the explanation in Section 5.2 and
also Figures 3a and 3b).

Protocols for uniformity of random bits with quantum computers 11

Table 1: Number of 8192-bit sequences obtained with each variant

Protocol Number of sequences

Baseline (Hadamard + measurement) 10897
Protocol 1 - Original 1729

Protocol 1 - Calibration 1167
Protocol 1 - Initial 1198

Protocol 1 - Initial 10 1033
Protocol 1 - Blocks 1470

Protocol 1 - Accumulated 1620
Protocol 1 - Reject 1232

Protocol 2 - Original 2257
Protocol 2 - Reject 1192
Protocol 2 - Half 1303

Protocol 2 - Reject + Half 1028

As mentioned above, we have run these variants at least one thousand times
each. Although the access to the quantum computers in the IBM Quantum Expe-
rience is free, the jobs enter a priority queue and can be subject to a considerable
delay. Also, the computers are sometimes down or go for maintenance or calibra-
tion, causing some of the executions to abort before completion. For these reasons,
the experiments presented in this paper took almost three months to complete.
Since some of the variants were introduced later on to improve the effectiveness of
the methods, not every protocol could be run the same number of times. In any
case, every variant was used to produce at least 1000 sequences. The total number
of sequences of 8192 bits that we obtained with each of the variants is presented
in Table 1.

5.2 Results and discussion

In this section, we first present the results of the experiments performed with the
simulators and, then, those obtained with the IBM Armonk quantum computer.
In both cases, we have computed the proportion of the sequences that pass the
monobit test and also the average and the standard deviation of the p-values of
those tests. These latter figures of merit are interesting because they complement
the information of how many tests have been passed to include an estimation of
the margin with which those tests have been passed.

Table 2 shows these values for the simulation experiments. Note, first, that
when no noise is present, the circuit of Figure 1a behaves as expected from a
perfectly uniform source. About 99% of the tests are passed (consistent with our
setting the p-value threshold for a test to be passed at 0.01) and, moreover, the
p-values have average and standard deviation compatible with those of a uniform
distribution over the interval [0, 1] (cf. [5], Section 4.2.2), namely 0.5 and 1√

12
≈

0.2887. When we introduce gate and readout errors, however, this circuit is no
longer able to reproduce the behaviour of a uniform source. In fact, the number of
passed tests quickly drops and the average of the p-values also falls well below 0.5,
while their standard deviation also decreases, suggesting that it is more infrequent
to pass the tests by a wide margin. This is more remarkable when the difference

12 E.F. Combarro et al

Table 2: Results of the simulations

Protocol Pr tests Av p-values Std p-values

Hadamard + measurement (no noise) 0.9899 0.4999 0.2886

H + measurement (e0 = 0.065, e1 = 0.035) 0.4210 0.0483 0.1158
Protocol 1 (e0 = 0.065, e1 = 0.035) 0.9861 0.4854 0.2927
Protocol 2 (e0 = 0.065, e1 = 0.035) 0.9403 0.4031 0.3070

H + measurement (e0 = 0.07, e1 = 0.03) 0.1344 0.0092 0.0399
Protocol 1 (e0 = 0.07, e1 = 0.03) 0.9857 0.4847 0.2927
Protocol 2 (e0 = 0.07, e1 = 0.03) 0.9376 0.4035 0.3072

H + measurement (e0 = 0.04, e1 = 0.02) 0.7592 0.1688 0.2322
Protocol 1 (e0 = 0.04, e1 = 0.02) 0.9859 0.4853 0.2926
Protocol 2 (e0 = 0.04, e1 = 0.02) 0.9426 0.4044 0.3066

Table 3: Results on quantum hardware (Protocol 1 + Baseline)

Protocol Pr tests Av p-values Std p-values

Baseline (Hadamard + measurement) 0.3962 0.0890 0.1949
Protocol 1 - Original 0.6640 0.2564 0.3073

Protocol 1 - Calibration 0.2408 0.0605 0.1681
Protocol 1 - Initial 0.4482 0.1526 0.2582

Protocol 1 - Initial 10 0.3843 0.1122 0.2284
Protocol 1 - Blocks 0.5837 0.2174 0.2929

Protocol 1 - Accumulated 0.5389 0.1265 0.2318
Protocol 1 - Reject 0.6623 0.2580 0.3116

between e0 and e1 gets bigger, because the asymmetry between 0’s and 1’s is then
more noticeable.

Protocol 1, however, seems to be able to deal with noise and errors in all
the situations under study achieving results that are very close to those of the
theoretically perfect circuit. Moreover, the results in the three cases are extremely
similar, showing that this protocol is stable under a series of different conditions.
The main drawback of this method is the necessity of running two extra circuits
per random bit generated, which makes it less efficient than Protocol 2. Also, as
we show below, these good simulation results do not seem to translate very well
to execution on actual quantum hardware.

Protocol 2, on the other hand, does not behave as well as Protocol 1 in the
simulations, although it is still able to achieve around 94% of success in the monobit
test. This difference with Protocol 1 may come from those initial runs in which
Protocol 2 has yet no information about the behaviour of device and needs to
accumulate some data to learn an angle that is able to produce sequences with
approximately the same number of 0’s and 1’s. This is achieved, however, even in
the most difficult setting (when e0 = 0.07 and e1 = 0.03), improving the chance
of passing the frequency test from 0.1344 (Hadamard circuit with no correction)
to 0.9376.

Now, we turn to the results obtained with our experiments on the actual quan-
tum computer. In Table 3, we present the results obtained by the simple Hadamard
+ measurement circuit and by Protocol 1 when run on IBM Armonk. As we can

Protocols for uniformity of random bits with quantum computers 13

see, the circuit consisting of a Hadamard plus a mesure that in the simulation pro-
duced results consistent with those of a uniform source, only passes the monobit
test about 40% of the time and their p-value average and standard deviation are
quite low. This is explained by the gate errors and the readout errors of the actual
quantum computer. Notice that, in fact, these results are quite similar to the ones
obtained in the simulations when we use the gate errors retrieved from the actual
IBM Armonk and we set the readout errors to e0 = 0.065 and e1 = 0.035.

Table 3 also shows that using Protocol 1 can increase the probability of success
on quantum hardware, up to almost two thirds of the time and also leads to a
higher average of the p-values and a standard deviation which is more similar to
that expected from a uniform source. This increase, however, is much lower than
the one we obtained in the simulations. This is the reason why we introduced
the different variants of Protocol 1 described in Section 5.1.2. This behaviour is
consistent with the difference between results of simulations and those obtained
with quantum hardware that have been previously observed in other problems [11].
What is more, this increase in the chances of passing the test is obtained at the
cost of executing two extra circuits to generate each random bit (the ones that
we need to estimate the errors e0 and e1). This is the second reason for trying to
introduce variants with less overhead.

Let us, then, analyse the results obtained with the proposed variants. If we try
to get rid of the extra executions by using the device calibrations provided by IBM,
we find that the results are not improved and, in fact, the proportion of sequences
that pass the test falls to almost a fourth of the total and the average of p-values
also falls. This may seem surprising at first, but the explanation is clear: these
calibrations are not performed continuously but can be several hours old. The
behaviour of the device, however, seems to vary with time (this is also supported
by the results of the rest of experiments) so, by the moment we use them, the
calibrations may be far off from the actual readout errors of the computer.

If we, on the other hand, perform the estimation of the e0 and e1 errors not as
frequently as once per sequence, we observe that the results are not very different
from the baseline when we only conduct the estimation at the beginning of a
long run of sequences (initial and initial 10 variants. In fact, it only leads to an
improvement if we perform the estimation as frequently as one per eight sequences
(blocks). Using an average of the estimations (accumulated variant) does not help
in obtaining better results than with the original formulation of Protocol 1. This
is consistent with what we observed when using IBM calibrations: because of the
wait in the queue, several hours will pass between the first and last run of a batch
of 128 executions of the protocol. Thus, if we use an average of the e0 and e1
estimations, we are taking into account values that are several hours old and, as
argued above, may not reflect the current behaviour of the computer.

The only variant of Protocol 1 that achieves results comparable to the original
is the one that we have called reject. With this variant, we keep angles that pass the
test and only refresh our e0 and e1 estimations when the uniformity conditions are
not met. This seems reasonable, for once that we find a parameter that produces
uniform enough bits, it makes sense to use it unless we find evidence that it is
not working correctly. An advantage of this variant is that it reduces the number
of additional circuits that must be run to generate random sequences. With the
original protocol, we need to run three circuits to produce one bit. The reject

14 E.F. Combarro et al

variant fails the test about one third of the times, so we only need to run, in
average, 5

3 circuits to obtain one bit.
The results of the experiments with Protocol 2 and its variants are presented in

Table 4, again with the baseline for quick comparison. We can readily notice that,
in this case, all the results improve those obtained when no protocol is used and
just the circuit of Figure 1a is run, and, in fact, the results with all the variants
of Protocol 2 get probabilities of passing the monobit test that are higher than
any of those obtained with Protocol 1 and its variants. The average and standard
deviation of p-values are also closer to what we would expect from a perfect random
source (although still not as good as those obtained with the simulations). A
possible explanation for the better results of Protocol 2 on quantum hardware is
that Protocol 1 only focuses on measurement errors as the source of the deviation
from the uniform distribution, while Protocol 2 models the behaviour of the system
as a whole, allowing to correct the influence of noise and errors of different types.

It is also interesting to note that, in this case, the proposed variants always
perform better than the original protocol. In contrast with Protocol 1, Protocol 2
is iterative in the sense that each subsequent execution learns from the previous
ones and tries to obtain a better approximation of the angle that more uniform
bitstrings is able to produce. Then, it again makes sense to not discard too quickly
those angles that have been working well in the past. That is precisely the aim
of variants reject and half, but with a different approach. The reject variant, as
in the case of Protocol 1, keeps those angles that pass the monobit test. The half
variant, on the other hand, prevents the protocol to make sudden and abrupt
changes in the angle that is used, by reducing by half the amount of increment
that is used in each update. As it can be seen from Table 4, this strategy pays
off, and leads to an increase in the ratio of frequency tests passed when compared
with the original protocol and the reject version. Even better, the improvements
of these two variants can be combined to obtain, with the reject + half version,
the best performance overall.

An illuminating insight is obtained by analysing the behaviour of both the
accumulated ratio of passed tests and the evolution of the angle in Protocol 2 and
its variants. In Figure 3a, we present the proportion of passed tests in typical runs
of Protocol 2, Protocol 2 - Reject, Protocol 2 - Half and Protocol 2 - Half + Reject
from the first to the 128th sequence of an execution. As it can be appreciated,
the versions that perform the full angle upgrade (namely, the original and the
reject variant) are faster in obtaining a high proportion of passed tests because
they adjust the value of θ more aggressively and it is easier for them to get to an
angle that is close to obtaining uniform samples. However, in the long run, they
are also more affected by sudden changes and fluctuations in the behaviour of the
device. The variants with a more conservative update (half and reject + half) are
eventually better because once they identify a good angle is more difficult for them
to be driven away from it but they still retain some flexibility and possibility of
adapting to changes.

This is even more clearly appreciated in Figure 3b where we present the evolu-
tion of the angle for the same runs of Figure 3a. The original version of Protocol
2 shows the highest variability, with a lot of peaks and sudden direction changes.
This is somehow mitigated by the reject variant, which shows some plateaus when
a good angle (one that produces several passed tests in a row) is reached, but this
version is still subject to some abrupt fluctuations. The versions that only perform

Protocols for uniformity of random bits with quantum computers 15

Table 4: Results on quantum hardware (Protocol 1 + Baseline)

Protocol Pr tests Av p-values Std p-values

Baseline (Hadamard + measurement) 0.3962 0.0890 0.1949
Protocol 2 - Original 0.6832 0.2637 0.3095
Protocol 2 - Reject 0.7374 0.2820 0.3104
Protocol 2 - Half 0.7698 0.3155 0.3174

Protocol 2 - Reject + Half 0.8123 0.3143 0.3111

 0

 0.25

 0.5

 0.75

 1

 25 50 75 100 125

P
ro

p
o
rt

io
n
 o

f
p
a

s
s
e

d
 t

e
s
ts

Sequence

ORIGINAL
REJECT
HALF
REJECT−HALF

Proportion of passed tests as the number of
sequences increases

 0.725

 0.75

 0.775

 0.8

 0.825

 0.875

 25 50 75 100 125

T
h
e

ta

Sequence

ORIGINAL
REJECT
HALF
REJECT−HALF

Evolution of angle as the number of sequences
increases

Fig. 4: Proportion of passed tests and evolution of angle as the number of sequences increases

half correction to the angle are clearly more stable, and seem to oscillate gently
around an ideal value of θ. Of the two of them, half + reject shows less peaks and
is the more steady overall. This is consistent with the results of Table 4 and of
Figure 3a.

6 Conclusions and future work

In this paper, we have studied the possibility of generating random bits by execut-
ing a circuit consisting of a Hadamard gate and a measurement. Our experimental
results show that, although perfectly uniform in theory, in practice this method
fails to pass the statistical frequency test most of the times.

To try to mitigate this, we have introduced two simple protocols that can
be executed with the most simple quantum resource: just one qubit is sufficient.
The first of the protocols focuses on the errors produced in the readout, using
additional circuits to estimate these errors and then adjusting the rotation angle
in the 1-qubit quantum gate that is used to produce the sequence of bits. This
protocol works very well in the experimental simulations that we have conducted,
obtaining results that are close to those of the theoretical circuit even in the
presence of different noise levels. The success rate of this protocol, however, is not
so good when run on actual quantum hardware, so we introduced some variants
to, on the one hand, try to reduce the number of additional circuits that need to
be run for error estimation and, on the other, aim to obtain higher success rates.

16 E.F. Combarro et al

The second protocol presented in the paper is an adaptive algorithm that
requires no additional circuits for error estimation but uses the same runs that
produce the random bit sequences to learn an angle that makes the underlying
quantum computer behave closer to uniformity. As in the case of Protocol 1, we
tested this method both on a quantum simulator under different noise situations
and on an actual quantum computer. In the former case, the results are not so
good as those of Protocol 1, although this new method is still able to cope with
different noise levels and obtain success rates that are around 94%. When run on
actual quantum hardware, however, Protocol 2 clearly outperforms Protocol 1.
What is more, we introduced some variants to the protocol, increasing even more
the chance of passing the frequency test and making it more stable.

There are several open questions that we would like to explore in future works.
For instance, it would be interesting to study whether these protocols also help
in passing other statistical tests that are commonly used to check the uniformity
of pseudorandom and true random generators and if the methods described in
the paper offer similar performance on quantum computers with a higher number
of qubits. Also, we would like to explore the possibility of combining these pro-
tocols with other, more traditional ways of obtaining random bits from quantum
computers, such as the use of randomness amplification and expansion. Finally,
we would be interested in studying the behaviour of Protocol 2 and its variants
in longer runs, once that a good angle has been learned after the initial warm-up
period.

Acknowledgements This work was supported in part by the Ministry of Economy, Industry
and Competitiveness from Spain/FEDER under grant MTM-2017-83506-C2-2-P, by Ministry
of Science and Innovation from Spain/FEDER under grant RTI2018-098085-B-C44, and by he
Regional Ministry of the Principality of Asturias under grants FC-GRUPIN-IDI/2018/000193
and FC-GRUPIN-IDI/2018/000226.

References

1. Abraham, H., AduOffei, Akhalwaya, I.Y., et al.: Qiskit: An open-source framework for
quantum computing (2019)

2. Aćın, A., Masanes, L.: Certified randomness in quantum physics. Nature 540, 213–219
(2016)

3. Asmussen, S., Glynn, P.: Stochastic Simulation: Algorithms and Analysis. Springer (2007)
4. Bakiri, M., Guyeux, C., Couchot, J.F., Oudjida, A.K.: Survey on hardware implementation

of random number generators on fpga: Theory and experimental analyses. Computer
Science Review 27, 135 – 153 (2018)

5. Bassham, L.E., Rukhin, A.L., Soto, J., et al.: A statistical test suite for random and
pseudorandom number generators for cryptographic applications. Tech. rep., National
Institute of Standards and Technology, Gaithersburg, MD, USA (2010)

6. Bera, M.N., Aćın, A., Kuś, M., Mitchell, M.W., Lewenstein, M.: Randomness in quantum
mechanics: philosophy, physics and technology. Reports on Progress in Physics 80(12),
124001 (2017)

7. Born, M.: Statistical interpretation of quantum mechanics. Science 122(3172), 675–679
(1955)

8. Brown, R.G.: Dieharder: a random number test suite. URL
https://webhome.phy.duke.edu/ rgb/General/dieharder.php. Last accessed Decem-
ber 2nd, 2020

9. Combarro, E., Carminati, F., Vallecorsa, S., Ranilla, J., Rúa, I.: Quantum random numbers
generated by the cloud superconducting quantum computer. Bristol Quantum Information
Technologies Workshop (BQIT:20) (2020)

Protocols for uniformity of random bits with quantum computers 17

10. Combarro, E., Carminati, F., Vallecorsa, S., Ranilla, J., Rúa, I.: Two simple protocols
for improving the uniformity of quantum random bits in the presence of noise. 20th
Computational and Mathematical Methods in Science and Engineering Conference (2020)

11. Combarro, E.F., Ranilla, J., Rúa, I.: A quantum algorithm for the commutativity of finite
dimensional algebras. IEEE Access 7, 45554–45562 (2019)

12. Gentle, J.E.: Random Number Generation and Monte Carlo Methods. Springer (2004)
13. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings

of the Twenty-eighth Annual ACM Symposium on Theory of Computing, STOC ’96, pp.
212–219. ACM, New York, NY, USA (1996)

14. Herrero-Collantes, M., Garcia-Escartin, J.C.: Quantum random number generators. Rev.
Mod. Phys. 89, 015004 (2017)

15. IBM: IBM Q Experience. URL https://quantum-computing.ibm.com/. Last accessed
December 2nd, 2020

16. James, F., Moneta, L.: Review of high-quality random number generators. Comput Softw
Big Sci 4(2) (2020)

17. Karp, R.M.: An introduction to randomized algorithms. Discrete Applied Mathematics
34(1), 165 – 201 (1991)

18. Kollmitzer, C., Schauer, S., Rass, S., Rainer, B.: Quantum Random Number Generation
Theory and Practice: Theory and Practice. Springer (2020)

19. L’Ecuyer, P.: Random number generation. In: J.E. Gentle, W.K. Härdle, Y. Mori (eds.)
Handbook of Computational Statistics: Concepts and Methods. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2012)

20. L’Ecuyer, P., Simard, R.: Testu01: A c library for empirical testing of random number
generators. ACM Trans. Math. Softw. 33(4) (2007)

21. Li, L., Yu, F., Tang, Q., Song, Y., Xu, Q., Cai, S.: A Survey on True Random Number
Generators Based on Chaos. Discrete Dynamics in Nature and Society 2019, 1–10 (2019)

22. Liu, Y., Zhao, Q., Li, M.H., et al.: Device-independent quantum random-number genera-
tion. Nature 562(7728), 548–551 (2018)

23. Luby, M.: Pseudorandomness and cryptographic applications. Princeton, NJ: Princeton
Univ. Press (1996)

24. Ma, X., Yuan, X., Cao, Z., Qi, B., Zhang, Z.: Quantum random number generation. npj
Quantum Information 2(1), 16021 (2016)

25. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th An-
niversary Edition. Cambridge University Press (2011)

26. Schlosshauer, M., Kofler, J., Zeilinger, A.: A snapshot of foundational attitudes toward
quantum mechanics. Studies in History and Philosophy of Science Part B: Studies in
History and Philosophy of Modern Physics 44(3), 222 – 230 (2013)

27. Shaltiel, R.: An introduction to randomness extractors. In: L. Aceto, M. Henzinger, J. Sgall
(eds.) Automata, Languages and Programming, pp. 21–41. Springer Berlin Heidelberg,
Berlin, Heidelberg (2011)

28. Shor, P.: Algorithms for quantum computation: Discrete logarithms and factoring. Pro-
ceedings of FOCS pp. 124–134 (1994)

29. Stipčević, M., Koç, Ç.K.: True random number generators. In: Ç.K. Koç (ed.) Open
Problems in Mathematics and Computational Science. Springer, Cham (2014)

30. Tamura, K., Shikano, Y.: Quantum random numbers generated by the cloud superconduct-
ing quantum computer. International Symposium on Mathematics, Quantum Theory, and
Cryptography: Proceedings of MQC 2019 (2019)

